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A b s t r a c t .  Bayes estimation of the number of signals, q, based on a binomial 
prior distribution is studied. It is found that the Bayes estimate depends on 
the eigenvalues of the sample covariance matrix S for white-noise case and 
the eigenvalues of the matrix S2(SI+A) -1 for the colored-noise case, where $1 
is the sample covariance matrix of observations consisting only noise, $2 the 
sample covariance matrix of observations consisting both noise and signals and 
A is some positive definite matrix. Posterior distributions for both the cases 
are derived by expanding zonal polynomial in terms of monomial symmetric 
functions and using some of the important formulae of James (1964, Ann. 
Math. Statist., 35, 475-501). 
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i. Introduction 

In the area of signal processing, signals are observed at  different t ime points 
from different sources to different sensors. However, due to atmospheric  interfer- 
ence, the signals received by the sensors do not remain undistor ted.  A noise factor 
affects the signals in the receivers. In this area, a model  often used is tha t  the 
observed signal vector is the sum of a random noise vector and a linear t ransform 
of a random signal vector. Noise vector and signal vectors are assumed to be inde- 
pendent ly  dis t r ibuted as mult ivariate normal with zero mean vector. One of the 
impor tan t  problems in this case is est imating the number  of signals t ransmit ted .  In 
the classical case, this problem is equivalent to es t imate  the multiplicity of smallest 
eigenvalue of the covariance mat r ix  of the observation vector. Anderson (1963), 
Krishnaiah (1976), Rao (1983) considered the problem of test ing the hypothesis  
of the multiplicity of the smallest eigenvalue of the covariance matr ix.  Wax and 
Kai la th  (1985), Zhao et al. (1986a, 1986b) considered the problem of est imation 
of number  of signals by information theoret ic  cri teria proposed by Akaike (1972), 
Rissanen (1978) and Schwartz (1978). 
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In this paper, we will consider the problem of estimation of the number of 
signals from a Bayesian point of view. Bayes estimation of the binomial integer 
parameter n has been discussed by Hamedani and Walter (1988). In the similar 
fashion, we will estimate the integer parameter q, the number of signals transmitted 
from sources to the sensors. In Section 2, we discuss the model in signal processing 
and discuss different cases of the problem. In Section 3, we define some notations 
and derived some preliminary results useful for solving the problem. In Section 
4, we discuss the Bayesian solution for estimating the number of signals for the 
white-noise case by choosing appropriate prior distributions for the parameters. A 
discussion for the colored-noise case is in Section 5. 

2. Model in signal processing 

The following model is used in signal processing 

(2.1) x(t) = As(t)  + n(t),  

where 

z ( t ) :p  × 1 observation vector at time t, 

A: p x q matrix of unknown parameters associated with signals, 

s(t): q × 1 vector of unknown random signals, 

n(t):p x 1 vector of random noise. 

The assumption for the model (2.1) is as follows 

(2.2) s(t)  ~ Nq(0, 
~ Np(0, Z l )  

and s(t) and n(t) are independent. In (2.2), if E1 = a2I then model (2.1) is 
called the white-noise model, otherwise it is called a colored-noise model. We will 
discuss the solution of the problem described in Section 1 for both cases. Under 
assumption (2.2), we can say from model (2.1) that 

(2.3) x(t) ~ Np(0, Aq2A'+ El). 

The number of signals transmitted is q (< p) which is the rank of A ~ A  ~. So, 
here estimation of number of signals is equivalent to the estimation of the rank of 
A ~ A  I. 

For the white-noise case, i.e. when E1 -- a2I, we will assume that n inde- 
pendent observations on x(t) are available as x ( t l ) , . . . ,  x(tn). Let the sample 
covariance matrix be n - i S  = ( l /n)~'~=lx(t i)~(t~) ' .  Then using (2.3) it is obvi- 
ous that S ~ Wp(E, n), where E ---- r + a2I, F (= A~A ' )  is non-negative of rank 
q (< p). We will discuss the problem of estimation of q from a Bayesian point of 
view, when a 2 is known and when it is unknown. 

For colored-noise case, i.e. when E1 is arbitrary positive definite matrix, we 
will assume that n21S2 based on the original data  set ~ ( t l ) , . . . ,  ~(t~2) estimates 
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E2 (= F + El) and n11S1 based on a different data set X(tn~+l),..., x(t~) inde- 
pendent of the original data set, where n = nl + n2, estimates El. Then 

(2.4) 

n 2  

$2 = E =(ti)x(ti)' ~ Wp(E2, n2), 
i=1 

n 

S1 : E X(ti)X(ti)F ~" W p ( ~ I '  Ttl) 
i=n2+1 

and S1, S 2 are independent. We will discuss the problem of estimation of q in this 
case by Bayesian procedure. 

3. Notations and some preliminary results 

Denote 

(3.1) 

(3.2) 

(3.3) 
(3.4) 
(3.s) 

Ar+l = Diag()~l,. . . ,  At, , ~ r + l , . ' . ,  /~r+l) ,  
P×P 

A~I = Diag(A1,.. . ,  A~, 1 , . . . ,  1), 
pxp 

• ~r = ()~1, A 2 , ' ' ' ,  At)  l, 

:Dr = {A~: 0 < ~1 < ,~2 _< ' "  < At-1 < ,~  < oc}, 

7),.1 = {A~:0_< 11 _< . . .  _< A~ < 1}. 

Let P(j, m) be the set of all partitions ~- = (tl, t2 , . . . )  of j into no more than m 
parts such that  tl + t2 + . . . .  j ,  and for T E P(j, m), let C~(A) be the zonal 
polynomial formed from the eigenvalues of A. The zonal polynomial C~(A) can 
be expressed as a linear combination of monomial symmetric functions M~ (A) of 
eigenvalues of A, see James (1964) and Muirhead (1988). If A is a symmetric 
matrix of order m x m with eigenvalues )h, A2,. . . ,  Am, then 

(3.6) kl ,~k2 . kp M,~(A) = E Ah ,~ .',kip , 

where p is the number of non-zero parts in the partion ,~ = (kl, k2, . . . )  and the 
summation is over the distinct permutations (il, i2,..., ip) of p different integers 
1, 2 , . . . ,  m. 

(3.7) C~(A)=Ec~,~M~(A), 
,~<~- 

where cr,~ are constants and ,~ < T represents the lexicographical order of par- 
titions a and r of the integer k. The coefficients c,.~ have been tabulated up to 
order k = 12 by Parkhurst and James (1974). In general, these coefficients have 
the following recurrence relation 

x- '  [(k, + t) - (kj - t)] 
(3.8) c~-,~ c~- A.~ it, 

Pr - P~ 
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where ~ = (kl, k 2 , . . . ,  km), # = ( k l , . . . ,  ki + t , . . . ,  kj - t , . . . ,  km) for t = 
1, 2 , . . . ,  kj such that when the parts of the partition # are arranged in descending 
order, p is above ~ and below or equal to ~- in the lexicographieal ordering, and 
P~ = ~-,1 k~(ki - 1). Saw (1977) provides another procedure of computing these 
coefficients. 

Another expansion of zonal polynomials of Kushner and Meisner (1984) can 
also be used here. However the coefficients of their expansion have not been yet 
tabulated. 

If A and B are two symmetric matrices of order r × r and s × s respectively, 
r + s -- m, then 

(3.9) Cr(A  ® B) = E a;~Cp(A)C~(B) ,  
p,cr 

( 0  A 0 ) a n d  where ~ are the Hayakawacoefficients (see where (A G B) = B a°° 

Hayakawa (1967)). The summation is over all partitions p of kl and a of k2 
such that kl + k2 = k, where k is the order of the partition ~-. Hayakawa (1967) 
has tabulated these coefficients to the order k = 4. There is no general formula 
known for these coefficients, however they have a relation with Khatri and Pillai's 
g-coefficient g ~ ,  that is 

(3.1(}) a P a =  ]gl g P a Z ' / Z P Z a '  

where z~ = C~(I ,~) /2m(m/2)~ (see Davis (1979)). The coefficients g;o up to order 
k = 7 have been tabulated by Khatri and Pillai (1968). Kushner (1988) provides 
a general formula for g" (,~)o' 

LEMMA 3.1. Let U = Diag(ul, u2 , . . . ,  ur) and g(U) be a symmetric function 
of ul~ u2~. . . ,  Ur, then 

( 3 . 1 1 )  . . .  c.(Uels)g(u)aul...au  

r, j fb  f b kl . .ukt,g(U)dul . .du~, = .. a;oC~(Is) ,.. cp,~ ( r - - t )  ~-" . . .  U 1 • 
p,cr ~_p 

where kl,  k2, . .  . , kt are the non-zero parts of the partition ~. 

PROOF. From (3.9) and (3.7) 

(3.12) Cr(U ® I s ) =  E a;~C~(Is) E c0,~M~(U)" 
p,cr ~<p 

Since g(U) is symmetric in u's, it can be seen from the representation (3.6) of 
M~(U) that 

_ _ _  kl ..ukt~g(U)dul ..du~. • " M ~ ( U ) g ( U ) d u l ' " d u ~  (r t)! "'" ul " 
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Now the lemma follows from (3.12). 

We now prove the following lemmas which we shall use in the next sections. 

LEMMA 3.2. Let 7 C P(j, p). Let 

(3.13) B~(a, b, c) 

:7),-+, ( r+l ~] 
r! l:I : - 1 ,  b-' ---- "'i "'rq-1 exp -- ~ i / C l  Cn-(hr+ 1)/Cv(x)d)~r+ 1 

i--1 
for some a, b, c > O. Then 

(3.14) Br~(a, b, c) 

cJ+r~+bI'(j + ra + b) 2..~ % ~ -~-~p) 
p , a  

- -  r !  

- Z e~,~ (r - I~1)~ b~(r, j), 

d + b r ( j  + b), 

where Ial represents the number of non-zero parts in ~ and 

/o1 /o1 . , , - 1 -  - (3.15) b~(r, j )  = 11/=1 i aul . . .aur  
• " ~-,-~--:--~-j:.a-~ ' for 

--i- 2_,~=i i) 

LEMMA 3.3. Let ~- E P(j, p). Let 

for r T~ O, 

for r = 0 

r # 0 .  

(3.16) Dr(a, b) = r! ~ ~ I  A a - l ( 1 -  Ai)b-lcr(Arl)/Cr(I) d ~  
rl i=1 

for some a, b > O. Then 

. C~(Ip_r) r[ 
E ap a C.(Ip) E cp,~ (r -igl!) 
p,a tc <_p 

(3.17) D:(a ,  b) = . r ( a  + ki)r(b) 

i=1 F(a  + b + k i ) '  
1, 

LEMMA 3.4. (James (1960)) 
then 

for r # O  

for r = O. 

If A and B are two symmetric k x k matrices, 

(3.18) /o  exp{tr(BPAP')}dH(P) = oFo(A, B), 
(k) 

where, H(P) is an invariant or Haar measure on the orthogonal group O(k), and 

(3.19) oFo(A, B)= Z ~ C.(A)C.(B) 
j=0 r e P ( j , k )  j!C¢(I) 
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LEMMA 3.5. (James (1964)) Let S, T, U be k x k positive definite matrices, 
then 

(3.20) 1 f s  e-trStsIa-(k+l)/2°F°(ST'  U)dS = 1Fo(a; T, U), 
rk(a)  >o 

where 

(3.21) 

(3.22) 

Fk(a) = fs e-t~Slsla-(k+l)/2dS 
>0 

----Trk(k-1)/4 H F  a - - ~ ( i - - 1 )  , 
i=1 

1F0(a; T, U ) =  E E (a)rCr(T)Cr(U) 
j=O reP( j , k )  j !C. ( I )  

LEMMA 3.6. Let ~- E P(j ,  p). Let 

P Cr(Arl) Err(a, b) = [ )ta-1 (1 -- )ti) b-1H()~i - )~j) dA~ 
~ ,  1 i>j C , ( I )  JD 

for some a, b > O. Then 

x--" ~ C,(I)Cp(I)  
(3.23) E:(a, b) = 2_.., ap,er C - - ~  

p,¢ r 

F~(a + b + r - 1, p) 7( r2/2 

where r( 1 )  
F~(t ,p)--Tr r ( r - ' ) / 4 H F  t + p ~ - ~ ( i - 1 )  

i = l  

i f  (P l ,  P 2 , . . . ,  Pr) is the  partition corresponding to p. 

PROOF OF LEMMA 3.2. We first prove the lemma for r ~ 0. Since Cr(A), 
for any smmetric matrix A, is symmetric in eigenvalues of A, it can be seen that, 
the integrand in (3.13) is symmetric in A1, k2 , . . . ,  Ar and therefore the left-hand 
side of (3.13) is 

B~(a, b, c) = fo~  fo ~+1 { " " " " ' i  " ' r + l  

i = l  ) 

C.(A~+~) dA1.., dA~+1. C~(I) 
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Now using the t ransformation ui = )~i/;~r+l, i = 1 , . . . ,  r,  ;k~+l = )~r-I-1,  and since 
C~(hA) -- hJC~(A) for any constant  h, we get 

c,~ 1 l r r  r L L "' 'L r [  a--l'j-l-ra-1-5--1 B,(a, b, c) = |ll.~i A~+ 1 
k l  

1 Cr([P) dUl"" d~rdar+l 
= d + " ~ + b r ( j  + ra  + b) 

L 1 L 1 1-[1~ ~--1U~ C,(U@lp_~)du 1 
. . . .  ~-,~ , j + ~ + b  C~-(Ip) "..du,, (1 + 2-~1 uo 

where U -- D i a g ( u l , . . . ,  u~). Now the result, for r ~ 0, follows from Lemma 3.1. 
For r = O, since C~-(AII)= AJc~-(I), 

B°r(a, b, c ) =  A~-I exp{-A1/c}C~-(Ali)/Cr(I)dAl 

/? = I j+b-1 e x p { - ) ~ l / c } d , X l  = d + b r ( j  + b). 

Hence, the lemma. 

PROOF OF LEMMA 3.3. First, let r ¢ 0, then, by the same argument  of 
symmet ry  as in the proof  of Lemma 3.2, 

r 

Dr~(a, b) = r! i~ H )~-I(1 - Ai)b-Ic~(Arl)/C~(I)dA~ 
r l  i = 1  

?- 

L 1 L1 I IA~-,(1 Ai)b-IC.(A.Ip_,.)IC.(I)dA., 
l 

where A = D i a g ( A i , . . . ,  A~). Now the result, for r ¢ 0, follows from Lemma 3.1. 
For r = 0, clearly, D°(a, b) = 1. This proves the lemma. 

PROOF OF LEMMA 3.6. From (3.9) 

(3.24) C~(Arl)  = E a;~Cp(A)C~(I~_~), 
p~cr  

where h = Diag(A1, . . . ,  A~). Hence from (3.23) and (3.24), it is enough to show 

(3.25) 
r 

~, 1 i>j p( ) 

rr (a+~(r- i ) ,P)r~(b+ 2(r- i ) )F~(2r ) 
Fr(a  + b + r - 1, p) 7rr~/2 
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Now, using equation (22) of Constantine (1963) and substituting R = I~, m = r, 
n = p, we have 

i i~ s ~-(~+~)/2 c . ( s )  L(t, p)r~(u) 
(3.26) ISl'-(r+~)/~lZ - C . ( I ~ ) d S  = L ( t  + ~, p) " 

Using the transformation S ~ P A P  ~, where P is orthogonal of order r and the 
first column of P is non-negative and using the result (Anderson (1984)) 

o ~ P' A )dP = J (S  
(~) 

we get, from (3.26), 

fz~ l~I . Cp(A) l'~(t, p)r~(u) L ( r / 2 )  Ati-(~+l)/2(1-A~)~-(~+a)/2 H(Ai-AY)  c - - ~ d A r  = r~(t + u, p) ~.~/2 
rl 1 i > j  

and this proves (3.25). 

4. Bayes estimation of q under white-noise 

Let 
S ~ Wp(E, n) (n > p), 

where E = F + a2I, F is of rank q. We consider two cases, when a 2 unknown and 
when a 2 = 1. 

Case 1. 0-2 unknown: Since F is of rank q, E can be reparametrized into an 
orthogonal matrix P and Aq+l defined as in Section 3, such that 

E -1 = P'Aq+IP, 

where Aq+l is defined in Section 3. Then the parameter space 

O = {(P,  ~q+l ,  q): P is or thogona l ,  

We consider the following prior on O: 

(4.1) h(~r+l) = 

for some a, j3 > 0; 

0 < AI _<''" < Aq+l < o~, 

qC (0, 1 , . . . , p - 1 ) } .  

r+l r r+l ] 

0 ( A 1 _~ " '" "~ At+ 1 ( OO, 

P(r) = P ( q - - r ) =  ( P - 1 )  (4.2) r=O,  1 , . . . , p - l ,  
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for some 0 _~ ¢ _~ 1, and let the prior on P be H(P) an invariant or Haar measure 
on the orthogonal group 0(19). In addition, we also assume that (Aq+l, q) and P 
are independent and )~+1 and q are independent for all r. 

Then the Bayes estimate of q under squared loss is 

p - 1  

(4.3) ~ = E(q l S) = E r p ( q - -  r IS), 
rzO 

where p(q = r I S) = f(q = r, S ) / f (S)  is the posterior prior. The density of S is 
given by 

where 

f (S  l O) = C(p, n)lS[(n-p-1)/2 exp { - ~  tr P'Aq+lPS} lAqTiP/2, 

-1  [ )] C(p, n) = 2np/27~ p(p-1) /4  F n -  i + 1 
2 

i = 1  

Thus 

f(q = r, S) = p(r) /~  fo  C(p, n)lSI (n-p-I)~2 
~+1 (p) 

"exp { - l  tr P'A~+lPS} lA~+lln/2h()~+l)dH(P)dA~+l. 

By Lemma 3.4, 

f(q = r, S) = p(r)C(p, n)lSI (n-p-I)~2 

• / v .+lAr+, ln /~h(~+~)oFo(A~+l , -1S)  dAr+l. 

Now, from (3.19) and (4.1), 

(4.4) f(q = r, S) = p(r)C(p, n)[SI (n-p-I)~2 (r + 1)! 
[F(a)~]( r+l )  

j=O vEP( j ,p )  ~+1 i----1 

1 

Now, by Lemma 3.2, 

f(q = r, S) = p(r)C(p, n)lSI ("-p-1)/2 (r + 1)! 
r![r(c~)/~] r+i 

" E E ~C,. - S B (~) o~-t-2, o~+n(p-r)/2, ~ , 
j = 0  r~ P(j ,  p) 
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where B (~) (a, b, c) are defined as in Lemma 3.2. Thus the posterior prior 

;(q = r I s )  

p(r)(r+l) co ~Cr  B(r ) (  n n(p--r) t~) [r(-)~F+" E y = o E .  ( -½S)  a +  ~, a +  = , 

Ej--O E-r ~Cr  ( - - l s )  p-i p(r)(r+l) g(r) ol -~- ~, c~ -~ n(p-r) 
[r(~)3.l(~+~) r 2 , 

and thus, from (4.3), 

co Y]r=0 [r(~)3~](~+~) (a  + ~, a + 2 ' ) 
O= ( ) oo ~ = 0  P(~)(~+~) B(J ) '~ '~(P-~) 3 Ej--o E .  }.,c- ( - i s  ) P--  1 [ira (Cg) f~(l ] ( r  "{" 1) O~ -{- 2 ' O~ ~l- 2 ' 

Now, from (4.2), it can be seen that 

(4.5) 
-I co ( n n(p--r--1) ) E~=0 A=(~)B(~ ~+~) ~ + ~,  ~ + ~ , (p )~E,=0E, ~c. (-½s) p_2 

0= 
E j = o E . ~ < ( - } s )  . - 1  ~ = , 

where, for i = 1, 2, 

Ai(r) - [F(a)3a]r+ i ( r + i )  ( p--  i ) 

A difficult question remains about the convergence of the series in 0. It is difficult 
to find a radius of convergence but we shall show that the series converge if the 
parameter 3 of the prior is small• 

From (4.4), the series converge absolutely if the following series converges: 

oo 

• £ II1~+~/2-11~+~(P-~)/2-1 "'i ">+1 exp - E ) ~ i / 3  C,(A~+I)C(15 
~+1 ~=1 1 v , , _ ,  

dXr+l. 

J Now since C~-(Ar+t)/C~-(I) <_ )',-+1, where j is the degree of the partition r,  the 
above series is less than or equal to 

( )Io fiI"°+n' l  .+1 E Cr S • • • 
j=0 r 1 

j=0 r 
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and since ~ r  C~(S/2) = (tr(S/2))J, it can be seen using ratio test that the above 
series converges if (1/2) tr(S) < j5 -1 . Therefore a/3, small enough, can be choosen 
such that all the series in (4.5) converge. 

Case 2. (72 known: We assume without loss of generality that a 2 = 1. Thus 
E = F + I. Since F is of rank q, E can be repaxametrize into an orthogonal matrix 
P and Aql such that 

E -I = P'AqlP, 

where Aql is defined in Section 3. Then the parameter space 

O = {(P, Aq, q): P is orthogonal, 0 < A, < ..- <_ Aq < 1, 

qE(0, 1 , . . . , p -  I)}. 

We consider the same prior on O as in Case 1 except the prior on )tr as 

(4.6) g (~ )  = ~ [ r (~  + ~) l ~ I ]  V - ~ (  I - A~)~-', o < ~, _<... < ~ < i, 

for some a, /3 > 0. 
The density of S is given by 

f (S  l O) = C(p, n)lSl(n-P-1)/2 exp --~ tr P'A~IPS [A,.ll n/2. 

Then, by Lemma 3.4, 

f (q- -  r, S) = p(r) f f C(p, n)lSl ( ' -~- ' ) /2  J79 ~1 JO(p) 

" exp { - ~  tr P'Arl PS}  lArlln/2 g(Ar)dH(P)d)~r 

[r(~+~)] ~ 
= ~ ! p ( r ) c ( p ,  ~)lSl (~-,-~)/2 Lr--~)F(~ 

It can be seen now as in Case 1, using Lemma 3.3, that 

(4.7) ~ =  E(q [ S) 

(p-1)¢Ej=oE~ .c~ - s E~=oa=(~)D7+~)(~+ 5' 

Y']~j=o ~-,~- j! ~- - S Y],-=o e l ( r )  D?)  ( a  + 2 '  

where, for i = 1, 2 
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Regarding the convergence of series in (4.7), it can be seen using the same argument 
as before and since Cr(Arl)/C~-(I) < 1 that the series in (4.7) converge if 

1 ( t r ( 2 S ) )  j < c e ,  
j=0 

and clearly this is true for all S. Therefore all the series in (4.7) converge for all 
S. 

To illustrate the computation of q, we consider a special case: p = 2. Suppose 
there are two sensors in the system and the object is to detect if there is any signal, 
from a source, present in the atmosphere or not. This problem is equivalent to 
estimation of q (= 0 or 1). The formula (4.5), when a is unknown, and formula 
(4.7), when ~ is known, can be used to estimate q. The coefficients B~(a + 
n/2,  a + n/2,  3) and D{(a + n/2,  ~), needed to compute •, have been tabulated 
up to order k = 4 in the Appendix. These coefficients are computed using Table 
1 of Hayakawa (1967) and tables of Parkhurst and James (1974). Although ~ can 
not be computed exactly because (4.5) and (4.7) involve infinite series, but  a close 
form of ~ can be obtained by taking first few terms of the series. 

We generate a random sample of size N = 6 from a normal distribution with 
q = 0 and a 2 -- 1. The sample gives 

( S = -1 .63 4.22 ) "  

When cr is unknown, we consider the priors (4.1) and (4.2) with a -- 1, f~ -- 1/2 
and ¢ -- 1/2. By taking first five terms of the infinite series in (4.5), we get 
0 ~ 0.1711. Thus we conclude that ~ = 0. When a is known, we consider the 
priors (4.2) and (4.6) with a = 1, ~ = 1 and ¢ = 1/2. By taking first five terms 
of the infinite series in (4.7), we get ~ ~ 0.1586. Thus we conclude that ~ = 0. 

5. Bayes estimation of q under colored-noise 

Let 
s l  ~ wp(r l, s2 ~ wp( 2, 

where E2 = F+E1,  and F is of rank q. We assume that $1 and $2 are independent. 
Then the Bayes estimate of q is given by 

0 = E(q]S1 ,  $2). 

We decompose the parameters of E1 and F,2 into an orthogonal matrix Q, Aql and 
E~ -1 such that 

E1/2~-1~1/2 , 1 ~-'~2 ~1 = Q AqlQ, 
~1/2 where Aql is as defined in Section 3 and ~i  is the symmetric square root of El. 

Then the parameter space 

e = {(Q, Aql, q, ~11): Q is orthogonal, 0 < A1 _< ""  _< ),q < 1, E~ -1 > 0 

and q e (0, 1 , . . . ,  p -  1)}. 
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We consider the following prior on O: 

(5.1) g (A~)=r !  [ p ( a + ~ ) ] r l ~  I Lr-V)~(-~ J AT-I(I- Ai)I~-I' 
1 

(5.2) 

(5.3) 

O<A1 <A2<.-._<A~<I, 

P(r) = P(q---r)= ( P - 1 )  , r = O , l , . . . , p - 1 ,  

f1(~11) = C(p, m)lA[-m/2,~ll l(m-p-1)/2 exp { -~  tr E11A } , 

for some A > 0, and let the prior on Q be H(Q). We also assume that (Aq, q), Q 
and E~ -1 are independent, and A~ and q are independent for all r. 

The joint density of $1 and $2 is given by 

f(S1, $2 IO) 

= C(p, nx)C(p, n2)[rll[(nl+n2)/2[Aql[n2/2[Sl[(nl-p-1)/2[S2[ (n2-p-1)/2 
{1 1 } 

• exp - ~ t r E ~ l S 1  - ~trQ'A~IQE-[1/2S2E~U2 . 

Thus 

(5.4) f(q = r, $1, $2) 

= c . ( & ,  &)p(r) 

1 

_ 1 trQ,ArlQE[1/2S2E~I/2 } • e x p { - ~ t r E 1 1 S 1  ~ 

• dH(Q)dE~ldAr, 
where C. ($1, $2), is some constant depending only on S1 and $2 and n = n l + n2. 
By Lemma 3.4, from (5.4), 

f ( q  = ~, & ,  & )  = c.(&, &>(~) 
r 

1 

1 1 "exp{--~trE11(S1+A)}oFo(-~E~ S2, Arl) dElldAr. 

Now by using thetransformation E~ -1 ~ ($1 + A)I/2E~I(S~ + A) 1/2 which has 
the Jacobian ]$1 + A] -(p+l)/2, and by using Lemma 3.5, 

f(q = r, $1, $2) 

= C . ( & ,  &)]A,- '#2 ,&+A,-(P+W2F~(-~)  

./~ iiAn2/2g(Ar)lFo(m+n 1 ) ~, 1 - - ~ ,  ~($1 +A)-1S2, Arx dAr. 
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From (3.22), (5.1), and using Lemma 3.3, 

(5.5) f(q = v, S1, $2) 

oo 1 (m+n'~ C~ (-~(S,+A)-'S2) 
j=0 ~6P(j,p) 

[F(a+~)]  ~ ~ [1 ( re+n)  
= C**(S], 6'2)[F----(~)ff(N j p(r) Z Z -fi 

/=0 rEP( j ,p )  T 

"C.(-~(S,+A)-'S2)D(~)(o+~-~,I~)], 

where C** ($1, $2) is some constant.  
It can be seen now, that  

~= E(q I S ) = Z r f ( r ,  S) f(r, S) 
r=O 

Z.,r=0 2kr) z)r 

Ej=O E"r ~ T }  Cr -- (El + A ) - I s 2  

p-1 n2 
r =0 

Again here it can be seen from (5.5) that  the series in ~ converge if 

1 (m+n~ (1 ) 
Z Z - f i .  k ~ ]  C, (S,+A)-'S2 <oo. 
j=o T 

From Theorem (6.3) of Gross and Richards (1987), the above is t rue if )~max((1/2) 
• ($1 + A)-1S2) < 1. Therefore for the large enough parameter  A, all the series in 

converge. 
If we choose the prior for Ar as 

T r 
g2(,/~r) ---- C H )~lu'--P--1)/2(X -- "~i)(u2--p--1)/2 1-I (/~i -- "~j)' 

i=1 i>j  

o <_ ),~ _< . . .  __ ),~ __ 1, 

where 

C = 
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then, proceeding in the same way as before and using Lemma 3.6 we get, 

f(q = r, Sl, S2) 

Z°° Z [[(m-l-n'~\ 2 'r Cr (-~(SlncA)-l'2) C** (S1, S2)p(r) 
j=0 rEP(j,p) 

r 

• £ HA}~"+na-p-I)/2(1 -- Ai)(ua-P-l)/2 

~I 1 

• i > .  H ( ~  - aj)C.(A.,)/C.(Oe),.] 
oo 1 (m-j-n~ CT (-~('2+A)-Is2) 

= c..(s,, s . )p( . ) r .  Z ~. \ 2 /T 
j=o reP(j,p) 

(1 1 ) 
• E; ~(.1 +n2  - p +  1), ~(~2 - p + * )  , 

where C.(S1, $2) is some constant. 
Finally, the estimate is 

p-1 p-1 

1 oo 1 ( m  2______~n ) 1 A)-'S2) (p--)¢Ej=0E~_~I.I ~ C. (-~(S1-~- 
V'~P -2 L:' t_,~(r+i) (1 1 ) 

•/_~=0 ~'2t,j~r ~(ul + n 2 - p +  1), ~(v2 - p  + 1) 

oc 1 ( m  2___~n ) A)-1S2) 

.1 ( ) .~=oFt(r)E(r) 1 1 ~("1 +n2 - p +  1), ~(v2 - p +  1) 

where, for i = 1, 2 

F~(r) = ( P -  i )  

Here also the series in ~ converge if Amax((1/2)(S1 + A)-Is2) < 1. 
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Appendix 

The  table for coefficients Dl(n/2 + a, #) and B~(n/2 + a, n/2 + a,/3), where 
~ = r ( n / 2  + a + i ) r ( # ) / r ( n / 2  + a + # + i ) ,  i = o, 1, 2 , . . .  and  ~ni = r ( n / 2  -~- 
c~ + i)~ n/2+a+i, i = 0, 1, 2 , . . . .  

degree T D~(n/2 + a,/3) B~ (n/2 + a, n/2  + a,/3) 
2 o (o) ~.o e.o/2 

1 (1) (TriO +~n2)/2  ~n2~nl/2 

2 (2) (3~n0 + 2~nl T 3~n2)/8 (~n0~n2 + ~ 1 ) / 8  
(15) ~nl ~ 1 / 2  

3 (3) (5~n0 +3~nl + 3~2  + 5~3) /16  ( 5 ~ 0 ~ 3  + 3~1~n2)/16 
(21) (7~1 +7~2)/2 ~ n ~ 2 / 2  
(4) (35~n0 + 20"Ynl -b 18~,n2 

+20"Yn3 -t- 357n4)/128 

(31) (3~nl + 2~n2 -t- 3~/n3)/8 

(22 ) "~n2 

(35~n0~n4 +20~nl~n3 + 9~2)/128 

~2 
n2 
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