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Abstract
We present the Battlesnake Challenge, a frame-
work for multi-agent reinforcement learning with
Human-In-the-Loop Learning (HILL). It is de-
veloped upon Battlesnake, a multiplayer exten-
sion of the traditional Snake game in which 2
or more snakes compete for the final survival.
The Battlesnake Challenge consists of an offline
module for model training and an online mod-
ule for live competitions. We develop a sim-
ulated game environment for the offline multi-
agent model training and identify a set of base-
line heuristics that can be instilled to improve
learning. Our framework is agent-agnostic and
heuristics-agnostic such that researchers can de-
sign their own algorithms, train their models,
and demonstrate in the online Battlesnake com-
petition. We validate the framework and base-
line heuristics with our preliminary experiments.
Our results show that agents with the proposed
HILL methods consistently outperform agents
without HILL. Besides, heuristics of reward ma-
nipulation had the best performance in the on-
line competition. We open source our frame-
work at https://github.com/awslabs/sagemaker-
battlesnake-ai.

1. Introduction
Battlesnake is an extension of the traditional Snake arcade
game where multiple snakes compete against one another
for food and survival. The last surviving snake is the winner
of the game. Competitors traditionally develop heuristics
such as using the A* search algorithm (Russell & Norvig,
2002) and the tree search (Schier & Wüstenbecker, 2019) to
seek food, enemy heads, and its tail. Meanwhile, Reinforce-
ment Learning (RL), which learns a policy by interacting
with an environment through trial-and-error, has been nat-
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urally adopted to tackle such sequential problems. Recent
advances in deep RL further allows modelling such decision
making problems with high-dimensional visual perceptual
inputs made up of thousands of pixels (Mnih et al., 2015).
Battlesnake focuses on a particular branch of RL where mul-
tiple agents learn to interact within the same environment. It
is denoted as multi-agent RL problems (Littman, 1994; Bu
et al., 2008; Buşoniu et al., 2010). The game fits the fully
competitive setting (Silver et al., 2017) in which each agent
is tasked to maximise its own reward while minimising their
opponent’s rewards.

Developers with superior domain knowledge build snakes
with unique strategies and heuristics. Having Human-In-the-
Loop Learning (HILL) aids the policy training and prevents
catastrophic actions (Christiano et al., 2017; Abel et al.,
2017). Human intuition could be provided as feedback
(Arakawa et al., 2018; Xiao et al., 2020), teachers (Abel
et al., 2017; Zhang et al., 2019b), and overseers (Saunders
et al., 2018). It can also steer agents to have more optimal
learning by identifying important and omitting misleading
features, subsequently reducing the dimensionality of the
state space (Abel et al., 2017). However, these methods
incorporate human guidance in a single agent setting. To
the best of our knowledge, there exists no playground desig-
nated to evaluate multi-agent RL algorithms with HILL.

To fill in this gap, we introduce the Battlesnake Challenge,
an accessible and standardised framework that allows re-
searchers to effectively train and evaluate their multi-agent
RL algorithms with various HILL methods. We choose
to use Battlesnake as the underlying game engine because
it can be seamlessly integrated to the multi-agent RL re-
search direction, while remaining intuitive and lightweight.
Besides, the rules governing the game are relatively sim-
ple, but the resulting strategies can still be complex. Such
setting facilitates the use of human knowledge to provide
policy training guidance. In specific, we offer a simulated
Battlesnake environment for offline training, after which
the snakes can be deployed to the cloud to compete with
other snakes in the Battlesnake global arena1. To accommo-

1https://play.battlesnake.com/arena/global/. The arena hosts all
types of AI bots, being RL or non-RL, to compete against each
other.
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date human knowledge, we identify a number of standard
heuristics and further demonstrate the baseline techniques to
incorporate them into the agent. Our proposed framework is
agent-agnostic and heuristics-agnostic such that researchers
can design their own algorithms, train their models, and
demonstrate in the real Battlesnake competition. We hope
that the Battlesnake Challenge will serve as a testbed to
encourage research into multi-agent RL and HILL. Our
contributions are as follows:

• We propose an end-to-end training-deployment-testing
framework that consists of an offline module for multi-
agent RL training with HILL, and an online module
for performance evaluation against other public agents.

• On the multi-agent RL aspect, we develop a simulator
for the Battlesnake problem through a proper design
of state, action and reward. On HILL aspect, we iden-
tify a set of baseline heuristics that can be instilled to
improve the agents during training or after deployment.

• We validate the proposed framework and baseline
heuristics with our preliminary experiments. We in-
vestigate how different incorporation methods affect
task performance both offline and online. Our results
show that agents with HILL outperform agents with-
out HILL and careful reward manipulation performs
the best among our proposed heuristics in the online
Battlesnake arena.

• We open-source the Battlesnake Challenge
framework at http://github.com/
awslabs/sagemaker-battlesnake-ai
to encourage broader research directions.

2. Related works
Multi-agent RL Testbed: There is a growing number of
studies focusing on designing environments to evaluate the
agents’ performance with the advancements in the multi-
agent RL regime (Zhang et al., 2019a; Nguyen et al., 2020).
For example, Keepaway soccer (Stone et al., 2005) and its
extension (Kalyanakrishnan et al., 2006; Hausknecht et al.,
2016) provide a simulated football environment. Mean-
while, a set of gridwold-like environments has been devel-
oped to encompass various multi-agent tasks, covering both
continuous (Lowe et al., 2017) and discrete (Yang et al.,
2018; Zheng et al., 2018) control problems. Resnick et al.
(2018) proposed Pommerman, a game stylistically similar to
the Nintendo game Bomberman, as a playground for bench-
marking different agents. The system uses low dimensional
symbolic state interpretations input, and the authors built
an online leader board where researchers could submit their
agents and compete against one another. It, however, allows
only up to four agents and does not include the mechanism
that adds human intuition to the agents.

More recent work considers real-time strategy games that

require complex environments and controls. The Star-
Craft Multi-Agent Challenge (SMAC) (Samvelyan et al.,
2019; Vinyals et al., 2019), developed based on StarCraft
II, focuses on handling partially observability and high-
dimensional inputs. It aims to serve as a benchmark for
cooperative multi-agent RL, rather than the competitive set-
ting as in Battlesnake. In contrast, Ye et al. (2019) presented
a 1v1 game mode using multi-agent RL in a competitive
setting through the game Honor of Kings. They developed
an off-policy RL system architecture for scalable training
and eliminated invalid actions to improve the training effi-
ciency. Nonetheless, the complexities inherent in both of
these games require specific game knowledge, making it
difficult for general researchers to develop and evaluate their
multi-agent RL algorithms.

Human-in-the-loop Reinforcement Learning: The data
hungry nature of RL has prompted researchers to develop
techniques to leverage human knowledge for RL tasks
(Zhang et al., 2019b). Often, human information is passed
along in the form of human intervention (Saunders et al.,
2018), reward shaping (Knox & Stone, 2008; 2009; 2012;
Warnell et al., 2018; Arakawa et al., 2018; Xiao et al., 2020)
and policy evaluation (Griffith et al., 2013; MacGlashan
et al., 2017; Arumugam et al., 2019). In principal, human
intuition could be injected in two methods, 1) by evaluat-
ing the actions during training through real-time feedback
or intervention; and 2) by defining handcrafted rules prior
to training to alter the agent’s behaviour based on human
intuition. TAMER+RL (Knox & Stone, 2010) is an exam-
ple of the first method in which human provide a reward
given a state action pair. An example of the second method
is the agent-agnostic framework proposed by Abel et al.
(2017). The framework contains a protocol program that
controls the human interaction with a single agent. Human
can perform learning interventions with handcrafted rules
that alter the transition dynamics given the current state
and action, with methods including action masking, reward
manipulation, etc. Action masking is a technique to bar
possible actions from the policy based on engineered rules.
Reward manipulation is the act of specifically designing a
reward function. In particular, the authors found that action
masking simplifies the RL problem and was effective to
prevent catastrophic actions (Saunders et al., 2018). Con-
sidering that Battlesnakes are traditionally developed with
handcrafted rules, we extend the framework into a multi-
agent RL setting.

3. Description of the Battlesnake Challenge
The architecture design of the Battlesnake Challenge is
presented in Figure 1. Our framework includes an offline
RL training module equipped with a simulated Battlesnake
environment, as will be described in Section 3.1. The frame-
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work is designed to work with handcrafted rules (Abel et al.,
2017) as well as more complex heuristics (Russell & Norvig,
2002; Schier & Wüstenbecker, 2019) that are programmed
in advance. The preprogrammed heuristics are independent
of the RL algorithm and could be incorporated into the RL
training module to assist the training procedures.

Once the trained agent is deployed online, it can make
inferences and interface with the Battlesnake engine to
play in the Battlesnake arena. We integrate the inference
with optional ad-hoc heuristics to enable action overwrit-
ing, through which human experts can perform the safety
checks. We use the Battlesnake arena to evaluate different
combinations of in-training and ad-hoc human guidance by
allowing the agents to compete against each other.

Figure 1. Overview of the Battlesnake Challenge with human-in-
the-loop multi-agent reinforcement learning. Human knowledge
injected in the offline training phase can possibly affect state (st),
action (at) and reward (rt) at timestep t. Once the agents is
deployed, Ad-hoc heuristics can overwrite the action (at) at each
inference timestep t.

3.1. Battlesnake description

We first provide a detailed description of Battlesnake game
logic. A typical game in Battlesnake consists of three to
five snakes on a board ranging from 7× 7 (small), 11× 11
(medium) to 19 × 19 (large). At the start of the game, N
snakes are randomly distributed along the boundaries of
the board, each with health of 100. There is one piece of
food randomly distributed at the same time. At each turn,
the health of every snake decreases by one and each snake
reacts to the environment indicating whether it will move
up, down, left or right; food are then randomly spawned.
Unlike the traditional snakes game, if a snake is facing up
and the next action is to move down, the game considers the
snake hitting its own body and it will be eliminated from
the game. This is known as a forbidden move. If a snake
eats a food, its health will be returned to 100 and its length
will grow by one. If a snake hits another snake’s head, the
shorter of the two snakes is eliminated from the game (if
the sizes of the two snakes are the same, both the snakes are
eliminated). This is referred to as eating another snake. In

addition, a snake is eliminated from the game if it: 1) goes
out of the boundaries of the map, 2) hits another snake’s
body, 3) hits its own body, or 4) has a health of 0. The last
surviving snake becomes the winner.

3.2. Battlesnake as a Reinforcement Learning
Environment

Figure 2. Modelling Battlesnake with reinforcement learning.

We consider a standard Markov game (Littman, 1994) to
model the interaction between multiple Battlesnake agents
with the environment. Each agent represents one snake
in the game. The Markov game is specified by a tu-
ple M = (N ,S, {Ai}i∈N , T , {Ri}i∈N , γ), where N =
{1, . . . , N}, N > 1 denotes the set of agents, S is the state
space observed by all agents and Ai is the action space
of agent i. T : S × A1 × · · ·AN × S → [0, 1] denotes
the transition function that maps a state st ∈ S and action
ait ∈ Ai pair for each agent i to a probability distribution
over the next state st+1 ∈ S. The environment emits a
reward Ri : S × A1 × · · ·AN → R on each transition for
each agent i; γ denotes the discount factor. Figure 2 illus-
trates setup in which the agent interacts with the simulator
over the OpenAI Gym interface (Brockman et al., 2016).
Components in the Markov game are given as follows:

State: We provide the Battlesnake simulator a gridworld
based state space st at time t to represent the spatial dis-
tribution of all the snakes and food. Agent i is repre-
sented by a list of coordinates, xi = [xi1, x

i
2, . . . , x

i
Li
]

where xij ∈ R2 ∀j ∈ 1, . . . , Li and Li is the length of
snake i. The N snakes are collectively referred to with
X such that X = [x1...xi...xN ]. Food F is represented
as [y1, y2 . . . yM

t

] where yj ∈ R2 is the coordinate cor-
responding to the location of the food j and M t represents
the number of food at time t. To ingest the information of
other agents, we organise the state for agent i, sit as a grid
with 3 channels where sit ∈ Rw×h×3, and w and h are the
width and height of the map. Specifically, assume sit[j, k, c]
describes the state value at coordinate (j, k) on the map
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of channel c for agent i at time t. Channels c ∈ {0, 1, 2}
represents position of food, agent i, and other agents, re-
spectively. For c = 0, sit[j, k, 0] = 1 if (j, k) ∈ F and 0
otherwise. The state for c = 0 should be identical for all
agents. Similarly, c = 1 provides the position of agent i
where sit[j, k, 1] = 1,∀(j, k) ∈ xi and 0 otherwise. Also,
we set sit[jh, kh, 1] = 5 where (jh, kh) denotes the head of
agent i. We choose 5 experimentally to provide a larger
differentiation between the body and the head of the snake.
Finally, c = 2 is defined as sit[j, k, 2] = 1,∀(j, k) ∈ xi′

where xi
′

are all other agents in X where i′ 6= i, and the
heads of the snakes in xi

′
are set to 5 as well. It is worth

mentioning that we deliberately choose to formulate the
state space in a gridworld fashion rather than using image
pixels or complex embedded features. We believe this will
make the RL training easier and encourage research focus
on developing the heuristics with HILL.

Action: The action space Ai is identical for each agent i,
representing the direction the agent moves towards in the
next turn. Namely, ait = [0, 1, 2, 3] corresponds to up, down,
left, and right at time t for agent i. Thus the joint action
space is defined as at = [a1t , a

2
t ...a

N
t ].

Reward: The overall goal is to become the last surviving
snake. We by default apply the same reward formulation for
all the agents. Specifically, a negative reward−1 is imposed
if a snake dies, and the last snake alive is assigned with a
reward 1. We grant a small reward ε = 0.002 for each snake
when it survives another turn, with an intuition to promote
the snakes to move and grow.

3.3. Training Algorithm

We train each snake’s policy independently using the Proxi-
mal Policy Optimisation (PPO) algorithm (Schulman et al.,
2017). It is a widely used, modern on-policy actor-critic
algorithm that has presented stable performances in many
of the recent successes in deep RL. The algorithm employs
two neural networks during training – a policy network and
a value network. The policy network interacts with the Bat-
tlesnake environment and generates Gaussian-distributed
actions given the state. The value network estimates the
expected cumulative discounted reward using the gener-
alised advantage algorithm (Schulman et al., 2015). Note
that while we use PPO to conduct experiments, the pro-
posed framework is agent-agnostic and can fit various dis-
crete action-based state-of-the-art algorithms such as QMIX
(Rashid et al., 2018) and SAC (Haarnoja et al., 2018).

3.4. Heuristics with human-in-the-loop learning

In principal, our proposed framework is heuristic-agnostic
such that researchers can tackle various heuristic develop-
ment and bring them into the agent training process. For
the purpose of illustration, in this work we identify several

human engineered heuristics that we used as part of the
challenge. The philosophy is to provide agents information
regarding what actions to avoid and to guide agents towards
superficial skills such as heading to food when starving.
Specifically, we provide the following heuristics:

1. Avoid hitting the walls.
2. Avoiding moving in the opposite direction as the snake

is facing (forbidden moves).
3. Moving towards and eating food when the snake health

is low to prevent starving.
4. Killing another snake (e.g., eating another snake or

trapping another snake).

Rule Prevention/ Interaction Training
Promotion phase

1 Prev. Env. Early
2 Prev. Env. Early
3 Promo. Env. Middle
4 Promo. Agents Late

Table 1. Properties of the heuristics. Prev. refers to action pre-
vention; Promo. refers to action promotion. Interaction describes
whether the rules are interacting with the environment or other
agents. Training phase indicates when the rules become more
important.

Table 1 provides an overview of the properties of each rule.
Prevention/promotion refers to action prevention or action
promotion. Action prevention rules help eliminate unrea-
sonable actions, similar to the use of catastrophic actions
prevention (Abel et al., 2017; Saunders et al., 2018) and
action filters (Gao et al., 2019; Meisheri et al., 2019). In
most cases, action prevention rules could be resolved with
a single conditional statement. Meanwhile, the described
action promotion rules are more complex as they require
multiple steps to achieve. Interaction describes whether the
rules are interacting with the environment or other agents.
For example, to manage rule 4, an agent would have to
anticipate the movements of other agents in order to kill
them. Finally, training phase indicates when the rules be-
come more important. Rules 1 and 2 are necessary for basic
navigation and movement; they prevent the agents from
committing “suicide” in the early phases of training and
are essential throughout the duration of training. Rules 3
is necessary for survival after the early phases of training
when basic navigation is learnt. Rule 4 requires high level
strategies once the snakes have no issues with surviving.

While human rules are instilled with a goal to accelerate
the learning procedure, they can also be biased and limiting
the snakes’ performance. For instance, rule 3 could lead to
snakes focusing too much on food, whereas rule 4 could
result in over-aggressive snakes. To this end, we design
our platform such that the impact of the heuristics can be
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controlled and even removed once an agent acquires some
basic skills. Such heuristic impact break-down can also be
phrased as a curriculum learning method where a logical
ordering or hierarchy of simple skills is learnt during train-
ing (Matiisen et al., 2019; Portelas et al., 2019). We now
describe three methods to include the heuristics rules into
the RL learning.

Figure 3. In-training action masking.

In-training action masking: We first consider the case
where the human heuristics are injected during training
and the agent adjusts its policy accordingly (Figure 3). In
particular, we incorporate the feedback at the final output
layers of the policy, where invalid actions are masked out of
the softmax by scaling the probability to zero. The actual
action a∗t taken after the masking is then passed into the
simulated environment to generate the new states. Action
masking applies to catastrophic action prevention and single
step heuristics. As such we apply it for rules 1 and 2.

Figure 4. Ad-hoc action overwriting

Ad-hoc action overwriting: A trained agent can be de-
ployed to interact with the Battlesnake Engine and compete
with other snakes. Ad-hoc action overwriting is often ap-
plied in this scenario to enhance robustness and guarantee
performance. As shown in Figure 4, it is different from in-
training action masking in the sense that the heuristics are
only applied during inference. In our proposed Battlesnake
Challenge framework, the actual actions taken and corre-
sponding next states are not used to update the policy in
real-time as the agent is already deployed. However, the ex-
periences can be stored for the purpose of policy evaluation.

Reward manipulation: Reward manipulation includes hu-
man intuition by specifically designing a reward function to
encourage events corresponding to the heuristics. During
training, the reward function is defined as R̂(sit, a

i
t) = r̂it

where r̂it denotes the heuristics based reward. r̂it is then
fed into the learning process with the final reward function
defined as r∗it = rit + r̂it. For instance, we add a penalty
term (r̂it = −0.4) in our experiments whenever a snake hits

a wall to account for rule 1. Please note that the sign of r̂it
changes if the heuristics is action promoting.

4. Experiments
4.1. Implementation details

We open-source our proposed framework and provide im-
plementation for each component presented in Figure 1.
Specifically, our package is featured with a simulated gym
environment, a heuristics developer, and the orchestration
code to deploy trained agents to the Battlesnake arena. In
addition, we provide a suite of training examples using the
RL package RLlib (Liang et al., 2017) within the Amazon
SageMaker RL package.

4.2. Evaluation

There are two main avenues to evaluate the RL agent with
HILL. The first avenue evaluates agent performance during
training. The second avenue is to use the leader board in
the Battlesnake arena, in which a deployed agent competes
against other snakes with black-box mechanisms.

For the first avenue, we collect the maximum episode length
of all agents as a metric for evaluation. Episode length pro-
vides an indication of how long the agents survived for, and
it’s consistent across different reward manipulation schemes.
We first investigate the baseline performance with map sizes
of 7× 7, 11× 11, and 19× 19 comparing the performances
of training with 4, 5, and 6 agents without human intu-
ition. We aim to verify that the our simulator is properly
formulated such that the snake’s performance improves over
training. We then compare the performances of heuristic
incorporation methods described in Section 3.4. In addition
to the episode length, we also record the frequency of events
that each heuristics is designed to prevent or encourage to
evaluate how well the heuristics are incorporated. Here
and on-wards, we fix the map size and number of agents at
11× 11 and 5 respectively.

For the second avenue, we evaluate the performances of
the described baseline heuristics in the arena. We wish to
call out that we do not compare with the existing mature
snakes. The focus of this study is to showcase how each
component in our proposed framework can be modified with
a minimum amount of efforts, rather than to develop a so-
phisticated fine-tuned agent that beats the best performing
snakes. Particularly, we use rule 2 as an example to compare
the performance of the trained agents with in-training action
masking, ad-hoc action overwriting, reward manipulation,
and vanilla training with no HILL. For each baseline heuris-
tics, we randomly select one policy for deployment. Note
that the ad-hoc action overwriting agent uses the vanilla
trained agent as the base agent. For the in-training action
masking agent, we apply the same masking logic during
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inference to ensure consistency in the state transition dynam-
ics. We conduct two experiments for the arena testing. The
first experiment consists of 30 games with the four snakes
in the arena. The last surviving snake is given four points,
the second last surviving snake is given three points, and so
on. We also record the frequency of forbidden moves. In
the second experiment, the four snakes compete in a 1 vs.
1 format. Each pair of snakes plays 10 games, leading to a
total of 60 games. The winning snake gets 1 point and the
losing snake gets 0 point.

5. Results
In this section, we present experimental results for com-
ponents included in the Battlesnke Challenge. We first
demonstrate the performance of the multi-agent RL agents
trained in our simulated environment, and then move to per-
formance evaluation with HILL both offline during training
and online in the arena.

Multi-agent reinforcement learning: The results of vary-
ing the number of agents and the map size are presented in
Figure 5. We train three different instances of each case with
different random seeds. The solid curves correspond to the
mean and the shaded region to the minimum and maximum
values over the trials. We observe that after 1M steps of
training, the episode length increases from 0 to an average
of 175. After training for 2M steps, the growth increases
steadily. We can observe that the maximum episode length
for 4 agents is distinctively better than 5 and 6 agents. This
is not surprising as games with 4 agents have more space to
roam around the map compared to games with 5 or 6 agents.
Similarly, when investigating the effects of the map sizes,
we observe that the episode length of 5 agents on larger map
sizes is longer than that of smaller map sizes.

5.1. Human-in-the-loop during training

In-training action masking: Our results as presented in
Figure 6 show that the agents with in-training action mask-
ing outperforms the one without it. Action masking with
rule 2 (forbidden moves) has the best performance, reach-
ing an episode length of more than 350 at 10M steps of
training. Action masking with rule 1 (wall hitting) achieves
an episode length of about 300 at 10M steps whereas the
agent with no heuristics achieves a bit more than 250. This
verifies that including action masking improves the sample
efficiency and thus accelerate the policy training.

Reward manipulation: We present the frequency of forbid-
den moves (rule 2) in Figure 7. At the beginning of training,
the agents perform an average of 10 forbidden moves, which
is the leading cause of death for the agents. After training
for around 1M time steps, the mean frequency of forbidden
moves drops to around 3. We can observe a slight reduction

Figure 5. Episode lengths with (a) varying the number of agents
on a 11× 11 map and (b) varying the map size with five agents.

Figure 6. Experiments with action masking for rule 1 and 2 with 5
agents on a 11× 11 map

of the frequency of forbidden moves when comparing be-
tween the agents with and without no reward manipulation.
However, as evident from the figure, the agents also manage
to learn forbidden moves avoidance even without reward
manipulation.

In Figure 8, we can see that the episode length for agents
with in-training action masking outperform agents with re-
ward manipulation and no heuristics. This observation is
consistent with Figure 6 where forbidden move action mask-
ing improved policy training.

5.2. Arena testing

Table 2 shows the performances of the four agents in the Bat-
tlesnake arena to address rule 2. The four agents correspond
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Figure 7. Experiments with reward manipulation for rule 2, forbid-
den moves with 5 agents on a 11× 11 map.

Figure 8. Comparison between the performance of in-training ac-
tion masking, reward manipulation, and no HILL with 5 agents on
a 11× 11 map.

to in-training action masking, ad-hoc action overwriting,
reward manipulation, and vanilla training with no heuristics.
Each agent is trained on a 11× 11 map for 2500 episodes.
The same agents are used to tested in 1 vs. 1 competition
with results presented in Table 3. We observe a consistent
performance from the two tables. As expected, no HILL has
the worst performance in the arena. With mean scores of
2.533 and 2.333 for in-training action masking and ad-hoc
action overwriting respectively, performance of the former
is slightly higher. This aligns with the trend shown in Fig-
ure 6. It is interesting to note that the agent with reward
manipulation has the best performance in the arena, suggest-
ing possible sub-optimal actions introduced during action
overwriting.

6. Conclusion
We introduced the Battlesnake Challenge, a framework to
effectively experiment and evaluate multi-agent reinforce-
ment learning with human-in-the-loop. We formulated Bat-
tlesnake into a multi-agent RL problem and identified a set
of heuristics-based rules to facilitate standardised human-

HILL type Arena score %Forbidden moves

No HILL 2.200± 0.846 26.6%
In-training AM 2.533± 1.074 0%
RM 2.900± 1.296 13.3%
Ad-hoc AO 2.333± 1.154 0 %

Table 2. Scores in the Battlesnake arena and the % of deaths caused
by forbidden moves. AM refers to action masking, RM refers to
reward manipulation, and AO refers to action overwriting.

No HILL IT AM RM AH AO
No HILL - 4 3 6

IT AM 6 - 1 2
RM 7 9 - 1

AH AO 4 8 9 -

Table 3. Scores (with respect to the rows) in the Battlesnake arena
in a 1 vs 1 format. IT AM, AH AO and RM refer to in-training ac-
tion masking, Ad-hoc action overwriting and reward manipulation
respectively.

in-the-loop RL research. We presented the performance
of three heuristics incorporation methods. Our results sug-
gested that the effectiveness of these methods are different
during offline training and online inference. Overall, agents
with HILL perform better than agents without HILL. During
training, action masking improves the agents’ survivability,
leading to increased episode lengths. In contrast, in the
Battlesnake arena, the agent with reward manipulation out-
perform the agent with in-training action masking. All of the
code is readily available at our git repository. We look for-
ward to contributions from the researchers and developers
to build new RL based Battlesnakes.
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Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. arXiv preprint arXiv:1911.10635, 2019a.

Zhang, R., Torabi, F., Guan, L., Ballard, D. H., and Stone,
P. Leveraging human guidance for deep reinforcement
learning tasks. arXiv preprint arXiv:1909.09906, 2019b.

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang,
J., and Yu, Y. Magent: A many-agent reinforcement
learning platform for artificial collective intelligence. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.


