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What is evolutionary conflict?

Conflict is pervasive in nature, as observed in the struggle between predators and prey, compe-

tition for mates, as well as between pathogenic microbes and their hosts. The burden imposed

by pathogens can place strong selective pressure on host populations to evolve resistance to

infection [1]. Conversely, host immune responses promote the repeated evolution of defensive

countermeasures by microbial pathogens. This antagonism can give rise to evolutionary con-

flicts, including “Red Queen” dynamics, in which pathogens and hosts are forced to continu-

ally adapt to maximize their relative fitness (Fig 1) [2,3]. Consistent with the existence of such

conflicts, immune system components have been shown to be among the most rapidly evolv-

ing genes in animal genomes [4–7]. These observations can reflect the rapid spread of new

beneficial mutations in populations over time, a process termed positive selection. Unique

genetic signatures are used to infer positive selection between and within species, including

elevated rates of nonsynonymous nucleotide substitutions relative to synonymous substitu-

tions in protein-coding genes (also termed dN/dS or ω), as well as to measure the loss of

genetic variation around a locus associated with a recent selective sweep. Genomic studies fur-

ther support the long-held theory that host–pathogen interactions are major drivers of natural

selection and adaptation across diverse taxa [4,6–8].

The past 15 years have seen a powerful integration of genetic and experimental approaches

to identify instances of host–pathogen conflict as well as empirically test how conflicts shape

immunity and disease [9]. Such approaches have pinpointed new molecular functions under-

lying host defense [10,11], identified completely new genes or pathways involved in disease

susceptibility [12,13], and revealed new determinants of pathogen tropism [14–16]. Host–

pathogen evolutionary conflicts thus provide powerful systems for dissecting mechanisms of

infectious disease pathogenesis.

How have host immune defenses been shaped by evolutionary

conflicts with bacteria?

An established and growing body of work has characterized instances of evolutionary conflict

between animals and viruses [5,9]. More recently, studies have begun to emerge revealing

molecular details of conflicts driven by cellular pathogens including bacteria, fungi, and para-

sites. Below, we highlight recent advances in our understanding of evolutionary conflicts

between animal hosts and pathogenic bacteria (Fig 2), as well as discuss future areas of study

in this burgeoning field.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008797 September 17, 2020 1 / 7

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Aleru O, Barber MF (2020) Battlefronts of

evolutionary conflict between bacteria and animal

hosts. PLoS Pathog 16(9): e1008797. https://doi.

org/10.1371/journal.ppat.1008797

Editor: Jorn Coers, Duke University School of

Medicine, UNITED STATES

Published: September 17, 2020

Copyright: © 2020 Aleru, Barber. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by NIH grant

R35GM133652 to MFB. OA is a recipient of NIH

training grant T32GM007759. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-2008-2165
https://doi.org/10.1371/journal.ppat.1008797
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008797&domain=pdf&date_stamp=2020-09-17
https://doi.org/10.1371/journal.ppat.1008797
https://doi.org/10.1371/journal.ppat.1008797
http://creativecommons.org/licenses/by/4.0/


Cell-autonomous immunity

Many metazoan cell types possess the intrinsic ability to detect and defend against pathogens,

a feature termed cell-autonomous immunity [17]. Cell-autonomous immunity represents an

ancient arm of host defense which can be triggered by cytosolic pattern recognition receptors

Fig 1. Conceptual overview of host–pathogen evolutionary conflicts. Natural selection in microbial pathogens

(green) is predicted to favor mutations that either enhance the activity of virulence factor proteins (left panel) or avoid

detection by host immune defenses (right panel). Conversely, mutations in host proteins (blue) that counteract

virulence factors or enhance detection of microbial ligands are also predicted to quickly adapt due to positive selection.

These antagonistic molecular interactions can give rise to evolutionary conflicts in which neither host nor pathogen

ever gains a permanent advantage. Black arrows represent the continual processes of mutation and selection that fuel

evolutionary conflicts.

https://doi.org/10.1371/journal.ppat.1008797.g001

Fig 2. Interfaces of evolutionary conflict between animals and pathogenic bacteria. Three representative examples of conflicts

involving human bacterial pathogens are illustrated. (A) Human GBP1 recognizes Shigella flexneri via a C-terminal PBM.

Diversification within the PBM of GBP1 in night monkeys and other New World primates confers enhanced recognition to S.

flexneri relative to human GBP1. (B) Pathogenic Neisseria avoid detection by the complement alternative pathway through

recruitment of fH to their surface. Human fH exhibits the strongest binding to Neisseria meningitidis, whereas nonhuman primate

fH is poorly recognized by these bacteria. Regions of fH corresponding to bacterial recognition sites are known to exhibit strong

signatures of repeated positive selection. (C) Staphylococcus aureus scavenges host heme using the IsdB receptor. Rapidly diverging

sites within alpha and beta hemoglobin in primates impair recognition by IsdB, contributing to host nutritional immunity. fH, factor

H; GBP1, guanylate binding protein 1; IsdB, iron-regulated surface determinant B; PBM, polybasic motif.

https://doi.org/10.1371/journal.ppat.1008797.g002
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as well as extracellular signaling molecules such as interferon [18]. Evidence is accumulating

that intracellular bacteria have instigated repeated evolutionary conflicts with several critical

cytosolic host defense factors. Key among these are inflammasomes, protein complexes that

form in response to detection of various intracellular pathogens [19,20]. Assembly of distinct

inflammasomes containing inflammatory caspases as well as nucleotide-binding oligomeriza-

tion domain-like receptor (NLR) proteins can ultimately lead to inflammatory host cell death,

termed pyroptosis, along with the release of proinflammatory cytokines. Recent studies have

illustrated that several mammalian NLR family proteins have undergone rapid divergence in

domains responsible for bacterial pathogen sensing. In one case, mapping the flagellin-binding

region of the neuronal apoptosis inhibitory proteins (NAIPs), a subgroup of mouse NLRs,

simultaneously revealed that this domain exhibits high dN/dS across the rodent lineage, sug-

gestive of repeated positive selection [21]. Given the diversity of flagellin proteins found in bac-

teria and the expansion of NAIP gene copy number in rodents, these data support a model in

which NAIPs have undergone repeated adaptation to recognize an array of bacterial flagellins

encountered during infection. More recently, Chavarrı́a-Smith and colleagues provided evi-

dence that primate NLRP1 is rapidly diverging within an N-terminal region that undergoes

bacterial-mediated proteolytic cleavage leading to inflammasome activation [22]. In light of

additional studies that collectively revealed how NLRP1 N-terminal degradation functions as a

sensor of bacterial-induced proteolysis [23,24], signatures of natural selection in NLRP1 family

proteins suggest that genetic variation in this region can enhance surveillance against a range

of intracellular bacterial effectors.

An additional group of host factors that contribute to defense against intracellular patho-

gens are interferon-stimulated GTPases, including the guanylate binding proteins (GBPs).

Molecular, cellular, and genetic studies have demonstrated that GBPs serve numerous roles in

cell-autonomous immunity, from recognizing pathogen-containing cellular compartments to

promoting inflammasome activation and directly binding to microbial cell surfaces in the

cytosol [25–27]. Mammals encode a variable number of GBP paralogs, with humans possess-

ing seven, as well as several pseudogenes. Oligomerization on a target surface allows GBPs to

cooperatively bind to pathogens or pathogen-containing membranes as well as recruit addi-

tional defense factors to limit microbial replication. A series of recent studies has illustrated

mechanisms by which human GBP1 recognizes cytosolic Gram-negative bacteria [28–30].

Detection of pathogenic Shigella by human GBP1 relies on the presence of a C-terminal preny-

lation motif adjacent to a stretch of basic amino acids, termed the polybasic motif (PBM). The

PBM contributes to direct recognition of the Gram-negative bacterial envelope, allowing

GBP1 to serve as an oligomeric lipopolysaccharide sensor [31–33]. We and our collaborators

recently demonstrated that this PBM displays signatures of recurrent positive selection in

primate GBP1 and GBP2, suggestive of adaptation in response to conflicts with cytosolic

microbes (Fig 2A) [34]. Swapping the PBM between primate GBP1 proteins revealed that sev-

eral New World monkeys possess enhanced bacterial-targeting activity relative to humans,

illustrating how beneficial mutations are capable of augmenting GBP defensive functions.

Although much more remains to be uncovered regarding the evolution of cell-autonomous

immunity, these recent studies demonstrate how selective pressures imposed by bacterial path-

ogens can rapidly shape the activity of host defense factors.

The complement system

The complement system comprises a large network of soluble and cell-surface proteins in ani-

mals that recognize nonself molecular features, facilitating the direct rupture of microbial

membranes as well as stimulating leukocyte recruitment and inflammation [35]. Successful
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pathogens in turn have evolved a variety of mechanisms to avoid or down-regulate comple-

ment activation. One effective means of pathogen complement evasion involves the recruit-

ment of regulatory proteins, which normally serve to protect host cells from inappropriate

complement activation. By recruiting these host regulators, microbes can effectively “cloak”

themselves against this potent defense system. Although core components of the complement

system are widely conserved in animals, genome-wide studies have also revealed that numer-

ous complement genes exhibit evidence of repeated positive selection between species. A

recent study highlighted such signatures in several complement regulators, including factor H

(fH) and C4 binding protein A (C4BPA) [36]. fH is a major soluble host complement regulator

that prevents activation of the alternative complement pathway, while C4BPA prevents activa-

tion of the classical and lectin pathways. Moreover, rapidly evolving domains in both fH and

C4BPA map to known binding sites of diverse pathogenic bacteria [37,38]. These findings

strongly suggest that antagonism by bacteria has prompted evolutionary conflicts with host

complement regulators over millions of years of animal evolution (Fig 2B). Given that humans

also encode native fH-like proteins that are hypothesized to serve as mimics against pathogen

hijacking [39], future work aimed at delineating the relationship between host and microbial

variation at this interface could reveal important determinants of pathogen complement eva-

sion, as well as potential strategies to counteract this process.

Nutritional immunity

In addition to evading dedicated host immune defenses, bacteria and other cellular pathogens

must acquire nutrients to survive and grow during an infection. Nutrient metals are particularly

scarce and must be scavenged by bacterial pathogens within the host. The active sequestration

of metals such as iron, manganese, and zinc provides an important host defense mechanism

termed nutritional immunity [40–42]. We and others have shown that multiple components of

host nutritional immunity exhibit genetic signatures of evolutionary conflicts similar to more

canonical immune defense factors mentioned above. Previous work illustrated that transferrin,

the principle bloodstream iron transport protein in vertebrates, has undergone repeated positive

selection specifically at the interface with the Gram-negative bacterial receptor transferrin bind-

ing protein A (TbpA) [43]. This outer-membrane protein facilitates the acquisition and trans-

port of iron into bacterial cells from transferrin, making it a major virulence factor in several

human pathogens, including Neisseria gonorrhoeae, N. meningitidis, Haemophilus influenzae,
and Moraxella catarrhalis [44]. Although evidence of repeated adaptation was also observed in

the transferrin paralog lactoferrin, rapidly evolving regions of this protein suggest that selection

has acted primarily on new antimicrobial functions that have emerged since its divergence from

transferrin, rather than iron binding [45]. More recently, we and others discovered that mam-

malian heme binding proteins are also rapidly evolving at molecular interfaces recognized by

bacterial pathogens [46,47], most notably the hemoglobin alpha and beta subunits targeted by

diverse bacterial and eukaryotic pathogens. Mutating positions subject to positive selection in

both transferrin and hemoglobin are sufficient to impair recognition by pathogenic bacteria,

supporting the hypothesis that variation in these host factors could provide a benefit to host fit-

ness during bacterial infections (Fig 2C) [46]. It remains an open question as to how competi-

tion for other nutrients may lead to evolutionary conflicts between bacteria and animal hosts.

What are emerging questions regarding bacterial–host

evolutionary conflicts?

The studies highlighted here illustrate that evolutionary conflicts between bacteria and animal

hosts are widespread and have important consequences for infectious disease pathogenesis
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and immunity. However, many unanswered questions remain. Beyond immune evasion and

nutrient acquisition, bacteria encode a wide variety of virulence factors that could also give rise

to conflicts. Recent work has provided evidence of repeated adaptation among host proteins

targeted by bacterial toxins [48,49], consistent with this hypothesis. Given that many bacterial

virulence factors are also encoded by related commensal microbes, pathogen-driven conflicts

could also hold the potential to restrict the host species tropism of commensal members of the

microbiota. In this case, we would expect that commensal bacteria are also forced to adapt in

response to rapidly evolving host factors required for colonization, even when they themselves

are not the driving agents of conflict. Since the effectiveness of host barrier defenses can

depend on the presence of the microbiota [50–53], it will be important to test how evolution of

commensal microbes can in turn shift the balance of host–pathogen conflicts. For example,

host genetic variation in iron-binding proteins may only be effective at excluding pathogens

when particular host-adapted commensal microbes are present to out-compete them [54]. We

expect the coming years will continue to expand our understanding of how and why bacterial–

host evolutionary conflicts arise, as well as provide opportunities to apply this knowledge in

humanity’s ongoing battles with microbial pathogens.
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