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Abstract. In 1990, E. Baum gave an elegant polynomial-time algorithm
for learning the intersection of two origin-centered halfspaces with respect
to any symmetric distribution (i.e., any D such that D(E) = D(−E)) [3].
Here we prove that his algorithm also succeeds with respect to any mean
zero distribution D with a log-concave density (a broad class of distribu-
tions that need not be symmetric). As far as we are aware, prior to this
work, it was not known how to efficiently learn any class of intersections
of halfspaces with respect to log-concave distributions.
The key to our proof is a “Brunn-Minkowski” inequality for log-concave
densities that may be of independent interest.

1 Introduction

A function f : R
n → R is called a linear threshold function or halfspace

if f(x) = sgn(w · x) for some vector w ∈ R
n. Algorithms for learning

halfspaces from labeled examples are some of the most important tools
in machine learning.

While there exist several efficient algorithms for learning halfspaces in
a variety of settings, the natural generalization of the problem — learn-
ing the intersection of two or more halfspaces (e.g., the concept class of
functions of the form h = f ∧ g where f and g are halfspaces) — has
remained one of the great challenges in computational learning theory.

In fact, there are no nontrivial algorithms known for the problem of
PAC learning the intersection of just two halfspaces with respect to an
arbitrary distribution. As such, several researchers have made progress on
restricted versions of the problem. Baum provided a simple and elegant
algorithm for learning the intersection of two origin-centered halfspaces
with respect to any symmetric distribution on R

n [3]. Blum and Kannan

⋆ Klivans and Tang supported by NSF CAREER Award CCF-643829, an NSF TF
Grant CCF-728536, and a Texas Advanced Research Program Award.



[4] and Vempala [16] designed polynomial-time algorithms for learning
the intersection of any constant number of halfspaces with respect to the
uniform distribution on the unit sphere in R

n. Arriaga and Vempala [2]
and Klivans and Servedio [13] designed algorithms for learning a constant
number of halfspaces given an assumption that the support of the positive
and negative regions in feature space are separated by a margin. The best
bounds grow with the margin γ like (1/γ)O(log(1/γ)).

1.1 Log-Concave Densities

In this paper, we significantly expand the classes of distributions for which
we can learn intersections of two halfspaces: we prove that Baum’s algo-
rithm succeeds with respect to any mean zero, log-concave probability
distribution. We hope that this is a first step towards finding efficient
algorithms that can handle intersections of many more halfspaces with
respect to a broad class of probability distributions.

A distribution D is log-concave if it has a density f such that log f(·)
is a concave function. Log-concave distributions are a powerful class that
capture a range of interesting scenarios: it is known, for example, that the
uniform distribution over any convex set is log-concave (if the convex set
is centered at the origin, then the corresponding density has mean zero).
Hence, Vempala’s result mentioned above works for a very special case of
log-concave distributions (it is not clear whether his algorithm works for a
more general class of distributions). Additionally, interest in log-concave
densities among machine learning researchers has been growing of late
[10, 7, 1, 9, 14].

There has also been some recent work on learning intersections of
halfspaces with respect to the Gaussian distribution on R

n, another spe-
cial case of a log-concave density. Klivans et al. have shown how to learn
(even in the agnostic setting) the intersection of a constant number of
halfspaces to any constant error parameter in polynomial-time with re-
spect to any Gaussian distribution on R

n [12]. Again, it is unclear how
to extend their result to log-concave distributions.

1.2 Our approach: Re-analyzing Baum’s Algorithm

In this paper, we prove that Baum’s algorithm from 1990 succeeds when
the underlying probability distribution is not necessarily symmetric, but
is log-concave.

Baum’s algorithm works roughly as follows. Suppose the unknown
target concept C is the intersection of the halfspace Hu defined by u·x ≥ 0
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Fig. 1. Baum’s algorithm for learning intersections of two halfspaces. (a) The input
data, which is labeled using an intersection of two halfspaces. (b) The first step is to
find a halfspace containing all the positive examples, and thus, with high probability,
almost none of the reflection of the target concept through the origin. (c) The next
step is to find a quadratic threshold function consistent with the remaining examples.
(d) Finally, Baum’s algorithm outputs the intersection of the halfspace found in step
b and the classifier found in step c.

and the halfspace Hv defined by v · x ≥ 0. Note that if x ∈ C then
(u · x)(v · x) ≥ 0, so that

∑

ij

uivjxixj ≥ 0. (1)

If we replace the original features x1, . . . , xn with all products xixj of pairs
of features, this becomes a linear inequality. The trouble is that (u·x)(v·x)
is also positive if x ∈ −C, i.e., both u · x ≤ 0 and v · x ≤ 0. The idea
behind Baum’s algorithm is to eliminate all the negative examples in −C
by identifying a region N in the complement of C (the “negative” region)
that, with high probability, includes almost all of −C. Then, Baum finds
a halfspace in an expanded feature space that is consistent with rest of
the examples. (See Figure 1).

To compute N , Baum finds a halfspace H ′ containing a large set
of positive examples in C, and then sets N = −H ′. Here is where he
uses the assumption that the distribution is symmetric: he reasons that



if H ′ contains a lot of positive examples, then H ′ contains most of the
measure of C, and, since the distribution is symmetric, −H ′ contains most
of the measure of −C. Then, if he draws more examples and excludes
those in −H ′, he is unlikely to obtain any examples in −C, and for each
example x that remains, (1) will hold only if and only if x ∈ C. The
output hypothesis classifies an example falling in N negatively, and uses
the halfspace in the expanded feature space to classify the remaining
examples.

We extend Baum’s analysis by showing that, if the distribution is
centered and log-concave, then the probability of the region in −C that
fails to be excluded by −H ′ is not much larger than the probability of
that part of C that is not covered by H ′. Thus, if H ′ is trained with
somewhat more examples, the algorithm can still ensure that −H ′ fails
to cover a small part of −C.

Thus, we arrive at the following natural problem from convex geom-
etry: given a cone K whose apex is at the origin in R

n, how does Pr(K)
relate to Pr(−K) for distributions whose density is log-concave? Were the
distribution uniform over a convex set centered at the origin, we could
use the Brunn-Minkowski theory to argue that Pr(K) is always within a
factor of n times Pr(−K) (see the discussion after the proof of Lemma
6). Instead, we are working with a mean zero log-concave distribution,
and we do not know of an analog of the Brunn-Minkowski inequality for
log-concave densities. Instead, we make use of the fact that the cones we
are interested in are very simple and can be described by the intersection
of just three halfspaces, and show that Pr(K) is within a constant fac-
tor of Pr(−K). Proving this makes use of tools for analyzing log-concave
densities provided by Lovász and Vempala [14].

2 Preliminaries

2.1 VC Theory and sample complexity

We shall assume the reader is familiar with basic notions in computa-
tional learning theory such as Valiant’s PAC model of learning and VC-
dimension (see Kearns & Vazirani for an in-depth treatment [11]).

Theorem 1 ([15, 6]). Let C be a class of concepts from the set X to

{−1, 1} whose VC dimension is d. Let c ∈ C, and suppose

M(ε, δ, d) = O

(

d

ε
log

1

ε
+

1

ε
log

1

δ

)



examples x1, . . . , xM are drawn according to any probability distribution

D over X. Then, with probability at least 1− δ, any hypothesis h ∈ C that

is consistent with c on x1, . . . , xM has error at most ε w.r.t. D.

Lemma 1. The class of origin-centered halfspaces over R
n has VC di-

mension n.

Lemma 2. Let C be a class of concepts from the set X to {−1, 1}. Let

X ′ be a subset of X, and let C′ be the class of concepts in C restricted to

X ′; in other words, let

C′ :=
{

c|X′

∣

∣ c ∈ C
}

.

Then, the VC dimension of C′ is at most the VC dimension of C.

2.2 Log-concave densities

Definition 1 (isotropic, log-concave). A probability density function

f over R
n is log-concave if log f(·) is concave. It is isotropic if the co-

variance matrix of the associated probability distribution is the identity.

We will use a number of facts that were either stated by Lovász and
Vempala, or are easy consequences of their analysis.

Lemma 3 ([14]). Any halfspace containing the origin has probability at

least 1/e under a log-concave distribution with mean zero.

Lemma 4 ([14]). Suppose f is an isotropic, log-concave probability den-

sity function over R
n. Then,

(a) f(0) ≥ 2−7n.
(b) f(0) ≤ n(20n)n/2.
(c) f(x) ≥ 2−7n2−9n‖x‖ whenever 0 ≤ ‖x‖ ≤ 1/9.
(d) f(x) ≤ 28nnn/2 for every x ∈ R

n.

(e) For every line ℓ through the origin,
∫

ℓ f ≤ (n − 1)
(

20(n − 1)
)(n−1)/2

.

Proof. Parts a-d are immediate consequences of Theorem 5.14 of [14].
The proof of Part e is like the proof of an analogous lower bound in

[14]. Change the basis of R
n so that ℓ is the xn-axis, and let h be the

marginal over the first n − 1 variables. Then, by definition,

h(x1, . . . , xn−1) =

∫

ℓ
f(x1, . . . , xn−1, t) dt,

so that h(0) =
∫

ℓ f . Applying the inequality of Part b gives Part e. ⊓⊔



3 Baum’s Algorithm

Let Hu and Hv be the two origin-centered halfspaces whose intersection
we are trying to learn. Baum’s algorithm for learning Hu∩Hv is as follows:

1. First, define

m1 := M(ε/2, δ/4, n2),

m2 := M
(

max{δ/(4eκm1), ε/2}, δ/4, n
)

, and

m3 := max{2m2/ε, (2/ε
2) log(4/δ)},

where κ is the constant that appears in Lemmas 6 and 7 below.
2. Draw m3 examples. Let r denote the number of positive examples

observed. If r < m2, then output the hypothesis that labels every
point as negative. Otherwise, continue to the next step.

3. Use linear programming to find an origin-centered halfspace H ′ that
contains all r positive examples.

4. Draw examples until we find a set S of m1 examples in H ′. (Discard
examples in −H ′.) Then, use linear programming to find a weight
vector w ∈ R

n×n such that the hypothesis hxor : R
n → {−1, 1} given

by

hxor(x) := sgn

(

n
∑

i=1

n
∑

j=1

wi,jxixj

)

is consistent with all examples in S.
5. Output the hypothesis h : R

n → {−1, 1} given by

h(x) :=

{

hxor(x) if x ∈ H ′,

−1 otherwise.

Outline of proof. In Theorem 2, we prove that Baum’s algorithm learns
Hu ∩ Hv in the PAC model, when the distribution on R

n is log-concave
and has mean zero. Here we give an informal explanation of the proof. In
step 3, the algorithm finds a halfspace H ′ that contains all but a small
fraction of the positive examples. In other words, Pr

(

Hu ∩ Hv ∩ (−H ′)
)

is small. This implies that points in −H ′ have a small chance of being
positive, so we can just classify them as negative. To classify points in H ′,
the algorithm learns a hypothesis hxor in step 4. We must show that hxor

is a good hypothesis for points in H ′. Under a log-concave distribution
with mean zero, for any intersection of three halfspaces, its probability



mass is at most a constant times the probability of its reflection about
the origin; this is proved in Lemma 7. In particular,

Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

≤ κPr
(

Hu ∩ Hv ∩ (−H ′)
)

(2)

for some constant κ > 0. Therefore, since Pr
(

Hu ∩ Hv ∩ (−H ′)
)

is small,
we can conclude that Pr

(

(−Hu)∩ (−Hv)∩H ′
)

is also small. This implies
that, with high probability, points in H ′ will not lie in (−Hu) ∩ (−Hv);
thus, they must lie in Hu ∩Hv, Hu ∩ (−Hv), or (−Hu)∩Hv. Such points
are classified according to the symmetric difference Hu△Hv restricted to
H ′. (Strictly speaking, the points are classified according to the negation
of the concept Hu △ Hv restricted to H ′; that is, we need to invert the
labels so that positive examples are classified as negative and negative
examples are classified as positive.) By Lemmas 1 and 2, together with
the fact that hxor can be interpreted as a halfspace over R

n2
, the class of

such concepts has VC dimension at most n2. Hence, we can use the VC
Theorem to conclude that the hypothesis hxor has low error on points in
H ′.

Now, we describe the strategy for proving (2). In Lemma 7, we prove
that Pr(−R) ≤ κPr(R), where R is the intersection of any three origin-
centered halfspaces. This inequality holds when the probability distribu-
tion is log-concave and has mean zero. First, we prove in Lemma 6 that
the inequality holds for the special case when the log-concave distribution
not only has mean zero, but is also isotropic. Then, we use Lemma 6 to
prove Lemma 7. We consider Lemma 7 to be a Brunn-Minkowski-type
inequality for log-concave distributions (see the discussion after the proof
of Lemma 6).

To prove Lemma 6, we will exploit the fact that, if R is defined by an
intersection of three halfspaces, the probability of R is the same as the
probability of R with respect to the marginal distribution over examples
projected onto the subspace of R

n spanned by the normal vectors of the
halfspaces bounding R — this is true, roughly speaking, because the dot
products with those normal vectors are all that is needed to determine
membership in R, and those dot products are not affected if we project
onto the subspace spanned by those normal vectors. The same holds, of
course, for −R.

Once we have projected onto a 3-dimensional subspace, we perform
the analysis by proving upper and lower bounds on the probabilities of R
and −R, and showing that they are within a constant factor of one an-
other. We analyze the probability of R (respectively −R) by decomposing
it into layers that are varying distances r from the origin. To analyze each



layer, we will use upper and lower bounds on the density of points at a dis-
tance r. Since the sizes (even the shapes) of the regions at distance r are
the same for R and −R, if the densities are close, then the probabilities
must be close.

Lemma 5 provides the upper bound on the density in terms of the
distance (the lower bound in Lemma 4c suffices for our purposes). We only
need the bound in the case n = 3, but we go ahead and prove a bound
for all n. Kalai, Klivans, Mansour, and Servedio prove a one-dimensional
version in Lemma 6 of [9]. We adapt their proof to the n-dimensional
case.

Lemma 5. Let f : R
n → R

+ be an isotropic, log-concave probability

density function. Then, f(x) ≤ β1e
−β2‖x‖ for all x ∈ R

n, where β1 :=

28nnn/2e and β2 := 2−7n

2(n−1)(20(n−1))(n−1)/2 .

Proof. We first observe that if ‖x‖ ≤ 1/β2, then β1e
−β2‖x‖ ≥ β1e

−1 =
28nnn/2. By Lemma 4d, f(x) ≤ β1e

−β2‖x‖ if ‖x‖ ≤ 1/β2. Now, assume
there exists a point v ∈ R

n such that ‖v‖ > 1/β2 and f(v) > β1e
−β2‖v‖.

We shall show that this assumption leads to a contradiction. Let [0, v]
denote the line segment between the origin 0 and v. Every point x ∈ [0, v]
can be written as a convex combination of 0 and v as follows: x =

(

1 −
‖x‖/‖v‖

)

0 +
(

‖x‖/‖v‖
)

v. Therefore, the log-concavity of f implies that

f(x) ≥ f(0)1−‖x‖/‖v‖f(v)‖x‖/‖v‖.

We assumed that f(v) > β1e
−β2‖v‖. So Lemma 4a implies

f(x) >
(

2−7n
)1−‖x‖/‖v‖

β
‖x‖/‖v‖
1 e−β2‖x‖.

Because 2−7n ≤ 1 and 1 − ‖x‖/‖v‖ ≤ 1, we know that
(

2−7n
)1−‖x‖/‖v‖ ≥

2−7n. Because β1 ≥ 1, we know that β
‖x‖/‖v‖
1 ≥ 1. We can therefore

conclude that f(x) > 2−7ne−β2‖x‖. Integrating over the line ℓ through 0
and v, we get

∫

ℓ
f ≥

∫

[0,v]
f >

∫ ‖v‖

0
2−7ne−β2r dr =

2−7n

β2

(

1 − e−β2‖v‖
)

.

We assumed that ‖v‖ > 1/β2, so 1 − e−β2‖v‖ > 1 − e−1. Thus,
∫

ℓ
f >

2−7n

β2

(

1 − e−1
)

= 2
(

1 − e−1
)

(n − 1)
(

20(n − 1)
)(n−1)/2

.

Since 2
(

1 − e−1
)

> 1, we conclude that
∫

ℓ f > (n − 1)
(

20(n − 1)
)(n−1)/2

,
but this contradicts Lemma 4e. ⊓⊔



Now we are ready for Lemma 6, which handles the isotropic case.

Lemma 6. Let R be the intersection of three origin-centered halfspaces in

R
n. Assume that the points in R

n are distributed according to an isotropic,

log-concave probability distribution. Then, Pr(−R) ≤ κPr(R) for some

constant κ > 0.

Proof. Let u1, u2, and u3 be normals to the hyperplanes that bound the
region R. Then,

R = {x ∈ R
n | u1 · x ≥ 0 and u2 · x ≥ 0 and u3 · x ≥ 0}.

Let U be the linear span of u1, u2, and u3. Choose an orthonormal basis
(e1, e2, e3) for U and extend it to an orthonormal basis (e1, e2, e3, . . . , en)
for all of R

n. Write the components of the vectors x, u1, u2, and u3 in
terms of this basis:

x = (x1, x2, x3, x4, . . . , xn),

u1 = (u1,1, u1,2, u1,3, 0, . . . , 0),

u2 = (u2,1, u2,2, u2,3, 0, . . . , 0),

u3 = (u3,1, u3,2, u3,3, 0, . . . , 0).

Let projU (x) denote the projection of x onto U ; that is, let projU (x) :=
(x1, x2, x3). Likewise, let projU (R) denote the projection of R onto U ;
that is, let projU (R) := {projU (x) | x ∈ R}. Observe that

x ∈ R ⇔ uj,1x1 + uj,2x2 + uj,3x3 ≥ 0 for all j ∈ {1, 2, 3}
⇔ projU (x) ∈ projU (R). (3)

Let f denote the probability density function of the isotropic, log-concave
probability distribution on R

n. Let g be the marginal probability density
function with respect to (x1, x2, x3); that is, define

g(x1, x2, x3) :=

∫

· · ·
∫

Rn−3

f(x1, x2, x3, x4, . . . , xn) dx4 · · · dxn.

Then, it follows from (3) that

Pr(R) =

∫

· · ·
∫

R

f(x1, x2, x3, x4, . . . , xn) dx1 · · · dxn

=

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.



Note that g is isotropic and log-concave, because the marginals of an
isotropic, log-concave probability density function are isotropic and log-
concave (see [14, Theorem 5.1, Lemma 5.2]). Thus, we can use Lemma 4c
and Lemma 5 to bound g. The bounds don’t depend on the dimension
n, because g is a probability density function over R

3. For brevity of
notation, let y := (x1, x2, x3). By Lemma 4c, there exist constants κ1 and
κ2 such that

g(y) ≥ κ1e
−κ2‖y‖ for ‖y‖ ≤ 1/9. (4)

And by Lemma 5, there exist constants κ3 and κ4 such that

g(y) ≤ κ3e
−κ4‖y‖ for all y ∈ R

3. (5)

Let R′ := projU (R) ∩ B(0, 1/9), where B(0, 1/9) denotes the origin-
centered ball of radius 1/9 in R

3. Use (4) and (5) to derive the following
lower and upper bounds:

∫∫∫

R′

κ1e
−κ2‖y‖ dy1 dy2 dy3 ≤

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3

≤
∫∫∫

projU (R)

κ3e
−κ4‖y‖ dy1 dy2 dy3. (6)

Recall that

Pr(R) =

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.

Now, we transform the integrals in the lower and upper bounds in (6)
to spherical coordinates. The transformation to spherical coordinates is

given by r :=
√

y2
1 + y2

2 + y2
3, ϕ := arctan

(

y2

y1

)

, ϑ := arccos
(

y3√
y2
1+y2

2+y2
3

)

.

The determinant of the Jacobian of the above transformation is known
to be r2 sin ϑ [5]. Thus (see [5]), inequality (6) becomes

∫∫∫

R′

κ1r
2e−κ2r sin ϑ dr dϕdϑ ≤ Pr(R) ≤

∫∫∫

projU (R)

κ3r
2e−κ4r sinϑdr dϕdϑ.

Let A denote the surface area of the intersection of projU (R) with the
unit sphere S2; that is, let

A :=

∫∫

projU (R)∩S2

sin ϑ dϕdϑ.



Then, it follows that

A

∫ 1/9

0
κ1r

2e−κ2r dr ≤ Pr(R) ≤ A

∫ ∞

0
κ3r

2e−κ4rdr.

If we let

κ5 :=

∫ 1/9

0
κ1r

2e−κ2r dr and κ6 :=

∫ ∞

0
κ3r

2e−κ4r dr,

then κ5A ≤ Pr(R) ≤ κ6A. By symmetry, κ5A ≤ Pr(−R) ≤ κ6A. There-
fore, it follows that Pr(−R) ≤ (κ6/κ5) Pr(R). ⊓⊔

If the distribution were uniform over a convex set K whose centroid
is at the origin, then the proof of Lemma 6 could be modified to show
that the probabilities of R and −R are within a factor of n without
requiring that R is the intersection of three halfspaces; we would only
need that R is a cone (closed under positive rescaling). This could be
done by observing that the probability of R is proportional to the average
distance of a ray contained in R to the boundary of K. Then we could
apply the Brunn-Minkowski inequality (see [8, Lemma 29]) which states
that for any direction x, the distance from the origin to the boundary of
K in the direction of x is within a factor n of the distance to the boundary
of K in the direction −x.

In Lemma 6, we assumed that the distribution is isotropic. The next
lemma shows that this assumption can be removed (provided that the
mean of the distribution is still zero). A key insight is that, under a linear
transformation, the image of the intersection of three halfspaces is another
intersection of three halfspaces. To prove the lemma, we use a particular
linear transformation that brings the distribution into isotropic position.
Then, we apply Lemma 6 to the transformed distribution and the image
of the three-halfspace intersection.

Lemma 7. Let R be the intersection of three origin-centered halfspaces

in R
n. Assume that the points in R

n are distributed according to a log-

concave probability distribution with mean zero. Then, Pr(−R) ≤ κPr(R),
where κ is the same constant that appears in Lemma 6.

Proof. Let X be a random variable in R
n with a mean-zero, log-concave

probability distribution. Let V denote the convariance matrix of X. Let
W be a matrix square root of the inverse of V ; that is, W 2 = V −1. Then,
the random variable Y := WX is log-concave and isotropic. (Technically,
if the rank of the convariance matrix V is less than n, then V would not



be invertible. But, in that case, the probability distribution degenerates
into a probability distribution over a lower-dimensional subspace. We just
repeat the analysis on this subspace.) Let W (R) and W (−R) respectively
denote the images of R and −R under W . Notice that W (−R) = −W (R).
Also, notice that X ∈ R ⇔ Y ∈ W (R) and that X ∈ −R ⇔ Y ∈
W (−R) = −W (R). Let u1, u2, and u3 be normals to the hyperplanes
that bound R. Then,

W (R) =
{

Wx
∣

∣ x ∈ R
n and uT

j x ≥ 0 for all j ∈ {1, 2, 3}
}

=
{

y ∈ R
n
∣

∣ uT
j W−1y ≥ 0 for all j ∈ {1, 2, 3}

}

=
{

y ∈ R
n
∣

∣

(

(W−1)T uj

)T
y ≥ 0 for all j ∈ {1, 2, 3}

}

.

Therefore, W (R) is the intersection of three origin-centered halfspaces,
so we can apply Lemma 6 to obtain

Pr(X ∈ −R) = Pr
(

Y ∈ −W (R)
)

≤ κPr
(

Y ∈ W (R)
)

= κPr(X ∈ R).

⊓⊔

Finally, we analyze Baum’s algorithm using the probability bound
given in Lemma 7.

Theorem 2. In the PAC model, Baum’s algorithm learns the intersec-

tion of two origin-centered halfspaces with respect to any mean zero, log-

concave probability distribution in polynomial time.

Proof. If the probability p of observing a positive example is less than
ε, then the hypothesis that labels every example as negative has error
less than ε; so the algorithm behaves correctly if it draws fewer than m2

positive examples in this case. If p ≥ ε, then by the Hoeffding bound,

Pr(r < m2) ≤ Pr

(

r

m3
<

ε

2

)

≤ Pr

(

r

m3
< p − ε

2

)

≤ e−m3ε2/2 ≤ δ/4.

Thus, if p ≥ ε, then the probability of failing to draw at least m2 positive
examples is at most δ/4. For the rest of this proof, we shall assume that
the algorithm succeeds in drawing at least m2 positive examples.

Observe that the hypothesis output by the algorithm has error

err(h) = Pr
(

−H ′
)

Pr
(

Hu ∩ Hv | −H ′
)

+ Pr
(

H ′
)

Pr
(

hxor(x) 6= c(x)
∣

∣ x ∈ H ′
)

, (7)



where c : R
n → {−1, 1} denotes the concept corresponding to Hu ∩ Hv.

First, we give a bound for

Pr
(

−H ′
)

Pr
(

Hu ∩ Hv | −H ′
)

= Pr
(

Hu ∩ Hv ∩ (−H ′)
)

= Pr(Hu ∩ Hv) Pr
(

−H ′ | Hu ∩ Hv

)

.

Notice that Pr(−H ′ | Hu ∩ Hv) is the error of the hypothesis correspond-
ing to H ′ over the distribution conditioned on Hu ∩ Hv. But the VC
Theorem works for any distribution, so, since H ′ contains every one
of M

(

max{δ/(4eκm1), ε/2}, δ/4, n
)

random positive examples, it follows
from Lemma 1 that, with probability at least 1 − δ/4,

Pr
(

−H ′ | Hu ∩ Hv

)

≤ max

{

δ

4eκm1
,
ε

2

}

.

Since Pr(Hu ∩ Hv) ≤ 1, it follows that

Pr
(

Hu ∩ Hv ∩ (−H ′)
)

≤ max

{

δ

4eκm1
,
ε

2

}

.

Therefore, the left term in (7) is at most ε/2. All that remains is to bound
the right term.

From Lemma 7, it follows that

Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

≤ κPr
(

Hu ∩ Hv ∩ (−H ′)
)

≤ δ

4em1
.

By Lemma 3, Pr(H ′) ≥ 1/e. Therefore,

Pr
(

(−Hu) ∩ (−Hv)
∣

∣ H ′
)

=
Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

Pr(H ′)
≤ δ

4m1
.

Thus, each of the m1 points in S has probability at most δ/4m1 of being
in (−Hu) ∩ (−Hv), so with probability at least 1 − δ/4, none of the m1

points are in (−Hu) ∩ (−Hv). Thus, each point in x ∈ S lies in Hu ∩ Hv,
Hu∩(−Hv), or (−Hu)∩(Hv); if x ∈ Hu∩Hv, then x is labeled as positive;
if x ∈ Hu ∩ (−Hv) or x ∈ (−Hu) ∩ Hv, then x is labeled as negative. In
other words, the points in S are classified according to the negation of
Hu△Hv restricted to the halfspace H ′. Thus, the linear program executed
in Step 4 successfully finds a classifier hxor consistent with the examples
in S. By Lemma 1 and Lemma 2, the class of symmetric differences of
origin-centered halfspaces restricted to H ′ has VC dimension at most n2.
Therefore, the VC Theorem implies that, with probability at least 1−δ/4,

Pr
(

hxor(x) 6= c(x)
∣

∣ x ∈ H ′
)

≤ ε

2
.



Since Pr(H ′) ≤ 1, the right term in (7) is at most ε/2. Adding up the
probabilities of the four ways in which the algorithm can fail, we conclude
that the probability that err(h) > ε is at most 4(δ/4) = δ. ⊓⊔
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