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With the sudden outbreak of COVID-19 patient worldwide and associated mortality, it is

critical to come up with an effective treatment against SARS-CoV-2. Studies suggest that

mortality due to COVID 19 is mainly attributed to the hyper inflammatory response leading

to cytokine storm and ARDS in infected patients. Sphingosine-1-phosphate receptor 1

(S1PR1) analogs, AAL-R and RP-002, have earlier provided in-vivo protection from the

pathophysiological response during H1N1 influenza infection and improved mortality.

Recently, it was shown that the treatment with sphingosine-1-phosphate receptor 1

analog, CYM5442, resulted in the significant dampening of the immune response upon

H1N1 challenge in mice and improved survival of H1N1 infected mice in combination

with an antiviral drug, oseltamivir. Hence, here we suggest to investigate the possible

utility of using S1P analogs to treat COVID-19.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged from Wuhan, China,
has now become a threat to the whole world. The disease associated with SARS-CoV-2 is termed
as coronavirus disease-2019 (COVID-19). World Health Organization (WHO) has now declared
COVID-19 as a global pandemic affectingmore than 200 countries, resulting in 1991,562 confirmed
cases and 130, 885 deaths, as of 16 April 2020, and still counting (1). The main reason for
disease severity in COVID-19 is due to aberrant and excessive cytokine production, leading to
pathophysiology called cytokine storm, and Acute Respiratory Distress Syndrome (ARDS) (2–
4). The serum of infected patients showed increased levels of pro-inflammatory cytokines such
as IL-2, TNF-α, IL-1β, IFN-γ, MCP-1, and MIP1A, resulting in cytokine storm (4). Building on the
above observation, these patients were given corticosteroids to reduced inflammation-induced lung
damage. However, previous studies with the influenza virus suggest that adjunctive corticosteroid
therapy rather increase mortality. Also, corticosteroid therapy in patients with Middle East
respiratory syndrome (MERS) resulted in delayed viral clearance (5), altogether suggesting the
cautious use of corticosteroids in COVID-19 patients. Hence, due to the limited effectiveness of
corticosteroids, the use of alternate immuno-modulators could be suggested at present.

CORONAVIRUS (CoV) INDUCED IMMUNO-PATHOLOGY

Before the emergence of novel SARS-CoV-2 in late 2019, MERS-CoV, and SARS-CoV were
considered to be highly pathogenic. These two CoV contribute to acute lung pathology as a result of
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cytokine storm in infected patients, which could be lethal if left
untreated (6). The earlier study with SARS-CoV infection in non-
human primates, cynomolgus macaques, resulted in increased
expression of IFN-α, IFN-β, and IFN- γ, IFN-λ at mRNA level
in lungs of the infected macaque (7). Similarly, SARS-CoV
infection in BALB/c mice showed increase pro-inflammatory
cytokine secretion, eventually leading to lethal acute lung injury
and high fatality rate in mice (8). Mouse model of MERS
Coronavirus (CoV) infection demonstrated enhanced expression
of CCL2, IL-6, and TNF-α at mRNA level in the lungs of infected
mice. Comparative in-vitro infection studies with SARS-CoV
and MERS-CoV showed that both these viruses upregulated
the expression of TNF-α, IL-6, and IL-12 at mRNA level in
monocytes derived macrophages (9).

In context to SARS-CoV-2, reports are emerging from China,
the epicenter of COVID-19, which showed a similar trend in
cytokine profile as with SARS-CoV and MERS-CoV (10). In
severe cases of COVID-19, patients showed increased serum
cytokine levels of IL-2, TNF- α, IL-1β, IFN-γ, MCP-1, MIP1A,
and IL-6 (4, 11). Another life-threatening complication, namely
ARDS could be developed more often in elderly COVID-19
patients as a result of cytokine storm (4, 12, 13). According
to recent research, patients with ARDS have reduced serum
S1P levels as compared to healthy controls, which was further
associated with non-pulmonary organ failure (14). In this
context, detection of serum S1P level in COVID-19 patients
may be worth exploring, as it serves as a biomarker for ARDS
associated disease severity.

THERAPEUTIC POTENTIAL OF S1P
ANALOGS

We have earlier reported therapeutic intervention of using
S1P (sphingosine-1-phosphate) analogs during infectious
diseases (15, 16). Our unpublished study with S1P analogs in
Mycobacterium tuberculosis (H37Ra) infected macrophages
showed that treatment with S1P analogs results in blunting too
much pro-inflammatory response, but also intriguingly leading
to clearance of bacterial load. Additionally, S1P signaling was
reviewed as a potential target to provide therapeutic benefits in
pulmonary disorder (17). As with H1N1 influenza virus infection
intra-tracheal AAL-R [(R)-2-amino-4-(4-heptyloxyphenyl)-2-
methylbutanol], S1P analog, the treatment showed improved
survivability of mice challenged with H1N1 as compared to
conventional antiviral therapy. Walsh et al. provide evidence
that intra-tracheal administration with AAL-R in infected mice
resulted in reduced lung tissue injury as showed by histo-
pathological and enzymatic studies (18). The bronchoalveolar
lavage (BAL) fluid of these mice revealed reduced pro-
inflammatory cytokines such as IFN-α, IL-6, and IFN-γ, and
chemokine including CCL2, CCL3, CCL5, CXCL2, and CXCL10.
AAL-R treatment doesn’t clear the viral load, nevertheless,
it doesn’t impair host ability to clear viral load, which was
supported by the unchanged viral neutralizing antibodies in
treated and untreated groups (18). Similarly, RP-002 treatment,
functional agonists of S1PR1, reduced mortality of influenza

virus-infected mice by reduction in cytokine/chemokines
(IFN-α, CCL2, IL-6, and IFN-γ) production (19). The same
group later studies the efficacy of RP-002, in a mouse model of
the respiratory syncytial virus. Oral administration of RP-002
showed enhanced survival of paramyxovirus PMV infection
in mice, as displayed by reduced inflammation in lungs with
normal morphology of alveolar sacs of infected mice on RP-002
therapy. Decrease IFN-γ, TNF- α, CCL2, CCL5, CXCL10, IL-1α,
and IL-6 secretion was also observed in BAL fluid of RP-002
treated infected mice (20). The authors further revealed that
RP-002 treatment reduced CD8+ T and Natural killer (NK) cells
in the lung infiltrate of infected mice. Lesser number of TNF-α
and IL-2 producing IFN-γ+ CD8+ T cells, after stimulated with
immuno-dominant peptides of PMV, was further confirmed
in the lymph nodes and lungs of infected mice as compared
to mice that received vehicle (20). The previous study with
SARS-CoV demonstrates the infiltration of CD8+ T cell and
NK cells in the lungs of infected mice at the late phase of the
infection. Surprisingly, instead of CD8+ T cells, CD4+ T cells
were required for viral clearance, whereas CD8+ T cells were
rather associated with lung pathology during viral infection
(21). Hence, here it is suggested that S1P analogs may block
the infiltration of immune cells with inflammatory phenotype,
particularly CD8+ T cells secreting TNF-α or IFN-γ, which may
prevent acute lung injury during COVID-19.

A more recent study by Zhao et al. presented a similar
approach of S1PR1 agonist, CYM5542, in providing therapeutic
benefits in H1N1 infected mice. Intra-tracheal delivery of
CYM5542 results in a marked reduction in lung injury and
pro-inflammatory cytokine and chemokines production such
as IFN-α, IFN-γ, TNF-α, IL-6, CCL2, CCL3, CCL5, CXCL2,
and CXCL10 in BAL fluid of infected mice. Furthermore, the
therapeutic efficacy of CYM5542 was improved in the presence
of an antiviral drug, oseltamivir (22). As S1P signaling influences
myriad of downstream signaling, the role of CYM5542 in
the regulation of Mitogen-Activated Protein Kinase (MAPK)
and nuclear factor kappa-light-chain-enhancer of activated B
cells (NFκB) was studied. CYM5542 treatment results in the
reduced phosphorylation status of MAPK such as ERK1/2 and
JNK1/2, and p65 subunit of NFκB, resulting in inactivation
of the signal and hence cytokine production (22). CYM5542
treatment resulted in the degradation of interferon alpha receptor
1 (IFNAR1), and deactivation signal transducer and activator of
transcription 1 (STAT1), thereby limiting IFN- α response (23).

THE LIMITATIONS OF S1P ANALOG
THERAPY

Before recommending S1P as a potential therapy against
COVID-19, we must also discuss the possible risk associated
with S1P analogs. The common consequence of cytokine storm
is acute lung injury that results in ARDS, which proves to be
fatal as seen in severe cases of SARS-CoV-2 infected patients.
Hence, it is very critical to maintain cytokine homeostasis in
response to pulmonary infection by targeting pro-inflammatory
immune cells or activating anti-inflammatory pathways (24).
However, targeting pro-inflammatory immune cells may not be
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TABLE 1 | Therapeutic potential of S1P analogs in the suppression of viral

induce immuno-pathology.

S.No S1P analog Viral disease Biological outcome References

1. AAL-R H1N1 Reduced lung tissue injury and

pro-inflammatory cytokine

secretion

(18)

2. RP-002 H1N1 Reduced mortality of infected

mice as result of reduced

proinflammatory

cytokines/chemokines

production

(19)

3. RP-002 Paramyxovirus Reduced inflammation in lungs (20)

4. CYM5542 H1N1 Reduced lung injury and

pro-inflammatory cytokine

(22)

an advisable approach as it also limits the capacity of the host
to clear the infection. Therefore, cautious use of S1P analogs
in combination with anti-viral therapy is suggested to ensure
clearance of infection without compromising the host defense.
It is also worth noting that activation of S1P signaling duringM.
tuberculosis infection has dual action of host protection or disease
progression, which depends on stage ofM. tuberculosis infection.
S1P treatment during early infection has profound effect on
reduction of infection and disease associated histopathology.
On the contrary, S1P treatment during acute M. tuberculosis
infection exacerbates the disease (25). Therefore, to explore
proper therapeutic potential of S1P analogs all these criteria
must be taken into consideration. More importantly, S1P analogs
have shown therapeutic efficacy in animal model of pulmonary
infections, its role in humans has not been studied yet. Most of
the human trials related to S1P analogs as immunotherapy have
been dedicated to diseases such as Multiple Sclerosis, subacute
lupus erythematosus, Crohn’s disease, etc. (26). As of now only
Fingolimod (FTY720), S1P analog, has been recently approved
for clinical trials to test its efficacy against COVID-19. However,
due to the broad specificity of FTY720 on S1PR1 and S1PR3-5,
more specific S1P analogs such as RP-002 or CYM5542 must also
be investigated to minimize off-target effects.

CONCLUDING REMARKS

SARS-CoV-2 induced cytokine storm is a serious immuno-
pathology that could lead to the death of infected patients.
S1P analogs have earlier protected from pulmonary infection
by dampening the cytokine storm (Table 1). Taken together,
these reports emphasize the need to consider S1P analogs
as potential immuno-modulators in ameliorating SARS-CoV-
2 induced cytokine storm. Several studies correlated cytokine
storm with lung pathophysiology and have advocated the use of
immuno-modulators for therapeutic intervention (27). In this
regard, a FDA approved drug for multiple sclerosis, FTY720,
which is a S1PR modulator, is recently in the clinical trial to
assess its role as an immuno-modulator in COVID-19 (28).
As a new vaccine and anti-viral for the treatment of COVID-
19 may take more time, alternatively, host-directive therapy
could be the current weapon of choice against SARS-CoV-2
(29). Of note, dampening of SARS-CoV-2 induced cytokine
storm with S1P analogs warrants further attention in the
form of more robust and randomized clinical trials to prove
our hypothesis.
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