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In this article, the Bayes estimates of two-parameter gamma distribution are considered. It is well known
that the Bayes estimators of the two-parameter gamma distribution do not have compact form. In this paper,
it is assumed that the scale parameter has a gamma prior and the shape parameter has any log-concave
prior, and they are independently distributed. Under the above priors, we use Gibbs sampling technique to
generate samples from the posterior density function. Based on the generated samples, we can compute
the Bayes estimates of the unknown parameters and can also construct HPD credible intervals. We also
compute the approximate Bayes estimates using Lindley’s approximation under the assumption of gamma
priors of the shape parameter. Monte Carlo simulations are performed to compare the performances of the
Bayes estimators with the classical estimators. One data analysis is performed for illustrative purposes.
We further discuss the Bayesian prediction of future observation based on the observed sample and it is
seen that the Gibbs sampling technique can be used quite effectively for estimating the posterior predictive
density and also for constructing predictive intervals of the order statistics from the future sample.

Keywords: maximum likelihood estimators; conjugate priors; Lindley’s approximation; Gibbs sampling;
predictive density; predictive distribution

AMS Subject Classification: 62F15; 65C05

1. Introduction

The two-parameter gamma distribution has been used quite extensively in reliability and survival
analysis, particularly when the data are not censored. The two-parameter gamma distribution has
one shape and one scale parameter. The random variable X follows a gamma distribution with the
shape and scale parameters as α > 0 and λ > 0, respectively, if it has the following probability
density function (PDF):

f (x|α, λ) = λα

�(α)
xα−1e−λx; x > 0, (1)
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1188 B. Pradhan and D. Kundu

and it will be denoted by Gamma(α, λ). Here �(α) is the gamma function and it is expressed as

�(α) =
∫ ∞

0
xα−1e−x dx. (2)

It is well known that the PDF of Gamma(α, λ) can take different shapes but it is always unimodal.
The hazard function of Gamma(α, λ) can be increasing, decreasing or constant depending on
α > 1, α < 1 or α = 1, respectively. The moments of X can be obtained in explicit form, for
example

E(X) = α

λ
and V (X) = α

λ2
. (3)

A book-length treatment on gamma distribution can be obtained in Bowman and Shenton [1], see
also Johnson et al. [2] for extensive references until 1994.

Although there is a vast literature available on estimation of the gamma parameters using
the frequentist approach, not much work has been done on the Bayesian inference of the gamma
parameter(s). Damsleth [3] first showed theoretically, using the general idea of DeGroot, that there
exist conjugate priors for the gamma parameters. Miller [4] also used the same conjugate priors and
showed that the Bayes estimates can be obtained only through numerical integration. Tsionas [5]
considered the four-parameter gamma distribution of which Equation (1) is a special case, and
computed the Bayes estimates for a specific non-informative prior using the Gibbs sampling
procedure. Recently, Son and Oh [6] considered the model (1) and computed the Bayes estimates
of the unknown parameters using the Gibbs sampling procedure, under the vague priors, and
compared their performances with the maximum likelihood estimators (MLEs) and the modified
moment estimators. Very recently, Apolloni and Bassis [7] proposed an interesting method in
estimating the parameters of a two-parameter gamma distribution, based on a completely different
approach. The performances of the estimators proposed byApolloni and Bassis [7] are very similar
to the corresponding Bayes estimators proposed by Son and Oh [6].

The main aim of this paper is to use informative priors and compute the Bayes estimates of the
unknown parameters. It is well known that in general if the proper prior information is available,
it is better to use the informative prior(s) than the non-informative prior(s), see for example
Berger [8] in this respect. In this paper, it is assumed that the scale parameter has a gamma prior
and the shape parameter has any log-concave prior and they are independently distributed. It may
be mentioned that the assumption of independent priors for the shape and scale parameters is not
very uncommon for the lifetime distributions, see, for example, Sinha [9] or Kundu [10].

Note that our priors are quite flexible, but in this general set-up it is not possible to obtain the
Bayes estimates in explicit form. First we propose Lindley’s method to compute approximate
Bayes estimates. It may be mentioned that Lindley’s approximation plays an important role in the
Bayesian analysis, see Berger [8]. The main reason might be that by using Lindley’s approximation
it is possible to compute the Bayes estimate(s) quite accurately without performing any numerical
integration. Therefore, if one is interested in computing the Bayes estimate(s) only, Lindley’s
approximation can be used quite effectively for this purpose.

Unfortunately, by using Lindley’s method it is not possible to construct the highest posterior
density (HPD) credible intervals. We propose to use the Gibbs sampling procedure to construct
the HPD credible intervals. To use the Gibbs sampling procedure, it is assumed that the scale
parameter has a gamma prior and the shape parameter has any independent log-concave prior. It
can be easily seen that the prior proposed by Son and Oh [6] is a special case of the prior proposed
by us. We provide an algorithm to generate samples directly from the posterior density function
using the idea of Devroye [11]. The samples generated from the posterior distribution can be
used to compute Bayes estimates and also to construct HPD credible intervals of the unknown
parameters.
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Journal of Statistical Computation and Simulation 1189

It should be mentioned that our method is significantly different from the methods proposed by
Miller [4] or Son and Oh [6]. Miller [4] has worked with the conjugate priors and the corresponding
Bayes estimates are obtained only through numerical integration. Moreover, Miller [5] also did not
report any credible intervals. Son and Oh [6] obtained the Bayes estimates and the corresponding
credible intervals by using the Gibbs sampling technique based on full conditional distributions.
Whereas in this paper we have suggested generating Gibbs samples directly from the joint posterior
distribution function.

We compare the estimators proposed by us with the classical moment estimators and also with
the MLEs, by extensive simulations.As expected, it is observed that when we have informative pri-
ors, the proposed Bayes estimators behave better than the classical MLEs but for non-informative
priors they behave almost the same. We provide a data analysis for illustrative purposes.

Bayesian prediction plays an important role in different areas of applied statistics. We further
consider the Bayesian prediction of the unknown observable based on the present sample. It is
observed that the proposed Gibbs sampling procedure can be used quite effectively for posterior
predictive density of a future observation based on the present sample and also for constructing
the associated predictive interval. We illustrate the procedure with an example.

The rest of the paper is organized as follows. In Section 2, we provide the prior and poste-
rior distributions. Approximate Bayes estimates using Lindley’s approximation and using Gibbs
sampling procedures are described in Section 3. Numerical experiments are performed and their
results are presented in Section 4. One data analysis is performed in Section 5 for illustrative
purposes. In Section 6, we discuss the Bayesian prediction problem, and finally we conclude the
paper in Section 7.

2. Prior and posterior distributions

In this section, we explicitly provide the prior and posterior distributions. It is assumed that
{x1, . . . , xn} is a random sample from f (·|λ, α) as given in Equation (1). We assume that λ has
a prior π1(·), and π1(·) follows Gamma(a, b). At this moment, we do not assume any specific
prior on α. We simply assume that the prior on α is π2(·) and the density function of π2(·) is
log-concave and it is independent of π1(·).

The likelihood function of the observed data is

l(x1, . . . , xn|α, λ) = λnα

(�(α))n
e−λT1T α−1

2 , (4)

where T1 = ∑n
i=1 xi and T2 = ∏n

i=1 xi . Note that (T1, T2) are jointly sufficient for (α, λ).
Therefore, the joint density function of the observed data, α and λ is

l(data, α, λ) ∝ 1

(�(α))n
λb+nα−1e−λ(a+T1)T α−1

2 π2(α). (5)

The posterior density function of {α, λ} given the data is

l(α, λ|data) = (1/(�(α))n)λa+nα−1e−λ(b+T1)T α−1
2 π2(α)∫ ∞

0

∫ ∞
0 (1/(�(α))n)λa+nα−1e−λ(b+T1)T α−1

2 π2(α) dα dλ
. (6)

From Equation (6), it is clear that the Bayes estimate of g(α, λ), some function of α and λ under
squared error loss function, is the posterior mean, i.e.

ĝB(α, λ) =
∫ ∞

0

∫ ∞
0 g(α, λ)(1/(�(α))n)λa+nα−1e−λ(b+T1)T α−1

2 π2(α) dα dλ∫ ∞
0

∫ ∞
0 (1/(�(α))n)λa+nα−1e−λ(b+T1)T α−1

2 π2(α) dα dλ
. (7)
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1190 B. Pradhan and D. Kundu

Unfortunately, Equation (7) cannot be computed for general g(α, λ). Because of that we provide
two different approximations in the next section.

3. Bayes estimation

In this section, we provide the approximate Bayes estimates of the shape and scale parameters
based on the prior assumptions mentioned in the previous section.

3.1. Lindley’s approximation

It is known that Equation (7) cannot be computed explicitly even if we take some specific priors on
α. Because of that Lindley [12] proposed an approximation to compute the ratio of two integrals
such as Equation (7). In this case, we specify the priors on α and λ. It is assumed that λ follows
Gamma(a, b) and α follows Gamma(c, d) and they are independent. Using the above priors, based
on Lindley’s approximation, the approximate Bayes estimates of α and λ under the squared error
loss function are

α̂B = α̂ + 1

2n(α̂ψ ′(α̂) − 1)2
[−ψ ′′(α̂)α̂2 + ψ ′(α̂)α̂ − 2] + a + c − 2 − dα̂ − bλ̂

n(α̂ψ ′(α̂) − 1)
, (8)

λ̂B = λ̂ + α̂λ̂

2n(α̂ψ ′(α̂) − 1)2

[
−ψ ′′(α̂) + 2(ψ ′(α̂))2 − 3ψ ′(α̂)

α̂

]

+ λ̂

n(α̂ψ ′(α̂) − 1)

(
c − 1

α̂
− d

)
+ λ̂2ψ ′(α̂)

n(α̂ψ ′(α̂) − 1)

(
a − 1

λ̂
− b

)
, (9)

respectively. Here α̂ and λ̂ are the MLEs of α and λ, respectively. Moreover, ψ(x) = d/dx ln �(x),
ψ ′(x) and ψ ′′(x) are its first and second derivatives, respectively. The exact derivations of
Equations (8) and (9) can be obtained in Appendix A.

Although using Lindley’s approximation we can obtain the Bayes estimates, obtaining the HPD
credible intervals is not possible. In the next subsection, we propose the Gibbs sampling procedure
to generate samples from the posterior density function and in turn to compute Bayes estimates
and HPD credible intervals.

3.2. Gibbs sampling procedure

In this subsection, we propose the Gibbs sampling procedure to generate samples from the pos-
terior density function (6) under the assumption that λ follows Gamma(a, b) and α has any
log-concave density function π2(α) and they are independent. We need the following results for
further development.

Theorem 1 The conditional distribution of λ given α and data is Gamma(b + nα, a + T1).

Proof Trivial and therefore it is omitted. �

Theorem 2 The posterior density of α given the data is

l(α|data) ∝ �(a + nα)

(�(α))n
× T α−1

2

(b + T1)a+nα
× π2(α), (10)

and l(α|data) is log-concave.
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Journal of Statistical Computation and Simulation 1191

Proof The first part is trivial so it is omitted and for the second part see Appendix B. �

Now using Theorems 1 and 2 and following the idea of Geman and Geman [13], we propose
the following scheme to generate (α, λ) from the posterior density function (10). Once we have
the mechanism to generate samples from Equation (10), we can use the samples to compute the
approximate Bayes estimates and also to construct the HPD credible intervals.

Algorithm

• Step 1: Generate α1 from the log-concave density function (10) using the method proposed by
Devroye [11].

• Step 2: Generate λ1 from Gamma(a + nα1, b + T1).
• Step 3: Obtain the posterior samples (α1, λ1), . . . , (αM, λM) by repeating Steps 1 and 2, M

times.
• Step 4: The Bayes estimates of α and λ with respect to the squared error loss function are

Ê(α|data) = 1

M

M∑
k=1

αk and Ê(λ|data) = 1

M

M∑
k=1

λk,

respectively. Then obtain the posterior variance of α and λ as

V̂ (α|data) = 1

M

M∑
k=1

(αk − Ê(α|data))2 and V̂ (λ|data) = 1

M

M∑
k=1

(λk − Ê(λ|data))2,

respectively
• Step 5: To compute the HPD credible interval of α order α1, . . . , αM as α(1) < · · · < α(M).

Then construct all the 100(1 − β)% credible intervals of α, say

(α(1), α[M(1−β)]), . . . , (α([Mβ]), α(M)).

Here [x] denotes the largest integer less than or equal to x. Then the HPD credible interval of
α is that interval which has the shortest length. Similarly, the HPD credible interval of λ can
also be constructed.

4. Simulation study

In this section, we investigate the performance of the proposed estimators through a simulation
study. The simulation study is carried out for different sample sizes and with different hyper
parameter values. In particular, we take sample sizes n = 10, 15, 25 and 50. Both non-informative
and informative priors are used for the shape and scale parameters. In the case of the non-
informative prior, we take a = b = c = d = 0. We call it Prior 0. For the informative prior,
we chose a = b = 5, c = 2.25 and d = 1.5. We call it Prior 1. In all these cases, we generate
observations from a gamma distribution with α = 1.5 and λ = 1. We compute the Bayes estimates
using squared error loss function in all cases. For a particular sample, we compute Bayes estimate
using Lindley’s approximation, and Bayes estimate using 10,000 MCMC samples. The 95%
credible intervals are also computed using the MCMC samples. For comparison purposes, we
compute moment estimates (MEs) and maximum likelihood estimates (MLE) and 95% confidence
interval using the observed Fisher information matrix. We report average estimates obtained by all
the methods along with mean squared error in parentheses in Table 1. The average 95% confidence
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1192 B. Pradhan and D. Kundu

Table 1. The average values of the moment estimators (MEs), maximum likelihood estimators (MLEs) and Bayes
estimator under Priors 0 and 1 along with the MSE’s in parentheses.

Bayes (Lindley) Bayes (MCMC)

n ME MLE Prior 0 Prior 1 Prior 0 Prior 1

10 2.151 (1.308) 1.905 (0.746) 1.761 (0.579) 1.218 (0.119) 1.733 (0.533) 1.544 (0.089)
1.488 (0.750) 1.348 (0.518) 1.246 (0.391) 0.806 (0.045) 1.216 (0.381) 1.063 (0.035)

15 1.902 (0.649) 1.726 (0.335) 1.642 (0.271) 1.316 (0.092) 1.649 (0.314) 1.546 (0.088)
1.305 (0.388) 1.186 (0.222) 1.128 (0.183) 0.854 (0.037) 1.137 (0.202) 1.046 (0.037)

25 1.744 (0.320) 1.637 (0.162) 1.589 (0.141) 1.447 (0.059) 1.575 (0.156) 1.532 (0.065)
1.169 (0.173) 1.100 (0.098) 1.068 (0.087) 0.957 (0.042) 1.079 (0.111) 1.035 (0.034)

50 1.627 (0.129) 1.563 (0.067) 1.541 (0.062) 1.520 (0.031) 1.540 (0.060) 1.512 (0.026)
1.086 (0.077) 1.049 (0.043) 1.035 (0.041) 1.015 (0.017) 1.050 (0.041) 1.020 (0.019)

Note: In each cell, the first and second entry corresponds to α and λ, respectively.

Table 2. The average 95% confidence intervals and HPD credible intervals.

n

Estimator Parameter 10 15 25 50

MLE α (0.372, 3.690) (0.607, 2.975) (0.823, 2.533) (1.009, 2.137)
λ (0.108, 2.789) (0.300, 2.215) (0.470, 1.836) (0.616, 1.512)

MCMC α (0.174, 3.373) (0.304, 2.861) (0.471, 2.410) (0.715, 2.069)
(Prior 0) λ (0.042, 2.561) (0.113, 2.117) (0.222, 1.749) (0.392, 1.470)
MCMC α (0.380, 2.373) (0.464, 2.281) (0.580, 2.146) (0.782, 1.948)
(Prior 1) λ (0.214, 1.665) (0.254, 1.591) (0.322, 1.504) (0.445, 1.364)

intervals and HPD credible lengths are presented in Table 2. Since in all the cases the coverage
percentages are very close to the nominal value, they are not reported here. All the results of
Tables 1 and 2 are based on 1000 replications.

Some of the points are quite clear from Tables 1 and 2. As expected, it is observed that as the
sample size increases in all the cases the average biases and the mean squared errors decrease. It
verifies the consistency properties of all the estimates. In Table 1 it is observed that the performance
of Bayes estimates obtained using Lindley’s approximation and the Gibbs sampling procedure are
quite similar in nature. That suggests that Lindley’s approximation works quite well in this case.
Moreover, the behaviour (average biases and the mean squared errors) of the Bayes estimates
under Prior 0 are very similar to the corresponding behaviour of the MLEs, and they perform
better than the MEs. The same phenomena were observed by Son and Oh [6]. But while using
the informative prior (Prior 1), the performance of the Bayes estimates are much better than the
corresponding MLEs.

In Table 2, it is observed that the average confidence/credible lengths decreases as the sample
size increases. The asymptotic confidence intervals or the HPD credible intervals are slightly
skewed for small sample sizes, but they became symmetric for large sample sizes. The performance
of the Bayes estimates behave in a very similar manner to the corresponding MLEs (based on
average confidence/credible lengths and coverage percentages) when non-informative priors are
used. But when we use the informative priors, the performance of the Bayes estimates is much
better than the corresponding MLEs in terms of the shorter confidence/credible lengths, although
the coverage percentages are properly maintained. Therefore, it is clear that if we have some prior
information, the Bayes estimators and the corresponding credible intervals should be used rather
than the MLEs and the associated asymptotic confidence intervals.
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5. Data analysis

In this section, we analyse a data set from Lawless [14] to illustrate our methodology. The data on
survival times in weeks for 20 male rats that were exposed to a high level of radiation are given
below.

152 152 115 109 137 88 94 77 160 165
125 40 128 123 136 101 62 153 83 69

The sample mean and the sample variance are 113.45 and 1280.89, respectively. That gives the
MEs of α and λ as α̂ME = 10.051 and λ̂ME = 0.089. The maximum likelihood estimate of the
parameters are α̂MLE = 8.799 and λ̂MLE = 0.078 with the corresponding asymptotic variances
as 7.46071 and 0.00061, respectively. Using these asymptotic variances, we obtain the 95%
confidence intervals for α and λ as (3.4454, 14.1526) and (0.0296, 0.1264), respectively.

We further calculate the Bayes estimates of the unknown parameters, by using Lindley’s approx-
imation and the Gibbs sampling procedure discussed earlier. Since we do not have any prior
information, we consider non-informative priors only for both the parameters. The Bayes esti-
mates of α and λ based on Lindley’s approximation are α̂BL = 8.391 and λ̂BL = 0.0740. The
Bayes estimates of the parameters by the Gibbs sampling method based on 10000 MCMC sam-
ples are α̂MC = 8.397 and λ̂MC = 0.071. The 95% HPD credible intervals for α and λ are (2.8252,
15.0854) and (0.0246, 0.1349), respectively.

As it has been observed in the simulation study, here also it is observed that the Bayes estimates
and MLEs are very close to each other and they are different from the moment estimators. One
of the natural questions is whether gamma distribution fits this data set or not. There are several
methods available to test the goodness of fit of a particular model to a given data set. For example,
Pearson’s χ2 test and Kolomogorov–Smirnov test are extensively being used in practice. Since
for small sample sizes χ2 test does not work well, we prefer to use the Kolomogorov–Smirnov
test only.

We have computed the Kolomogorov–Smirnov distances between the empirical distribution
function and the fitted distribution functions, and the associated p values (reported within brackets)
for MEs, MLEs, Bayes (Lindley) and Bayes (GS) and they are 0.148 (0.741), 0.145 (0.760), 0.138
(0.811) and 0.128 (0.873). Therefore, based on the Kolomogorov–Smirnov distances we can say
that all the methods work quite well but the Bayes estimates based on the Gibbs sampling method
perform slightly better than the rest.

6. Bayes prediction

The Bayes prediction of an unknown observable belongs to a future sample based on a current
available sample, known as an informative sample, and is an important feature in Bayes analysis,
see for example, Al-Jarallah and Al-Hussaini [15]. Al-Hussaini [16] provided a number of refer-
ences on applications of Bayes predictions in different areas of applied statistics. In this section,
we mainly consider the estimation of posterior predictive density of a future observation, based on
the current data. The objective is to provide an estimate of the posterior predictive density function
of the future observations of an experiment based on the results obtained from an informative
experiment, see for example, Dunsmore [17] for a nice discussion on this particular topic.

Let y be a future observation independent of the given data x1, . . . , xn. Then the posterior
predictive density of y given the observed data is defined as (see, for example, Chen Shao and
Ibrahim [18].

π(y|data) =
∫ ∞

0

∫ ∞

0
f (y|α, λ)π(α, λ|data) dα dλ. (11)
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1194 B. Pradhan and D. Kundu

Let us consider a future sample {y1, . . . , ym} of size m, independent of the informative sample
{x1, . . . , xn} and let y(1) <, . . . , < y(r) <, . . . , y(m) be the sample order statistics. Suppose that
we are interested in the predictive density of the future order statistic y(r) given the informative
set of data {x1, . . . , xn}. If the PDF of the rth order statistic in the future sample is denoted by
g(r)(·| α, λ), then

g(r)(y|α, λ) = m!
(r − 1)!(m − r)! [F(y|α, λ)]r−1[1 − F(y|α, λ)]m−rf (y|α, λ), (12)

here f (·| α, λ) is same as Equation (1) and F(·| α, λ) denotes the corresponding cumulative
distribution function of f (·| α, λ). If we denote the predictive density of y(r) as g∗

(r)(·| data), then

g∗
(r)(y|data) =

∫ ∞

0

∫ ∞

0
g(r)(y|α, λ)l(α, λ|data) dα dλ, (13)

where l(α, λ|data) is the joint posterior density of α and λ as provided in Equation (6). It is
immediate that g∗

(r)(y|data) cannot be expressed in closed form and hence it cannot be evaluated
analytically.

Now we propose a simulation consistent estimator of g∗
(r)(y|data), which can be obtained by

using the Gibbs sampling procedure described in Section 3. Suppose that {(αi, λi), i = 1, . . . , M}
is an MCMC sample obtained from l(α, λ|data) using the Gibbs sampling technique described in
Section 3.2, then a simulation consistent estimator of g∗

(r)(y|data) can be obtained as

ĝ∗
(r)(y|data) = 1

M

M∑
i=1

g(r)(y|αi, λi). (14)

Along the same line, if we want to estimate the predictive distribution of y(r), say G∗
(r)(·|data),

then a simulation consistent estimator of G∗
(r)(y|data) can be obtained as

Ĝ∗
(r)(y|data) = 1

M

M∑
i=1

G(r)(y|αi, λi), (15)

here G(r)(y|α, λ) denotes the distribution function of the density function g(r)(y|α, λ), i.e.

G(r)(y|α, λ) = m!
(r − 1)!(m − r)!

∫ y

0
[F(z|α, λ)]r−1[1 − F(z|α, λ)]m−rf (z|α, λ) dz,

= m!
(r − 1)!(m − r)!

∫ F(y|α,λ)

0
ur−1(1 − u)m−r du. (16)

It should be noted that the same MCMC sample {(αi, λi), i = 1, . . . , M} can be used to compute
ĝ∗

(r)(y|data) or Ĝ∗
(r)(y|data) for all y.

Another important problem is to construct a two-sided predictive interval of the rth order
statistic Y(r) from a future sample {Y1, . . . , Ym} of size m, independent of the informative sample
{x1, . . . , xn}. Now we briefly discuss how to construct a 100β% predictive interval for Y(r). Note
that a symmetric 100β% predictive interval for Y(r) can be obtained by solving the following
two equations for the lower bound L and upper bound U , see for example, Al-Jarallah and
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Figure 1. (a) Posterior predictive density function, (b) posterior predictive distribution function of the first-order statistic.

Al-Hussaini [15],

1 + β

2
= P [Y(r) > L|data] = 1 − G∗

(r)(L|data) ⇒ G∗
(r)(L|data) = 1

2
− β

2
, (17)

1 − β

2
= P [Y(r) > U |data] = 1 − G∗

(r)(U |data) ⇒ G∗
(r)(U |data) = 1

2
+ β

2
. (18)

A one-sided predictive interval of the form (L, ∞) with the coverage probability β can be obtained
by solving

P [Y(r) > L|data] = β ⇒ G∗
(r)(L|data) = 1 − β (19)

for L. Similarly, a one-sided predictive interval of the form (0, U) with the coverage probability
β can be obtained by solving

P [Y(r) > U |data] = 1 − β ⇒ G∗
(r)(U |data) = β, (20)

for U . It is not possible to obtain the solutions analytically. We need to apply suitable numerical
techniques for solving these nonlinear equations.

6.1. Example

For illustrative purposes, we would like to estimate the posterior predictive density of the first-order
statistic and also would like to construct a 95% symmetric predictive interval of the first-order
statistic of a future sample of size 20, based on the observation provided in the previous section.

Using the same 10,000 Gibbs sample obtained before, we estimate the posterior predictive
density function and also the posterior predictive distribution of the first-order statistic as provided
in Equations (14) and (15), respectively. They are presented in Figure 1.

As has been mentioned before, the construction of the predictive interval is possible only by
solving nonlinear equations (17) and (18). In this case, we obtain the 95% symmetric predictive
interval of the future first-order statistic as (19.534, 80.912).

7. Conclusions

In this paper, we have considered the Bayesian inference of the unknown parameters of the two-
parameter gamma distribution. It is a well-known problem. It is assumed that the scale parameter
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has a gamma distribution, the shape parameter has any log-concave density function and they
are independently distributed. The assumed priors are quite flexible in nature. We obtain the
Bayes estimates and the corresponding credible intervals using the Gibbs sampling procedure.
Simulation results suggest that the Bayes estimates with non-informative priors behave like the
maximum likelihood estimates, but for informative priors the Bayes estimates behave much better
than the maximum likelihood estimates. As mentioned before, Son and Oh [6] also considered
the same problem and obtained the Bayes estimates and the associate credible intervals using the
Gibbs sampling technique under the assumption of vague priors. The priors proposed by Son and
Oh [6] can be obtained as a special case of the priors proposed by us in this paper. Moreover,
Son and Oh [6] generated the Gibbs samples from the full conditional distributions using the
rejection sampling technique. Whereas we have generated the Gibbs samples directly from the
joint posterior density function. It is natural that generating Gibbs samples directly from the joint
posterior density function, if possible, is preferable to generating them from the full conditional
distribution functions.

We have also considered the Bayesian prediction of the unknown observable based on the
observed data. It is observed that in estimating the posterior predictive density function at any
point, the Gibbs sampling procedure can be used quite effectively. Although, for constructing the
predictive interval of a future observation, we need to solve two nonlinear equations. An efficient
numerical procedure is needed to solve these nonlinear equations. More work is needed in this
direction.
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Appendix A

For the two-parameter case, using notation (λ1, λ2) = (α, λ), Lindley’s approximation can be written as follows:

ĝ = g(λ̂1, λ̂2) + 1

2
(A + l30B12 + l03B21 + l21C12 + l12C21) + p1A12 + p2A21, (A1)

where

A =
2∑

i=1

2∑
j=1

wij τij , lij = ∂i+jL(λ1, λ2)

∂λi
1∂λ

j
2

, i, j = 0, 1, 2, 3 and i + j = 3,

pi = ∂p

∂λi

, wi = ∂g

∂λi

, wij = ∂2g

∂λi∂λj

, p = ln π(λ1, λ2), Aij = wiτii + wj τji ,

Bij = (wiτii + wj τij )τii , Cij = 3wiτiiτij + wj (τiiτjj + 2τ 2
ij ).

Now,

L(α, λ) = nα ln λ − λT1 + (α − 1) ln T2 − n ln �(α),

l30 = −nψ ′′(α̂), l03 = 2nα̂

λ̂3
, l21 = 0, l12 = − n

λ̂2
.

The elements of the Fisher information matrix are

τ11 = α̂

n(α̂ψ ′(α̂) − 1)
, τ12 = τ21 = λ̂

n(α̂ψ ′(α̂) − 1)
, τ22 = λ̂2ψ ′(α̂)

n(α̂ψ ′(α̂) − 1)
.

Now when g(α, λ) = α, then

w1 = 1, w2 = 0, wij = 0, for i, j = 1, 2.

Therefore,

A = 0, B12 = τ 2
11, B21 = τ21τ22, C12 = 3τ11τ12, C21 = (τ22τ11 + 2τ 2

21), A12 = τ11, A21 = τ12.

p = ln π2(α) + ln π1(λ) = (a − 1) ln λ − bλ + (c − 1) ln α − dα and

p1 = c − 1

α̂
− d, p2 = a − 1

λ̂
− b.

Now for the second part when g(α, λ) = λ, then

w1 = 0, w2 = 1, wij = 0 for i, j = 1, 2, and

A = 0, B12 = τ12τ11, B21 = τ 2
22, C12 = τ11τ22 + 2τ 2

12, C21 = 3τ22τ21, A12 = τ21, A21 = τ22.

Appendix B

ln l(α|data) = k + ln �(a + nα) − n ln �(α) + α ln T2 − (a + nα) ln(b + T1) + ln π2(α). (B1)

Note that to prove Equation (B1) is concave it is enough to show that

g(α) = ln �(a + nα) − n ln �(α)

is concave, i.e. (d2/dα2)g(α) < 0. Now

d

dα
g(α) = nψ(a + α) − nψ(α)

and

1

n
× d2

dα2
g(α) = nψ ′(a + nα) − ψ ′(α)

= n(ψ ′(a + nα) − ψ ′(nα)) + nψ ′(nα) − ψ ′(α).
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1198 B. Pradhan and D. Kundu

Since ψ ′(·) is a decreasing function, therefore, ψ ′(a + nα) − ψ ′(nα) ≤ 0. Now observe that

d

dα
(nψ ′(nα) − ψ ′(α)) = n2ψ ′′(nα) − ψ ′′(α) ≥ 0,

as ψ ′′(·) is an increasing function. Therefore, (nψ ′(nα) − ψ ′(α)) is an increasing function in α for all positive integers
n. So we have for all α > 0,

nψ ′(nα) − ψ ′(α) ≤ lim
α→∞(nψ ′(nα) − ψ ′(α)).

Note that the proof will be complete if we can show that

lim
α→∞(nψ ′(nα) − ψ ′(α)) = 0, (B2)

as, Equation (B2) implies, for all α > 0,

nψ ′(nα) − ψ ′(α) ≤ 0.

Now Equation (B2) is obvious for fixed n, as ψ ′(x) → 0 as x → ∞.
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