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This paper studies the multiplicity-correction effect of standard Bayesian

variable-selection priors in linear regression. Our first goal is to clarify when,

and how, multiplicity correction happens automatically in Bayesian analysis,

and to distinguish this correction from the Bayesian Ockham’s-razor effect.

Our second goal is to contrast empirical-Bayes and fully Bayesian approaches

to variable selection through examples, theoretical results and simulations.

Considerable differences between the two approaches are found. In particu-

lar, we prove a theorem that characterizes a surprising aymptotic discrepancy

between fully Bayes and empirical Bayes. This discrepancy arises from a dif-

ferent source than the failure to account for hyperparameter uncertainty in the

empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-

Bayes estimate converges asymptotically to the true variable-inclusion prob-

ability, the potential for a serious difference remains.

1. Introduction. This paper addresses concerns about multiplicity in the tra-

ditional variable-selection problem for linear models. We focus on Bayesian and

empirical-Bayesian approaches to the problem. These methods both have the at-

tractive feature that they can, if set up correctly, account for multiplicity automati-

cally, without the need for ad-hoc penalties.

Given the huge number of possible predictors in many of today’s scientific prob-

lems, these concerns about multiplicity are becoming ever more relevant. They are

especially critical when researchers have little reason to suspect one model over

another, and simply want the data to flag interesting covariates from a large pool.

In such cases, variable selection is treated less as a formal inferential framework

and more as an exploratory tool used to generate insights about complex, high-

dimensional systems. Still, the results of such studies are often used to buttress sci-

entific conclusions or guide policy decisions—conclusions or decisions that may

be quite wrong if the implicit multiple-testing problem is ignored.

Our first objective is to clarify how multiplicity correction enters Bayesian vari-

able selection: by allowing the choice of prior model probabilities to depend upon
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the data in an appropriate way. Some useful references on this idea include Waller

and Duncan (1969), Meng and Dempster (1987), Berry (1988), Westfall, Johnson

and Utts (1997), Berry and Hochberg (1999) and Scott and Berger (2006). We also

clarify the difference between multiplicity correction and the Bayesian Ockham’s-

razor effect [see Jefferys and Berger (1992)], which induces a very different type

of penalty on model complexity. This discussion will highlight the fact that not all

Bayesian analyses automatically adjust for multiplicity.

Our second objective is to describe and investigate a peculiar discrepancy be-

tween fully Bayes and empirical-Bayes variable selection. This discrepancy seems

to arise from a different source than the failure to account for uncertainty in the

empirical-Bayes estimate—the usual issue in such problems. Indeed, even when

the empirical-Bayes estimate converges asymptotically to the true hyperparameter

value, the potential for a serious difference remains.

The existence of such a discrepancy between fully Bayesian answers and

empirical-Bayes answers—especially one that persists even in the limit—is of im-

mediate interest to Bayesians, who often use empirical Bayes as a computational

simplification. But the discrepancy is also of interest to non-Bayesians for at least

two reasons.

First, frequentist complete-class theorems suggest that if an empirical-Bayes

analysis does not approximate some fully Bayesian analysis, then it may be subop-

timal and needs alternative justification. Such justifications can be found for a va-

riety of situations in George and Foster (2000), Efron et al. (2001), Johnstone and

Silverman (2004), Bogdan, Ghosh and Zak-Szatkowska (2008), Cui and George

(2008), Bogdan, Chakrabarti and Ghosh (2008) and Bogdan, Ghosh and Tokdar

(2008).

Second, theoretical and numerical investigations of the discrepancy revealed

some unsettling properties of the standard empirical-Bayes analysis in variable se-

lection. Of most concern is that empirical Bayes has the potential to collapse to a

degenerate solution, resulting in an inappropriate statement of certainty in the se-

lected regression model. As a simple example, suppose the usual variable-selection

prior is used, where each variable is presumed to be in the model independently

with an unknown common probability p. A common empirical-Bayes method is to

estimate p by marginal maximum likelihood (or Type-II maximum likelihood, as

it is commonly called; see Section 3.2). This estimated p̂ is then used to determine

the posterior probabilities of models. This procedure will be shown to have the

startlingly inappropriate property of assigning final probability 1 to either the full

model or the intercept-only (null) model whenever the full (or null) model has the

largest marginal likelihood, even if this marginal likelihood is only slightly larger

than that of the next-best model.

This is certainly not the first situation in which the Type-II MLE approach to

empirical Bayes has been shown to have problems. But the unusual character of

the problem in variable selection seems not to have been recognized.
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In bringing this issue to light, our goal is not to criticize empirical-Bayes analy-

sis per se. Indeed, this paper will highlight many virtues of the empirical-Bayes

approach to variable selection, especially compared to the nonadaptive model prior

probabilities that are often used for variable selection. Our primary goal is compar-

ative, rather than evaluative, in nature. In particular, we wish to explore the impli-

cations of the above discrepancy for Bayesians, who are likely to view empirical

Bayes as an approximation to full Bayes analysis, and who wish to understand

when the approximation is a good one. We recognize that others have alternative

goals for empirical Bayes, and that these goals do not involve approximating full

Bayes analysis. Also, there are non-Bayesian alternatives to marginal maximum

likelihood in estimating p, as shown in some of the above papers. The results in

this paper suggest that such alternatives be seriously considered by those wishing

to adopt the empirical-Bayes approach, especially in potentially degenerate situa-

tions.

Section 2 introduces notation. Section 3 gives a brief historical and method-

ological overview of multiplicity correction for Bayesian variable selection, and

focuses on the issue of clarifying the source and nature of the correction. Sec-

tions 4 and 5 introduce a theoretical framework for characterizing the differences

between fully Bayesian and empirical-Bayes analyses, and gives several examples

and theoretical results concerning the differences. Section 6 presents numerical

results indicating the practical nature of the differences, through a simulation ex-

periment and a practical example. Section 7 gives further discussion of the results.

2. Preliminaries.

2.1. Notation. Consider the usual problem of variable selection in linear re-

gression. Given a vector Y of n responses and an n × m design matrix X, the goal

is to select k predictors out of m possible ones for fitting a model of the form

Yi = α + Xij1
βj1

+ · · · + Xijk
βjk

+ εi(1)

for some {j1, . . . , jk} ⊂ {1, . . . ,m}, where εi
i.i.d.∼ N(0, φ−1) for an unknown vari-

ance φ−1.

All models are assumed to include an intercept term α. Let M0 denote the null

model with only this intercept term, and let MF denote the full model with all

covariates under consideration. The full model thus has parameter vector θ ′ =
(α,β ′), β ′ = (β1, . . . , βm)′. Submodels Mγ are indexed by a binary vector γ of

length m indicating a set of kγ ≤ m nonzero regression coefficients βγ :

γi =
{

0, if βi = 0,

1, if βi �= 0.

It is most convenient to represent model uncertainty as uncertainty in γ , a ran-

dom variable that takes values in the discrete space {0,1}m, which has 2m mem-

bers. Inference relies upon the prior probability of each model, p(Mγ ), along with
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the marginal likelihood of the data under each model:

f (Y | Mγ ) =
∫

f (Y | θγ , φ)π(θγ , φ) dθγ dφ,(2)

where π(θγ , φ) is the prior for model-specific parameters. These together define,

up to a constant, the posterior probability of a model:

p(Mγ | Y) ∝ p(Mγ )f (Y | Mγ ).(3)

Let Xγ denote the columns of the full design matrix X given by the nonzero

elements of γ , and let X∗
γ denote the concatenation (1 Xγ ), where 1 is a column

of ones corresponding to the intercept α. For simplicity, we will assume that all

covariates have been centered so that 1 and Xγ are orthogonal. We will also assume

that the common choice π(α) = 1 is made for the parameter α in each model [see

Berger, Pericchi and Varshavsky (1998) for a justification of this choice of prior].

Often all models will have small posterior probability, in which case more useful

summaries of the posterior distribution are quantities such as the posterior inclu-

sion probabilities of the individual variables:

pi = Pr(γi �= 0 | Y) =
∑

γ

1γi=1 · p(Mγ | Y).(4)

These quantities also define the median-probability model, which is the model

that includes those covariates having posterior inclusion probability at least 1/2.

Under many circumstances, this model has greater predictive power than the most

probable model [Barbieri and Berger (2004)].

2.2. Priors for model-specific parameters. There is an extensive body of lit-

erature confronting the difficulties of Bayesian model choice in the face of weak

prior information. These difficulties arise due to the obvious dependence of the

marginal likelihoods in (2) upon the choice of priors for model-specific parame-

ters. In general, one cannot use improper priors on these parameters, since this

leaves the resulting Bayes factors defined only up to an arbitrary multiplicative

constant.

This paper chiefly uses null-based g-priors [Zellner (1986)] for computing the

marginal likelihoods in (2); explicit expressions can be found in the Appendix.

See Liang et al. (2008) for a recent discussion of g-priors, and mixtures thereof,

for variable selection.

3. Approaches to multiple testing.

3.1. Bayes factors, Ockham’s razor and multiplicity. In both Bayes and

empirical-Bayes variable selection, the marginal likelihood contains a built-in

penalty for model complexity that is often called the Bayesian “Ockham’s-razor
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effect” [Jefferys and Berger (1992)]. This penalty arises in integrating the likeli-

hood across a higher-dimensional parameter space under the more complex model,

resulting in a more diffuse predictive distribution for the data.

While this is a penalty against more complex models, it is not a multiple-testing

penalty. Observe that the Bayes factor between two fixed models will not change

as more possible variables are thrown into the mix, and hence will not exert control

over the number of false positives as m grows large.

Instead, multiplicity must be handled through the choice of prior probabilities

of models. The earliest recognition of this idea seems to be that of Jeffreys in

1939, who gave a variety of suggestions for apportioning probability across differ-

ent kinds of model spaces [see Sections 1.6, 5.0 and 6.0 of Jeffreys (1961), a later

edition]. Jeffreys paid close attention to multiplicity adjustment, which he called

“correcting for selection.” In scenarios involving an infinite sequence of nested

models, for example, he recommended using model probabilities that formed a

convergent geometric series, so that the prior odds ratio for each pair of neigh-

boring models (i.e., those differing by a single parameter) was a fixed constant.

Another suggestion, appropriate for more general contexts, was to give all models

of size k a single lump of probability to be apportioned equally among models of

that size. Below, in fact, the fully Bayesian solution to multiplicity correction will

be shown to have exactly this flavor.

It is interesting that, in the variable-selection problem, assigning all models

equal prior probability (which is equivalent to assigning each variable prior prob-

ability of 1/2 of being in the model) provides no multiplicity control. This is most

obvious in the orthogonal situation, which can be viewed as m independent tests of

Hi :βi = 0. If each of these tests has prior probability of 1/2, there will be no mul-

tiplicity control as m grows. Indeed, note that this “pseudo-objective” prior reflects

an a priori expected model size of m/2 with a standard deviation of
√

m/2, mean-

ing that the prior for the fraction of included covariates becomes very tight around

1/2 as m grows. See Bogdan, Ghosh and Tokdar (2008) for extensive discussion

of this issue.

3.2. Variable-selection priors and empirical Bayes. The standard modern

practice in Bayesian variable-selection problems is to treat variable inclusions as

exchangeable Bernoulli trials with common success probability p, which implies

that the prior probability of a model is given by

p(Mγ | p) = pkγ (1 − p)m−kγ(5)

with kγ representing the number of included variables in the model.

We saw above that selecting p = 1/2 does not provide multiplicity correction.

Treating p as an unknown parameter to be estimated from the data will, however,

yield an automatic multiple-testing penalty. The intuition is that, as m grows with

the true k remaining fixed, the posterior distribution of p will concentrate near 0,
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so that the situation is the same as if one had started with a very low prior proba-

bility that a variable should be in the model [Scott and Berger (2006)]. Note that

one could adjust for multiplicity subjectively, by specifying p to reflect subjective

belief in the proportion of variables that should be included. No fixed choice of p

that is independent of m, however, can adjust for multiplicity.

The empirical-Bayes approach to variable selection was popularized by George

and Foster (2000), and is a common strategy for treating the prior inclusion proba-

bility p in (5) in a data-dependent way. The most common approach is to estimate

the prior inclusion probability by maximum likelihood, maximizing the marginal

likelihood of p summed over model space (often called Type-II maximum likeli-

hood):

p̂ = arg max
p∈[0,1]

∑

γ

p(Mγ | p) · f (Y | Mγ ).(6)

One uses this in (5) to define the ex-post prior probabilities p(Mγ | p̂) = p̂kγ (1 −
p̂)m−kγ , resulting in final model posterior probabilities

p(Mγ | Y) ∝ p̂kγ · (1 − p̂)m−kγ f (Y | Mγ ).(7)

The EB solution p̂ can be found either by direct numerical optimization or by the

EM algorithm detailed in Liang et al. (2008). For an overview of empirical-Bayes

methodology, see Carlin and Louis (2000).

It is clear that the empirical-Bayes approach will control for multiplicity in a

straightforward way: if there are only k true variables and m grows large, then

p̂ → 0. This will make it increasingly more difficult for all variables to overcome

the ever-stronger prior bias against their relevance.

3.3. A fully Bayesian version. Fully Bayesian variable-selection priors have

been discussed by Ley and Steel (2009), Cui and George (2008) and Carvalho and

Scott (2009), among others. These priors assume that p has a Beta distribution,

p ∼ Be(a, b), giving

p(Mγ ) =
∫ 1

0
p(Mγ | p)π(p)dp = β(a + kγ , b + m − kγ )

β(a, b)
,(8)

where β(·, ·) is the beta function. For the default choice of a = b = 1, implying a

uniform prior on p, this reduces to

p(Mγ ) = (kγ )!(m − kγ )!
(m + 1)(m!) = 1

m + 1

(

m

kγ

)−1

.(9)

We call these expressions deriving from the uniform prior on p the “fully

Bayes” version of variable selection priors, though of course many other priors

could be used (including those incorporating subject-area information). Utilizing

these prior probabilities in (3) yields the following posterior probabilities:

p(Mγ | Y) ∝ 1

m + 1

(

m

kγ

)−1

f (Y | Mγ ).(10)
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FIG. 1. Prior model probability versus model size.

This has the air of paradox: in contrast to (7), where the multiplicity adjustment is

apparent, here p has been marginalized away. How can p then be adjusted by the

data so as to induce a multiplicity-correction effect?

Figures 1 and 2 hint at the answer, which is that the multiplicity penalty was

always in the prior probabilities in (9) to begin with; it was just hidden. In Figure 1

the prior log-probability is plotted as a function of model size for a particular

value of m (in this case 30). This highlights the marginal penalty that one must

pay for adding an extra variable: in moving from the null model to a model with

one variable, the fully Bayesian prior favors the simpler model by a factor of 30
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(label A). This penalty is not uniform: models of size 9, for example, are favored

to those of size 10 by a factor of only 2.1 (label B).

Figure 2 then shows these penalties getting steeper as one considers more mod-

els. Adding the first variable incurs a 30-to-1 prior-odds penalty if one tests 30 vari-

ables (label A as before), but a 60-to-1 penalty if one tests 60 variables. Similarly,

the 10th-variable marginal penalty is about two-to-one for 30 variables considered

(label B), but would be about four-to-one for 60 variables.

We were careful above to distinguish this effect from the Ockham’s-razor

penalty coming from the marginal likelihoods. But marginal likelihoods are clearly

relevant. They determine where models will sit along the curve in Figure 1, and

thus will determine whether the prior-odds multiplicity penalty for adding another

variable to a good model will be more like 2, more like 30 or something else en-

tirely. Indeed, note that, if only large models have significant marginal likelihoods,

then the “multiplicity penalty” will now become a “multiplicity advantage,” as one

is on the increasing part of the curve in Figure 1. (This is also consistent with the

empirical-Bayes answer: if p̂ > 0.5, then the analysis will increase the chance of

variables entering the model.)

Interestingly, the uniform prior on p also gives every variable a marginal prior

inclusion probability of 1/2; these marginal probabilities are the same as those

induced by the “pseudo-objective” choice of p = 1/2. Yet because probability is

apportioned among models in a very different way, profoundly different behaviors

emerge.

For example, Table 1 compares these two regimes on a simulated data set for

which the true value of k was fixed at 10. The goal of the study is, in essence,

to understand how posterior probabilities adapt to situations of increasingly egre-

gious “data dredging,” where a set of true covariates is tested in the presence of

an ever-larger group of spurious covariates. We used a simulated m = 100 design

matrix of N(0,1) covariates and 10 regression coefficients that differed from zero,

along with 90 coefficients that were identically zero. The table summarizes the

posterior inclusion probabilities of the 10 real variables as we test them along with

an increasing number of noise variables (first 1, then 10, 40 and 90). It also indi-

cates how many false positives (defined as having posterior inclusion probability

≥ 0.5) are found among the noise variables. Here, “uncorrected” refers to giving

all models equal prior probability by setting p = 1/2. “Oracle Bayes” is the result

from choosing p to reflect the known fraction of nonzero covariates.

The following points can be observed:

• The fully Bayes and empirical Bayes procedures both exhibit clear multiplicity

adjustment: as the number of noise variables increases, the posterior inclusion

probabilities of variables decrease. The uncorrected Bayesian analysis shows no

such adjustment and can, rather bizarrely, sometimes have the posterior inclu-

sion probabilities increase as noise variables are added.
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TABLE 1

Posterior inclusion probabilities (×100) for the 10 real variables in the simulated data, along with

the number of false positives (posterior inclusion probability greater than 1/2) from the “pure

noise” columns in the design matrix. Marginal likelihoods were calculated (under Zellner–Siow

priors) by enumerating the model space in the m = 11 and m = 20 cases, and by 5 million

iterations of the feature-inclusion stochastic-search algorithm [Berger and Molina (2005),

Scott and Carvalho (2008)] in the m = 50 and m = 100 cases

Method and number of noise variables

Uncorrected Fully Bayes Oracle Bayes Empirical Bayes

Signal 1 10 40 90 1 10 40 90 1 10 40 90 1 10 40 90

−1.08 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

−0.84 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99

−0.74 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

+0.63 99 99 99 99 99 99 92 73 99 99 97 87 99 99 93 80

−0.51 97 97 99 99 91 94 71 34 99 97 85 52 93 95 74 44

+0.41 92 91 99 99 96 86 56 22 99 91 72 35 97 88 60 25

+0.35 77 77 99 99 89 68 30 05 97 77 45 11 91 72 35 07

−0.30 29 28 28 12 55 24 04 00 79 28 06 01 64 25 04 01

+0.18 26 28 24 27 51 25 03 01 79 28 04 01 62 24 04 01

+0.07 21 24 05 01 45 21 03 01 70 24 05 01 56 22 03 01

FPs 0 2 5 10 0 1 0 0 0 2 1 0 0 1 1 0

• On the simulated data, proper multiplicity adjustment yields reasonably strong

control over false positives, in the sense that the number of false positives ap-

pears bounded (and small) as m increases. In contrast, the number of false posi-

tives appears to be increasing linearly for the uncorrected Bayesian analysis, as

would be expected.

• The full Bayes, empirical Bayes and oracle Bayes answers are all qualitatively

(though not quantitatively) similar; indeed, if one adopted the (median proba-

bility model) prescription of selecting those variables with posterior inclusion

probability greater than 1/2, they would both always select the same variables,

except in two instances.

The differences between corrected and uncorrected analyses are quite stark, and

calls into question the use of nonadaptive priors in situations with large numbers of

potentially spurious covariates. For example, Table 2 shows the posterior inclusion

probabilities for a model of ozone concentration levels outside Los Angeles that

includes 10 atmospheric variables along with all squared terms and second-order

interactions (m = 65). Probabilities are given for uncorrected (p = 1/2), empirical

Bayes and fully Bayesian analyses. All variables appear uniformly less impressive

when adjusted for multiplicity.

Other examples of such multiplicity correction put into practice can be found

throughout the literature. For nonparametric problems, see Gopalan and Berry
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TABLE 2

Posterior inclusion probabilities for the important main effects, quadratic

effects and cross-product effects for ozone-concentration data under

g-priors. Key: p = 1/2 implies that all models have equal prior

probability; FB is fully Bayes; EB is empirical Bayes

p = 1/2 FB EB

x1 0.83 0.42 0.54

x2 0.13 0.03 0.05

x3 0.09 0.02 0.03

x4 0.94 0.73 0.84

x5 0.33 0.06 0.10

x6 0.38 0.07 0.10

x7 0.34 0.36 0.29

x8 0.78 0.74 0.77

x9 0.20 0.03 0.05

x10 0.96 0.96 0.97

x1–x1 1.00 0.97 0.99

x9–x9 0.95 0.82 0.91

x1–x2 0.48 0.16 0.24

x4–x7 0.33 0.10 0.15

x6–x8 0.43 0.25 0.34

x7–x8 0.31 0.13 0.18

x7–x10 0.71 0.86 0.85

(1998); for gene-expression studies, see Do, Muller and Tang (2005); for econo-

metrics, see Ley and Steel (2009); for Gaussian graphical models, see Carvalho

and Scott (2009); and for time-series data, see Scott (2009).

4. Theoretical comparison of Bayes and empirical Bayes.

4.1. Motivation. The previous section showed some examples where fully

Bayes and empirical-Bayes methods gave qualitatively similar results. While this

rough correspondence between the two approaches does seem to hold in a wide

variety of applied problems, we now turn attention to the question of when, and

how, it fails.

We begin with a surprising lemma that indicates the need for caution with

empirical-Bayes methods in variable selection. The lemma refers to the variable-

selection problem, with the prior variable inclusion probability p being estimated

by marginal (or Type-II) maximum likelihood in the empirical-Bayes approach.

LEMMA 4.1. In the variable-selection problem, if M0 has the (strictly) largest

marginal likelihood, then the Type-II MLE estimate of p is p̂ = 0. Similarly, if MF

has the (strictly) largest marginal likelihood, then p̂ = 1.
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PROOF. Since p(Mγ ) sums to 1 over γ , the marginal likelihood of p satisfies

f (Y) =
∑

Ŵ

f (Y | Mγ )p(Mγ ) ≤ max
γ∈Ŵ

f (Y | Mγ ).(11)

Furthermore, the inequality is strict under the conditions of the lemma (because the

designated marginals are strictly largest), unless the prior assigns p(Mγ ) = 1 to the

maximizing marginal likelihood. The only way that p(Mγ ) = pkγ · (1 − p)m−kγ

can equal 1 is for p to be 0 or 1 and for the model to be M0 or MF , respectively. At

these values of p, equality is indeed achieved in (11) under the stated conditions,

and the results follow. �

As a consequence, the empirical-Bayes approach here would assign final prob-

ability 1 to M0 whenever it has the largest marginal likelihood, and final probabil-

ity 1 to MF whenever it has the largest marginal likelihood. These are clearly very

unsatisfactory answers.

The above lemma does highlight a specific, undesirable property of the

empirical-Bayes approach to variable selection—one whose practical significance

we investigate by simulation in Section 6. For the most part, however, the rest of

our results are of a fundamentally different character. We will not be evaluating

either the fully Bayes or the empirical-Bayes approach according to an objective

yardstick, such as how well each one does at recovering true relationships or sup-

pressing false ones. Instead, we focus on comparing the two approaches to each

other in a more formal way. As mentioned above, our fundamental goal is to un-

derstand when, and how, empirical Bayes corresponds asymptotically to full Bayes

analysis. Such a comparison is certainly of interest, both to Bayesians who might

consider empirical Bayes as a computational approximation, and to frequentists

for the reasons mentioned in the Introduction.

To explore the difference between these two approaches, it is useful to abstract

the problem somewhat and suppose simply that the data Y have sampling density

f (Y | θ), and let θ ∈ 	 have prior density π(θ | λ) for some unknown hyperpa-

rameter λ ∈ 
. Empirical-Bayes methodology typically proceeds by estimating λ

from the data using a consistent estimator. [The Type-II MLE approach would es-

timate λ by the maximizer of the marginal likelihood m(Y | λ) =
∫


 f (Y | θ)π(θ |
λ) dθ , and this will typically be consistent in empirical-Bayes settings.] It is then

argued that (at least asymptotically) the Bayesian analysis with λ̂ will be equiva-

lent to the Bayesian analysis if one knew λ. (This claim is most interesting when

the prior for λ̂ is unknown; if it is known, then there are also strong frequentist

reasons to use this prior in lieu of empirical Bayes.)

To contrast this with a full Bayesian analysis, suppose we have a prior density

π(λ) for λ and a target function ψ(θ,Y | λ). For instance, ψ could be the posterior

mean of θ given λ and Y, or it could be the conditional posterior distribution of θ

given λ and Y. The empirical-Bayesian claim, in this context, would be that
∫



ψ(θ ,Y | λ)π(λ | Y) dλ ≈ ψ(θ,Y | λ̂),(12)
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that is, that the full Bayesian answer on the left can be well approximated by the

empirical-Bayes answer on the right. The justification for (12) would be based on

the fact that, typically, π(λ | Y) will collapse to a point mass near the true λ as

the sample size increases, so that (12) will hold for appropriately smooth functions

ψ(θ,Y | λ) when the sample size is large.

There are typically better approximations to the left-hand side of (12), such

as the Laplace approximation. These, however, are focused on reproducing the

full-Bayes analysis through an analytic approximation, and are not “empirical-

Bayes” per se. Likewise, higher-order empirical-Bayes analysis will likely yield

better results here, but the issue is in realizing when one needs to resort to such

higher-order analysis in the first place, and in understanding why this is so for

problems such as variable selection.

That (12) could fail for nonsmooth ψ(θ,Y | λ) is no surprise. But what may

come as a surprise is that this failure can also occur for very common functions.

Most notably, it fails for the conditional posterior density itself. Indeed, in

choosing ψ(θ,Y | λ) = π(θ | λ,Y), the left-hand side of (12) is just the poste-

rior density of θ given Y, which (by definition) can be written as

πF (θ | Y) ∝ f (Y | θ)

∫



π(θ | λ)π(λ) dλ.(13)

On the other hand, for this choice of ψ , (12) becomes

πE(θ | Y) ≈ π(θ | Y, λ̂) ∝ f (Y | θ) · π(θ | λ̂),(14)

and the two expressions on the right-hand sides of (13) and (14) can be very dif-

ferent. [This difference may not matter, of course; for instance, if f (Y | θ) is ex-

tremely concentrated as a likelihood, the prior being used may not matter.]

As an indication as to what goes wrong in (12) for this choice of ψ , note that

πF (θ | Y) =
∫



π(θ | λ,Y) · π(λ | Y) dλ

=
∫




π(θ ,λ | Y)

π(λ | Y)
· π(λ | Y) dλ(15)

=
∫




f (Y | θ)π(θ | λ)π(λ)

f (Y)π(λ | Y)
· π(λ | Y) dλ.(16)

Of course, these elementary calculations simply lead to (13) after further algebra.

But they illuminate the fact that, while π(λ | Y) may indeed be collapsing to a point

mass at the true λ, this term occurs in both the numerator and the denominator of

the integrand and therefore cancels. The accuracy with which a point mass at λ̂

approximates π(λ | Y) is thus essentially irrelevant from the standpoint of full

Bayes analysis.
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4.2. Comparison using Kullback–Leibler convergence. Our goal, then, is to

understand when (13) and (14) will yield the same answers, in an asymptotic sense.

The closeness of these two distributions will be measured by Kullback–Leibler

divergence, a standard measure for comparing a pair of distributions P and Q over

parameter space 	:

KL(P ‖Q) =
∫

	
P(θ) log

(

P(θ)

Q(θ)

)

dθ .(17)

Kullback–Leibler divergence can be used to formalize the notion of empirical-

Bayes convergence to fully Bayesian analysis as follows:

KL empirical-Bayes convergence. Suppose the data Y and parameter θ have

joint distribution p(Y, θ | λ), where θ ∈ 	 is of dimension m, and where λ ∈ 


is of fixed dimension that does not grow with m. Let πE = π(ψ(θ) | Y, λ̂) be the

empirical-Bayes posterior distribution for some function of the parameter ψ(θ),

and let πF = π(ψ(θ) | Y) =
∫


 π(ψ(θ) | Y,λ) · π(λ) dλ be the corresponding

fully Bayesian posterior under the prior π(λ). If, for every λ ∈ 
, KL(πF ‖πE) →
0 in probability [expectation] under p(Y, θ | λ) as m → ∞, then πE will be said to

be KL-convergent in probability [expectation] to the fully Bayesian posterior πF .

Note that KL convergence is defined with respect to a particular function of the

parameter, along with a particular prior distribution on the hyperparameter. The

intuition is the following. Suppose that in trying to estimate a given function ψ(θ),

it is possible to construct a reasonable prior π(λ) such that the KL-convergence

criterion is met. Then the empirical Bayes and full Bayes analysis will disagree for

every finite sample size, but are at least tending toward agreement asymptotically.

If, on the other hand, it is not possible to find a reasonable prior π(λ) that leads

to KL convergence, then estimating ψ(θ) by empirical Bayes is dubious from the

fully Bayesian perspective. A Bayesian could not replicate such a procedure even

asymptotically, while a frequentist may be concerned by complete-class theorems.

(A “reasonable” prior is a necessarily vague notion, but obviously excludes things

such as placing a point mass at λ̂.)

Instead of KL divergence, of course, one might instead use another distance or

divergence measure. The squared Hellinger distance is one such possibility:

H2(P ‖Q) = 1

2

∫

	

(

√

P(θ) −
√

Q(θ)
)2

dθ .

Most of the subsequent results, however, use KL divergence because of its famil-

iarity and analytical tractability.

4.3. An orthogonal example. As a simple illustration of the above ideas, con-

sider the following two examples of empirical-Bayes analysis. The first example

satisfies the convergence criterion; the second does not. Both examples concern the

same sampling model, in which we observe a series of conditionally independent
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random variables yi ∼ N(θi,1), and where we know that θi ∼ N(μ,1). Thus, the

hyperparameter λ = μ here. Let θ = (θ1, . . . , θm) and y = (y1, . . . , ym).

Alternatively, this can be thought of as an orthogonal regression problem where

both the dimension and number of samples are growing at the same rate: y = Xθ +
ε, with X being the m × m identity matrix. This framing makes the connection to

variable selection much more plain.

The natural empirical-Bayes estimate of μ is the sample mean μ̂E = ȳ, which

is clearly consistent for μ as m → ∞ and converges at the usual 1/
√

m rate.

A standard hyperprior in a fully Bayesian analysis, on the other hand, would be

μ ∼ N(0,A) for some specified A; the objective hyperprior π(μ) = 1 is essen-

tially the limit of this as A → ∞. Using the expressions given in, for example,

Berger (1985), the empirical-Bayes and full Bayes posteriors are

πE(θ | y, μ̂E) = N
(

1
2
(y + ȳ1), 1

2
I
)

,(18)

πF (θ | y) = N

(

1

2
(y + ȳ1) −

(

1

mA + 2

)

ȳ1,
1

2
I + A

2(mA + 2)
(11t )

)

,(19)

where I is the identity matrix and 1 is a column vector of all ones.

EXAMPLE 1. Suppose only the first normal mean, θ1, is of interest, meaning

that the target function ψ(θ) = θ1. Then sending A → ∞ yields

πE(θ1 | y, μ̂E) = N([y1 + ȳ]/2,1/2),(20)

πF (θ1 | y) = N([y1 + ȳ]/2,1/2 + [2m]−1).(21)

It is easy to check that KL(πF ‖πE) → 0 as m → ∞. Hence, πE(θ1) arises from

a KL-convergent EB procedure under a reasonable prior, since it corresponds as-

ymptotically to the posterior given by the objective prior on the hyperparameter μ.

EXAMPLE 2. Suppose now that θ , the entire vector of means, is of interest

[hence, ψ(θ) = θ ]. The relevant distributions are then the full πE and πF given in

(18) and (19), with parameters (θ̂E,�E) and (θ̂F ,�F ), respectively.

A straightforward computation shows that KL(πF ‖πE) is given by

KL = 1

2

[

log

(

det�E

det�F

)

+ tr(�−1
E �F ) + (θ̂E − θ̂F )t�−1

E (θ̂E − θ̂F ) − m

]

(22)

= 1

2

[

− log

(

1 + mA

mA + 2

)

+ mA

mA + 2
+ 2m

(

1

mA + 2

)2

ȳ2

]

.

For any nonzero choice of A and for any finite value of the hyperparameter μ, it is

clear that under p(y, θ | μ) the quantity [2m/(mA + 2)2] · ȳ2 → 0 in probability

as m → ∞. Hence, for any value of A (including A = ∞), the KL divergence in

(22) converges to (1 − log 2)/2 > 0.
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Of course, this only considers priors of the form μ ∼ N(0,A), but the asymp-

totic normality of the posterior for μ can be used to prove the result for essentially

any prior that satisfies the usual regularity conditions, suggesting that there is no

reasonable prior for which πE(θ) is KL-convergent.

The crucial difference here is that, in the second example, the parameter of

interest increases in dimension as information about the hyperparameter μ accu-

mulates. This is not the usual situation in asymptotic analysis. Hence, even as θ̂E

and θ̂F are getting closer to each other elementwise, the KL divergence does not

shrink to 0 as expected.

Two further comments are in order. First, a similar argument shows that the

fully Bayes posterior is not KL-convergent to the so-called “oracle posterior”

π(θ | y,μT )—that is, the conditional posterior distribution for θ , given the true

value of μ. This is not a source of worry for Bayesians, but it makes clear that the

disagreement between EB and FB procedures cuts both ways, and is not merely a

“failure” of empirical-Bayes; if a non-Bayesian’s goal is to reconstruct the oracle

posterior, this could be achieved by empirical-Bayes analysis but not by full Bayes.

Second, the situation described above has the sample size n equal to the number

of unknown parameters m. If n grows relative to m, the full Bayes and empirical-

Bayes/oracle posteriors can indeed be KL-convergent. For instance, suppose there

are r independent replicate observations for each μi . Then a similar calculation

shows that KL(πF ‖πE) = O(1/r) as r → ∞, so that KL convergence between

the two approaches would obtain.

5. Results for variable selection. For the variable-selection problem, explicit

expressions for the KL divergence between empirical-Bayes and fully Bayes pro-

cedures are not available. It is also quite difficult to characterize the sampling dis-

tribution of p̂, the empirical-Bayes estimate for the prior inclusion probability p.

It is therefore not yet possible to give a general characterization of whether, and

when, the empirical-Bayes variable-selection procedure is KL-convergent, in the

sense defined above, to a fully Bayesian procedure.

Three interesting sets of results are available, however. First and most simply,

we can characterize the KL divergence between the prior probability distributions

of the fully Bayesian and empirical-Bayesian procedures. Second, we can char-

acterize the limiting expected Kullback–Leibler divergence between EB and FB

posteriors, even if we cannot characterize the limiting KL divergence itself. Third,

we can compare the asymptotic behavior of the full Bayes and empirical-Bayes

prior model probabilities for models in a size neighborhood of the true model.

We denote the empirical-Bayes prior distribution over model indicators by

pE(Mγ ) and the fully-Bayesian distribution (with uniform prior on p) by pF (Mγ ).

Similarly, after observing data D, we write pE(Mγ | Y) and pF (Mγ | Y) for the

posterior distributions.
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5.1. Prior KL divergence. The first two theorems prove the existence of lower

bounds on how close the EB and FB priors can be, and show that these lower

bounds become arbitrarily large as the number of tests m goes to infinity. We refer

to these lower bounds as “information gaps,” and give them in both Kullback–

Leibler (Theorem 5.1) and Hellinger (Theorem 5.2) flavors.

THEOREM 5.1. Let G(m) = minp̂ KL(pF (Mγ )‖pE(Mγ )). Then G(m) → ∞
as m → ∞.

PROOF. The KL divergence is

KL =
m

∑

k=0

1

m + 1

[

log

(

1

m + 1

(

m

k

)−1)

− log
(

p̂k · (1 − p̂)m−k)
]

= − log(m + 1)(23)

− 1

m + 1

m
∑

k=0

[

log

(

m

k

)

+ k log p̂ + (m − k) log(1 − p̂)

]

.

This is minimized for p̂ = 1/2 regardless of m, meaning that

G(m) = − log(m + 1) − 1

m + 1

m
∑

k=0

[

log

(

m

k

)

+ m log(1/2)

]

(24)

= m log 2 − log(m + 1) − 1

m + 1

m
∑

k=0

log

(

m

k

)

.

The first (linear) term in (24) dominates the second (logarithmic) term, whereas

results in Gould (1964) show the third term to be asymptotically linear in m with

slope 1/2. Hence, G(m) grows linearly with m, with asymptotic positive slope of

log 2 − 1/2. �

THEOREM 5.2. Let H2(m) = minp̂ H2(pF (Mγ )‖pE(Mγ )). Then H2(m) →
1 as m → ∞.

PROOF.

H2(pF (Mγ )‖pE(Mγ )) = 1 − 1√
m + 1

m
∑

k=0

√

(

m

k

)

p̂k(1 − p̂)m−k.(25)

This distance is also minimized for p̂ = 1/2, meaning that

H2(m) = 1 − (m + 1)−1/2 · 2−m/2 ·
m

∑

k=0

√

(

m

k

)

.(26)
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A straightforward application of Stirling’s approximation to the factorial function

shows that

lim
m→∞

[

(m + 1)−1/2 · 2−m/2 ·
m

∑

k=0

√

(

m

k

)

]

= 0,(27)

from which the result follows immediately. �

In summary, the ex-post prior distribution associated with the EB procedure is

particularly troubling when the number of tests m grows without bound. On the

one hand, when the true value of k remains fixed or grows at a rate slower than

m—that is, when concerns over false positives become the most trenchant, and

the case for a Bayesian procedure exhibiting strong multiplicity control becomes

the most convincing—then p̂ → 0 and the EB prior pE(Mγ ) becomes arbitrarily

bad as an approximation to pF (Mγ ). (Here, the correction under the empirical-

Bayes approach will be more aggressive compared with the Bayesian approach,

and some may consider this additional aggressiveness to be a source of strength.)

On the other hand, if the true k is growing at the same rate as m, then the best one

can hope for is that p̂ = 1/2. And even then, the information gap between pF (Mγ )

and pE(Mγ ) grows linearly without bound (for KL divergence), or converges to 1

(for Hellinger distance).

5.2. Posterior KL divergence. We now prove a theorem showing that, under

very mild conditions, the expected KL divergence between FB and EB posteriors

for the variable-selection problem is infinite. This version assumes that the error

precision φ is fixed, but the generalization to an unknown φ is straightforward.

THEOREM 5.3. In the variable-selection problem, let m, n > m, and φ > 0

be fixed. Suppose Xγ is of full rank for all models and that the family of pri-

ors for model-specific parameters, {π(βγ )}, is such that p(βγ = 0) < 1 for

all Mγ . Then, for any true model MT
γ , the expected posterior KL divergence

E[KL{pF (Mγ | Y)‖pE(Mγ | Y)}] under this true model is infinite.

PROOF. The posterior KL divergence is

KL(pF (Mγ | Y)‖pE(Mγ | Y)) =
∑

Ŵ

pF (Mγ | Y) · log

(

pF (Mγ | Y)

pE(Mγ | Y)

)

.(28)

This is clearly infinite if there exists a model Mγ for which pE(Mγ | Y) = 0 but

pF (Mγ | Y) > 0. Since the fully Bayesian posterior assigns nonzero probability

to all models, this condition is met whenever the empirical-Bayesian solution is

p̂ = 0 or p̂ = 1. Thus, it suffices to show that p̂ will be 0 with positive probability

under any true model.
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Assume without loss of generality that φ = 1. Recall that we are also assum-

ing that π(α) = 1 for all models, and that the intercept is orthogonal to all other

covariates. Letting βγ ∗ = (α,βγ )t for model Mγ , and letting L(·) stand for the

likelihood, the marginal likelihood for any model can then be written

f (Y | Mγ ) = L(β̂
∗
γ ) ·

√

2π/n

∫

R
kγ

g(βγ )π(βγ ) dβγ ,(29)

where

g(βγ ) = exp
{

−1
2
(βγ − β̂γ )tXt

γ Xγ (βγ − β̂γ )
}

.

The Bayes factor for comparing the null model to any model is

Bγ (Y) = f (Y | M0)

f (Y | Mγ )
,

which from (29) is clearly continuous as a function of Y for every γ . Evaluated at

Y = 0 (so that β̂γ then equals 0), this Bayes factor satisfies

Bγ (0) =
(∫

R
kγ

exp

{

−1

2
β t

γ Xt
γ Xγ βγ

}

π(βγ ) dβγ

)−1

> 1(30)

for each Mγ under the assumptions of the theorem.

By continuity, for every model Mγ there exists an εγ such that Bγ (Y) > 1 for

any |Y| < εγ . Let ε∗ = minγ εγ . Then for Y satisyfing |Y| < ε∗, Bγ (Y) > 1 for

all nonnull models, meaning that M0 will have the largest marginal likelihood. By

Lemma 4.1, p̂ = 0 when such a Y is observed.

But under any model, there is positive probability of observing |Y| < ε∗ for

any positive ε∗, since this set has positive Lebesgue measure. Hence, regardless of

the true model, there is positive probability that the KL divergence KL(pF (Mγ |
Y)‖pE(Mγ | Y)) is infinite under the sampling distribution p(Y | Mγ ), and so its

expectation is clearly infinite. �

Since the expected KL divergence is infinite for any number m of variables

being tested, and for any true model, it is clear that E(KL) does not converge to

0 as m → ∞. This, of course, is a weaker conclusion than would be a lack of KL

convergence in probability.

In Theorem 5.3 the expectation is with respect to the sampling distribution under

a specific model Mγ , with βγ either fixed or marginalized away with respect to a

prior distribution. But this result implies an infinite expectation with respect to

other reasonable choices of the expectation distribution—for example, under the

Bernoulli sampling model for γ in (5) with fixed prior inclusion probability p.
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5.3. Asymptotic behavior of prior model probabilities under EB and FB proce-

dures. While interesting, the results in the previous two sections do not consider

the usual type of asymptotic comparison, namely, how do the full Bayes and em-

pirical Bayes posterior distributions converge as m → ∞? It is not clear that such

asymptotic comparisons are possible in general, although very interesting results

can be obtained in particular contexts [cf. Bogdan, Chakrabarti and Ghosh (2008),

Bogdan, Ghosh and Tokdar (2008)].

A rather general insight related to such comparison can be obtained, however, by

focusing on the prior probabilities of “high posterior” models, as m → ∞. To do

so, we first need an approximation to the full Bayes prior probability of Mγ , given

in the following lemma. The proof is straightforward Laplace approximation, and

is omitted.

LEMMA 5.4. As m → ∞, consider models of size kγ such that kγ /m is

bounded away from 0 and 1. Then the Bayesian prior probability of Mγ with prior

π(p) is

pF (Mγ ) =
∫ 1

0
p(Mγ | p)π(p)dp

=
(

kγ

m

)kγ
(

1 − kγ

m

)m−kγ
[

(2π)(kγ /m)(1 − kγ /m)π(kγ /m)

m

]1/2

× {1 + o(1)},
providing π(·) is continuous and nonzero.

Now suppose pT is the true prior variable inclusion probability and consider

the most favorable situation for empirical Bayes analysis, in which the empirical

Bayes estimate for pT satisfies

p̂ = pT (1 + εE) where εE is O

(

1√
m

)

as m → ∞.(31)

It is not known in general when this holds, but it does hold in exchangeable con-

texts where each variable is in or out of the model with unknown probability p,

since such problems are equivalent to mixture model problems.

For models far from the true model, the prior model probabilities given by the

Bayesian and empirical Bayesian approaches can be extremely different. Hence,

it is most interesting to focus on models that are close to the true model for the

comparison. In particular, we restrict attention to models whose size differs from

the true model by O(
√

m).

THEOREM 5.5. Suppose the true model size kT satisfies kT /m = pT +
O(1/

√
m) as m → ∞, where 0 < pT < 1. Consider all models Mγ such that

kT − kγ = O(
√

m), and consider the optimal situation for EB in which (31) holds.
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Then the ratio of the prior probabilities assigned to such models by the Bayes

approach and the empirical Bayes approach satisfies

pF (Mγ )

pE(Mγ )
=

(

kγ

m

)kγ
(

1 − kγ

m

)m−kγ
[

(2π)

(

kγ

m

)(

1 − kγ

m

)

π

(

kγ

m

)]1/2

× m−1/2{1 + o(1)}

×
(

(p̂)kγ (1 − p̂)m−kγ
)−1

= O

(

1√
m

)

,

providing π(·) is continuous and nonzero.

PROOF. Note that

pE(Mγ ) = (p̂)kγ (1 − p̂)m−kγ = {pT (1 + εE)}kγ {1 − pT (1 + εE)}m−kγ .(32)

Taking the log and performing a Taylor expansion yields

logpE(Mγ ) = log{pkγ

T (1 − pT )m−kγ } + kγ log (1 + εE)

+ (m − kγ ) log

{

1 − pT

(1 − pT )
εE

}

= log{pkγ

T (1 − pT )m−kγ } + kγ {εE + O(ε2
E)}

+ (m − kγ )

{

− pT

(1 − pT )
εE + O(ε2

E)

}

= log{pkγ

T (1 − pT )m−kγ } +
{

kT + O(
√

m)
}

{εE + O(ε2
E)}

+
{

m − kT − O(
√

m)
}

{

− pT

(1 − pT )
εE + O(ε2

E)

}

= log{pkγ

T (1 − pT )m−kγ } + O
(√

mεE

)

+ O(mε2
E)

= log{pkγ

T (1 − pT )m−kγ } + O(1).

A nearly identical argument using Lemma 5.4 shows that the log Bayesian prior

probability for these models is

log{pF (Mγ )} = log{pkγ

T (1 − pT )m−kγ } − log
√

m + O(1),(33)

from which the result is immediate. �

So we see that, even under the most favorable situation for the empirical-Bayes

analysis, and even when only considering models that are close to the true model

in terms of model size, the prior probabilities assigned by the Bayes approach are
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smaller by a factor of order 1/
√

m than those assigned by the empirical-Bayes ap-

proach. The effect of this very significant difference in prior probabilities will be

context dependent, but the result does provide a clear warning that the full Bayes

and empirical-Bayes answers can differ—even when m → ∞ and even when there

is sufficient information in the data to guarantee the existence of a consistent esti-

mator for pT .

The theorem also shows that the empirical-Bayes procedure provides a better

asymptotic approximation to the “oracle” prior probabilities, which may be argued

by some to be the main goal of empirical-Bayes analysis. At least for this ideal

scenario, the EB approach assigns larger prior probabilities to models which are

closer to the true model. Of course, this fact is not especially relevant from the

fully Bayesian perspective, and does not necessarily counterbalance the problems

associated with ignoring uncertainty in the estimator for p.

Finally, this difference in prior probabilities will not always have a large effect.

For instance, if n → ∞ at a fast enough rate compared with m, then the Bayes

and empirical-Bayes approach will typically agree simply because all of the poste-

rior mass will concentrate on a single model [i.e., one of the marginal likelihoods

f (Y | Mγ ) will become dominant], and so the assigned prior probabilities will be

irrelevant.

6. Numerical investigation of empirical-Bayes variable selection. This

section presents numerical results that demonstrate practical, finite-sample signif-

icance of some of the qualitative differences mentioned above. As in the previous

section, most of the investigation is phrased as a comparison of empirical-Bayes

and full Bayes, taken from the fully Bayesian perspective.

Note that m here is taken to be moderate (14 for the simulation study and 22 for

the real data set); the intent is to focus on the magnitude of the difference that one

can expect in variable selection problems of such typical magnitude. Of course,

such m are not large enough that one would automatically expect the empirical-

Bayes approach to provide an accurate estimate of p, and so differences are to be

expected, but it is still useful to see the magnitude of the differences. For a larger m

situation, see Table 1; for the largest m in that table, the full Bayes and empirical-

Bayes answers are much closer. The rationale for taking these values of m is that

they allow the model space to be enumerated, avoiding potential confounding ef-

fects due to computational difficulties.

6.1. Results under properly specified priors. The following simulation was

performed 75,000 times for each of four different sample sizes:

1. Draw a random m × n design matrix X of independent N(0,1) covariates.

2. Draw a random p ∼ U(0,1), and draw a sequence of m independent Bernoulli

trials with success probability p to yield a binary vector γ encoding the true set

of regressors.
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FIG. 3. Distribution of p̂ in the simulation study (n = 60) with a correctly specified (uniform) prior

for p. The gray bars indicated the number of times, among values of p̂ in the extremal bins, that the

empirical-Bayes solution collapsed to the degenerate p̂ = 0 or p̂ = 1.

3. Draw βγ , the vector of regression coefficients corresponding to the nonzero

elements of γ , from a Zellner–Siow prior. Set the other coefficients β−γ to 0.

4. Draw a random vector of responses Y ∼ N(Xβ, I).

5. Using only X and Y, compute marginal likelihoods (assuming Zellner–Siow

priors) for all 2m possible models; use these quantities to compute p̂ along with

the EB and FB posterior distributions across model space.

In all cases m was fixed at 14, yielding a model space of size 16,384—large

enough to be interesting, yet small enough to be enumerated 75,000 times in a

row. We repeated the experiment for four different sample sizes (n = 16, n = 30,

n = 60 and n = 120) to simulate a variety of different m/n ratios.

Two broad patterns emerged from these experiments.

First, as Figure 3 shows, the EB procedure gives the degenerate p̂ = 0 or p̂ = 1

solution much too often. When n = 60, for example, almost 15% of cases col-

lapsed to p̂ = 0 or p̂ = 1. This is essentially the same fraction of degenerate cases

as when n = 16, which was 16%. This suggests that the issues raised by Theo-

rem 5.3 can be quite serious in practice, even when n is large compared to m.

Second, even in nondegenerate situations, the two procedures often reached

very different conclusions about which covariates were important. Figure 4 shows

frequent large discrepancies between the posterior inclusion probabilities given by

the EB and FB procedures. This happened even when n was relatively large com-

pared to the number of parameters being tested, suggesting that even large sample

sizes do not render a data set immune to this difference. (Note that Figure 4 only

depicts the differences that arise when the empirical-Bayes solution does not col-

lapse to either 0 or 1.)

6.2. Results under improperly specified priors. The previous section demon-

strated that significant differences can exist between fully Bayesian and empirical-

Bayes variable selection in finite-sample settings. There was an obvious bias, how-

ever, in that the fully Bayesian procedure was being evaluated under its true prior

distribution, with respect to which it is necessarily optimal.
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FIG. 4. Differences in all m inclusion probabilities between EB and FB analyses across all non-

degenerate cases (i.e., where the EB solution does not collapse to the boundary). The percentage of

points lying outside the boxplot whiskers (1.5 times the inter-quartile range) are as follows: 14% for

n = 16, 12% for n = 30, 8% for n = 60 and 7% for n = 120.

It is thus of interest to do a similar comparison for situations in which the prior

distribution is specified incorrectly: the fully Bayesian answers will assume a uni-

form prior p, but p will actually be drawn from a nonuniform distribution. We

limit ourselves to discussion of the analogue of Figure 3 for various situations, all

with m = 14 and n = 60. Three different choices of the true distribution for p were

investigated, again with 75,000 simulated data sets each:

1. p ∼ Be(3/2,3/2), yielding mainly moderate (but not uniform) values of p.

2. p ∼ Be(1,2), yielding mainly smaller values of p.

3. p ∼ 0.5 · Be(1/2,8) + 0.5 · Be(8,1/2), yielding primarily values of p close to

0 or 1.

The results are summarized in Figure 5. In each case the central pane shows the

true distribution of p, with the left pane showing the Bayesian posterior means un-

der the uniform prior and the right pane showing the empirical-Bayes estimates p̂.

As expected, the incorrectly specified Bayesian model tends to shrink the es-

timated values of p back to the prior mean of 0.5. This tendency is especially

noticeable in Case 3, where the true distribution contains many extreme values

of p. This gives the illusion that empirical-Bayes tends to do better here.

Notice, however, the gray bars in the right-most panes. These bars indicate the

percentage of time, among values of p̂ that fall in the left- or right-most bins of

the histogram, that the empirical-Bayes solution is exactly 0 or 1, respectively. For

example, of the roughly 20,000 times that p̂ ∈ [0,0.1) in Case 2, it was identically

0 more than 10,000 of those times. (The fully Bayesian posterior mean, of course,

is never exactly 0 or 1.)

The bottom panel of Figure 5 shows that, paradoxically, where the fully

Bayesian model is most incorrect, its advantages over the empirical-Bayes pro-

cedure are the strongest. In the mixture model giving many values of p very close
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FIG. 5. Distribution of p̂ (n = 60) in different versions of the simulation study, where the fully

Bayesian model had a misspecified (uniform) prior on p. The gray bars indicated the number of

times, among values of p̂ in the extremal bins, that the empirical-Bayes solution collapsed to the

degenerate p̂ = 0 or p̂ = 1.

to 0 or 1, empirical Bayes collapses to a degenerate solution nearly half the time.

Even if the extremal model is true in most of these cases, recall that the empirical-

Bayes procedure would result in an inappropriate statement of certainty in the

model. Of course, this would presumably be noticed and some correction would

be entertained, but the frequency of having to make the correction is itself worri-

some.
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In these cases, while the fully Bayesian posterior mean is necessarily shrunk

back to the prior mean, this shrinkage is not very severe, and the uniform prior giv-

ing rise to such shrinkage can easily be modified if it is believed to be wrong. And

in cases where the uniform prior is used incorrectly, a slight amount of unwanted

shrinkage seems a small price to pay for the preservation of real prior uncertainty.

6.3. Results when p is fixed. We conducted a final version of the simulation

with p fixed at 3 different values: p = 0.10, p = 0.25, and p = 0.5. Figure 6 plots

the estimated values of p under the fully Bayes and empirical-Bayes procedures.

(For the sake of visual clarity only the results from 2000 data sets are shown.)

It is clear that for the smallest value of p = 0.1, the degenerate solution p̂ = 0

occurs quite frequently. When p is moderate (as in the 0.25 or 0.5 cases), degen-

eracy occurs much less often.

It is also interesting to see the differences in how well the EB and FB analysis

approximate the “oracle” inclusion probabilities, which are the posterior inclusion

probabilities one would compute if one knew the true Bernoulli probability p. This

can be measured by looking at the ℓ1 distance from the oracle estimate:

ℓ1(p̂, p̂or) =
m

∑

j=1

|p̂j − p̂or
j |,

where p̂or
j is the oracle posterior inclusion probability for the j th variable.

The two procedures do quite similarly here, but with subtle differences. For

example, on the “sparse” (p = 0.1) case, the mean ℓ1 distance to the oracle answer

across all Monte Carlo draws was 0.36 for the EB posterior, and 0.40 for the FB

posterior. Yet the median ℓ1 distance to the oracle answer was 0.27 for the FB

posterior, and 0.30 for the EB posterior.

These differences were largely consistent across other values of p. This sug-

gests that, while the FB procedure seems to reconstruct the oracle posterior in-

clusion probabilities better for a larger number of data sets (such as when the

empirical-Bayes answer is degenerate), it tends to miss by a larger amount than

the EB procedure does. This results in a worse level of average performance for

the FB procedure in reconstructing the oracle posterior inclusion probabilities.

6.4. Example: Determinants of economic growth. The following data set

serves to illustrate the differences between EB and FB answers in a scenario of

typical size, complexity and m/n ratio.

Many econometricians have applied Bayesian methods to the problem of GDP-

growth regressions, where long-term economic growth is explained in terms of var-

ious political, social and geographical predictors. Fernandez, Ley and Steel (2001)

popularized the use of Bayesian model averaging in the field; Sala-i Martin, Dop-

pelhofer and Miller (2004) used a Bayes-like procedure called BACE, similar to
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FIG. 6. Distribution of p̂ (n = 60) in the fixed-p versions of the simulation study (2000 subsamples

of the fake data sets). The dashed line indicates the true value of p.
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BIC-weighted OLS estimates, for selecting a model; and Ley and Steel (2009) con-

sidered the effect of prior assumptions (particularly the pseudo-objective p = 1/2

prior) on these regressions.

We study a subset of the data from Sala-i Martin, Doppelhofer and Miller (2004)

containing 22 covariates on 30 different countries. A data set of this size allows the

model space to be enumerated and the EB estimate p̂ to be calculated explicitly,

which would be impossible on the full data set. The 22 covariates correspond to

the top 10 covariates flagged in the BACE study, along with 12 others chosen

uniformly at random from the remaining candidates.

Summaries of exact EB and FB analyses (with Zellner–Siow priors) can be

found in Table 3. Two results are worth noting. First, the EB inclusion probabilities

are nontrivially different from their FB counterparts, often disagreeing by 10% or

more.

Second, if these are used for model selection, quite different results would

emerge. For instance, if median-probability models were selected (i.e., one in-

cludes only those variables with inclusion probability greater than 1/2), the FB

analysis would include the first four variables (and would almost choose the fifth

TABLE 3

Exact inclusion probabilities for 22 variables in a linear model for GDP growth among

a group of 30 countries

Covariate Fully Bayes Emp. Bayes

East Asian dummy 0.983 0.983

Fraction of tropical area 0.727 0.653

Life expectancy in 1960 0.624 0.499

Population density coastal in 1960s 0.518 0.379

GDP in 1960 (log) 0.497 0.313

Outward orientation 0.417 0.318

Fraction GDP in mining 0.389 0.235

Land area 0.317 0.121

Higher education 1960 0.297 0.148

Investment price 0.226 0.130

Fraction confucian 0.216 0.145

Latin American dummy 0.189 0.108

Ethnolinguistic fractionalization 0.188 0.117

Political rights 0.188 0.081

Primary schooling in 1960 0.167 0.093

Hydrocarbon deposits in 1993 0.165 0.093

Fraction spent in war 1960–1990 0.164 0.095

Defense spending share 0.156 0.085

Civil liberties 0.154 0.075

Average inflation 1960–1990 0.150 0.064

Real exchange rate distortions 0.146 0.071

Interior density 0.139 0.067
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variable), while the EB analysis would select only the first two variables (and al-

most the third). While we would not endorse simply choosing a model here, note

that doing so would result in fundamentally different economic pictures for the FB

and EB analysis.

7. Summary. This paper started out as an attempt to more fully understand

when, and how, multiplicity correction automatically occurs in Bayesian analy-

sis, and to examine the importance of ensuring that such multiplicity correction is

included. That the correction can only happen through the choice of appropriate

prior probabilities of models seemed to conflict with the intuition that multiplicity

correction occurs through data-based adaptation of the prior-inclusion probabil-

ity p.

The resolution to this conflict—that the multiplicity correction is indeed pre-

fixed in the prior probabilities, but the amount of correction employed will depend

on the data—led to another conflict: how can the empirical-Bayes approach to

variable selection be an accurate approximation to the full Bayesian analysis? In-

deed, we have seen in the paper that empirical-Bayes variable selection can lead to

results quite different than those from the full Bayesian analysis. This difference

was evidenced through examples (both simple pedagogical examples and a more

realistic practical example), through simulation studies, and through information-

based theoretical results. These studies, as well as the results about the tendency of

empirical-Bayes variable selection to choose extreme p̂, all supported the general

conclusions about empirical-Bayes variable selection that were mentioned in the

Introduction.

APPENDIX: VARIATIONS ON ZELLNER’S g-PRIOR

Conventional variable-selection priors rely upon the conjugate normal-gamma

family of distributions, which yields closed-form expression for the marginal like-

lihoods. To give an appropriate scale for the normal prior describing the regression

coefficients, Zellner (1986) suggested a particular form of this family:

(β | φ) ∼ N

(

β0,
g

φ
(X′X)−1

)

,

φ ∼ Ga

(

ν

2
,
νs

2

)

with prior mean β0, often chosen to be 0. The conventional choice g = n gives

a prior covariance matrix for the regression parameters equal to the unit Fisher

information matrix for the observed data X. This prior can be interpreted as en-

capsulating the information arising from a single observation under a hypothetical

experiment with the same design as the one to be analyzed.

Zellner’s g-prior was originally formulated for testing a precise null hypothesis,

H0 :β = β0, versus the alternative, HA :β ∈ R
p . But others have adapted Zellner’s
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methodology to the more general problem of testing nested regression models by

placing a flat prior on the parameters shared by the two models and using a g-prior

only on the parameters not shared by the smaller model. This seems to run afoul

of the general injunction against improper priors in model selection problems, but

can nonetheless be formally justified by arguments appealing to othogonality and

group invariance; see, for example, Berger, Pericchi and Varshavsky (1998) and

Eaton (1989). These arguments apply to cases where all covariates have been cen-

tered to have a mean of zero, which is assumed without loss of generality to be

true.

A full variable-selection problem, of course, involves many nonnested compar-

isons. Yet Bayes factors can still be formally defined using the “encompassing

model” approach of Zellner and Siow (1980), who operationally define all mar-

ginal likelihoods in terms of Bayes factors with respect to a base model MB :

BF(M1 :M2) = BF(M1 :MB)

BF(M2 :MB)
.(34)

Since the set of common parameters which are to receive improper priors de-

pends upon the choice of base model, different choices yield a different ensemble

of Bayes factors and imply different “operational” marginal likelihoods. And while

this choice of MB is free in principle, there are only two such choices which yield

a pair of nested models in all comparisons: the null model and the full model.

In the null-based approach, each model is compared to the null model consisting

only of the intercept α. This parameter, along with the precision φ, is common

to all models, leading to a prior specification that has become the most familiar

version of Zellner’s g-prior:

(α,φ | γ ) ∝ 1/φ,

(βγ | φ,γ ) ∼ N

(

0,
g

φ
(X′

γ Xγ )−1

)

.

This gives a simple expression for the Bayes factor for evaluating a model γ

with k regression parameters (excluding the intercept):

BF(Mγ :M0) = (1 + g)(n−kγ −1)/2[1 + (1 − R2
γ )g]−(n−1)/2,(35)

where R2
γ ∈ (0,1] is the usual coefficient of determination for model Mγ .

Adherents of the full-based approach, on the other hand, compare all models

to the full model, on the grounds that the full model is usually much more sci-

entifically reasonable than the null model and provides a more sensible yardstick

[Casella and Moreno (2002)]. This comparison can be done by writing the full

model as

MF : Y = X∗
γ θγ + X−γ β−γ ,
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with the design matrix partitioned in the obvious way. Then a g-prior is specified

for the parameters in the full model not shared by the smaller model, which again

has k regression parameters excluding the intercept:

(α,βγ , φ | γ ) ∝ 1/φ,

(β−γ | φ,γ ) ∼ N

(

0,
g

φ
(X′

−γ X−γ )−1

)

.

This does not lead to a coherent “within-model” prior specification for the pa-

rameters of the full model, since their prior distribution depends upon which sub-

model is considered. Nevertheless, marginal likelihoods can still be consistently

defined in the manner of (34). Conditional upon g, this yields a Bayes factor in

favor of the full model of

BF(MF :Mγ ) = (1 + g)(n−m−1)/2(1 + gW)−(n−k−1)/2,(36)

where W = (1 − R2
F )/(1 − R2

γ ).

The existence of these simple expressions has made the use of g-priors very

popular. Yet g-priors yield display a disturbing type of behavior often called the

“information paradox.” This can be seen in (35): the Bayes factor in favor of Mγ

goes to the finite constant (1 + g)n−m−1 as R2
γ → 1 (which can only happen if

Mγ is true and the residual variance goes to 0). For typical problems this will be

an enormous number, but still quite a bit smaller than infinity. Hence, the paradox:

the Bayesian procedure under a g-prior places an intrinsic limit upon the possible

degree of convincingness to be found in the data, a limit which is confirmed neither

by intuition nor by the behavior of the classical test statistic.

Liang et al. (2008) detail several versions of information-consistent g-like pri-

ors. One way is to estimate g by empirical-Bayes methods [George and Foster

(2000)]. A second, fully Bayesian, approach involves placing a prior upon g that

satisfies the condition
∫ ∞

0 (1 + g)n−kγ −1π(g)dg = ∞ for all kγ ≤ p, which is a

generalization of the condition given in Jeffreys (1961) (see Chapter 5.2, equations

10 and 14).

This second approach generalizes the recommendations of Zellner and Siow

(1980), who compare models by placing a flat prior upon common parameters and

a g-like Cauchy prior on nonshared parameters:

(βγ | φ) ∼ C

(

0,
n

φ
(X′

γ Xγ )−1

)

.(37)

These have come to be known as Zellner–Siow priors, and their use can be shown

to resolve the information paradox. Although they do not yield closed-form ex-

pressions for marginal likelihoods, one can exploit the scale-mixture-of-normals

representation of the Cauchy distribution to leave one-dimensional integrals over

standard g-prior marginal likelihoods with respect to an inverse-gamma prior,
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g ∼ IG(1/2,2/n). The Zellner–Siow null-based Bayes factor under model Mγ

then takes the form

BF(Mγ :M0) =
∫ ∞

0
(1 + g)(n−kγ −1)/2[1 + (1 − R2

γ )g]−(n−1)/2

(38)
× g−3/2 exp

(

−n/(2g)
)

dg.

A similar formula exists for the full-based version:

BF(MF :Mγ ) =
∫ ∞

0
(1 + g)(n−m−1)/2[1 + Wg]−(n−k−1)/2

(39)
× g−3/2 exp

(

−n/(2g)
)

dg

with W given above.

These quantities can be computed by one-dimensional numerical integration,

but in high-dimensional model searches this will be a bottleneck. Luckily there ex-

ists a closed-form approximation to these integrals first noted in Liang et al. (2008).

It entails computing the roots of a cubic equation, and extensive numerical exper-

iments show the approximation to be quite accurate. These Bayes factors seem to

offer an excellent compromise between good theoretical behavior and computa-

tional tractability, thereby overcoming the single biggest hurdle to the widespread

practical use of Zellner–Siow priors.
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