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ABSTRACT T prsarcty mned

The effects of cementite particles and subgrain boundaries on work-
hardening behavicr of gpheroidized carbon steels were investigated by
making direct measurements of residual intermal stresses. These internal
stresses developed dde to plastie incompatabilitiesbetween elastic perticles
and an elastic—plastic matrix. A continuum analysis of these internal stress
fields, based upon a multiple slip model, iz presented and is found to be in
goad accord with the experiments. The Internal stresses appear tTo saturate
in the plastic strain range of 3 - 5% where a transition in strain-hardening
behavicr was observed {"double-n" behavior}, and to contribute approxirately
20% to total work-hardening. The cementite-particle-pinned-subgrain-bound-
aries, formed during a post—-quench anngaling treatment, were found to lower
the internal stress, thus indicating that they assisted the relaxzation pro-
cesses of entrapped Orowan loops by acting as sources of dislocations. The
flow stress increment in dispersion hardened alleoys due to work-hardening
consisted of internal stress, forest stress, and source-shoriening stress.
The flow stress curvez of spheroldized carbon steels were found to be de-

scribed by a modified mean-square-root addition law of the form

/2

g,=0, + 0 +[(a0H « a0™Fr (0h)F]
L

¥ I

The maximum normal interfacial stresses were estimated from the data. The
masimum values occurred in the tensile direction at the poles of particlas
and the magnitude was found to be approximately cne half of flow stress. The

significance of these stresses regarding interface cavitation Is discussed

briefly. DIST (
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1. INTRODUCTION

When work hardenable metals are cyclically deformed by forward and then
reversaed loading, they typically exhibit a decrement in the magnitude of the
reversed yield stress 1. The effect, which is found in a wide clazs of pure
metals and alloys, including both single crwetals and polyerystals, is gen-
erally believed to be a ennséquence.of the internal stresses that develop due
te the inhomogeneity of plastic deformation 2

in ﬁulyéryatﬁlline alloys that contain large second phase Ineclusions,
especially inclusions that do not undergo any appreciable plastic defarmation;
a large part of the overall strain~hafdening results from directional leong- |
range stresses. These stresses are the £ame kind that giﬁe rise to the afora-
mentioned Bauschinger effects and are caused by an Incompatibility of plastic
strain between the particles and the surrounding plastic matpis 3. In pe-
cent years, continuum and dislocation models for this sort of anisotropic

352857 | ave been developed {these models are reviewed and develop-

hardening
ed in later sections) and they have been szuccessfully applied to particle
hardened alloys. The rodals always prediet enhanced Bauschinger effects and a
particularly interesting manifestation of dirveetional internal stresses.that
wa call, following Wilson B, permanent softening. Permanent softening is
illustrated graphically in Figure 3.1 and because it plays a central role in
the present work, it is explained in detail in Section 3.1.

How since the models we will uze relate both the overall work-hapdening
behavior and the Baunschinger effects to the details of the residual dis-

location structure left at the particle-matrix interfaces, it appears to be

poscible to extract information from direct measurements of these effects



concerning, for example, the local stresses and elastic strains developed
within the inclusions and st the particle-matrix interfaces during plastic
deformation. Such information weuld in turn be very helpful in explaining,
1) the observed changes in work-hardening behavior, which is found to oecur

g’lﬂ, 2) the influence of particle size and particle

at certain strain levels
volume fraction on work hardening, and 3) the process of particle cavi-
tation (i.e. separation of the particle-matrix interface) which is knﬁwn to
be promoted by large values of the interfacial stresses. The resesrch pro-
gram reported here is in fact concerned with the use of these models and

the relevant experimental data to explain the micro-mechanics of work-
hardening and internal stress development in dispersion hardened steels.

Hith the above cbjectives in mind, 2 series of experiments wag conducted
on two plain carbon steesls, heat treated to contain sphevreidal carbides in
the 0.6-2um dizmeter size range. All the relevant strain-hardening param-
eters for simple teﬁsile straining, as well as the reverced deformation
characteristics f?r tension-compression ocyeling, were measured. The mag-
nitudes of the Bauschinger effect and the permanent softening were zlszo
mezsuraed and weres correlated with such microstructural paramsters as particle
gsize ard volume fraction.

In the quenched and tempered state, it is found that the carbides are
generally inteplinked with a network of dislecation subgrain boundaries. To
determine the influence of these subgrain boundaries on the work-hardening
bahavior and internal stress levels, additional tests were ¢onducted on
alleys specifically heat treated to remove the subgrain boundaries while main-

taining the particle zizes within the range common to the alloys containing
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sutbgrains. As was menticned earlier, the directiconal long-range stresses
which tend to “harden" the matrix are causéd by the dense clustering of
dizlocations at the particle-matrix interfaces. These clusters cause large
stresses within the particles which are counter-balanced in an average way
by stresses In the metrix. It will be explained later that the permanent
softening is a measure of these stresses and can be used to estimate the
local stresses acting on the particles. In Sectiom 5.1, an analysis of the
interfacial stresses for spherical inclusions is presented.

In Secrions 2 and 3 a brief but relevant review is givem of the vaﬁiuus "
modellistic approaches to boundary and particle hardening. In particular |
a thorough discussioﬁ is provided in Section 3 for particle strengtﬁening
aud internal stresses; permanent softening is explained and its relation to
observed Bauschinger effects, aud to the local stresses acting at the par- ”
ticles, is made clear. The experimental techmiques that were used and the

results obtained are presented in Section 4. Finally, the resulis are

discussed in Sectionm 5.




2. DOUMDARY STRENGTHENING

It is well known that the presence of grain boundaries in all poly-
crwstalline materials provides strength by interfering with the motion of
dislocations. A very useful relation between the yield stress and the grain

g2ize, viz. the Hall-Petch equation, is now well establighed for low carban
steels 11,12;
T+ k d-uz
g = T+ . (2.1}
¥ 0 ¥

In Equation {2.1), ay is the yield stress, d iz the average grain size, and

F., and k}Ir are constants. Egquations (2.1} has been confirmed erperimentally

o
13,1u,15

for many materials other than zteals and hag bean deriveﬁ theoreti-

12, 16

cally from dislocation pile up models and dislocation interaction

work-hardening models lT,l&_

In the pile up modelz, the grain boundaries are assumed to be strong
barriers to the gl;de dislocations, and thus the dislocations are queued at,
or "piled up" against,them. These pile ups intensify the net force on the
lead dislecation In analogy with the sztress cuncentraticﬁs at the tipz of
"shear cracks. Yielding accurs-uhen this stress concentration at tha laading

diglecation, T . , excesds a eritical stress, T Fer an isolated single

tip erit’

ended dislocatien pile up of n dislocations for example, T iz, az virtual

tip
work implies,
a :
Ttip'"[T "Tn) . (2.2)

In Equation (2.2), v is a frictional stress which fluctuates on the spatial

0
scale of the latrice parameter and TE is the applied shear stress. n, in

E!.!@aWEWQ !
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turn, is expressable in terms of the =lip line length, & (an experimentally

measurable quantity), as .

n={r*7)t/2A , ! (2.3)

where A has the value of ubh/2% and pb/27{1-v) for screw and edge disloca-

tions, respectively (p = shear modulus, b = Burgers vector, and v = Poiszon's
ratio).

Equation (2.3) is derived by sssuming a contipucus distribution of dis-

locations, although discrete dislocation models yield similar results 19.

Taking £ egual t¢ 4 and equating T © Tonit? Y obtain the above form of

tip t
the Hall-Fetch relation:

72 -172 . o
Ty-Tu"'(EP‘T:rit} d - ' (2.4)

The analyses leading to Equation {2.1) can be extended to describe the flow
stress as loug as the grain boundaries continue to aot as barriers to moving

dislocations 2ﬂ; in thia case the flow =tress, Tes is given by

-1/2
T = d, +Rd ] (2.5)

" where the paramster kf now depends on the plastic strain.

The lack of direct evidence of pile ups at the grain boundaries in many
cases has motivated the development of strain-hardening models in which the
grain size is related to the dizlocation density preduced during deformation.
For example, Habarro et al. 4 have reviewed a variety of proposed flow
stress and dislocatlon demsity, ¢, relationships and have shoun that the

relation

1/2 : '
Tem Togt Cbp ™7, - (2.8)




where ¢ is a constant whose value in the various model versions fanges from
1/3 to 1/5, is a general form which is derived from a wide class of work-
hardening theoriss., Ashby 22 on the othar hand in one particular study
related the dislocation density to the structural parameters AG and ls
defined by him az the "geometric z1ip" distance and "statistical slip"
distance, respectively. He assumed that the total dislorzation density was
composad of both the dislecations which are "gecometrically nezessary™ to
accomodate the plastic non-homogeneities across the grain boundariss and
the "statisticzlly stored dislocations" which would accumulate in a mateix
without particles as they do, say, in single erystals. Taking pG and ps
as the densitisg of these two types of dislocations, Ashby writes for the
total density:

pT-pG+pE, {2.7)
Simple additivity in Equation {(2.7), we note, is doubtful since it ignores
the interactions between grain boundary processes and grain matrix slip.
Thompson et al. 2 hawve sugﬁested instead that sach such term should be
correated by the respective area fractions 3¢ that the polycrystal is viewsd
as a kind of composite structure with a hard boundary region and a softer
grain matrix. In the case where pG > pg, however, it is always assumed

T G G

that p~ = p and p~ is related geometrically to hG as

& =
p-ar,/bA, (2.8)
where TP iz the shear strain.

Ashby 22 has further assumed that 1G, instead of the more commonly used

24,25

dislecation slip distance , is proporticnal to the grain size. The




average Taylor orientation facfurs,‘iﬂ), vhose values are czleulared as
3.067 for F.c.c. polyerystals 26 and as 2.733 Lo b.c.e. polyerystals de-
forming by pencil glide 2?, relate the shear streas, v, and strain, v, to

. 2
the tensile stress, &, and strain, e, as &

M) =gy 7=drde, . (2.9)
Supstituting Equation (2.8) into (2.6) and converting to tensile stress and
tensile sfrain.by ﬁtilizing a Tayler factor, we cbtain again a Hall-Feich
type equafian,

372 1/2 -12 "
G;'G;f+CT}-L¢"|> {bgp) d . (E.l{}.}

vhich in addition predicts a parabolic stress-strain relation,
Ashby 22 has alsc used Equation (2.10) to interpret results on strain-

28,29 by noting that lG

hapdening for dispersion strengthened single crystala
iz given by r/f for equiaxed inclusions, where v and £ are the particls
radius and the particle volume fraction, respectively.

Thus, the particle hardening effect, ﬂGP, iz

KO =C (M)aleu (b fe, /2 ) ”, | (2.11)
In Equation {2.10) and (2.11), «' is a constant having the value {(0.25  0.15%).
Altheugh the Ashby model haé had gome success in deseribing the work-hardening
behavior of dispersion hardened crystals, this medel doss not acecount for
the detailed dislecation arrangementé and so makes no predictions concerning
the Bauschinger effect,
fn the other hand, we note that all these theorsetical approaches seem

igvariably to lead to a flow stress { and yield stress) which varié; as the



relevant microstructursl distance, i.e, grain size, raised to the inverse
squars root power., The flow stress is then found to vary parabelically with

plastic strain, These tuo features are amenabls to exparimental verification.

2.2 Dislocation Bubstructure Strengthening

The machanism of cell formation is now belisved to be the formation of
dizlocation tangles, which gradually join into three dimensiopal networksaﬂ’a%
Subgrain boundaries, on the other hand, are generally observed to form under
conditions where significant dynamic oy static recovery ocours either during
or after plastic deforwation 32. Holt 33 has analyzed a model fur cell
formation which assumes that the driving force for dislocation <ell formation
is a reduction in the total elastic energy of dislocaticns dus to their
¢lustering in cell walls. The model has a clear analoegy to the process of
spinodal decomposition 34. He has shown that spatial fluctuations in an
initially uniform density of disloecaticns with certain periedicities can
grow faster than others and that the wave lengths of the fastest growing
density perturbations are proportional to the inverse of the sgquare proot of

the uniformly distributed dislocation density, p,

-1 /2
L =Ko, (2.12)

In Equation (2.12), K is a constant and L, iz the average cell size.

Substiluting Equation (2,12} inteo (2.6}, it is found that

-1
G‘facrﬁiﬁi]i_ . (2.13)

(s) is another constant detfined as cub/K. Eguation (2.13) should

where kf

hold under conditions of steady state deformation such as are attained in hot

L ' [ ] - - u » 3
working where the averape disleogatrion density remains essentially constant 5’;5.



‘nat
Young and Sherbylﬂ&jhave aleso shown that subgrain boundary strengthening be-

havior in a number of irom based alloys can be described by Equation (2.19).
They have further assepted that subgrains can indeed play 2 domirant rele in
the strengthening,especially in the prange of suhgrain sizes that ape less
"than about 0.u4yn.

However, it has alss been reported that much of the data for yield

stress can be fitted to a2 Hzll-Peich type equation 3'U'.

5y 15 = z
Crm- R L L (2.18)

thus implying that the suhgralns may have a similar effect on strain—hard;n-
ing behavior as do the grain boundaries. Theoretical approaches have been
made to rationzlize Equatien (2.1%) by analyzing the atress fields of simple
tilt sub-boundaries hased upon either the pile up 21,37 or forest ha:m'.han:i.ng:ElE
models. The absence of direct cbservation of dislocatien pile ups at suh;
boundaries favers the ferest models which are concerned with the stresses to
force dislocations through the dislocation debris formed as a result of un-
ag . 17

pinning of houndary dislecations ~ . Ld has derived za Hall-Petch type

egquation using such a forest model vhich has the form

=’f‘51&¢b;’271’ (I - L»'J] [89/’1‘?13] (2.15)

The analysis predicts that the yield =stresses depends on both the subgrain

size and the averape misorientation of subgrain, 6.

A majority of the ewxperimental data, however, shows that the yield
strength is independent of the misorientation angle of subgrain boundaries
and only depends an their size via Equation (2.15) %, an interesting point

to be noted is that well-recavered materials tend to obey the relation of
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Equatien (2.13). That is, the observations 39 suggest that the exponents of
subgrain size change from values near -1 to values closer to -1/2 as re- -
covery procesds.

Ancther noteworthy feature of sub-boundaries is the fact that they
produce vanishing long-range stresses as has been suggested by Kuhlmann-
Wilsdorf Hﬂ’hl. She has constructed a "building hlock" model Ef the terminated
loop hexapeles composed of edge and screw dislecations, in which a ¢onditienal
minimum énergy criterion has been imposed and has suggested that the tilt
and twist cell walls in adjacent cells most likely consist of equal and hl
nppnsif& dislocaticon densities. From the results of simulated stress fields,
she has reported that there exist two kinds of lomg-range stresses: {1)
Ismg-range multipolar stress fields which attract dislocations tﬂ-the call
wall and eventually wanish and (2} rotational stress fields arising from the
rotational stresses of a single hexapole which have also been shown to be
cancelled by constructing a multi-hexapolar model in an alternating sense
of rotation 42. & variety of transmission electron microscopic observation
of dislocation substructure 3 supports the assumption of a reduced long-
range stress field along the sub-bourdaries. A continuum analysis for the
elastic fields of periodic dislocation networks H has also shown that the
rotaticnal fields in a periodig planar distribution of dislocation networks
decrease exponentially with distance and vanish on the average. There do
exist observations, however, that indicate that cell walls in the deformed
structure do produce some long-range elastic stress fizlds 43 .

Thus it is not clear from eaiéting knowledge exactly how the sub-

boundaries contribute to strain-hardening behavior. Bearing this in mind,
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we atrempt here to understand the rele of subgrain boundaries in spheroidized
carbon steels on the hardening behaviar from the Internal ziress measurensnts

discussed in Section 5.4,
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3. TPARTICLE STREHGTHEWING

Orowan HS has proposed a dislocation bypass model for dispersion
strengthened materials and has given the erirical shear stress, T.» to how

a glide dislocation as

T,=2T/of (3.1
vhere T iz the idealized dislocation "line tenzion" and A i= the interparticle
distance. In recent years, a number of theoretical approaches have been pro-

posed to apalyze the strain-hardening behavior of disparsion hardensd materials

6

. . . L
which in fact are based on the criginal Orowan model . For the purpose of

digeussion we will classify them 2s; (1) forest type hardening models 47,48

tthich emphasize the interaction between glide dislocations and the "forest"

dislocations produced by certain dislocation relaxation mechanisms and (2}

3,4,6,7,8

back stress hardaninsg modals , which deal with the intermal stresses

fdue to the Orowan lecps. Furthermore, we note that the role of these internal
strecses in strain-hardening has been treated from two rather different points

of view. One approach deals with the back stress of a long-range character 3,

4,6,7 . . .
o ’3, whareas the other ig primarily concerned with the loeal fluetuating

- b . - . s .
stress around =ach particle Q*EG. The various dispersion hardening thaorles

based on internal stress concepts are reviewad and compared briefly in this
section.

3.1 FHF Hode=l 49 and Revised Hart Model 50 -

The Fisher, Hart, and Pry (FHP} model is based on the assumption that
the strain-hardening process in the matrix proceed as they would in, for

example, a single erystal matrix without particles. They have further assumed

‘g
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that plastic flow occurs in a single slip fashion and thus, the glide dis-
locaticns are piled up against particles. We note that this iIs a somewhat

unrealistic assumptien, especially in the light of wecent work on deformation

51,52

process at large inclusions --a point we consider in more detail later

. . . ma
on. In the FHP medel, the maximum hardening inerement, Th , due to the,

elagtically deforming, particles over the pure matrix flow stress was estimated.

Tax

At large strains they obtained for T ,

I

max 7

T, =L3BK(N e £, (3.%)

rhere B iz a constant taken to he equal to 3, Hc iz the maximum number of

ghear loops a particle can maintain, K is defined as [1 + v/2(1-v)] and r
iz the mean squafe planar radius which is related tc the mean particle radius

statistically as
rd 2 e
r=3r./2 . (3.3)

Since the number of shear loops 1s related to the shear strain as

TF=N'|:1/2T‘, {3.1)

Equation (2.2) can be rewritten in the form

| T:M-'IZJU_T: g7 , _ _ {3.5)
where y_ is a eritieal shear strain at which the number of shear loops be-
comes saturated and the numerical constant 12 is cbtained by setting v = 1/3.
Thmax is in faect identified 3z the saturation back stress and thus Equation
(3.5} predicts that the back stress hardening depends on particle volume
fraction raised to the 3/2 power. Ashby has obtained the same result from

a 50-called "elastic peg" model 53. The FHF model, hcueﬁer, doees not account
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for the Orowan siress and so it estimates only the maximum hardening incre-
ment dus to fhe presence of particles._

Hart 30 has recently modified the FHF model to aceccunt for the Orowan
stress and has obtained a stress-strain relation which assumes (1} that the
Orowan stress iz simply additive to the matrix flow stress and (2) +that the
back stress effect caused by the local fluetuating stresses of the Drowan
loops acts $o as to raise the eritical stress for subsequent disiocation
bowing, From the fundamental assumption of simple linearly additive flow
stress contributions, the hardening increment due to particles is defined as

JThETF'rjh . : (3.8)

P
vhere 1., and T, represent the flow stresses of the specimens containing

MF I
particles and without particles, respectively. Hart 20 has further modelled
the trapped shear loops as being infinitestimal in size and has taken Ffor
their stress field the field of a shear dislocation dipsale. The eritical

chear strecs vequired to foree a glide dislocation betwsen two trapped loop

dipeles was calculated and can be expressed as
172 |
7 -7 [1+2m e 2M] (3.7)
where M = 0,509 K(HJTG}TE £3/2 {1;: unrelared plastic shear strain}. This
shear stress-shear strain relation .was then converted to a tensile stress-
strain relation using simple Tayler avekaging,*iﬂ?’, to chtain

172 _3/4 142
)l

u R - e u
G = +1.6 () s, €] " +1.2807uf e, e
vhere E; is the umrelaxed tensile plastic sirain and %y iz the tensile

equivalent of the Orowan stress.
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Asaro 4 has pefined the computation of the Orowan stress by considering
the effect of wore complicated distributions of shear loops. The results are
consistent with those of Equation (3.7) and can be represented in the slightly

more general form as

Th=TD[1+£u(M +MU2)] . {3.9)
where @ is a constant ranging from 0.5 to 2.0 and M is a linear function of
s5train. The experimentally measured value of the hardening increrment in
general Includes an additional stress--the image stress, Tim,--which is &

loeng-ronge residual stress associated with the finite size of the body 4’?.

Thiz reversible residual stress has been shown to be a dominant contribution
to the strain-hardening at large strains--this effect is discussed in the

next section.

3.2 Wilson's Construction and the Eauschinger Effeect

It has already been noted that Lhoth continuum and microscopic models
predict the existence of long-range internal stresses and the accompanying
prencunced Bauschinger effects caused by plastic incompatribilities between
non-deforming inclusions and elastic-plastic matrices, Asaro 4 has suggested
at least three kinds of kinematic-type hardening behavior which might result
when the macrogcopic internal stres=ses are related to the details of micro-
structures. These macroascopic residual internal stresses developed during
unidirectional deformation can be removed by reverse straining. This kind of
behavior leads to the permanent saoftening effect 2 wa discugsed 2arlier. The

magnitude of this parmanent suftening simply appears as the differencs in flouw



" ]
r " r
1
.
1

_lﬁ_

stregs for reversed and forward deformation evaluated at Zome large strain,

as illustrated in Figure 2.1. Wilson 8 has shown that internal stresses are
linzarly related to the magnitude of the permanent softening, UPS, by cor-
relating measvrements of the Bauschinger effect to the average iﬁternal
stress, ui, measured by monitering X-ray diffraction line shifts. His experi-
mental results show that the residual internal stress is about one half of

i Ps

the magnitude of permanent softening. Although he concluded that o and o

gre the lower and the upper limits of the back stress hardening element,

-

4 .
Asare  and Brown tock the internal stress te be equal to ene half the

measured permanent scftening--this assumption is based upen a "shake down
model for dispersion hardened materials 55. To appreciate this peint of view,
we consider the simple elastic-plastic element wmodel of Figure 3.2, The
elastic regions (viz, strong elements, inclusions, or boundaries) support
stresses which are transmitted as residuzl stresses t¢ the plastic regicm
{viz. weak elements or matrices) upon unloading. Thus, the model shows a
Bauschinger effect, manifested by a permanent softening whose magpitude, as
can be seen from the figure, is just twice the residual internal stress. The
inhomogensous leczl stresses around the particles are believed to produce the
characteristically rounded part of the reverse stress-strain curve 54. Thiz

argument hag been confirmed by Brown et al. St by defining a parameter 8

empirically as

1.2
TFNT = :
C/T, = BET. (3.10)
B vas fvund to be proporticnal to the inverse of the measured valus of per-

manent softening. Moan et al. 96 have alsc cbtained the sams result by de-
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seriling the forward flow stress and the backward flow stress as

i _F
OO0 +0
and P (3.11)
T=0-T+T ,
r q
where Uf stands for the "forest stress". Thus, o' can be expressed in the

form

i P35
. C’J_‘[JF-1U}1]/2 ~T/2., . (2.12)
It sheuld ke further noted that the intevnal stress Is in fact a measure of

the Bauschinzer energy parameter, EE, wirich has been proposed as a measure
57

FT

of the Bauschinger effact EE haz been defined as

8.=E./E =@/ s (3213)
Eg and Ey are the elastie energy stored in forward deformation and the total
energy required to give forward deformation, respectively, and (ﬂ{) iz the ‘
average forward tensile stress. The fuerage stress, <Ué} y which is related
to elastic energy stored by E5 =*CGE;PET, ig believed by the authﬂF toc be
just another expression for the residuzal internal stress, Asaro 4 has further
indicated that regardless of the details of the iInitial reverse flow, the

difference between the forward and reverse flow stress curves asymtotically

approaches the wvalue 20 for all three kinematic-type hardening cases. Since

these models, however, do not depend on the fine details of the microatructures,

as does the "source-shortening" or "Orowan stress" contributions, they give the
sort of overall average internal siresses which are measured in the present

work ,

LT L
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3.3 Tanaka and Morl Model

Instead of directly computing the fuéces acting on the glide dislocations,
Tanaka and Mordi 6 have computed the isothermal free energy change of an elastic-
plastic specimen containing elastic particles. If the elastic constants of the
matrix and particles are the same*, the free energy change during the deforma-

. .. . A,
ticn by & uniaxial tensile siress, USS , L=

Ay E )
= + + - —
BG-N[E+E N+a,eV, ~ (o)) WeE-0, €V, (3.14)
where ¥ is the nurber of inclusions, Eh is the yield stress of the matrix
{identified as the Orowan stress), YH and ¥ are the volume of the matrix and

the specimen, respectively, and Ep is the imposed uniform plastic strain in

the matrix. The elastic energy, E and the Interaction energy, Eint'

58

el’
are calewlated according to the well known scheme devised by Eshelby

The szpecimen is assumed to underge a dilatation free extension correspond-
ing to a plastic strain, Ep, in Xq direction. Since the particles dv not de-
form plastically, Orowan shear loops are left around inclusions as a result
of the hyﬁassing of dislocations. These loops give rise to plastie incompat-
ibility between the elastiec-plastie matrix and the elastic inclusions., The
central assumptions in this model are that these loops are distributed uni-
formly at the particle-matrix interface and thar the plastic deformation in

the matpix occurs by uniform symmetrical multiple glip. This assumptien

i
Although aceurate values of the elastic constants of cementite are not avail-

able, it is believed that the elastic constants of pelycrystalline cementite

have rather zimilar valuez to those of ferrite 52.




= 19 =

anabled these authors to make use of Eshelby’'s "upiform transformation strain®
results 28 by identifying rhe transformation strain components, EijT‘ with

the plastic strains as follows,

T T u T u
£ =£,=6,/2 , £ ==&, , (3.18)
and E..T =z O otharwise.
13
The model is depicted in Figure 3.3(a) and (b). The diclocztion loop
distributions envizionsd in the FHP and revised Hart models ere alseo 1llustrated
in Figure 3.3(c) for the zake of comparison. For spherical inclusions, the
L
stresges inside the ineclusion and the constrained strains, Eijc’ are given
a5
I £ T
_ G-ijlzp'(gnerij]
and (3.16)

e -[ef-sp)s(-3)e]
From Equations (3.15) and (3.16}, we obtain the fellowing stress components
inside the inclusion:
T gym 2MALE
and . . 4 {3.17)
T " T, ~ "HAE,,
where a is tha accemodation factor, which for the case of a sphere, is equal
to (7-5v)/15(1-v). The elastic energy stored during the deformation and
the interaction energy of the Iinternal stress field due to the applied stress

are

I _1 uy2
™" %sz 0 &; dV =3V pa(e ) /2 (518
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_ A T A U
and [:int- B SV[JEJ Eij dv 'Gaa VI EP ' {3.19)
vhere ?I it the wvolume of the inclusions.
Substituting Equatione {3.18) and (2.19) inte Equation (3.1%) and
using the stability cenditions, a{ac;}fa(sp"‘) = 0 and aztac}fazfep“} > 0, the

following stress-strain relation was obtained

Ty = Ty r 3 (f/1-F ), .

The procedure predicts a linear hardening behavior which depends on particle

(3.20)

volume fraction only and not on any other feature of the particle distribution.

The flow stress calculated in this wanner c¢ertainly represents a lower hound
to the true value, since it is assumed that all the work dome by the applied
8Tress is stored as elastic energy (that is, dissipation is ignoved). The
equivalence of this model to that of FYHP has been discussed recently 59 and
it has been shown that the linear hardening behavior is not necessarily due
to the assumptien of uniform plastic deformation. This continuom model, how-
ever, does not adequately take into account the stresa required to bow dis-
locations arcund the particles, so that it fails teo include a proper treat-

ment of matriz hardening behavioer.

3.4 Erown and Stobbs Model

Erovmn and Stobbsz &0 have attempted to describe the macroccopic properties
of their own dispersion hardened materials in terms of observed dislocation
mlcrostructures. Thelr model iIs considered by the present author to be the
mest realistic and complete of these propesed so far. They have <omputed

the, contributions to the flow stress arising from both the forest and the back
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stress hardening by aséuming these effects to be linearly additive. The
entrapped Orowan leops piastically relax by various méchanisms such as local
climb, cross slip of screw sagments te produce prismatic dislecation loops 43,
ar by secﬁndary slip procasses as proposed by Ashby 4?1 A secondary plastic
zone with a high forest éislocation densit} is thus produced arcund the
particles, the precise form of which depends on the particular relavation
mechanism. This plastic zone directly hardens the matrixz by a forest type
haprdening and.alsa-pruﬁibits sﬁbsequent full plastic relax&fion of Drawen.

T

shear loops, thus stabilizing the localized elsstic stress field which is 4

- . -4

the source of the back stress hardening.

3.4%.1 Elastic Model

In the absence of plastic relaxation, back stress hardening is seen as
to arise from the internal stresses and the stresses reguired to bow dis- |
[}
. . T . .
location between particles ', TFollowing Asaro 3, we can estimate these
internal stresses by considering a structure whose surfaces are traction free,
For this structure we may write
f T;dV =0, (3.21)
L
tnus satisfying the equilibrium condition. Dividing the integration limits

inte the volume of the matrix and that of the particles, we arrive at the

result

L I
(T HEN-F)TD -0 . (3.22)
How "the traction free houndary conditioms give

im, I

j ). {3.23)

T =i+ @,
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In Equations (3.22) and (3.23), the angular brackats represent the average

-] 1 L]
values, Tij’ are the particle stresses computed as if the medium were in-

i .
m. I are the so-called "image stresses' of the parti-

finite in extent and LFE
cles or actually the corrections to this "Infinite" field due to the tracticn
£r - < Im _.,I> - .

ee surfaces. 3Since Tij iz itself proportional to particle volume

fraction for ellipsecidal inclusicns El,('r ijﬁ> can be written, to first order

in £, as

M oo,
k|
T y=-lFr-f) a7y (3.24)
<fiju>'a¢t5 as an opposing stress to glide dislocations. The uniform shear

stress in a typical inclusion is found ta be

o, ] L
T 7Y = oY (3.25)
(77 = oy,
for the uniform shear model assumed T--this is illustrated in Figure 3,3(d).
Equations (3.2u) and (3.25), when combined with a Taylaop factnr,{iﬁ>', used
again to convert the predicted shear stress-strain pelation to a uniaxial

tensile gtress-strain relation give the stress just after yielding as

A 2 L
a =G‘u + (M} D{(‘F/IH‘F]}LED (3.26)
In the cage of multiple slip, the arcomodation factor {u'} has been egtimated
gs o' = i:'-c: for spherical inclusions E'. If we replace o with 32/4 and take
{t) to be have the value 2 , then Equation (3.26) is identical to that of

e

Tanaka and Mori's continuam model essentially assumes that plastic flow oc-

curs on numerous slip systems simultaneocusly; this gives{ﬁ) =2 lﬂ'
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Tanaka and Mori 6-+Equatiﬂn.{3.20}. As plastic deformation proceeds, the
shortening of effective interparticie distance due to residual Orewan loops
raises the bowing stress according to Equation (3.1} and thus the flow strass

| in this stage of hardening is given, zpgain assuming linscar additivity 87 as

o= D"a[1+{a/ﬁﬁ{{2<?vp 'rse:/blw- r}]+ dvpz o {f/1-F) E: ; (3.27)

The "source-shortening'" stress in Egquation (2.27) has been calculated ap-
proximately by assuming a simple constant line tension of wb2/4. The stress-
gtyain relatien is in faet similar to that computed by Asare % and Hart 50,
Cne of the major results of this continuum analysis is that the mean loezl
stregses around a particle vanish, contrary té that of Hart and that the
logcal fluctuating stresses give rise to the "source-shortening sfres;.

& further discussion on the similarities and differencas of the Hart, Tanaka.

and Mori. and Brevm and Stoebbs medels has racently been given in referencesEg’E%

3.4.2 Plastic Relaxation

Plastic relaxation, in genaral, occurs at the ocnsat of plastic flnw,_sa
that any theory which doez not properly consider plastic relavation cannot
descrihe dispersion hardening behavior adequately. Brown and Stobbs 50 have
computed a forest hardening term and the back stress hardeniné term by noting
that plastic relaxation cccurs in their alloys by sepondary slip. They
assumed that this "secondary plastic zone” would be plate—like with a radius
R and of thickness r--this assumption being suggested by their observations.

From Equation (2.8), the lecal flow stress in the plastic zone can ba written

in the form

= e
T}ucar - C}Jb le:a! . {3.28)



F

. TR

If all the dipoles of prismatic leops which have been convertsd from Orowan
loops are contained in the zone, then the secondary disleca2tion density in
ig

the wonea
* Pyopar?

.Plau.T =hn r/up ] (3.29)

where h is a constant taken to be approximately equal to 8. The plastic zone

volume, ¥V, for their assumed model is

p

z
V,=TTRr , (3.30)
in which the particle velume is alse included. We will instead explicitly

note that the particle wolume should be subtracted from Vp’ since the particle
size is typiecally of a comparable magnitude to the dimensions of this relaxa-

tion zene. The number of relaxed Crowan loops, n, is related to the relaxed

plastic shear strain statistically as

n=2rr.-v, /b . (3.31)

When the particle-ﬁatrix interfacial stress, vhich is found to be uuvpu
for the uniform shear model, exceeds the local flow stress, secondary slip
is presumed to cccur. This condition, along with Equations (3.28), (3,29),
and (3.31), pgives the unrelaxed plastic shear atrain as

]le

TF“-[t:b/o{] {2?‘- (r.-v, Iri/oV,] (3.22)

where all the parameters are the same as defined previously. Equating the
particle stress at the cuter edge of the plastic zone to the Frank-Read

type stress acting on loop dipoles yields the following relatiem

MA T, rY R = ub/r . (3.33)
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Taking TP »x Tpu and ignoving the particle wolume contained in the plasztie
zone, the plastic zone padius, R, and the unrelaxed tensile strain, correctsd
by the Taylor averaging factor, are determined from Fquations (3.30), (3.32},

and (3.33) to ba

1/8
E=[{M} EhCErEP/bTT] r (3.3u)
and

£ =[Lac” M7 o [or/h re ) hoe, e, (2,35}

The fraction of bowing dislocations lying in the zene is approximately the
square root of the plastic zene velume fraction, fp’ which can be expressed

as

4
=3V mr {(3.36)
fp =3V, fATr,
The "forest stress" caused by the "forest" of secondary dislocations is,
by uriting of = fplfz Ty1oea1- and correcting with Taylor averaging, thus
given by

Ve (3.37)

"= 8% p [3h/7| P [bfe, /2 ]

This is ldentical to the result of Ashby 22--Equation {2.11). Similary, the
residual internal stresses are obtained by substituting EBauation {2.35) inte

{3.26) as

D'i-1_3 <Plpu.fﬂ Caﬂkj.i[ffl-ﬂ[bﬂ/h Epr‘J Pe= [thP/TTF‘]”E . (3.38)

Equation {3.38) predicts that the back stress hardening depends om (1) the

particle volume fraction almost linearly, (2} the plastic strain nearly
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parabollically and . (3} the particle radius raised to the -5/8 power. The w
ahove predictions are compared with the results of the present work and are

discuszed further in Seation 5.2,
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L, ZITYPLRIKEWTAL PROCEDURES AND THE RESULTS

4.1 Heat Treatment and Hicrostructures

Two steels with different carbon contents, which are listed in Table 4.1,
wera heat {reaied to prepare tensile specimens, each steel being prepared
with two contrasting microstructures. Steel A was austenitized at 810°C
for 2 hours while in the form of round bars with a 5/8™ diameter, wheress
gpacimens of steel B were first machined into slightly oversized tensile
specimené and then austenitized at 1020°C for 2 hours. Austenitizing, in
all cases, was follewed by dquenching in a 25% aqua oil-water solution. The
pre-machining treatment for steel B was used in order to achieve a3 more
homogeneous martensitie transformation throughout the specimen cross seation
after quenching? The alloys which were tTempered isothermally after quenching
contained a dispepsion of spherical carbides that were interlinked with
dizlacation subgrain boundaries. The microstructures with these subgrain
networks comnecting cementite particles were produced by annealing at 70090
for 1 hour, 8 hours, and 40 hours for steel & and for 3 hours for steel B,
and are designated as specimen numbers, AT, AT2, AT3, and BT, respsctively.
Subgrain frea microstructures, with particles inside the grain boundaries,
vere produced by thermal cycling for 1 hour between 7109 # 59C and 7359 t 5°C
Wwith hold times at each tamperature of approximataly 3 minutes, and are
hereafter designated as specimens with the identifying prefix AC. Thermal
eyeling was carried cut using two lead baths, each maintained at a fixed
temperature following the procedures described by Anand 10. Conventional
optical micrographs and standard two stage carbon replica photomicrographs
were taken using an optical microscope ("8auch and Lomb") and an electron

microscope ("JEM 30").
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Th= subgrain boundary frees microstructures are shoun in Figure 4.1 and
typical examples of subgrain boundary connected spheroidized cementite
microstructures are shown in Figure 4.2 and Figure 4.3,

10,62

Quantitative metallographical methods wepre Used to detzrmine the

following microstructural parameters assuming that a uniform distribution of
spherical cementite particles was present:

{1} mean particle radius defined as, .

r=3f/4N, ' ' (4.1)

{2) mean free path of cementite particles,

Ap{1-F)/ Ny (4.2)

{3) mean intercept length of grain boundaries,

d= 1M, ; (4.3)

(4) mean intercept length of subgrain boundaries,

L=t/N, 3 (4.1)

{3) mean free path of both particles and subgraing,

App=(1=FI/N_ 3 | (4.5)
(6) mean-gquare-lattice spacing, -
Ve
= - L,
Ay = Tefir e - 2] (1.6)
e

where b, =(2/3) ro. {4.7)
The measured wvalues H?, HG’ and HL, are the number of intercepts per unit !

length of random test lines with the cementite particles, the grain boundaries,
and the subgrain boundaries, respectively. These values are listed in

Table L.2 feor further reference.
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4.2 Testing Apparatus and Procedures

The difficulties involved in cbtaining cyclic stress-strain curves sre
well knowvn and thus a special self-aligning "Woods Metal' grip of composition;
Bi-50, Pp-25, Sn-12.5, Cd-12.5; was constructed to facilitate lateral align-
ment in our push-pull cyclic tests. The tensile specimens had a 1/2"
gauge length and a 1/4" diameter gauge section. Threaded grips were used
to prevent slipping upon reverse loading, In some of the low strain amplitude
tests, 1" gauge length specimens were also used. The specimens used for
low amplitudes strain cycling were recovered at 400°C for 20 minutes and reused
In further cyclic tests,

ALl the tests were caprried out on an MTS closed locp testing machine
under strain control uzing a sinuscidal wave form as the contrel function.

The average sxtension rate in all the tests was 0.005 inch per minute. The
cyclic load-strain curves in each strain range were plotted on am X-Y re-
corder. An addirional forward tensile load-strain curve for each kind of
specimens was also obtained to complete the Wilson construction. All the
load-strain curves were later converted to true stress-true strain curves

for anaiysis.

4.3 Stress-Strain Data Analysis and Results

Among the several empirical stresg-strain relations, the so-called
Hollomon eguation is most commonly used to explain strain-hardening behavior,
The basic form {(i.e. power laws} were first proposed by Ludwick and later

confirmed by Hullumonﬁa, amonig others, as

-

T mkg (4.8)
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or
t
I n
ﬂ'-k EF. L] {4.9}
vhere ¥, n, k', and n' are material constants and ¢, £, and Ep represent the
true stress, the true strain, and the true plastic strain, respectively.
True stresses and true strains have been computed from the load-elongation

curves and the true plastic straips have also been estimated as deviations

from linear elastic behavior

gp=€ -0/E , (4.10)
where E is Young's modulus (E = 3¢ = 10% psi for irem),
The <rue stress-truse plastic strain curves have been used to measure the

amounts of permanent scftening at sach given pre-strain through the use of
Hilson ccnstruc;ﬁcns 3 as illustrated in Figure L.4 for specimens AC. The
measured values of Bauschinger effect at given plastic strains are also
plotted as a function of reverss plastic strain, €L in Figure 4.5 and it
shows that the differences betwesen the forward and the reverse flow stresses
asymtotically approach the values of permanent softening. The correspending

internal stresses were tskan to be equal to one half the magnitude of the

permanent softening.

The log=-log plots for both the d-g curves snd the D-Ep curves show a
"double-n" type strain-hardening behavior with the transition in the index n
occuring at & strain level of 3 ~ 5% true strain. The constants of the
Hellomon type equations were determined by the least square analysis method
for each prange of strains. The calculated values of the constants, designated

as k s and n, for Equation (4.8} and k'

1 M Ky 2
Equation (4.9) are listed in Tabls 4.3,

19 n‘l k‘ﬁ, and n’2 for
>
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Since plastic flow begins in the pre-macru-yield region lﬂ, the stresses
at the beginning of plastic flow.{uE - o) were obtained by extrapolating
the initial pnftion of the hnmﬂgeneuas part of the stress-strain curves
back to zero plastic strain. At the iﬁtersectiun point of the elastic line

and the extrapelated curve, the flow stress for the unstrained specimens are -

determined using the relation
: My L/1-1
T o -k, /E"] (4.11)

The calculated values of % = G.are also listed in Tabkle 4%.3. .
" .

it
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9. DISCOSSTION

5,1 Elastic Stress Field of a2 Particls

The strass Fields enhanced in and around a particle during plastic de-
formation, which are caused by plastic incompatibilities between the elastic
particle and the plastic matrix are now believed to give rise to 3 back
stress hardening., This sort of intsrnazl stress has recently been computed
from a uwniform shear model T. The plastic flow, houever, in & rumber of
dispersion strengthened materials has In fact been observed to cccur on
several slip syztems simultaneously Elnwespecially in spheroidized cavhon
steels lﬂ' Thus, we estimate the intermal stress fisids, formed during uni-
form plastic Flow by syenetriczl multiple slip by making use of Eshelby's
transformaticon results EB.

Lat the specimen vndergo a uniaxial tensile deformation with imposed

. u . - .
plastic strain, Ep , along the xa axis; then the transformation strains

(Figure 3.3) are

T L T T u
€3 B_E’P » E’1'1"5‘2,-!"*EF' /E
and {5.1)
T +
.. = otherdise.

. o ' . .
The conztrained displacement field, U, in g dilatation free deformation iz

now caleulated as

of =fiswa-vle,” v+ (Vzmle,” 6, (5.2)

with the already known harmonic, ¢, and biharmonie, @, potentials for a

spherical inclusion:
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¢_,_j%1 r* s - —-f%—ﬁ4 . for R4T

and ' (5.3)
T3 3 r
?5__3._4“" _|Iza ;;r-i_g*' [FHTS'R_]- for R3T,
where Rz? x?+x:+x: .

Equations (5.1), (5.2), and (5.3} yleld the following displacement fields:

in the matrix;

u 3 _ 2 2 :KE r2-
m_ _Ep T (5-4Y) 3P Xy, o X3 } . “
ST oow R Ii{ 3 sRECRETITRYS

w - z -1
P T {5-49)_3"_31+3xar} (5.4
"o T a-v) & ‘el 3 sRIR = [
" E': r? X (gv-1) 8 r° 5 x§+ 3 x5 rt
T s ® *"{ 3SR TR T R

and inside the particles,
uf= -{1/2) uxlE;L )
LL;—-[U'EJ oL Ko E‘: .
{5.5)

L 13
Wy ™ CF.XEEP s

T - Gy
15{1-v)

The corresponding stress fields in an isotropic medium computed from

where o =

0" A u"k,nsij Py grug . ' (5.6)
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are;

in the matrix,

Mo g r*{su 2v) | 3(ev-avi-n 2 _myn’ 2,2
%o T 205 [ﬁ? 3 (rmevy e FHEPTOIINEISN, HB}
L I 3(: 40} o2 a}]
RS RN LIS MY
M _ Mg, [X[50-2v)  3(6y-4v°- 3 e - 2 s.}
Oy = St N[?{ T P LR L
Ls _4_p ?._ 2 E]]
5{ L= ny +3ng— 20 mng i, (5.7)
M 1 {2v -1) +i5w+p -2) .2 &)
{j‘ga - Eh-v‘j [Ei{ 3 wrTv ﬂ3+r5 (%
ey 5 5{3 )
T:{[ RN 3 el }
r-".'- g rE E.
o, = E“_w F[{” s, tisnn n,]r ?{3:1112—2[“1"3”3 '
M ug [r? r 1
o M | Ty
el a - [ ]
H ME r y
G.‘-!‘.’: = ﬁ[—R—a[—[EU+5]naﬂa 151, T‘! —R"{ci"l ﬂa"afﬂ 1 ], 1
and inside the particles,
T h1 1]
G, =T = ~ANLE, ,
1 oM
Cys= 20 €, : (5.8)

ﬂ-ii = {J Otherwise.
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A and p are the Lamé constants and n, represants the ith component of the
unit normal vecter on the sphere of radius R, The summation conventien is

used throughout and a comma implies differentiation wirth raspect to the
du

, Means ——— Tne interfacial
i.3 ij

stress components can be obtained from Equation {5.7) by settiag ® = p as

corresponding spatial coopdinate, i,e. u

UJI{TI =

L]

HE, {{E-EE )

2 gz 2

(B-25)
IS

" -

Hd
F{2v-11, + 3vn, - Bﬂ:ﬂi}

13 !

(5.9)
HE 2 -
guz‘rj*__e“{{E”“]”|”3‘3“1na“3} ,

-y NNy =-3n n:]

- E
G'zalr} o {E-y} F‘la‘ﬂ3 - 3 ﬂaﬂ3J

The normal strEEE,oll, shear stress, Tns’ and hydrostatic stress, S &t the
1

particle-matrix interface in the plane of n, = 0 are now written in the sim-

ple form
“ 2
o, = opE, {30y 1),

' 2. /e
?Hs{rl-ﬁtp. E.; 3?13{1—?'.3] ) (5.10)

CthH -;AE:{D+U}/3U‘M}{3HS-I) ’




L] 1 '
i . r
| d
n .
'

- 36 -

Thase stresses are plotted in Figure 5.1. The maximum shear stress is

shovn to be g—quepu at n, = 1/¥2 and the maximum normal stress is Epaenu at

n, = 1. The stresses Ilnside an inclusion can also be computed mors easily

from Equaticn (3.1%)} and the resulis are, as expected, found to be identical

to those of Equation (3.17%. One interesting resuli of the present computa-

tion is that the mean values of U11H’ UHEH, ana Uaﬂh do not vanish as they
=

do in the uniferm shear moedel. Since the mean value of {ni}2 is 1/3 and

[ni}E(nj}E have mean values of 1/15 and 1/5 for i ¥ j ard i = j respectively,

the mean stresses are

" M u y r3 rt
<O_:}'©-EE}'<F33> = ME& Tooit-an R’ {'_FJ

(5.11)
and <{T 1?) =0 otherwise.

Thess rean stresses are plotted in Figure 5.2 as a function of R. Although
the mean siresses fall off papldiy as l!R3, there are, as shown, relatively
high stresses near the particle with a maximum value of ~D.Susp“ ( forr v=1/3)
ar R = ~1.3v. We then feel that these kind of fluctuating stresses should

be considered in the analysis of the back stress hardening.

S.2 Back Stress Hardening

A number of theories for dispersion hardening have recently bheen pro-
posed and almost all of them predict the exiztence of back stress hardening
as discuszed earlier in Section 3. amcong them, the model of Brown and
Stobbs iz considered to be the most accurate., These models, however, have
been concernad with particles of radii less than 2000 E, 50 that the particle

volume itself has been ignored in the process of computing plastic zone
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volume--Equation (3.30). This cannot be justifisd in the pressnt case of
lgprge particles. Furthermore, since the plate-like plastic zone shape is a
consequence of the uniform shear assumption, for our axi-symmetric deforma-
tion we feel that the plastic zone shape in spheroidized carbon steels should
be approximately annular arcund the particles. This assump;ien iz In faet
supperted by observations of uniform secondary dislocation distributions
around guch particles 19 Thus, the plastic zone volume, accounting for

thess facts, should have the form

3 3
Vo =(4/3) W(R™-r7) (5.12}
The critical stress to start secondary slip iz the maximum shear stress at
tha particle-matkix interface. From Equation (5.10) we obtain the maximum
ghear stress as
max
T o=

ns

(3/2) o £) - {5.13)

The local flow stresz in the plastic zone gan pow be wreitten in the form

—cpb {3helr, fomb(RE-D) L 5w

facal

Finally, the Frank-Read typs streas critericn is
) w3, 4% 5.1%
GaropY, (r/R) =ab/r . (5.15)

Equations (5.13), (5.14), and (5.15} yield a cubic equation for Epu

(¢ 723302 e - br(e) P (2 /¢ 2ch/3a) (he, /1) =0, (5.16)



¢
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To n%tain the relation betwesn Epu and r, Equation (5.15) was solved nu-
merically at warious EP taking (H} = 2. The results are plotted in Figure 5.3
for the case of EP = 0.03, ep = .04, and EP = 0.05. The least square
analysis gives the relstion between the particle radius and the unrelaxed
Plastic strain as

L

P

o7

E, = K'{ E) r s {5.17)
where Kl{zp} is a constant at the given plastic strain, EP' Substituting

Equation (5.15) Inte (3.20) yields for the back stress,

o'=3ual(f/I-f) K (£,) P, (5.18}

Hhen the measured internal stresses are plotted against the particle radius
{Figure 5.4), it is seen that the internal stress dependalinversely on the
particle rﬁdius. .Eince the particle size dependence of the internal stress
iz directly related to the plastic relaxaticn mechanism and thus to the f
plastic gone shape, it is difficult to predict the particle size depeﬁdence
mere accurately than iz done using Equation {%.18) without further details
on the dislocation distribution. Howsver, we.note that the overall pr;dicted
. values of internal stresses are in. pgood accord with the measurements for .
particle radii in the range exceeding 0,.5um. We therefore feel that Equation
(5.18) can be applied more generally as long as the particle size is large
enough to give a uniform distribution of secondary dislocations.

To ¢btain the relation between the internal stress and the plastic
strain, Equation (5.16) was again solved numerically for each experimental

value of r. The results, plotted in Tigure 5.5, again show a pover relation

of the form



. =K, &, (5.19)
wherse Kgir} iz now a constant at given particle radius and m is zpproximately
ocbtained as 0.3 for 2ll three particle radii uzed. The measurements, how-
ever, give the value of m as about 0.6 for the tempered specimers (Figure 5.B),
which is in faet a factor of two higher than the predicted ene. The failure
in predicting the plastic strain dependence on internal streszs iz felt to be
due to the reasons already dizeussed for the particle size dependence. IF
we substitute Equation {5.1%9) into (3.20), we can pepresent the internal
s5tress in the form

i .3
0= 3o (£/1-F) K iry €, . (5.20)

The walues of Gi computed from Equation (5.20) are plottesd im Fizure 5.7
together with the measured wvaluez. We again note that the predicted values
are nearly coinecident with the measured values in the range Ep = 0.01 -~ 0.05.
The form of Equation (5.19) has been reported by Kishi and Tanabe 53. They
have cbserved in their experiments that the permanent softening can be ax-

pressed in the form

o mke, ™, (5.21)

Thig ig identical with Equation {5,19) if we note that oF® js lipearly re-
latad to Epu. m has been défined as a Bauschinger effect parameter and

. s &3 .
Kishi and Fanabe's data show good agreement with the present work.

WHow the secondary plastic zone siza, n, can he obtained hy substituting

Equation (5.17) into (5.15} as
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1=R~r
= [{¢ 30 Kte,i/a b

Huting that K{EP] iz a2 =lowly varying fun¢tion of EP and taking, for example,

. (5.22)

K{Ep = 0.05) =z 1.8 = 10°7, we see from Equation (5.22) that n is approximately
constant and e=qual to the particle radius,

I{ can ke concluded from the above discussien that the continuum model
can predict the overall values of back stress fairly accurately in the strain
ranges in which secondary slip occcurs profusely--thet is above -1% plastic

strain for large particles in spheroidized carbon steels.

£.3 The Fele of Subprain Boundaries

Ashby 53 has related the yield stress of single crystal containing non-

deforming particles to the number and size of the particles by a consideration
of the Orowan dislocation bowing mechanism. His derived expression for the

¥ield stress, in shear, Iis

M A2 .
T, =T, v AN BN, In(21,/1,) (5.23)

where A has the value 1/2.36x or 1/2.36w(1l-v) for edge and screw dislocations
respectively, uH is the matrix shear modulus, Ns is the nunber of particles
intersecting a unit area of slip plane, r_ is defined as (2/3Y1/2r and T, is
the inner cut-off radius. Converting Equation {5.23) to a tensile stress-
tensile steain relation for polycrystals, the modified Orowan equation can

be ztated in the form

U}=5640£3¢”bpffzn{;ﬂﬂ”zﬂifhﬂ}ﬁniaﬁﬂ1]' (5.24)
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In Equaticn (5.24}, the relation between f . and Hs’

f'-arrr: N/ 3 ' (5.25)

was used and lsq was dafined as (ﬂff}lfzrs- 4 previous work has interpreted
the lower yield stresses of sphereidized carbon steels on the basis of the
Orowan model 55. The yield stresses of tempered stsels, however, do not
follow Equation (5.24), they instead cbey the following Hall-?etch type

ralation in which AE have been used as a structural paramster (Figure 5.83,

,I
E

o =13.5¢59.7 Ay L (5.26)
Hewewver, even with this soprelation, it Iz still not elear whether tha sub-
grain boundari;é-éct a2 barriers to disloeation motion or instezd act.as
diglocation sources, since the Hall-Petch relaticn for the yield stress hgs
been rationalized for both cases. In other words, subgrain boundariss may
contribute to the flow stress by acting as barriers to glide dislecations,
in which case we expect that the subgrain boundaries will give rize to
internal stresses. On the other hand, they may simply act as an array of
forest dislocations and provide added frictional-like resistance to glide
dislocations. The mode of behavior is, in general, believed to depend on
hoth the nature of substructure and the extent of carbon segregation to
subgrain boundaries in iron based alloys uai Te understand the role of
particle pinned subgrain boundaries in spheroidized steels, the measured
values of internal stresses in sphercidized carbon steels with and without
subgrain boundaries were compared. For this compariscn, the particle size

and thke grain size in the specimens with and without sub-boundaries were

maintained approximately equal {viz. the specimens AC and AT2). The results

il



show that the internal stress values are higher in the thermally cycled
specimens than in the specimens containing sub-boundaries (Figure $.9}. To
compare these microstructures more clearly, the unrelaxed portions of the
total plastic stréin estimated from the measured values of intermal stresses

and from the relatrion

E:=({f-ﬂf’ 30 F) r:ri (5.27)

are plotted as a function of plastic strains in Figure 5.10. The maximum
valﬁeE af wrelaxed plastic strains ave - 3.1 % 1073 apd ~ 2.75 x 1073 in
apecimens AC and AT2, pespectively. Then the maximum zhear stresses at the
interface, where we consider the $é¢¢ndary slip will start to ocour, are
found to be approximately ﬁ%ﬁ' in AC and E%E in AT2. This suggests that

the subgrain boundzries in spherecidized steel assist plastic relaxstien

and therefore lower the critical stress level to enhance plastic relaxation.
.It iz elear now that subgrain boundaries do net contribute to internal stress
and that they rather act as sources of dislecations teo help reduce the
residual internal.strEsses around particles. Furthermore, the oyclic stress-
strain curves {Figure 5.11) for a thermally cycled and a tempered specimen
provide additional cenfidence for the abeve point of view, Both specimens -
have reached an initial saturation walus in about § cycle=. The specimen.
AT? exhikbits cyelie softening behavior hoth in the tension and compression
pertions of the cyele, while the gpecimen AC shows goftening in compression
but Hith-the saturated hysteresis loops still above the monotenic tensile
curve. This again suggests that the rgle of particle-pinned-subgrain

boundaries iz that of sources of diglocations.,
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However, it should be noted here that the hardening exponents (n or n')
are approximately the same in both cases., although the internal stress harden-
ing effect is lower in the tempered case. It is difficult to raticnalize
this fact quantitatively, =o that we suggest the following gualitative ex-
planation: According to the particle strengthening model discussed previous-
ly in Secrion 3.4, the flow stresses are composad of the back stress effects
and the forest type hardening effect caused by the szecondary dislocations
generated during plastic reiaxation. The forest stress has been shown to be
proporticnal te the demsity of secondary dislocations in Equation (23.28].
if the subgrain boundaries assist the relaxation of Orowan loops, then tﬁé
secondary dislocation density will bhe inecreased and thisz process essentially
lowers the inté;nél stress.  Thus, it is suggested from the similar hardening ‘
exponents in both the tempered and the cycled specimen that the back Stre;s
hardening effects and the forest hardening effeect may rcompensate sach other
to produce a similar overall strain-hardening behavior, with the further
upderstanding that the tempered specimens will have lower values of the
Hollomonh cohstant kl and k'l. After attaining the saturaticon values of
internal atress. the forest hardening effects will control strain-hardening
behavior. Table 4.3 shows that the tempered specimen, ATZ?, again has a

higher hardening index than the ¢veled one, AC, which is consistent with

the previous dizcussion.

5.4 Streain-Hardening Behavier in Spheroidized Cavbon Steel

5.%.1. "[Doubla-n" Stpain-Hardening Behavior

Morrison 65 has observed the transition in the strain-havdening bebavior

of low carbon steels at a strain of ~ 8% and loosely attributed this transi-



tion t¢ the formation of well defined c¢ell walls and the possible esasier
motion of disleocations in the celi structure than in the homopensously
distributed dislocation structure. Llu and Gurland 9 alsc observed the
"double-n" herdening behavior in spheroidized medium and high carbon stesls
with a transition ¢ecurring at approximately %% strain. They explained it

as follews: The rapid entaglement of straln generated dislecations initially
gives larger values of n--after the transition strain, a particle pinned
dislocation cell structure forms and governs the strain-hardening behavior
with lower value of n. Since the above explanatioms both fall, te ellycidata
the transition behavior in sphercidized carbon steels, which already cuntaiﬁ
the dislocation subgrain bowndariez even before deformation, Anand and
Gurland °' have recently attempted to explain this tramsition in terms of the
internal stress development at the particle-matrix interface during the

Firatr few percent of plastic deformation. The values of inrernal stresses,
however, were estimated by taking the differences of the Hall-Fetch con-

for' the pure iron and the spheroidized carbon steel. This

0f* :

will Ignore dislocation Interactions. The dipectly measured values of

stants, o

internal stresses of the present study are plotted in Eigure 5.9 together
with the estimates of Anand and Gurland E?._ It is seen that the estimated
values are a factor of 2 - 5 higher than the measured valyes. This, we
consider, i5 a natural conseguepnce of ignoring the interactions between

the primary dislocations and the secondary disleocations generated by

plaztic relaxation. To see the direct relation hetweern the intermal stresses
and the transiticn behavior, the flow stresses and the internal stresses

are plotted on a log-log scale in Figure 5.6 Thiz shows a transition in

strain-hardening behavior in the strain range of 3 ~ 3% consistent with the
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. . 9,67 ‘s .
previcus observations 7', UMereover, the transition strain ranges are

always coincident with the strain ranges of internal stress saturation.
Thus, we conclude that the "double-n" strain-hardening behavior in both the
eyeled and tempered carbom steels iz a direct consequence of the interral
stress. A general explanation can be given as fellows: The relaxed por-
tion of the imposed plastic strain develops a plastic zone apound the second
phase particles extending approwimately equal to the particle radius.

This zone prohibits complete relaxation of the entrapped Orowan loops and
thus stabilizes the localized elastic strain fields due teo the unrelaxed
part of the total plastic strain. The resulting stresses increase rapidly
during the early stages of plastic flow, that iz below strains of 3 - 5% in
spheroidized carbon steels, and accordingly give rise to an initizlly higher
Rardening exponent n.  After these internal stresses peach a certain satu%a-
tion level, only the "forest type" strain-hardening will continue and thi;
is characterized by a lower hardening exponent than when hoth back stress

and forest hardening contribute together.

54,2 Addition of Tlow Stress Ceontributions

4s we have already discussed, the contributions to strain-hardening in
8 dispersion strengthened material consist of internal stress, ul, "eource -
shortening" stress, ﬂuss, "forest stress", of, and Ffinally the stress dus

to "statistical dislocation" density, 3¢, The internal stress was found

tc be in the form

U”nSSﬂ}HfIFH[E:jfrmT}

(5.28}

where 4 is a constant.
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Hoting the relatien £ = Eﬂri using T = lf?uhz,ﬁﬁss now can be written as
A
55 |72
a0 ={3}ub+f'ﬂ'r]{[ c (M PE‘:I’!}} - 1:| . (5. 29}

It seems reascnable to assume that Ao~ is given by the work-hardenins
incremsnt of pure iron. One of the major difficulties, however, in dsscerik-
ing strain-hardening behavior is in determining just how to superimpose the
various hardening contributions. The most common assumption is to ignore

interactions and te sum the contributicns linsarly to obtain

T =0 4T, - - - - O, . (5.30)
Koppenaal and Kuhlmann-#iladonf EB, on the other hand, have proposed a

mean-square-root addition law, i.e.,

U-E_U-!E+g":+. e - 4.[]': . £5.30}
for the case where the various obstacles to glide dislocarions have a similan
strength 69. A previous study on spheroidized carbon steel explored the
use of the first assumption of linear additivirty ln‘ but,las wWwe noted sarlier,
the estimated values for, as an example, internal stress that were obtained
using this assumption show a significant discrepancy with the presently
measured values of internal stresses, This was attributed to the neglect
of interactions hetween the various hardening contributiens. This author
feels that for the present case the mean-square-yroot addition law is the
more reasonable, as is now explained.

Firstly, we note that since all the glide dizlocations sample the long-
range internal stresses, ni can be added linearly to the flow stress. IT
we aassyume that the other three contributions interact mutually, we may

then write the hardening increment, Ag in the form

'h'!‘
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ﬂirh -G.f - D*Epzﬂ
=0t [(ar®Y e () (a0 F] R (5.32)

In Equation {5.32), g instead of the lower yisld stress uy, is

= qt
taken to define the hardening inerement, becauvse uy is generally affected
by transient hardening effascts associated, for example, with initial dis-
location locking. To demonstrate the validity of Equation (5.32}, the
measured values of the flow stress were compared with the wvalues estimataed
by Equation (5.32). In the process of computing Tgs 40° was obrained frem
the work of Horriseon 86 and 4o°° was computed from Equation (5.28). Since

the "forest stress" does not depeud on the plastic zone wolume and shape,

we can still use Equatiom (3.37) to estimate of, According to Ashby,

lG = %- and lG, for the tempered specimens, was found to be equivalent to
lz p in the Hall-Petch equation for the lower yiald stresa; thus, we pay
*

compute ﬂf-by writing

UF'CI}_L <M>3-J’E {bEP;j}kL.‘,] V72 ’ (5.53)

All the results for specimen AT2 are contained in Table 5.1 and Ug (computed)
is plotted in Pigure 5.12 along with g {experimental). The very good
correspondence between 0. {computed) and o, {experimental) supports the use
cof Equation (5.32} for the tempered specimen. A similar process was carried
out for the thermally ¢yeled specimen AC except that we now take (HY? = 2
instead 2.733 to estimate af by Equation (3.37)--the raticnal for this was
discussed in Section 3.4,1. The results are included in Takle 5.2 with

ﬂfIExperimental}. If we bear in wmind the uncertainty in the value of the




constant h, Figure 5.12 again shows good agresment with the addition law
expressed in Equation (5.32}. It then seems that Equation (5.32) can he
appliad with reasonable precision to both the tewpered and the cyeled

carbon steels to predict the flow stress level.

5.5 Cavity Formation at Paxticle-Matrix Interface

'One cther important aspect of the internal ftresses that bhave just
been described is that they seem to contrilumte to the formation of cavities.
Decohesion along particle-matrix interfaces is suspected 1o ccour when the
maximum normal stress at the interface exceeds some assumed Fraciure
stress 70 {i.e. a2 stress critericn) or when the elastic strain energy stored -
during plastic deformation exceeds the energy of the new surfeces formed
by cavitation {i.e. energy criterion) 71,72:73 | The stress criterion is
believed to be more plauwsible in the case of lavge particles for which the

energy criterion is always satisfied. The maximum interfacial normal

stress is obtained from Equation (5.8} as

ol oz udsy . " (5.34)

nn
However, plastic relaxaticon occurs from the begloning of plastic deformation,
8% we discussed earlier in Section 3.4.2. Thus, there will be other con-
tributions which arise from the interactions among the secondary plastie
zones of neightoring particles. Ashby 7 has computed the stresszes gaused
by these kinds of interactions by using his secondary slip model. Argon

et al. 7o have further developed Ashby's simple shear model and their re-

sults show that the maximum interfacial tensile stress is about twice the
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boundary shear traction for the case of rigid inclusionz. Sinee it is not
the primary intent of this present work to estimate the stresses caused

by particle-particle iﬂteractions, we shall just present here a briel
discussion. We note that the maximum normal Interfacial stress due to
inhomogeneity effects, which incidently was ignored in the Ashby model,
amounts to 30 - 40 ksi--this is equivalent te approxiﬁ;tely half the flow
stress. These values are obtained from Equation (5.34) by using the un-
relazed plastic strains as estimated from the measured internal stress.

. T . . ,
Thus, the totzl normal interfacial strass, ¢ o » AN be written in tha

approximate form

T ™may
T =T BV 0y, + O (] _ {5.35}

although the stress caused by particle-particle interactioen, uint{e}, has
cbvicusly to be determined by further study. According to Equation (5.8),
max

o oceurs at the X, pole of particle (see Figure 3.3.1). The optical

micrograph of Specimen AT2 (Figure 5.13.a3) shows cavities formed at such

e decregses W ith

poles together with particle shearing. It is found that e
inﬂreasingpartiﬂlesizeti.e. 23 k=i-AT2, 32 ksi-AT2, and 28 ksi-ATL). ' This
then implies that tha interfacial normal stresses of large particles can

be relieved to a greater extent than in the case of small particles. Thus,
it is suggested that large particles tend to be sheared, whersas small
particles develop cavities in the tensile direction at the particle-matrix
intepface. Figure 5.13.b clearly 5uppnrt§ this erlanatinn, because it

shows only the cavities formed at the poles of particles in the tensile

direction. This observation also suggests the validity of the particie



n

strengthening model illustrated in Figure 3.3.b. Further analytic and
experimental work is required to obtain reliable estimates of the inter-
Facizl stresses caused by particle-particls interactions. This together

Wwith the present work, we hope, will enable us to prediet cavity formation

matre clearly.
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6. CONCLUSIONS

1. Internal Stress

The residual internal stresses developed around the second phase parti-
cles are caused by plastic incompatibilities between the elastic particles
and the elastic-plastic matrix. These stresses give rise to the large
Ezuschingsr effects chbserved in the present experiments. The continuum
medel, baged en the azsumption of multiple a2lip, prediects that the magnitude

of these internal stresses is given by the pelation,

oi-3 5ot it {£/1-F) [E.;'af’r "y,

The predicted values are in a geood agreement with the measurements provided
that secondary slip occurs profusely. The back stress hardening contributions
were found to reach approximately 20% of the total work-hardening in sphe-
roidized carbon steels., The model further suggests that there exists the
locally fluctuating stregses which fall off inversely with the 379 pover

of distance from a particle. It was further found that the so-called second-
gry plastic zzne extended a distance from tha particle interface approximately

equal to the particle radius.

2. "Double-n'" Strain-Hardening Behavior

The transition in power law strain-hardening behavicor of sphercidizad
carbon steals from a larger to a reduced value of the index n occured in the
plastic strain pange of 2 ~ 5% in which the internal stresses were found to
reach a certain saturation leve), The initially higher value of hardening

exponent is caused by the combined long-range internal stress and the short-



range forest stress. When the internal stress saturates only the forest
stress continues to increase thus accounting for the lower hardening ex-
ponent. It therefore can be concluded that the ianternal stress is directly
responsible for the transition in strain-hardening behavior of sphercidized

carbon steels.

3. The Hauvtrs of Subprain Boundaries

The internal stresses im the specimens containing subgrain boundaries .
were lowsr than in the Epeciméns without subgrain boundaries. That is, the
existence of subgrain boundaries lowered the critical stress, Tﬁ, required
to start the secondary slip process. t* was found to be approximately E%E

in ATZ2 and 3%5' in AC. The cyclic stress-strain curves also suggest that
the subgrain boundaries, formed by heat treatment in carbon steels, act
és sources for dislocations. Furthermore, they assist in the process of

relaxation of entrapped Orewan loops and thus lead to & reduction in the

maximum internal stress level.

4, Flow Stress Contributicons

In dispersion strengthened alloys, there was found to be four hardening
comtributions, viz. (1} internal stress, qi; {2) ‘“source-shortening"
stress, ﬂﬁssg (3} “forest stress", uf; and (h} the stress arising from
dislocation in relaxation zone, pas. Among the several addition laws, thé

"

equation

i 2 2
o =0 v 0 [1a0%F + 805 (0T] Y
4
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showed good agreement with the experimental flow stress curves of hath

temperad and thermally cycled carbon steels.

5. Cavity Formation at Particle-Matriu Interfaces

The maximum normal interfacial stress cecurs in the tensile direction
at the poles of particles. It was also found that annmax depends upon the
particle size. The valuss for unnmax of 23 kai, 32 ksi, 38 ksi, and 40 ksi
for specimens AT3, AT2, AT, and AQ, vespectively were found. We suggest

that the ftetal interfacial normal stress, unnT, can be written as

max
CTon = ZJMOLIER)  + Op(E)+ 07 (8)
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TABLE H,1 Speciman cﬁmpnsition {wt, %) .
Steel o b 51 4 3
A 0,83 0.04 - Q.07 0.006 0.01
B 1.40 0.04 Q.05 D.ﬂﬂﬁ o.01
¥ Chemical analysis by Walter M. Saunders,
Inc., FProvidence, RE.I.
TABLE 4.2 Structural parameters and yield stresses.
Specimen | T *  a* X LY ANSF A f a,’
ﬂ C 0152 '816“ L’.?5 - - 1-26 aaiz? 5?-2
AT2 |0.51 - .66 2.56 2.23 1.24 0,127 53.4
AT 3 |07 - 8.87 4.76 4.16 2.36 0,127 37.1
B T 915‘1 - 2!51 E-G 1|-5? Gl?é G-Elll- 69-9
Cundt; ¥ - opm, " - ksi.
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Constants -:f the Hollomon-type eguations, U= ~ke"
and - kEP , and the stresses at zere plastic

strain, C‘-‘_}_,P - a

Specimen

*- T
GEPIﬂ n b k 1

4G
ATI1
ATZ
AT 3
BT

35.2 0.228 164.,0
41,6 ©.204 159.4
30.9 0,229 150.1
21.0 0.25 129.1
Lé.7 0.268 265.8

0.147 127.5 0,
Q.14 131.2 ¢,
0.163 123.1 0.
0.163 97.5 0,
0.133 165,7 0.

216 159.2 0.143 126,7.
184 151.2 0,143 131.8
21 142.6 0,167 125.0
2% 126.1 0.162 98.1
266 278.8 0.130 166,0

#

s unit- ksi.
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TABLE 5.1  Caleulated values of bC°°, ac®, of |
and UF for specimen AT2 .
1 o=
€, <B-¥s e Yo e LA A « A
measured eq.5.29 eq.5.33 computed experiment
2.01 b1 3.3 12.44 13.28 53.5 £5.0
a.015% 5.2 3.89 141 16.22 £8.2 5.0
0.0z 6.0 4, 28 16.21 18.73 62.1 62.6
0.025 b5 .83  17.73 20.94 65,2 65.6
0.028 6.9 4,65 i8.58 22.16 &7.3 67,6
0.035 7.1 4.82 20,25 24,78 ?0. 4 70,5
0.039 7.1 4,04 2L.45 26.15 72.2 2.3
0.045 2T 4,94 22.64 28.1 .6 .5
0.0% 73 4.,g4 23.56 29.6 76.4 6.2
1 ¢ obtained from Fig. 5.9,
S 5 -] & 0.3¢
® i M{ '—‘LT‘F —D'EP_B. CJ_€P=?2.03 €p , and
U;P,f,:u.ﬂé ksi for a 2B0pm grain size "Perrovac-
B 1 10,66
1ran .
#% 3 ©'=0,25, p =11.25 x 10° psi, () =2,733 and
v . h=2..‘42 A' .
#at 5 Ogp=30.9 ksi.
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TABLE 5.2  Calculated values of AT, s g, T,
and . for specimen AC.
i 55 S +F = T X ]
€ T AT AT AT a. T,
. F measured eg.5.29 eq.3.37 computed experiment
0.01 | 5.30 4.0  12.84 11.95  58.7 59.8
0,017 7. 00 4.85 15.3% 15.35 6. 4 65.2
0,02 7.5 5.07 16,21 16.9 66.7 68.0
0,028 8.3 5,28 18,88 20.0 71.5 73.5
0.035 | 8.6*  5.39 20.25 22.36  74.4. 77.0
0.038 8.65 5.4 z21.2h  23.3 5.8 78.0
0.045 8.8" sy 22,84 25,36 78.9 80.5
0,048 8.94 5.44 23,11 26.05 7.4 81.5
' ; obtained from Fig. 5.9,
# 1+ the same with in TABLE 5.1.
#* 5 c=1/4, h=8, () =2,
L cgpmfjs.z ksi.
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FICURE CAPTIONS

Wilson's comstruction. A schematic illustration of the relation between
Bauschinger effect and permanent softening.

Blastic-plastic model which provides a theoretical basis for the re-
lation of° = iui. The dotted round curve is a consequence of inhomo-
geneons local stress.

Particle strengthening model:

{a} Dislocation locp distribution in multiple slip model.

{h} Eshelby's transformation problem equivalent to {al,

(c) FHP model.

(d} Brown and 5tobbs model .

{(a) Optical wmicrograph of thermally cycled Specimen AC: magnification
1,800 times.

{b) Two stage carbon replica electron microgragh of Specimen AC,

shows that particles are contained in grain boundaries; mangification
6,000 times.

(a) Optical micrograph of Specimen AT2, quenched and tempered at 740°C
for 8 hours; magnification 1,800 times.

(b) Two stage carbon replica electron micrograph of (a) reveals the
particle-pirned-subgrain boundaries: magnification 6,000 times.

{a} o0Optieal micrograph of Specimen AT3, quenched and tempered at 700°C
for #0 hours: magnification 1,800 times.

(b) EReplica electron micrograph reveals clearly the particle inter-
linked subgrain boundaries: magnification 4,000 times.

An example how the magnitude of the permanent softening is measured

(for Specimen AC).
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5.1

5‘2

3.4

5.5

5.7

S.8

2.9

- B3 -
The amount of permanent softening as a function of reverse plastic
strain at the given pre-plastic strains.

The wvariations of the stresses developed at a particle-matrix inter-
fzce on the plans of Hy T 0. The polar plot of stress takes the
particle boundary as the zero of stress.

Mean normal stresses in the matrix with a waximum value of ~D.3uapu
at R 2 1.3r and falls off as 1/R3,

Granhical solutions of Equation (5.16} at EP = 0.03, 0.04, 2nd (.05,
b = 2.423 , ¥ = 1/3, h=8, c=21/3, and{H> = 2.

Particle size affect on internzsl stresses for & given volunme fractiun
{Specimen AT, f = 0.127, EP = 0.05)

Graphicat solutions of Egquaticn (5.16) at r = (.29, 0.51, and 0.%97pm.
Humerical constants zre the =zame as in 5.3.

The relaticn between "double-n" strain-hardening behavior =nd perman-
gnt softening. The plots also suggest the relaticn of oz ke ™
for guenched and tempered specimens. The transition starts to occur
at the points marked by arrows.

Unrelaxed stpains as a function of plastic strains. Predicted values
from the continuum model show a good £it to the measured onss (Speci-
mens AT2 and AT3}.

Lower yield stresses in tempered specimens are plotted as a function
of x, -1/2 as a structural pavemeter of Hall-Petch equation.

kP

The measured wvalues of internal stresses are compared with the values

used in a previous work of Anand and it shows that o also depends on

the microstructurs.




5.10

5.1l

5.12

5.13

Logy -

Unrelaxed plastic strains computed from the measured values of ine
ternal stresses vs. plastic straios.

Cyclie stress-strain curves:

(a) for the specimen, quenched and thermally cycled

(k) and for the specimen, gquenched and tempered at 7009C for 8 hours.
The experimental and the predicted flow ztress curwves,

Optical micrographs of the longitudinal section of:

(a) Specimen ATZ, white arrows indicate cavities, formed at the
paprticle-materix interface. Double arrow represents tensile dipection.
Magnification 2,200 times.

(b) Specimen ATL. Double arrow represents tensile direction.
Magnification 2,200 times,

Both specimens leoaded until necking occurred.
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