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ABSTRACT L 

The effects of cementite particles and subgrain boundaries on work-

hardening behavior of spheroidized carbon steels vere investigated by 

making direct measurements of residual internal stresses. These internal 

stresses developed due to plastic incompatabilitiesbetween elastic particles 

and an elastic-plastic matrix. A continuum analysis of these internal stress 

fields, based upon a multiple slip model, is presented and is found to be in 

good accord with the experiments. The internal stresses appear to saturate 

in the plastic strain range of 3 - 5% where a transition in strain-hardening 

behavior was observed ("double-n" behavior), and to contribute approximately 

20% to total work-hardening. The cementite-particle-pinned-subgrain-bound-

aries, formed during a post-quench annealing treatment, were found to lower 

the internal stress, thus indicating that they assisted the relaxation pro-

cesses of entrapped Orowan loops by acting as sources of dislocations. The 

flow stress increment in dispersion hardened alloys due to work-hardening 

consisted of internal stress, forest stress, and source-shortening stress. 

The flow stress curves of spheroidized carbon steels were found to be de-

scribed by a modified mean-square-root addition law of the form 
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The maximum normal interfacial stresses were estimated from the data. The 

maximum values occurred in the tensile direction at the poles of particles 

and the magnitude was found to be approximately one half of flow stress. The 

significance of these stresses regarding interface cavitation is discussed 

br i e f ly . /-
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1. INTRODUCTION 

When work hardenable metals are cyclically deformed by forward and then 

reversed loading, they typically exhibit a decrement in the magnitude of the 

reversed yield stress . The effect, which is found in a wide class of pure 

metals and alloys, including both single crystals and polycrystals, is gen-

erally believed to be a consequence of the internal stresses that develop due 

2 

to the mhomogeneity of plastic deformation 

In polycrystalline alloys that contain large second phase inclusions, 

especially inclusions that do not undergo any appreciable plastic deformation, 

a large part of the overall strain-hardening results from directional long-

range stresses. These stresses are the same kind that give rise to the afore-

mentioned Bauschinger effects and are caused by an incompatibility of plastic 

3 

strain between the particles and the surrounding plastic matrix . In re-

cent years, continuum and dislocation models for this sort of anisotropic 

hardening ' ' ' have been developed (these models are reviewed and develop-

ed in later sections) and they have been successfully applied to particle 

hardened alloys. The models always predict enhanced Bauschinger effects and a 

particularly interesting manifestation of directional internal stresses that 
o 

we call, following Wilson , permanent softening. Permanent softening is 

illustrated graphically in Figure 3.1 and because it plays a central role in 

the present work, it is explained in detail in Section 3.1. 

Now since the models we will use relate both the overall work-hardening 

behavior and the Bauschinger effects to the details of the residual dis-

location structure left at the particle-matrix interfaces, it appears to be 

possible to extract information from direct measurements of these effects 
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concerning, for example, the local stresses and elastic strains developed 

within the inclusions and at the particle-matrix interfaces during plastic 

deformation. Such information would in turn be very helpful in explaining, 

1) the observed changes in work-hardening behavior, which is found to occur 

9 10 
at certain strain levels ' ,2) the influence of particle size and particle 

volume fraction on work hardening, and 3) the process of particle cavi-

tation (i.e. separation of the particle-matrix interface) which is known to 

be promoted by large values of the interfacial stresses. The research pro-

gram reported here is in fact concerned with the use of these models and 

the relevant experimental data to explain the micro-mechanics of work-

hardening and internal stress development in dispersion hardened steels. 

With the above objectives in mind, a series of experiments was conducted 

on two plain carbon steels, heat treated to contain spheroidal carbides in 

the 0.6~2ym diameter size range. All the relevant strain-hardening param-

eters for simple tensile straining, as well as the reversed deformation 

characteristics for tension-compression cycling, were measured. The mag-

nitudes of the Bauschinger effect and the permanent softening were also 

measured and were correlated with such microstructural parameters as particle 

size and volume fraction. 

In the quenched and tempered state, it is found that the carbides are 

generally interlinked with a network of dislocation subgrain boundaries. To 

determine the influence of these subgrain boundaries on the work-hardening 

behavior and internal stress levels, additional tests were conducted on 

alloys specifically heat treated to remove the subgrain boundaries while main-

taining the particle sizes within the range common to the alloys containing 
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subgrains. As was mentioned earlier, the directional long-range stresses 

which tend to "harden" the matrix are caused by the dense clustering of 

dislocations at the particle-matrix interfaces. These clusters cause large 

stresses within the particles which are counter-balanced in an average way 

by stresses in the matrix. It will be explained later that the permanent 

softening is a measure of these stresses and can be used to estimate the 

local stresses acting on the particles. In Section 5.1, an analysis of the 

interfacial stresses for spherical inclusions is presented. 

In Sections 2 and 3 a brief but relevant review is given of the various 

modellistic approaches to boundary and particle hardening. In particular 

a thorough discussion is provided in Section 3 for particle strengthening 

and internal stresses; permanent softening is explained and its relation to 

observed Bauschinger effects, and to the local stresses acting at the par-

ticles, is made clear. The experimental techniques that were used and the 

results obtained are-presented in Section 4. Finally, the results are 

discussed in Section 5. 
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2. BOUNDARY STRENGTHENING 

2.1 Grain Boundary Strengthening 

It is well known that the presence of grain boundaries in all poly-

crystalline materials provides strength by interfering with the motion of 

dislocations. A very useful relation between the yield stress and the grain 

size, viz. the Hall-Petch equation, is now well established for low carbon 

steels ' ; 

-1/2 

°y = °"o + k y d ' (2-1} 

In Equation (2.. 1), a is the yield stress, d is the average grain size, and 

a and k are constants. Equations (2.1) has been confirmed experimentally 

13 14 15 

for many materials other than steels ' ' and has been derived theoreti-

cally from dislocation pile up models ' and dislocation interaction 

work-hardening models ' 

In the pile up models, the grain boundaries are assumed to be strong 

barriers to the glide dislocations, and thus the dislocations are queued at, 

or "piled up" against,them. These pile ups intensify the net force on the 

lead dislocation in analogy with the stress concentrations at the tips of 

shear cracks. Yielding occurs when this stress concentration at the leading 

dislocation, x, . , exceeds a critical stress, x . . For an isolated single 
tip ' crit 

ended dislocation pile up of n dislocations for example, x . is, as virtual 

work implies, 

TtiP=
n(TA-To) � «�« 

In Equation (2.2), x is a frictional stress which fluctuates on the spatial 

scale of the lattice parameter and x is the applied shear stress, n, in 



- 5 -

turn, is expressable in terms of the slip line length, H (an experimentally 

measurable quantity), as . 

n = (TA-T0) i/2/\ , (2.3) 

where A has the value of yb/2iT and yb/2ir(l-v) for screw and edge dis'loca-- � � 

tions, respectively (y = shear modulus, b = Burgers vector, and v = Poisson's 

ratio). 

Equation (2.3) is derived by assuming a continuous distribution of dis-

19 
locations, although discrete dislocation models yield similar results 

Taking & equal to d and equating x . to x . , we obtain the above form of 

the Hall-Petch relation: 

1/2 -1/2 
= T +(2AT .,1 

The analyses leading to Equation (2.1) can be extended to describe the flow 

, Ud -1/2 

T = T + 2 A T , cj . (2.4)" 
y o \ cnt/ 

stress as long as the grain boundaries continue to act as barriers to moving 

20 
dislocations ; in this case the flow stress, a_, is given by 

O" f=o-o f+k fd , (2.5) 

where the parameter k_ now depends on the plastic strain. 

The lack of direct evidence of pile ups at the grain boundaries in many 

cases has motivated the development of strain-hardening models in which the 

grain size is related to the dislocation density produced during deformation. 

21 
For example, Nabarro et al. have reviewed a variety of proposed flow 

stress and dislocation density, p, relationships and have shown that the 

relation 

1/2 
T f - T o f + C j L t b p , (2.6) 
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where c is a constant whose value in the various model versions ranges from 

1/3 to 1/5, is a general form which is derived from a wide class of work-

22 
hardening theories. Ashby on the other hand in one particular study 

G S 
related the dislocation density.to the structural parameters X~~ and X 

defined by him as the "geometric slip" distance and "statistical slip" 

distance, respectively. He assumed that the total dislocation density was 

composed of both the dislocations which are "geometrically necessary" to 

accomodate the plastic non-homogeneities across the grain boundaries and 

the "statistically stored dislocations" which would accumulate in a matrix 

G S 
without particles as they do, say, in single crystals. Taking p and p 

as the densities of these two types of dislocations, Ashby writes for the 

total density: 

p =p +pS . (2.7) 

Simple additivity in Equation (2.7), we note, is doubtful since it ignores 

the interactions between grain boundary processes and grain matrix slip. 

23 

Thompson et al. have suggested instead that each such term should be 

corrected by the respective area fractions so that the polycrystal is viewed 

as a kind of composite structure with a hard boundary region and a softer 
G S 

grain matrix. In the case where p >> p , however, it is always assumed 

that p = p and p is related geometrically to X as 

p
G

= 4 T p / b X
G

, (2.8) 

where Y is "the shear strain. 
P 

22 G 
Ashby has further assumed that X , instead of the more commonly used 

24 25 
dislocation slip distance ' , is proportional to the grain size. The 
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average Taylor orientation factors,<M>, whose values are calculated as 

26 
3.067 for f.c.c. polycrystals and as 2.733 for b.c.c. polycrystals de-

27 
forming by pencil glide , relate the shear stress, x, and strain, y, to 

the tensile stress, ff, and strain, e, as 

<M>= CJ/T = d r p / d £ p . (2.9) 

Substituting Equation (2.8) into (2.6) and converting to tensile stress and 

tensile strain by utilizing a Taylor factor, we obtain again a Hall-Petch 

type equation, 

3/2/ \l/2 -1/2 
crf = cro+Cfx(M) (bSp) d , (2.io) 

which in addition.predicts a parabolic stress-strain relation. 

22 
Ashby has also used Equation (2.10) to interpret results on strain-

28 29 G 

hardening for dispersion strengthened single crystals ' by noting that X 

is given by r/f for equiaxed inclusions, where r and f are the particle 

radius and the particle volume fraction, respectively. 
p 

Thus, the particle hardening effect, Aa , is 

P i /A „v 3/2 /, _ ^ \ 1/2 

'P' 

In Equation (2.10) and (2.11), c' is a constant having the value (0.25 ± 0.15), 

P i 3/2 ; \1/2 

[xcr =c(M) j i i ( b f £ / 2 r ) . (2.11) 

Although the Ashby model has had some success in describing the work-hardening 

behavior of dispersion hardened crystals, this model does not account for 

the detailed dislocation arrangements and so makes no predictions concerning 

the Bauschinger effect. 

On the other hand, we note that all these theoretical approaches seem 

invariably to lead to a flow stress ( and yield stress) which varies as the 
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relevant microstructural distance, i.e. grain size, raised to the inverse 

square root power. The flow stress is then found to vary parabolically with 

plastic strain. These two features are amenable to experimental verification. 

2.2 Dislocation Substructure Strengthening 

The mechanism of cell formation is now believed to be the formation of 

30 31 
dislocation tangles, which gradually join into three dimensional networks ' . 

Subgrain boundaries, on the other hand, are generally observed to form under 

conditions where significant dynamic or static recovery occurs either during 

32 33 

or after plastic deformation . Holt has analyzed a model for cell 

formation which assumes that the driving force for dislocation cell formation 

is a reduction in the total elastic energy of dislocations due to their 

clustering in cell walls. The model has a clear analogy to the process of 
34 

spinodal decomposition . He has shown that spatial fluctuations in an 

initially uniform density of dislocations with certain periodicities can 

grow faster than others and that the wave lengths of the fastest growing 

density perturbations are proportional to the inverse of the square root of 

the uniformly distributed dislocation density, p, 

L =K p . (2.12) 

In Equation (2.12), K is a constant and L is the average cell size. 

Substituting Equation (2.12) into (2.6), it is found that 

__ (5) ,(S), -1 , 

cr f -cro f - t -k fL , (2.13) 
(s) 

where kf is another constant defined as cyb/K. Equation (2.13) should 

hold under conditions of steady state deformation such as are attained in hot 

working where the average dislocation density remains essentially constant . 
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Young and Sherby J have also shown that subgrain boundary strengthening be-

havior in a number of iron based alloys can be described by Equation (2.13). 

They have f-orther asserted that subgrains can indeed play a dominant role in 

the strengthening.especially in the range of subgrain sizes that are less 

than about 0.4ym. 

However, it has also been reported that much of the data for yield 

30 
stress can be fitted to a Hall-Petch type equation , 

(5) (5) , (5), -1/2 

(J = G~ +k L , (2.14) 
y 0 y s 

thus implying that the subgrains may have a similar effect on strain-harden-

ing behavior as do the grain boundaries. Theoretical approaches have been 

made to rationalize Equation (2.14) by analyzing the stress fields of simple 
o -i on 3 Q 

tilt sub-boundaries based upon either the pile up ' or forest hardening 

models. The absence of direct observation of dislocation pile ups at sub-

boundaries favors the forest models which are concerned with the stresses to 

force dislocations through the dislocation debris formed as a result of un-
30 17 

pinning of boundary dislocations . Li has derived a Hall-Petch type 
equation using such a forest model which has the form 

(S) 

T =T + 
y o 

r T r i1/2 -1/2 

^b/27T(l-^)] [80/7Tb] L . (2.i5) 

The analysis predicts that the yield stresses depends on both the subgrain 

size and the average misorientation of subgrain, 0. 

A majority of the experimental data, however, shows that the yield 

strength is independent of the misorientation angle of subgrain boundaries 

30 
and only depends on their size via Equation (2.15) . An interesting point 

to be noted is that well-recovered materials tend to obey the relation of 



10 

39 
Equation (2.13). That is, the observations suggest that the exponents of 

subgrain size change from values near -1 to values closer to -1/2 as re-

covery proceeds. 

Another noteworthy feature of sub-boundaries is the fact that they 

produce vanishing long-range stresses as has been suggested by Kuhlmann-

40 41 
Wilsdorf ' . She has constructed a "building block" model of the terminated 

loop hexapoles composed of edge and screw dislocations, in which a conditional 

minimum energy criterion has been imposed and has suggested that the tilt 

and twist cell walls in adjacent cells most likely consist of equal and 

opposite dislocation densities. From the results of simulated stress fields, 

she has reported that there exist two kinds of long-range stresses: (1) 

long-range multipolar stress fields which attract dislocations to the cell 

wall and eventually vanish and (2) rotational stress fields arising from the 

rotational stresses of a single hexapole which have also been shown to be 

cancelled by constructing a multi-hexapolar model in an alternating sense 

42 
of rotation . A variety of transmission electron microscopic observation 

43 

of dislocation substructure supports the assumption of a reduced long-

range stress field along the sub-boundaries. A continuum analysis for the 

44 
elastic fields of periodic dislocation networks has also shown that the 

rotational fields in a periodic planar distribution of dislocation networks 

decrease exponentially with distance and vanish on the average. There do 

exist observations, however, that indicate that cell walls in the deformed 

43 
structure do produce some long-range elastic stress fields 

Thus it is not clear from existing knowledge exactly how the sub-

boundaries contribute to strain-hardening behavior. Bearing this in mind, 
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we attempt here to understand the role of subgrain boundaries in spheroidized 

carbon steels on the hardening behavior from the internal stress measurements 

discussed in Section 5.4. 

i 
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3. PARTICLE STRENGTHENING 

45 
Orowan has proposed a dislocation bypass model for dispersion 

strengthened materials and has given the critical shear stress, x , to bow 

a glide dislocation as 

r = 2 T / b A (3.D 
c 

where T is the idealized dislocation "line tension" and A is the interparticle 

distance. In recent years, a number of theoretical approaches have been pro-

posed to analyze the strain-hardening behavior of dispersion hardened materials 
46 

which in fact are based on the original Orowan model . For the purpose of 

47 48 
discussion we will classify them as; (1) forest type hardening models ' 

which emphasize the interaction between glide dislocations and the "forest" 

dislocations produced by certain dislocation relaxation mechanisms and (2) 

o M c n o 

back stress hardening models ' ' ' ' , which deal with the internal stresses 

due to the Orowan loops. Furthermore, we note that the role of these internal 

stresses in strain-hardening has been treated from two rather different points 

3 
of view. One approach deals with the back stress of a long-range character ' 
' ' ' , whereas the other is primarily concerned with the local fluctuating 

49 50 . . 

stress around each particle ' . The various dispersion hardening theories 

based on internal stress concepts are reviewed and compared briefly in this 

section. 

49 50 . 

3.1 FHP Model and Revised Hart Model 

The Fisher, Hart, and Pry (FHP) model is based on the assumption that 

the strain-hardening process in the matrix proceed as they would in, for 

example, a single crystal matrix without particles. They have further assumed 
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that plastic flow occurs in a single slip fashion and thus, the glide dis-

locations are piled up against particles. We note that this is a somewhat 

unrealistic assumption, especially in the light of recent work on deformation 

51 52 . 

process at large inclusions ' — a point we consider in more detail later 

on. In the FHP model, the maximum hardening increment, x , due to the, 

elastically deforming, particles over the pure matrix flow stress was estimated. 

At large strains they obtained for x 5 

max 3/2 
T^ = l.3j3K[Ncb/rsJp.f , (3/2) 

where 3 is a constant taken to be equal to 3. N is the maximum number of 

shear loops a particle can maintain, K is defined as [1 + v/2(l-v)] and r 

is the mean square planar radius which is related to the mean particle radius 

statistically as 

r
2
=3rf/2 . (3.3) 

Since the number of shear loops is related to the shear strain as 

r p = N b / 2 r , (3.4) 

Equation (3.2) can be rewritten in the form 

max ' * „3/2 
T = I 2 pi, Tp f (3.5) 

where y is a critical shear strain at which the number of shear loops be-

comes saturated and the numerical constant 12 is obtained by setting v = 1/3. 

x is in fact identified as the saturation back stress and thus Equation 

(3.5) predicts that the back stress hardening depends on particle volume 

fraction raised to the 3/2 power. Ashby has obtained the same result from 

53 
a so-called "elastic peg" model . The FHP model, however, does not account 
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for the Orowan stress and so it estimates only the maximum hardening incre-

ment due to the presence of particles. 

Hart has recently modified the FHP model to account for the Orowan 

stress and has obtained a stress-strain relation which assumes (1) that the 

Orowan stress is simply additive to the matrix flow stress and (2) tJhat the 

back stress effect caused by the local fluctuating stresses of the Orowan 

loops acts so as to raise the critical stress for subsequent dislocation 

bowing. From the fundamental assumption of simple linearly additive flow 

stress contributions, the hardening increment due to particles is defined as 

T = T - T (3.6) 

h Mp M 3 

where x and x represent the flow stresses of the specimens containing 

particles and without particles, respectively. Hart has further modelled 

the trapped shear loops as being infinitestimal in size and has taken for 

their stress field the field of a shear dislocation dipole. The critical 

shear stress required to force a glide dislocation between two trapped loop 

dipoles was calculated and can be expressed as 

7"=T 
h 0 

l + 2M1/2+2M (3.7) 

where M = 0.509 K(y/x )y f3'2 (y : unrelaxed plastic shear strain). This 

shear stress-shear strain relation -.was then converted to a tensile stress-

strain relation using simple Taylor averaging,<M> , to obtain 

r- / A / , 1/2 3/4-/ U \ 1/2 ' 2 3/2 U 

C7h=cr0 + l6<M>{^/O-Q) f (£p) +i.28(M)pf £p , (3.8) 
where e is the unrelaxed tensile plastic strain and a. is the tensile' 

p c 0 

equivalent of the Orowan stress. 
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4 
Asaro has refined the computation of the Orowan stress by considering 

the effect of more complicated distributions of shear loops. The results are 

consistent with those of Equation (3.7) and can be represented in the slightly 

more general form as 

T h = To[t + Oj(M + M
1/2)] , (3.9) 

where w is a constant ranging from 0.5 to 2.0 and M is a linear function of 

strain. The experimentally measured value of the hardening increment in 

general includes an additional stress--the image stress, x ,—which is a 

4 7 
long-range residual stress associated with the finite size of the body ' . 

This reversible residual stress has been shown to be a dominant contribution 

to the strain-hardening at large strains—this effect is discussed in the 

next section. 

3.2 Wilson's Construction and the Bauschinger Effect 

It has already been noted that both continuum and microscopic models 

predict the existence of long-range internal stresses and the accompanying 

pronounced Bauschinger effects caused by plastic incompatibilities between 

4 
non-deforming inclusions and elastic-plastic matrices. Asaro has suggested 

at least three kinds of kinematic-type hardening behavior which might result 

when the macroscopic internal stresses are related to the details of micro-

structures. These macroscopic residual internal stresses developed during 

unidirectional deformation can be removed by reverse straining. This kind of 

2 
behavior leads to the permanent softening effect we discussed earlier. The 

magnitude of this permanent softening simply appears as the difference in flovr 
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stress for reversed and forward deformation evaluated at some large strain, 

g 
as illustrated in Figure 3.1. Wilson has shown that internal stresses are 

PS 

linearly related to the magnitude of the permanent softening, a , by cor-

relating measurements of the Bauschinger effect to the average internal 

stress, a , measured by monitering X-ray diffraction line shifts. His experi-

mental results show that the residual internal stress is about one half of 

i PS 
the magnitude of permanent softening. Although he concluded that a and a 

are the lower and the upper limits of the back stress hardening element, 

4 54 

Asaro and Brown took the internal stress to be equal to one half the 

measured permanent softening--this assumption is based upon a "shake down" 

model for dispersion hardened materials . To appreciate this point of view, 

we consider the simple elastic-plastic element model of Figure 3.2. The 

elastic regions (viz. strong elements, inclusions, or boundaries) support 

stresses which are transmitted as residual stresses to the plastic region 

(viz. weak elements or matrices) upon unloading. Thus, the model shows a 

Bauschinger effect, manifested by a permanent softening whose magnitude, as 

can be seen from the figure, is just twice the residual internal stress. The 

inhomogeneous local stresses around the particles are believed to produce the 
54 

characteristically rounded part of the reverse stress-strain curve . This 
54 

argument has been confirmed by Brown et al. by defining a parameter 3 

empirically as 

1/2 
1°"^/°; = P e r . <

3
-
10

) 
3 was found to be proportional to the inverse of the measured value of per-

manent softening. Moan et al. have also obtained the same result by de-
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scribing the forward flow stress and the backward flow stress as 

cr = cr + cr'+crf 

3 n d i f (3.11) 

a = a - a + a , 
r o ' 

where a stands for the "forest stress". Thus, a can be expressed in the 

form 

& = [a-\ar\/2 -o**/2 . (3.i2) 

It should be further noted that the internal stress is in fact a measure of 

the Bauschinger energy parameter, 3F, which has been proposed as a measure' 

57 
of the Bauschinger effect . 3F has been defined as 

P E
= E

S /
E T = ^ E > / < C r T > ; ^ 

E and E are the elastic energy stored in forward deformation and the total 

energy required to give forward deformation, respectively, and *CcO is the 

average forward tensile stress. The average stress, <a") , which is related 

to elastic energy stored by E = <a /> e , is believed by the author to be 
4 

just another expression for the residual internal stress. Asaro has further 

indicated that regardless of the details of the initial reverse flow, the 

difference between the forward and reverse flow stress curves asymtotically 

approaches the value 2a for all three kinematic-type hardening cases. Since 

these models, however, do not depend on the fine details of the microstructures. 

as does the "source-shortening" or "Orowan stress" contributions, they give the 

sort of overall average internal stresses which are measured in the present 

work. 
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3.3 Tanaka and Mori Model 

Instead of directly computing the forces acting on the glide dislocations, 

Tanaka and Mori have computed the isothermal free energy change of an elastic­

plastic specimen containing elastic particles. If the elastic constants of the 

matrix and particles are the same , the free energy change during the deforma­

tion by a uniaxial tensile stress, a„„ , is 

A6=N(E+E. \ + an£ V - (crY v/2E-crA £ V9 o.uo 
l el int/ o p M I 33/ / 33 P 

where N is the number of inclusions, a is the yield stress of the matrix 
(identified as the Orowan stress), V and V are the volume of the matrix and 

the specimen, respectively, and e is the imposed uniform plastic strain in 

the matrix. The elastic energy, E , and the interaction energy, E. , 
58 are calculated according to the well known scheme devised by Eshelby 

The specimen is assumed to undergo a dilatation free extension correspond­

ing to a plastic strain, e , in x' direction. Since the particles do not de­
p 3 

form plastically, Orowan shear loops are left around inclusions as a result 

of the bypassing of dislocations. These loops give rise to plastic incompat­

ibility between the elastic­plastic matrix and the elastic inclusions. The 

central assumptions in this model are that these loops are distributed uni­

formly at the particle­matrix interface and that the plastic deformation in 

the matrix occurs by uniform symmetrical multiple slip. This assumption 

• > 

Although accurate values of the elastic constants of cementite are not avail­

able, it is believed that the elastic constants of polycrystalline cementite 
52 

have"rather similar values to those of ferrite 
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enabled these authors to make use of Eshelby's "uniform transformation strain" 

58 T 
results by identifying the transformation strain components, e.. , with 

the plastic strains as follows, 

T T U / T U 
£ i i = £

2 a - £
P / 2 > £ 3 3 = - £ P > ( 3 ' 1 5 ) 

T 
and e.. = 0 otherwise. 

The model is depicted in Figure 3.3(a) and (b). The dislocation loop 

distributions envisioned in the FHP and revised Hart models are also illustrated 

in Figure 3.3(c) for the sake of comparison. For spherical inclusions, the 

C 
stresses inside the inclusion and the constrained strains, e.. , are given 

as 

T 
cr..=2LC £ .-£. 

and (3.16) 

C 

^ 
_2(4-5^)/l5(l-v[ 

From Equations (3.15) and (3.16), we obtain the following stress components 

inside the inclusion: 

and (3.17) 

az=cr J = - L l O L ^ , 
U 22 l P ' 

where a is the accomodation factor, which for the case of a sphere, is equal 

to (7-5v)/15(l-v). The elastic energy stored during the deformation and 

the interaction energy of the internal stress field due to the applied stress 

are 

Vi 
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^d b. = - \ a.. £ . . d V = a V £ 
mt J ij ij u v 33 I p vk ( 3-1 9 ) 

where VT is the volume of the inclusions. 

Substituting Equations (3.18) and (3.19) into Equation (3.14) and 

using the stability conditions, 3(AG)/3(e U) = 0 and 32(AG)/32(e U) > 0, the 

following stress-strain relation was obtained 

C73
A
3 = (Tt-3pa(f/l-f]£p . (3.20) 

The procedure predicts a linear hardening behavior which depends on particle 

volume fraction only and not on any other feature of the particle distribution. 

The flow stress calculated in this manner certainly represents a lower bound 

to the true value, since it is assumed that all the work done by the applied 

stress is stored as elastic energy (that is, dissipation is ignored). The 

59 
equivalence of this model to that of FHP has been discussed recently and 

it has been shown that the linear hardening behavior is not necessarily due 

to the assumption of uniform plastic deformation. This continuum model, how-

ever, does not adequately take into account the stress required to bow dis-

locations around the particles, so that it fails to include a proper treat-

ment of matrix hardening behavior. 

3.4 Brown and Stobbs Model 

Brown and Stobbs have attempted to describe the macroscopic properties 

of their own dispersion hardened materials in terms of observed dislocation 

microstructures. Their model is considered by the present author to be the 

most realistic and complete of these proposed so far. They have computed 

the, contributions to the flow stress arising from both the forest and the back 
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stress hardening by assuming these effects to be linearly additive. The 

entrapped Orowan loops plastically relax by various mechanisms such as local 

48 
climb, cross slip of screw segments to produce prismatic dislocation loops , 

47 
or by secondary slip processes as proposed by Ashby . A secondary plastic 

zone with a high forest dislocation density is thus produced around the 

particles, the precise form of which'depends on the particular relaxation 

mechanism. This plastic zone directly hardens the matrix by a forest type 

hardening and also prohibits subsequent full plastic relaxation of Orowan 

shear loops, thus stabilizing the localized elastic stress field which is *' 

the source of the back stress hardening. 

3.4.1 Elastic Model 

In the absence of plastic relaxation, back stress hardening is seen as 

to arise from the internal stresses and the stresses required to bow dis-

7 3 

location between particles . Following Asaro , we can estimate these 

internal stresses by considering a structure whose surfaces are traction free. 

For this structure we may write 
T i j d v = o 5 ( 3 ;2 1 ) 

thus satisfying the equilibrium condition. Dividing the integration limits 

into the volume of the matrix and that of the particles, we arrive at the 

result 

^^(f/l-fX^-O.. (3.22) 

Now"the traction free boundary conditions give 

<V
 =

 <
T
i j > + <

T
u > -

 ( 3
-

23 ) 
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In Equations (3.22) and (3.23), the angular brackets represent the average 

i °° I 

values,- x.. ' a r e the particle stresses computed as if the medium were in-
finite in extent and x.. ' are the so-called "image stresses" of the parti-

al 

cles or actually the corrections to this "infinite" field due to the traction 

free surfaces. Since \x.. ' /is itself proportional to particle volume 

fraction for ellipsoidal inclusions ,\x.. /can be written, to first order 

in f, as 

<\M>--[f/i-f) <C'>. <3-2H) 

\x . . / acts as an opposing stress to glide dislocations. The uniform shear 

stress in a typical inclusion is found to be 

<T ) = OLJXT (3.25) 
7 

for the uniform shear model assumed —this is illustrated in Figure 3.3(d). 

Equations (3.24) and (3.25), when combined with a Taylor factor, \ M/ , used 

again to convert the predicted shear stress-strain relation to a uniaxial 

tensile stress-strain relation give the stress just after yielding as 

O"A = O-0 4- (M)
2(X (f/l-f)p,8p (3.26) 

In the case of multiple slip, the accomodation factor (a1) has been estimated 

as a1 = —a for spherical inclusions . If we replace a with 3a/4 and take 

(ll) to be have the value 2 , then Equation (3.26) is identical to that of 

� > 

Tanaka and Mori's continuum model essentially assumes that plastic flow oc-

curs -on numerous slip systems simultaneously; this gives \ M/ = 2 
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Tanaka and Mori —Equation .(3.20). As plastic deformation proceeds, the 

shortening of effective interparticle distance due to residual Orowan loops 

raises the bowing stress according to Equation (3.1) and thus the flow stress 

57 
m this stage of hardening is given, again assuming linear additivity as 

CJA=CT 
0 

i+^AS^r 'e^ /br - r jKM/^ l f / i - f l ^Ep . (3.27) 

The "source-shortening" stress in Equation (3.27) has been calculated ap-

proximately by assuming a simple constant line tension of yb2/4. The stress-

4 50 
strain relation is in fact similar to that computed by Asaro and Hart 

One of the major results of this continuum analysis is that the mean local 

stresses around a particle vanish, contrary to that of Hart and that the 

local fluctuating stresses give rise to the "source-shortening" stress. 

A further discussion on the similarities and differences of the Hart, Tanaka 

and MorL and Brown and Stobbs models has recently been given in references ' 

3.4.2 Plastic Relaxation 

Plastic relaxation, in general, occurs at the onset of plastic flow, so 

that any theory which does not properly consider plastic relaxation cannot 

describe dispersion hardening behavior adequately. Brown and Stobbs have 

computed a forest hardening term and the back stress hardening term by noting 

that plastic relaxation occurs in their alloys by secondary slip. They 

assumed that this "secondary plastic zone" would be plate-like with a radius 

R and of thickness r—this assumption being suggested by their observations. 

From Equation (2.6), the local flow stress in the plastic zone can be written 

in the form 

1/2 
T!oc a | = C^P local * ( 3 - 2 8 ) 
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If all the dipoles of prismatic loops which have been converted from Orowan 

loops are contained in the zone, then the secondary dislocation density in 

the zone, p, ,, is 
local 

f,«„-
hnr

/
v
p �

 <3
-
29) 

loca.1 

where h is a constant taken to be approximately equal to 8. The plastic zone 

volume, V , for their assumed model is 

Vp=7J"R
2
r 9 (3.30) 

in which the particle volume is also included. We will instead explicitly 

note that- the particle volume should be subtracted from V , since the particle 

size is typically of a comparable magnitude to the dimensions of this relaxa-

tion zone. The number of relaxed Orowan loop's, n, is related to the relaxed 

plastic shear strain statistically as 

n = 2 r ( T p - r p
u
) / b . (3.3D 

When the particle-matrix interfacial stress, which is found to be ycty 

for the uniform shear model, exceeds the local flow stress, secondary slip 

is presumed to occur. This condition, along with Equations (3.28), (3.29). 

and (3.31), gives the unrelaxed plastic shear strain as 

a/2 
u cb/oL 2h(r - r

u
) r

2
/ b V 

pj 
(3.32) 

where all the parameters are the same as defined previously. Equating the 

particle stress at the outer edge of the plastic zone to the Frank-Read 

type stress acting on loop dipoles yields the following relation 

jUcXr p
u
r

3
/R

3
 = jub/r . (3.33) 
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Taking y » y and ignoring the particle volume contained in the plastic 

zone, the plastic zone radius, R, and the unrelaxed tensile strain, corrected 

by the Taylor averaging factor, are determined from Equations (3.30), (3.32), 

and (3.33) to be 

and 

R = ((M)2hc
E
rsp/b7r 

1/8 

r (3 .34 ) 

S M . 3 c
3
7<M>

7
 ccl \bir/ h r s i

1 / 8
 h b £P/TT r 

1/2 
(3.35) 

The fraction of bowing dislocations lying in the zone is approximately the 

square root of the plastic zone volume fraction, f , which can be expressed 

as 
f
P = 3 V p f / 4 7 r r (3 .36) 

The "forest stress" caused by the "forest" of secondary dislocations is, 

by t/riting x = f 1'2 Tiocav and correcting with Taylor averaging, thus 

given by 

(x
f
=<M>

3/2
cju [ 3 h A ]

l / z
[ b f £ p / 2 r 

1/2 
(3.37) 

22 This is identical to the result of Ashby —Equation (2.11). Similary, the 

residual internal stresses are obtained by substituting Equation (3.35) into 

(3.26) as 

11/8 3/4- 1/8 1/2 

c r - i . 3 #
u
" c

a ,
V [ f / i - f ] [ b 7 r / h g p r |

, / 0
[ h b e ( A r p . o.sa) 

Equation (3.38) predicts that the back stress hardening depends on (1) the 

particle volume fraction almost linearly, (2) the plastic strain nearly 



parabollically and.C3) the particle radius raised to the -5/8 power. The 

above predictions are compared with the results of the present work and are 

discussed further in Section 5.2. 
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4. EXPERIMENTAL PROCEDURES AND THE RESULTS 

4.1 Heat Treatment and Microstructures 

Two steels with different carbon contents, which are listed in Table 4.1, 

were heat treated to prepare tensile specimens, each steel being prepared 

with two contrasting microstructures. Steel A was austenitized at 810°C 

for 2 hours while in the form of round bars with a 5/8" diameter, whereas 

specimens of steel B were first machined into slightly oversized tensile 

specimens and then austenitized at 1020°C for 2 hours. Austenitizing, in 

all cases, was followed by quenching in a 25% aqua oil-water solution. The 

pre-machining treatment for steel B was used in order to achieve a more 

homogeneous martensitic transformation throughout the specimen cross section 

after quenching. The alloys which were tempered isothermally after quenching 

contained a dispersion of spherical carbides that were interlinked with 

dislocation subgrain boundaries. The microstructures with these subgrain 

networks connecting cementite particles were produced by annealing at 700°C 

for 1 hour, 8 hours, and 40 hours for steel A and for 3 hours for steel B, 

and are designated as specimen numbers, ATI, AT2, AT3, and BT, respectively. 

Subgrain free microstructures, with particles inside the grain boundaries, 

were produced by thermal cycling for 1 hour between 710° + 5°C and 735° ± 5°C 

with hold times at each temperature of approximately 3 minutes, and are 

hereafter designated as specimens with the identifying prefix AC. Thermal 

cycling was carried out using two lead baths, each maintained at a fixed 

temperature following the procedures described by Anand . Conventional 

optical micrographs and standard two stage carbon replica photomicrographs 

were taken using an optical microscope ("Bauch and Lomb") and an electron 

microscope ("JEM 30"). 
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The subgrain boundary free microstructures are shown in Figure 4.1 and 

typical examples of subgrain boundary connected spheroidized cementite 

microstructures are shown in Figure 4.2 and Figure 4.3. 

Quantitative metallographical methods ' *" were used to determine the 

following microstructural parameters assuming that a uniform distribution of 

spherical cementite particles was present: 

(1) mean particle radius defined as, ' 

r - 3 f A Np ; (4.D 

(2) mean free path of cementite particles, 

V(l-f)/Np
 ; ^-2) 

(3) mean intercept length of grain boundaries, 

d = l/N$ ? (4.3) 

(4) mean intercept length of subgrain boundaries, 

L=l/l\!L ; (4.4) 

(5) mean free path of both particles and subgrains , 

\ P « ( i - f ) / N L ; <*.5) 

(6) mean-square-lattice spacing, 

S-rs[(lT/f)"2-2] ("-6) 

where t~s = (2/3)'
/2 r . (4.7) 

The measured values N , N , and N , are the number of intercepts per unit 
r b L 

length of random test lines with the cementite particles, the grain boundaries, 

and. the subgrain boundaries, respectively. These values are listed in 

Table 4.2 for further reference. 
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4.2 Testing Apparatus and Procedures 

The difficulties involved in obtaining cyclic stress-strain curves are 

well known and thus a special self-aligning "Woods Metal" grip of composition; 

Bi-50, Pb-25, Sn-12.5, Cd-12.5; was constructed to facilitate lateral align-

ment in our push-pull cyclic tests. The tensile specimens had a 1/2" 

gauge length and a 1/4" diameter gauge section. Threaded grips were used 

to prevent slipping upon reverse loading. In some of the low strain amplitude 

tests, 1" gauge length specimens were also used. The specimens used for 

low amplitude strain cycling were recovered at 400°C for 20 minutes and reused 

in further cyclic tests. 

All the tests were carried out on an MTS closed loop testing machine 

under strain control using a sinusoidal wave form as the control function. 

The average extension rate in all the tests was 0.005 inch per minute. The 

cyclic load-strain curves in each strain range were plotted on an X-Y re-

corder. An additional forward tensile load-strain curve for each kind of 

specimens was also obtained to complete the Wilson construction. All the 

load-strain curves were later converted to true stress-true strain curves 

for analysis. 

4.3 Stress-Strain Data Analysis and Results 

Among the several empirical stress-strain relations, the so-called 

Hollomon equation is most commonly used to explain strain-hardening behavior. 

The basic form (i.e. power laws) were first proposed by Ludwick and later 

confirmed by Hollomon , among others, as 
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or 
i 

C = k £p , (4.9) 

where k, n, k', and n' are material constants and a, e, and e represent the 

true stress, the true strain, and the true plastic strain, respectively. 

True stresses and true strains have been computed from the load-elongation 

curves and the true plastic strains have also been estimated as deviations 

from linear elastic behavior 

6 p = 6 - c r / E , (4 .10) 

where E i s Young's modulus (E = 30 * 106 p s i for i r o n ) . 

The 'crue stress-true plastic strain curves have been used to measure the 

amounts of permanent softening at each given pre-strain through the use of 

Wilson constructions as illustrated in Figure 4.4 for specimens AC. The 

measured values of Bauschinger effect at given plastic strains are also 

plotted as a function of reverse plastic strain, e , in Figure 4.5 and it 

shows that the differences between the forward and the reverse flow stresses 

asymtotically approach the values of permanent softening. The corresponding 

internal stresses were taken to be equal to one half the magnitude of the 

permanent softening. 

The log-log plots for both the a-e curves and the a-e curves show a 

"double-n" type strain-hardening behavior with the transition in the index n 

occuring at a strain level of 3 " 5 % true strain. The constants of the 

Hollomon type equations were determined by the least square analysis method 

for each range of strains. The calculated values of the constants, designated 

as k , n , k , and n for Equation (4.8) and k' , n' k' and n' for 

Equation (4.9) are listed in Table 4.3. 
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Since plastic flow begins in the pre-macro-yield region , the stresses 

at the beginning of plastic flow (a _ „) were obtained by extrapolating 
EF 

the initial portion of the homogeneous part of the stress-strain curves 

back to zero plastic strain. At the intersection point of the elastic line 

and the extrapolated curve, the flow stress for the unstrained specimens are -

determined using the relation 

.Mi-, l/l-li ~- Fi /r- nll -1-' l
~" 

The calculated values of a _ are also listed in Table 4.3. 
P 

it 



32 

5. DISCUSSION 

5.1 Elastic Stress Field of a Particle 

The stress fields enhanced in and around a particle during plastic de-

formation, which are caused by plastic incompatibilities between the elastic 

particle and the plastic matrix are now believed to give rise to a back 

stress hardening. This sort of internal stress has recently been computed 

7 

from a uniform shear model . The plastic flow, however, in a number of 

dispersion strengthened materials has in fact been observed to occur on 

several slip systems simultaneously —especially in spheroidized carbon 

steels . Thus, we estimate the internal stress fields, formed during uni-

form plastic flow by symmexrical multiple slip, by making use of Eshelby's 

58 
transformation results 

Let the specimen undergo a uniaxial tensile deformation with imposed 

P 
u 

plastic strain, e s along the x axis; then the transformation strains 

(Figure 3.3) are 

T u T T u , 

and (5.1) 

T 
P.. = 0 otherwise. 
U 

The constrained displacement field, u., in a dilatation free deformation is 

now calculated as 

^=[l/8Tr(l-V)]£jk
Ti/r,..k+[,/2Tr]8ik

T^k (5-2) 

with the already known harmonic, <j>, and biharmonic, \p, potentials for a 

spherical inclusion: 
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0 — ­ ^ R 4 , f ' ~ i ^ ^ , for R<cr 
and (5 .3 ) 

where R = X | + X 2 + ­ X 3 

Equations (5.1), (5.2), and (5.3) yield the following displacement fields: 

in the matrix, 

C r3 ., f(5­4­v) 3 r2 „ x* . , X?r2 

u. = Xi 1 ­ ^ ­ ­ F T T e ­ 3 ^ ­ 3 ­ ^ " i ~ 4­d­v) R3 A l l 3 5 R2 ° R2 ° R^ J 9 

£p .. r3 f&­^V) 3 ^ _ o A % o l L l l l (54) 

M_ < r3 r(8v­i) 9_rj_ xf j£f\ 
U* = 4^ ) 1? X31 ~ 3 ~ ' 5 Ra 3

 R* RM ' 

and inside the particles, 

u.[= ­d/2) a x lE l t 3 

u* = ­(1/2) a x 2 £p , 

a3= a X3£p s 

7 ­ 5v where a = 777­ r­15(l­v) 
The corresponding stress fields in an isotropic medium computed from 

(5.5) 

o\­ ­t­ LL ( U­. :t U, ■) . (5.6) O'ij­^k/lj^^iJ^J.i) > 
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in the matrix, 

G 
11 

a. 
JUEP 

+ 

r ^ ^ i ­ g ^ ) ^ 3(6^­4^­1) n.£ + (4­>>­5)nf­M5n^n£ 

(1-2^) I ■i 3 

pbf
 f+f^n.^anf-emfnf 

R 

(J. 
M ^ s F 

22 ■ 2 ( t - v > ) 

+ R51 5 (1­21^) 3 Z Z 3 ij 9 

M 

^ 3 3 = 

M£F 

£(i­V) 

-t-

■p3] 3— +■—M_?UM ^a + ' ^ na (l-2)>) 

S , 6(3­7») „& n ; — 217l: 

a 
M 

i e 

°V3 = 

0" 23 

A£P 

2(i-i>) 
a 

20-V) 
a 

2d-^J 

R 5 | 5" ' ( i -2y) " 3 

2' 
R 

J_ 
R3 

—^j­(£^+5)n2r?3 + i£rrj2Yi^ ­ ^ ^ n £ n 3 ­ 2 l r^n R Ra 

(5.7) 

and inside the particles, 

1 I ­*M£p , 

^33= 2 c ^ Ep > (5.8) 

rr x = 0 otherwise. 'J 
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X and y are the Lame constants and n. represents the i component of the 

unit normal vector on the sphere of radius R. The summation convention is 

used throughout and a comma implies differentiation with respect to the 
9u. 

corresponding spatial coordinate, i.e. u. . means -—. The interracial 
1,3 a X. 

stress components can be obtained from Equation (5.7) by setting P = r as 

_ M £ * f(8-25V) 2 2 z z) 

O M r J - ^ j - i y - +(zv-.)n, + 3vn 3 - 3n ,n 3 j , 

22
 ' ( l - V ) 

c r
„

( r )
 = 7—^1 , c * (£v-i)n2 + 3vn3 - 3n ,n 3 , , 

33
U
 ( i -v) is 

( 5 . 9 ) 

The normal stress,a , shear stress, x , and hydrostatic stress, a, , at the 
nn ns n 

par t ic le-matr ix interface in the plane of n„ = 0 are now writ ten in the sim-

ple form 

cTn^r) = c<M£p
X
(3ll3 - l ) , 

T n s ( r ) -<* /x£p 3YJ3C I " ^B )
 WZ

 »
 ( 5

'
1 0 ) 

CT (V =/ /£p
U

f (n-») /3( l -Vj l ( S ^ - l ) . 
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These stresses are plotted in Figure 5.1. The maximum shear stress is 

shown to be — aye at n„ = l//2~ and the maximum normal stress is 2yae u at 
2 p 3 p 

n = 1. The stresses inside an inclusion can also be computed more easily 

from Equation (3.14) and the results are, as expected, found to be identical 

to those of Equation (3.17). One interesting result of the present computa-

M H M 
tion is that the mean values of u , a , and a „ do not vanish as they 

do in the uniform shear model. Since the mean value of (n-)2 is 1/3 and 

(n.)2(n.)2 have mean values of 1/15 and 1/5 for i i j and i = j respectively, 

the mean stresses are 

<0=^a>=<^3> " ̂ £P o-vH.-gW-RTd-Rl) (511) 

and {py)-Q otherwise. 

These mean stresses are plotted in Figure 5.2 as a function of R. Although 

the mean stresses fall off rapidly as 1/R , there are, as shown, relatively 

high stresses near the particle with a maximum value of ~0.3ye (for v=l/3) 

at R = ~1.3r. We then feel that these kind of fluctuating stresses should 

be considered in the analysis of the back Stress hardening. 

5.2 Back Stress Hardening 

A number of theories for dispersion hardening have recently been pro-

posed and almost all of them predict the existence of back stress hardening 

as discussed earlier in Section 3. Among them, the model of Brown and 

Stobbs is considered to be the most accurate. These models, however, have 

o 
been concerned with particles of radii less than 3000 A, so that the particle 

volume itself has been ignored in the process of computing plastic zone 
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volume—Equation (3.30). This cannot be justified in the present case of 

large particles. Furthermore, since the plate-like plastic zone shape is a 

consequence of the uniform shear assumption, for our axi-symmetric deforma-

tion we feel that the plastic zone shape in spheroidized carbon steels should 

be approximately annular around the particles. This assumption is in fact 

supported by observations of uniform secondary dislocation distributions 

around such particles . Thus, the plastic zone volume, accounting for 

these facts, should have the form 

Vp=(4/3)TT(R
3-r3) . (5.12) 

The critical stress to start secondary slip is the maximum shear stress at 

the particle-matrix interface. From Equation (5.10) we obtain the maximum 

shear stress as 

max u ,'r - , , i 

?ns = ( 3 / 2 ) > i < X £ p . ^ - - 3 ) 

The l o c a l flow s t r e s s in the p l a s t i c zone can now be w r i t t e n in the form 

^-c^bfsKr^AnbCR'-r 3)}'". . <5^> 

Finally, the Frank-Read type stress criterion is 

(3/^a/arp
a(rVR^)=/ub/r .

 (5'15) 

Equations (5.13), (5.14), and (5.15) yield a cubic equation for e 

«M)/£K3d/2)r2(c£p
u)3 - br(£p

U)£-(e/(M»(ECb/3c()2(3h£p/7T) = 0. (5.16) 
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To obtain the relation between e and r, Equation (5.15) was solved nu-
P 

merically at various e taking (ity = 2. The'results are plotted in Figure 5.3 

for the case of e = 0.03, e =0.04, and e =0.05. The least square 
p p p H 

analysis gives the relation between the particle radius and the unrelaxed 

plastic strain as 

£P
U = K,(£P) r °'

7 , (5.17) 

where K (e ) is a constant at the given plastic strain, e . Substituting 

Equation (5.15) into (3.20) yields for the back stress, 

CT[ = 3/idL(f/\-f) K,(cp) I""
0'7 . (5.18) 

When the measured internal stresses are plotted against the particle radius 

(Figure 5.4), it is seen that the internal stress depends inversely on the 

particle radius. Since the particle size dependence of the internal stress 

is directly related to the plastic relaxation mechanism and thus to the 

plastic zone shape, it is difficult to predict the particle size dependence 

more accurately than is done using Equation (5.18) without further details 

on the dislocation distribution. However, we.note that the overall predicted 

values of internal stresses are in.good accord with the measurements for 

particle radii in the range exceeding 0.5ym. .We therefore feel that Equation 

(5.18) can be applied more generally as long as the particle size is large 

enough to give a uniform distribution of secondary dislocations. 

To obtain the relation between the internal stress and the plastic 

strain, Equation (5.16) was again solved numerically for each experimental 

value of r. The results, plotted in Figure 5.5, again show a power relation 

of the form 
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u jn 
£P =Ke(r) S p , (5.19) 

where K (r) is now a constant at given particle radius and m is approximately 

obtained as 0.3 for all three particle radii used. The measurements, how-

ever, give the value of m as about 0.6 for the tempered specimens (Figure 5.6) 

which is in fact a factor of two higher than the predicted one. The failure 

in predicting the plastic strain dependence on internal stress is felt to be 

due to the reasons already discussed for the particle size dependence. If 

we substitute Equation (5.19) into (3.20), we can represent the internal 

stress in the form 

_cr' = 3/i d ( f / i - f ) K £ ( r ) £ p
0 , 3

 . (5.2o) 

The values of a computed from Equation (5.20) are plotted in Figure 5.7 

together with the measured values. We again note that the predicted values 

are nearly coincident with the measured values in the range z =0.01-0.05. 

The form of Equation (5.19) has been reported by Kishi and Tanabe . They 

have observed in their experiments that the permanent softening can be ex-

pressed in the form 

a p s = k £ p
m . (5.2D � 

This is identical with Equation (5.19) if we note that cr is linearly re-

lated to e . m has been defined as a Bauschinger effect parameter and 

Kishi and Tanabe's data show good agreement with the present work. 

Now the secondary plastic zone size, n, can be obtained by substituting 

Equation (5.17) into (5.15) as 
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ij = R - r 

s "{<M>3o{ K(Spl/4bl'
/3 - l] r . (5.22) 

Noting that K(e ) is a slowly varying function of e and taking, for example, 

K(e = 0.05) = 1.8 x 10"3, we see from Equation (5.22) that n is approximately 

constant and equal to the particle radius. 

It can be concluded from the above discussion that the continuum model 

can predict the overall values of back stress fairly accurately in the strain 

ranges in which secondary slip occurs profusely—that is above ~1% plastic 

strain for large particles in spheroidized carbon steels. 

5.3 The Pole of Subgrain Boundaries 
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Ashby has related the yield stress of single crystal containing non-

deforming particles to the number and size of the particles by a consideration 

of the Orowan dislocation bowing mechanism. His derived expression for the 

yield stress, in shear, is 

l / £ L / ? r /r \ (5-23) T y = ? 0 ^ A / b N3 i n ( £ f s / r 0 ) , 

where A* has the value l/2.36ir or 1/2.36IT(1-V) for edge and screw dislocations 

M . 
respectively, y is the matrix shear modulus, N is the number of particles 

intersecting a unit area of slip plane, r is defined as (2/3)1'2r and r is 

the inner cut-off radius. Converting Equation (5.23) to a tensile stress-

tensile strain relation for polycrystals, the modified Orowan equation can 

be stated in the form 

o-y=a-o + ( o . 8 3 < M ) b / / 2 f T ( i - v ) , / £ ) { i / \ ) i * ( 2 r s / r 0 ) . <5-24.) 
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In Equation (5.24), the relation between f.and N , s ■ 

f =2TTrsa N s / 3 (5-25) 

was used and X was defined as (ir/f)1'2r . A previous work has interpreted 

the lower yield stresses of spheroidized carbon steels on the basis of the 
65 

Orowan model . The yield stresses of tempered steels, however, do not 

follow Equation (5.24), they instead obey the following Hall-Petch type 

relation in which X have been used as a structural parameter (Figure 5.8), 
'J>-

— I/P cTy = l3.5 + 5g.T \ ? . (5.?6) 

However, even with this correlation, it is still not clear whether the sub-

grain boundaries act as barriers to dislocation motion or instead act as 

dislocation sources, since the Hall-Petch relation for the yield stress has 

been rationalized for both cases. In other words, subgrain boundaries may 

contribute to the flow stress' by acting as barriers to glide dislocations, 

in which case we expect that the subgrain boundaries will give rise to 

internal stresses. On the other hand, they may simply act as an array of 

forest dislocations and provide added frictional-like resistance to glide 

dislocations. The mode of behavior is, in general, believed to depend on 

both the nature of substructure and the extent of carbon segregation to 
43 subgrain boundaries in iron based alloys . To understand the role of 

particle pinned subgrain boundaries in spheroidized steels, the measured 

values of internal stresses in spheroidized. carbon steels with and without 

subgrain boundaries were compared. For this comparison, the particle size 
and the grain size in the specimens with and without sub-boundaries were 

maintained approximately equal (viz. the specimens AC and AT2). The results 
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show that the internal stress values are higher in the thermally cycled 

specimens than in the specimens containing sub-boundaries (Figure 5.9). To 

compare these microstructures more clearly, the unrelaxed portions of the 

total plastic strain estimated from the measured values of internal stresses 

and from the relation 

C = (0-f)/3A<*f) cr
1 (5-27) 

are plotted as a function of plastic strains in Figure 5.10. The maximum 

values of unrelaxed plastic strains are - 3.1 x 10-3 and ~ 2.75 * 10- in 

specimens AC and AT2, respectively. Then the maximum shear stresses at the 

interface, where we consider the secondary slip will start to occur, are 

found to be approximately -^r- in AC and -~̂ r in AT2. This suggests that 

the subgrain boundaries in spheroidized steel assist plastic relaxation 

and therefore lower the critical stress level to enhance plastic relaxation. 

It is clear now that subgrain boundaries do not contribute to internal stress 

and that they rather act as sources of dislocations to help reduce the 

residual internal stresses around particles. Furthermore, the cyclic stress-

strain curves (Figure 5.11) for a thermally cycled and a tempered specimen 

provide additional confidence for the above point of view. Both specimens � 

have reached an initial saturation value in about 8 cycles. The specimen 

AT2 exhibits cyclic softening behavior both in the tension and compression 

portions of the cycle, while the specimen AC shows softening in compression 

but with the saturated hysteresis loops still above the monotonic tensile 

curve. This again suggests that the role of particle-pinned-subgrain 

boundaries is that of sources of dislocations. 
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However, it should be noted here that the hardening exponents (n or n') 

are approximately the same in both cases, although the internal stress harden-

ing effect is lower in the tempered case. It is difficult to rationalize 

this fact quantitatively, so that we suggest the following qualitative ex-

planation: According to the particle strengthening model discussed previous-

ly in Section 3.4, the flow stresses are composed of the back stress effects 

and the forest type hardening effect caused by the secondary dislocations 

generated during plastic relaxation. The forest stress has been shown to be 

proportional to the density of secondary dislocations in Equation (3.28). 

If the subgrain boundaries assist the relaxation of Orowan loops, then the 

secondary dislocation density will be increased and this process essentially 

lowers the internal stress. Thus, it is suggested from the similar hardening 

exponents in both the tempered and the cycled specimen that the back stress 

hardening effects and the forest hardening effect may compensate each other 

to produce a similar overall strain-hardening behavior, with the further 

understanding that the tempered specimens will have lower values of the 

Hollomon constant k and k' . After attaining the saturation values of 

internal stress,' the forest hardening effects will control strain-hardening 

behavior. Table 4.3 shows that the tempered specimen, AT2, again has a 

higher hardening index than the cycled one, AC, which is consistent with 

the previous discussion. 

5.4 Strain-Hardening Behavior in Spheroidized Carbon Steel 

5.4.1. "Double-n" Strain-Hardening Behavior 

Morrison has observed the transition in the strain-hardening behavior 

of low carbon steels at a strain of ~ 8% and loosely attributed this transi-
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tion to the formation of well defined cell walls and the possible easier 

motion of dislocations in the cell structure than in the homogeneously 

9 
distributed dislocation structure. Liu and Gurland also observed the 

"double-n" hardening behavior in spheroidized medium and high carbon steels 

with a transition occurring at approximately 4% strain. They explained it 

as follows: The rapid entaglement of strain generated dislocations initially 

gives larger values of n—after the transition strain, a particle pinned 

dislocation cell structure forms and governs the strain-hardening behavior 

with lower value of n. Since the above explanations both fail, to, ellucidate 

the transition behavior in spheroidized carbon steels, which already contain 

the dislocation subgrain boundaries even before deformation, Anand and 

Gurland have recently attempted to explain this transition in terms of the 

internal stress development at the particle-matrix interface during the 

first few percent of plastic deformation. The values of internal stresses, 

however, were estimated by taking the differences of the Hall-Petch con-

stants, Op, for the pure iron and the spheroidized carbon steel. This 

will ignore dislocation interactions. The directly measured values of 

internal stresses of the present study are plotted in Figure 5.9 together 

with the estimates of Anand and Gurland . It is seen that the estimated 

values are a factor of 2 - 5 higher than the measured values. This, we 

consider, is a natural consequence of ignoring the interactions between 

the primary dislocations and the secondary dislocations generated by 

plastic relaxation. To see the direct relation between the internal stresses 

and the transition behavior, the flow stresses and the internal stresses 

are plotted on a log-log scale in Figure 5.6 This shows a transition in 

strain-hardening behavior in the strain range of 3 ~ 5% consistent with the 
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9 67 
previous observations ' . Moreover, the transition strain ranges are 

always coincident with the strain ranges of internal stress saturation. 

Thus, we conclude that the "double-n" strain-hardening behavior in both the 

cycled and tempered carbon steels is a direct consequence of the internal 

stress. A general explanation can be given as follows: The relaxed por-

tion of the imposed plastic strain develops a plastic zone around the second 

phase particles extending approximately equal to the particle radius. 

This zone prohibits complete relaxation of the entrapped Orowan loops and 

thus stabilizes the localized elastic strain fields due to the unrelaxed 

part of the total plastic strain. The resulting stresses increase rapidly 

during the early stages of plastic flow, that is below strains of 3 ~ 5% in 

spheroidized carbon steels, and accordingly give rise to an initially higher 

hardening exponent n. After these internal stresses reach a certain satura-

tion level, only the "forest type" strain-hardening will continue and this 

is characterized by a lower hardening exponent than when both back stress 

and forest hardening contribute together. 

5.4.2 Addition of Flow Stress Contributions 

As we have already discussed, the contributions to strain-hardening in 

a dispersion strengthened material consist of internal stress, a , "source-

shortening" stress, Aa , "forest stress", a , and finally the stress due 

to "statistical dislocation" density, Aa . The internal stress was found 

to be in the form 

cr'-3Sol,U(f/|-f) ( £p
C'Vr0'7 ) (5.28) 

where 6 is a constant. 
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2 iT r 2 . m , , . , ? , s s zTTr 9 s s 
Noting the relation f = using T = l/2yb ,Aa now can be written as 

3A2 

AO" =(3>ibf/Trr)[{ a<tyr£,/b} - 1 

It seems reasonable to assume that Aa is given by the work­hardening 

(5.29) 

increment of pure iron. One of the major difficulties, however, in describ­

ing strain­hardening behavior is in determining just how to superimpose the 

various hardening contributions. The most common assumption is to ignore 

interactions and to sum the contributions linearly to obtain 

(T=Cri + CT.,+ . . . . +■ <Tn . (5.30) 

Koppenaal and Kuhlmann­Wilsdorf , on the other hand, have proposed a 

mean­square­root addition law, i.e., 

CT = CT -f-CT + • • • • + • CTn . (5 .31 ) 

for the case where the various obstacles to glide dislocations have a similar 
69 strength . A previous study on spheroidized carbon steel explored the 

use of the first assumption of linear additivity , but, as we noted earlier, 

the estimated values for, as an example, internal stress that were obtained 

using this assumption show a significant discrepancy with the presently 

measured values of internal stresses. This was attributed to the neglect 

of interactions between the various hardening contributions. This author 

feels that for the present case the mean­square­root addition law is the 

more reasonable, as is now explained. 

Firstly, we note that since all the glide dislocations sample the long­

range internal stresses, a can be added linearly to the flow stress. If 

we assume that the other three contributions interact mutually, we may 

then write the hardening increment, Aa, , in the form 
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&(T =cr - o~F n 
n f £p=0 
= (7*' + [(A(7

S)2H0-f)£-(A(T5S)£]l/2 . (5.32) 

In Equation (5.32), a „, instead of the lower yield stress a , is 
e = 0 V 
F 

taken to define the hardening increment, because a is generally affected 

by transient hardening effects associated, for example, with initial dis-

location locking. To demonstrate the validity of Equation (5.32), the 

measured values of the flow stress were compared with the values estimated 

by Equation (5.32). In the process of computing a,., Aa was obtained from 

the work of Morrison and Aa was computed from Equation (5.29). Since 

the "forest stress" does not depend on the plastic zone volume and shape, 

we can still us_e Equation (3.37) to estimate a . According to Ashby, 

X = — and X , for the tempered specimens, was found to be equivalent to 

X in the Hall-Petch equation for the lower yield stress; thus, we may 

compute a by writing 

^-cVO^lbE^)"*. < 5' 3 3' 

All the results for specimen AT2 are contained in Table 5.1 and a,. (computed) 

is plotted in Figure 5.12 along with a (experimental). The very good 

correspondence between a,- (computed) and a- (experimental) supports the use 

of Equation (5.32) for the tempered specimen. A similar process was carried 

out for the thermally cycled specimen AC except that we now take \M / = 2 

instead 2.733 to estimate a by Equation (3.37)—the rational for this was 

discussed in Section 3.4.1. The results are included in Table 5.2 with 

a (experimental). If we bear in mind the uncertainty in the value of the 
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constant h, Figure 5.12 again shows good agreement with the addition law 

expressed in Equation (5.32). It then seems that Equation (5.32) can be 

applied with reasonable precision to both the tempered and the cycled 

carbon steels to predict the flow stress level. 

5.5 Cavity Formation at Particle-Matrix Interface 

One other important aspect of the internal stresses that have just 

been described is that they seem to contribute to the formation of cavities. 

Decohesion along particle-matrix interfaces is suspected to occur when the 

maximum normal stress at the interface exceeds some assumed fracture 

70 
stress (i.e. a stress criterion) or when the elastic strain energy stored * 

during plastic deformation exceeds the energy of the new surfaces formed 

71 72 73 
by cavitation (i.e. energy criterion) ' ' . The stress criterion is 

believed to be more plausible in the case of large particles for which the 

energy criterion is always satisfied. The maximum interfacial normal 

stress is obtained from Equation (5.8) as 

^max u 

cr^n = 2 JJLCK £ p . (5.34) 

However, plastic relaxation occurs from the beginning of plastic deformation, 

as we discussed earlier in Section 3.4.2. Thus, there will be other con-

tributions which arise from the interactions among the secondary plastic 
47 

zones of neighboring particles. Ashby has computed the stresses caused 

by these kinds of interactions by using his secondary slip model. Argon 

70 

et al. have further developed Ashby's simple shear model and their re-

sults show that the maximum interfacial tensile stress is about twice the 
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boundary shear traction for the case of rigid inclusions. Since it is not 

the primary intent of this present work to estimate the stresses caused 

by particle-particle interactions, we shall just present here a brief 

discussion. We note that the maximum normal interfacial stress due to 

inhomogeneity effects, which incidently was ignored in the Ashby model, 

amounts to 30 ~ 40 ksi—this is equivalent to approximately half the flow 

stress. These values are obtained from Equation (5.34) by using the un-

relaxed plastic strains as estimated from the measured internal stress. 

T 
Thus, the total normal interfacial stress, a , can be written in the'? 

approximate form 

T max 

_..?»n -<VE> ^ n t ( T i n t l t | , (5.35) 

although the stress caused by particle-particle interaction, a. ( E ) , has 

obviously to be determined by further study. According to Equation (5.-8), 

°nn occurs at the xg pole of particle (see Figure 3.3.b). The optical 

micrograph of Specimen AT2 (Figure 5.13.a) shows cavities formed at such 

poles together with particle shearing. It is found that a m a x decreases with 

nn 

increasing particle sized.e. 23 ksi-AT3, 32 ksi-AT2, and 38 ksi-ATl). ' This 

then implies that the interfacial normal stresses of large particles can 

be relieved to a greater extent than in the case of small particles. Thus, 

it is suggested that large particles tend to be sheared, whereas small 

particles develop cavities in the tensile direction at the particle-matrix 

interface. Figure 5.13.b clearly supports this explanation, because it 

shows only the cavities formed at the poles of particles in the tensile 

direction. This observation also suggests the validity of the particle 
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strengthening model illustrated in Figure 3.3.b. Further analytic and 

experimental work is required to obtain reliable estimates of the inter-

facial stresses caused by particle-particle interactions. This together 

with the present work, we hope, will enable us to predict cavity formation 

more clearly. 



- 51 -

6. CONCLUSIONS 

1. Internal Stress 

The residual internal stresses developed around the second phase parti-

cles are caused by plastic incompatibilities between the elastic particles 

and the elastic-plastic matrix. These stresses give rise to the large 

Bauschinger effects observed in the present experiments. The continuum 

model, based on the assumption of multiple slip, predicts that the magnitude 

of these internal stresses is given by the relation, 

cr
] =3$(X/i(f/i-f)(£p

0'3/r°-'r) . 

The predicted values are in a good agreement with the measurements provided 

that secondary slip occurs profusely. The back stress hardening contributions 

were found to reach approximately 20% of the total work-hardening in sphe-

roidized carbon steels. The model further suggests that there exists the 

rd -
locally fluctuating stresses which fall off inversely with the 3 power 

of distance from a particle. It was further found that the so-called second-

ary plastic zone extended a distance from the particle interface approximately 

equal to the particle radius. 

2. "Double-n" Strain-Hardening Behavior 

The transition in power law strain-hardening behavior of spheroidized 

carbon steels from a larger to a reduced value of the index n occured in the 

plastic strain range of 3 ~ 5% in which the internal stresses were found to 

reach a certain saturation level. The initially higher value of hardening 

exponent is caused by the combined long-range internal stress and the short-
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range forest stress. When.the internal stress saturates only the forest 

stress continues to increase thus accounting for the lower hardening ex-

ponent. It therefore can be concluded that the internal stress is directly 

responsible for the transition in strain-hardening behavior of spheroidized 

carbon steels. 

3. The Nautre of Subgrain Boundaries 

The internal stresses in the specimens containing subgrain boundaries 

were lower than in the specimens without subgrain boundaries. That is, the 

existence of subgrain boundaries lowered the critical stress, x , required 

to start the secondary slip process, x was found to be approximately -^Q 

in AT2 and -^-r- in AC. The cyclic stress-strain curves also suggest that 

the subgrain boundaries, formed by heat treatment in carbon steels, act 

as sources for dislocations. Furthermore, they assist in the process of 

relaxation of entrapped Orowan loops and thus lead to a reduction in the 

maximum internal stress level. 

4. Flow Stress Contributions 

In dispersion strengthened alloys, there was found to be four hardening 

contributions, viz. (1) internal stress, a ; (2) "source-shortening" 

stress, Aa ; (3) "forest stress", a ; and (4) the stress arising from 

dislocation in relaxation zone, Aa . Among the several addition laws, the 

equation 

0\ = (7 � ^ (7 ' +-
r £p=o 

(AcrVt (AcrsV+(a-f)2 i/a 
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showed good agreement with the experimental flow stress curves of both 

tempered and thermally cycled carbon steels. 

5. Cavity Formation at Particle-Matrix Interfaces 

The maximum normal interfacial stress occurs in the tensile direction 

at the poles of particles. It was also found that a depends upon the 

particle size. The values for a of 23 ksi, 32 ksi, 38 ksi, and 40 ksi 

nn 
for specimens AT3, AT2, ATI, and AC, respectively were found. We suggest 

T 
that the total interfacial normal stress, a , can be written as 

' nn ' 

cr^=2yacX(£p
1),naVcTf(a)^cr.i{lt(E) . 

I 
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TABLE 4.1 Specimen composition (wt. %) . 

S t e e l 

A 

B 

C 

0 . 8 3 

1.40 

Mn 

0 . 0 4 

0 . 0 4 

S i 

� 0 . 07 

0 . 0 5 

P 

0 .006 

0 .006 

S 

0 . 0 1 

. 0 . 0 1 

* Chemical analysis by Walter M. Saunders, 

Inc., Providence, R.I. 

TABLE 4.2 Structural parameters and yield stresses. 

Specimen 

A C 

A T I 

A T 2 

A T 3 

B T 

r * 

0 .52 

0 .29 

0 . 5 1 

0 .97 

0 . 5 1 

d * 

;8 .64 

-

-

-

-

V 
4 . 7 5 

2 . 6 6 

4 . 6 6 

8 .87 

2 . 5 1 

L * 

-

1.51 

2 .56 

4 . 7 6 

2 . 0 

\ p * 

-

1.32 

2 . 2 3 

4 . 1 6 

1.57 

A s q 

1,26 

0 .70 

1.24 

2 .36 

O.76 

f 

0 .127 

0 .127 

0 .127 

0 .127 

0 .214 

<v 
5 7 . 2 

5 9 . 8 

5 3 . 4 

3 7 . 1 

6 9 . 9 

unit; * - jim, * - ksi. 
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TABLE 4 . 3 Cons tan ts of t he Hollomon-type equa t i ons , CJ=k€ 
, � n1 

and C7=K€p , and the s t r e s s e s a t zero p l a s t i c 

n 

Specimen 

A C -

A T I 

A T 2 

A T 3 

B T 

s t r a i n , 

crep=*' n . 

35.2 0.228 

41.6 0.204 

30.9 0.229 

21.0 0.25 

46.-7 0.268 

°kp'0 � 

k , * nz. 

164.0 0.147 

159.4 0.144 

150.1 O.163 

129.1 O.I63 

265.8 O.133 

*." "V *\* "'a 

127.5 0.216 159-2 0.143 

131.2 0.184 151.2 0.143 

123.1 0.21 142.6 O.I67 

�97.5 0.24 126.1 0.162 

I65 .7 0.266 278.8 0.130 

* : � 

126.7. 

131.8 

125.0 

98 .1 

166.0 

u n i t - k s i . 
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TABLE 5.1 Calcu la t ed va lues of AC7SS , AO~S , CX 

and OV. for specimen AT2 . 

£p 

0 . 0 1 

0 . 015 

0 .02 

0 .025 

0 .028 

0 .035 

0.039 

o .o45 

0 . 05 

i 

* 

# # 

1 ■< 

■M­*­!f­

a] ACTSS 

measu red eq .5«29 

4 . 1 3 . 3 1 

5 . 2 ' 3 .89 

6 . 0 ' 4 . 2 8 

6 . 5 ' 4 . 5 3 

6 . 9 4 . 6 5 

7 . 1 ' 4 . 8 2 

7 . 1 4 . 9 4 

7 . 2 ' 4 . 9 4 

7 ­3 4 . 9 4 

; o b t a i n e d from . 
; ACJS = CT6S -al . 

s
 e p e p 

<J~e O=4 . 06 k s i 
„„ . 10 ,66 E" i r o n 

; c* = 0 . 2 5 , Jl =11 

r b=2 .42 A­

' ° 6 p=o =30 . 9 k s i 

s* 
ACT 

12 .44 

14 .41 

16 .21 

17 .73 

18 .88 

20 . 25 

21 . 45 

22 . 64 

23 .56 

P ig . 5­

f o r a 

f*­it­e r 
e q . 5 . 3 3 

13­24 

16 .22 

18 . 73 

20 . 9 4 

22 .16 

24 . 78 

26 . 1 5 

2 8 . 1 

29 . 6 

9 . 

0 > * * 

computed 

53­5 

58 . 2 

6 2 . 1 

65 . 2 

6 7 . 3 

70 . 4 

72 . 2 

74 . 6 

76 . 4 

o> 
expe r imen t 

5 5 . 0 

5 9 . 0 

6 2 . 6 

65 . 6 

6 7 . 6 

7 0 . 5 

7 2 . 3 

74 . 5 

76 . 2 

=72 .03 e p 3 and 

280 yitn g r a i n s i z e 

. 25 x 10 p s i , 

" F e r r o v a c ­

(M) =2 .733 and 



TABLE 5-2 . Calculated values of AO" , ACT 
and G~r for specimen AC. 

> 

0.01 

0.017 

0.02 

0.028 

0.035 

0.038 

0.045 

0.048 

1 

# 

it-* 

-*-:;•-::-

_ j ss S* _̂f** CT' ACT ACT ACT 
measured eq .5 .29 eq .3 .37 

5.30 4.0 12.44 11.95 

7.00 4.85 15.31 15-35 

7-5 ' 5.07 16.21 I6 .9 

8.3 5.28 18.88 20.0 

8 .6 ' 5.39 20.25 22.36 

8.65 5.44 21.24 23.3 

8 .8 ' 5.44 22.64 25.36 

8.94 5.44 " 2 3 . l l 26.05 

; obta ined from Fig . 5-9 . 
j the same with i n TABLE 5 . 1 . 
; c= l / 4 , h=8, <M> =2. 
; CT =35-2 k s i . 

r 1 

ay*** 
computed 

58.7 

64.4 

66.7 

71.5 

74.4 ■ 

75.8 

78.9 

79.4 

experiment 

59.8 

65.2 

68.0 

73.5 

77.0 

78.0 

80.5 

81.5 

http://23.ll
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FIGURE CAPTIONS 

3.1 Wilson's construction. A schematic illustration of the relation between 

Bauschinger effect and permanent softening. 

3.2 Elastic-plastic model which provides a theoretical basis for the re-

lation a = 2a . The dotted round curve is a consequence of inhomo-

geneous local stress. 

3.3 Particle strengthening model: 

(a) Dislocation loop distribution in multiple slip model. 

(b) Eshelby's transformation problem equivalent to (a) . 

(c) FHP model. 

(d) Brown and Stobbs model . 

4.1 (a) Optical micrograph of thermally cycled Specimen AC: magnification 

1,800 times. 

(b) Two stage carbon replica electron micrograph of Specimen AC, 

shows that particles are contained in grain boundaries; mangification 

6,000 times. 

4.2 (a) Optical micrograph of Specimen AT2, quenched and tempered at 700°C 

for 8 hours; magnification 1,800 times. 

(b) Two stage carbon replica electron micrograph of (a) reveals the 

particle-pinned-subgrain boundaries: magnification 6,000 times. 

4.3 (a) Optical micrograph of Specimen AT3, quenched and tempered at 700°C 

for 40 hours: magnification 1,800 times. 

(b) Replica electron micrograph reveals clearly the particle inter-

linked subgrain boundaries: magnification 4,000 times. 

4.4 An example how the magnitude of the permanent softening is measured 

(for Specimen AC). 
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4.5 The amount of permanent softening as a function of reverse plastic 

strain at the given pre-plastic strains. 

5.1 The variations of the stresses developed at a particle-matrix inter-

face on the plane of x, = 0. The polar plot of stress takes the 

particle boundary as the zero of stress. 

5.2 Mean normal stresses in the matrix with a maximum value of -0.3ue 

P 

at R = 1.3r and falls off as 1/R3. 

5.3 Graphical solutions of Equation (5.16) at e = 0.03, 0.04, and 0.05. 

b = 2.42A , v = 1/3, h = 8, c = 1/3, and <M> = 2. 

5.4 Particle size effect on internal stresses for a given volume fraction 

(Specimen AT, f = 0.127, e =0.05) 

5.5 Graphical solutions of Equation (5.16) at r = 0.29, 0.51, and 0.97pm. 

Numerical constants are the same as in 5.3. 

5.6 The relation between "double-n" strain-hardening behavior and perman-

ent softening. The plots also suggest the relation of a - ke 

for quenched and tempered specimens. The transition starts to occur 

at the points marked by arrows. 

5.7 Unrelaxed strains as a function of plastic strains. Predicted values 

from the continuum model show a good fit to the measured ones (Speci-

mens AT2 and AT3). 

5.8 Lower yield stresses in tempered specimens are plotted as a function 

of X -1/2 as a structural parameter of Hall-Petch equation. 

5.9 The measured values of internal stresses are compared with the values 

used in a previous work of Anand and it shows that a also depends on 

the microstructure. 
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5.10 Unrelaxed plastic strains computed from the measured values of in-

ternal stresses vs. plastic strains. 

5.11 Cyclic stress-strain curves: 

(a) for the specimen, quenched and thermally cycled 

(b) and for the specimen, quenched and tempered at 700°C for 8 hours. 

5.12 The experimental and the predicted flow stress curves. 

5.13 Optical micrographs of the longitudinal section of: 

(a) Specimen AT2, white arrows indicate cavities, formed at the 

particle-matrix interface. Double arrow represents tensile direction. 

Magnification 2,200 times. 

(b) Specimen ATI. Double arrow represents tensile direction. 

Magnification 2,200 times. 

Both specimens loaded until necking occurred. 
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