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Abstract A sizeable literature exists on the use of fre-

quentist power analysis in the null-hypothesis significance

testing (NHST) paradigm to facilitate the design of infor-

mative experiments. In contrast, there is almost no literature

that discusses the design of experiments when Bayes fac-

tors (BFs) are used as a measure of evidence. Here we

explore Bayes Factor Design Analysis (BFDA) as a useful

tool to design studies for maximum efficiency and infor-

mativeness. We elaborate on three possible BF designs,

(a) a fixed-n design, (b) an open-ended Sequential Bayes

Factor (SBF) design, where researchers can test after each

participant and can stop data collection whenever there is

strong evidence for either H1 or H0, and (c) a modified

SBF design that defines a maximal sample size where data

collection is stopped regardless of the current state of evi-

dence. We demonstrate how the properties of each design

(i.e., expected strength of evidence, expected sample size,

expected probability of misleading evidence, expected prob-

ability of weak evidence) can be evaluated using Monte

Carlo simulations and equip researchers with the necessary

information to compute their own Bayesian design analyses.
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The following rule of experimentation is therefore

suggested: perform that experiment for which the

expected gain in information is the greatest, and con-

tinue experimentation until a preassigned amount of

information has been attained (Lindley, 1956, p. 987)

We aim to explore Bayes Factor Design Analysis (BFDA)

as a useful tool to design studies for maximum efficiency

and informativeness. In the classical frequentist framework,

statistical power refers to the long-term probability (across

multiple hypothetical studies) of obtaining a significant p-

value in case an effect of a certain size exists (Cohen, 1988).

Classical power analysis is a special case of the broader

class of design analysis, which uses prior guesses of effect

sizes and other parameters in order to compute distributions

of any study outcome (Gelman & Carlin, 2014).1 The gen-

eral principle is to assume a certain state of reality, most

importantly the expected true effect size, and tune the set-

tings of a research design in a way such that certain desirable

outcomes are likely to occur. For example, in frequentist

power analysis, the property “sample size” of a design can

be tuned such that, say, 80 % of all studies would yield a

p-value < .05 if an effect of a certain size exists.

The framework of design analysis is general and can be

used both for Bayesian and non-Bayesian designs, and it

can be applied to any study outcome of interest. For exam-

ple, in designs reporting Bayes factors a researcher can plan

sample size such that, say, 80 % of all studies result in a

1Other authors have used “power analysis” as a generic term for the

“probability of achieving a research goal” (e.g. Kruschke 2010, p. 1).

In line with Gelman and Carlin (2014), we prefer the more general

term “design analysis” and reserve “power analysis” for the special

case where a design analysis aims to ensure a minimum rate of true

positive outcomes in a hypothesis test (i.e., prob(strong H1 evidence |
H1), which is the classical meaning of statistical power.

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-017-1230-y&domain=pdf
https://osf.io/qny5x
https://osf.io/qny5x
mailto:felix@nicebread.de
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compelling Bayes factor, for instance BF10 > 10 (Weiss,

1997; De Santis, 2004). One can also determine the sam-

ple size such that, with a desired probability of occurrence,

a highest density interval for a parameter excludes zero, or

a particular parameter is estimated with a predefined preci-

sion (Kruschke, 2014; Gelman & Tuerlinckx, 2000). Hence,

the concept of prospective design analysis, which refers to

design planning before data are collected, is not limited to

null-hypothesis significance testing (NHST), and our paper

applies the concept to studies that use Bayes factors (BFs)

as an index of evidence.

The first part of this article provides a short introduction

to BFs as a measure of evidence for a hypothesis (relative

to an alternative hypothesis). The second part describes how

compelling evidence is a necessary ingredient for strong

inference, which has been argued to be the fastest way to

increase knowledge (Platt, 1964). The third part of this arti-

cle elaborates on how to apply the idea of design analysis

to research designs with BFs. The fourth part introduces

three BF designs, (a) a fixed-n design, (b) an open-ended

Sequential Bayes Factor (SBF) design, where researchers

can test after each participant and can stop data collection

when there is strong evidence for either H1 or H0, and

(c) a modified SBF design that defines a maximal sam-

ple size where data collection is stopped in any case. We

demonstrate how to use Monte Carlo simulations and graph-

ical summaries to assess the properties of each design and

how to plan for compelling evidence. Finally, we discuss

the approach in terms of possible extensions, the issue of

(un)biased effect size estimates in sequential designs, and

practical considerations.

Bayes factors as an index of evidence

The Bayes factor is “fundamental to the Bayesian compar-

ison of alternative statistical models” (O’Hagan & Forster,

2004, p. 55) and it represents “the standard Bayesian solu-

tion to the hypothesis testing and model selection problems”

(Lewis & Raftery, 1997, p. 648) and “the primary tool

used in Bayesian inference for hypothesis testing and model

selection” (Berger, 2006, p. 378). Here we briefly describe

the Bayes factor as it applies to the standard scenario

where a precise, point-null hypothesis H0 is compared to

a composite alternative hypothesis H1. Under a composite

hypothesis, the parameter of interest is not restricted to a

particular fixed value (Jeffreys, 1961). In the case of a t-test,

for instance, the null hypothesis specifies the absence of an

effect, that is, H0 : δ = 0, whereas the composite alternative

hypothesis allows effect size to take on nonzero values.

In order to gauge the support that the data provide for

H0 versus H1, the Bayes factor hypothesis test requires that

both models make predictions. This, in turn, requires that

the expectations under H1 are made explicit by assigning

effect size δ a prior distribution, for instance a normal dis-

tribution centered on zero with a standard deviation of 1,

H1 : δ ∼ N (0, 1).

After both models have been specified so that they make

predictions, the observed data can be used to assess each

models’ predictive adequacy (Morey et al., 2016; Wagen-

makers et al., 2006; Wagenmakers et al., 2016). The ratio

of predictive adequacies –the Bayes factor– represents the

extent to which the data update the relative plausibility of

the competing hypotheses, that is:

p(H0 | data)

p(H1 | data)
︸ ︷︷ ︸

Posterior plausibility
about hypotheses

=
p(H0)

p(H1)
︸ ︷︷ ︸

Prior plausibility
about hypotheses

×
p(data | H0)

p(data | H1)
︸ ︷︷ ︸

Bayes factor =
Predictive updating factor

(1)

In this equation, the relative prior plausibility of the compet-

ing hypotheses is adjusted in light of predictive performance

for observed data, and this then yields the relative posterior

plausibility. Although the assessment of prior plausibil-

ity may be informative and important (e.g., Dreber et al.

2015), the inherently subjective nature of this component

has caused many Bayesian statisticians to focus on the

Bayes factor –the predictive updating factor– as the met-

ric of interest (Hoijtink et al., 2008; Jeffreys, 1961; Kass

& Raftery, 1995; Ly et al., 2016; Mulder & Wagenmakers,

2016; Rouder et al., 2009; Rouder et al., 2012).

Depending on the order of numerator and denominator

in the ratio, the Bayes factor is either denoted as BF01 (“H0

over H1”, as in Eq. (1)) or as its inverse BF10 (“H1 over

H0”). When the Bayes factor BF01 equals 5, this indicates

that the data are five times more likely under H0 than under

H1, meaning that H0 has issued a better probabilistic pre-

diction for the observed data than did H1. In contrast, when

BF01 equals 0.25 the data support H1 over H0. Specifically,

the data are 1/BF01 = BF10 = 4 times more likely under

H1 than under H0.

The Bayes factor offers several advantages for the practi-

cal researcher (Wagenmakers et al., 2016). First, the Bayes

factor quantifies evidence, both for H1 but also for H0; sec-

ond, its predictive underpinnings entail that neither H0 nor

H1 need be “true” for the Bayes factor to be useful (but

see van Erven et al. 2012); third, the Bayes factor does not

force an all-or-none decision, but instead coherently reallo-

cates belief on a continuous scale; fourth, the Bayes factor

distinguishes between absence of evidence and evidence of

absence (e.g., Dienes 2014, 2016); fifth, the Bayes factor

does not require adjustment for sampling plans (i.e., the

Stopping Rule Principle; (Bayarri et al., 2016; Berger &

Wolpert, 1988; Rouder, 2014). A practical corollary is that,

in contrast to p-values, Bayes factors retain their meaning in
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situations common in ecology and astronomy, where nature

provides data over time and sampling plans do not exist

(Wagenmakers et al., 2016).

Although Bayes factors are defined on a continuous

scale, several researchers have proposed to subdivide the

scale in discrete evidential categories (Jeffreys, 1961; Kass

& Raftery, 1995; Lee & Wagenmakers, 2013). The scheme

originally proposed by Jeffreys is shown in Table 1. The

evidential categories serve as a rough heuristic whose main

goal is to prevent researchers from overinterpreting the evi-

dence in the data. In addition –as we will demonstrate

below– the categories permit a concise summary of the

results from our simulation studies.

The purpose of design analyses: planning for

compelling evidence

In the planning phase of an experiment, the purpose of a

prospective design analysis is to facilitate the design of a

study that ensures a sufficiently high probability of detect-

ing an effect if it exists. Executed correctly, this is a crucial

ingredient to strong inference (Platt, 1964), which includes

“[d]evising a crucial experiment [...], with alternative pos-

sible outcomes, each of which will, as nearly as possible,

exclude one or more of the hypotheses” (p. 347). In other

words, a study design with strong inferential properties

is likely to provide compelling evidence, either for one

hypothesis or for the other. Such a study generally does not

leave researchers in a state of inference that is inconclusive.

When a study is underpowered, in contrast, it most likely

provides only weak inference. Within the framework of fre-

quentist statistics, underpowered studies result in p-values

Table 1 A rough heuristic classification scheme for the interpreta-

tion of Bayes factors BF10 (Lee & Wagenmakers 2013; adjusted from

Jeffreys 1961)

Bayes factor Evidence category

> 100 Extreme evidence for H1

30 - 100 Very strong evidence for H1

10 - 30 Strong evidence for H1

3 - 10 Moderate evidence for H1

1 - 3 Anecdotal evidence for H1

1 No evidence

1/3 - 1 Anecdotal evidence for H0

1/10 - 1/3 Moderate evidence for H0

1/30 - 1/10 Strong evidence for H0

1/100 - 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

that are relatively nondiagnostic. Specifically, underpow-

ered studies inflate both false-negative and false-positive

results (Button et al., 2013; Dreber et al., 2015; Ioannidis,

2005; Lakens & Evers, 2014), wasting valuable resources

such as the time and effort of participants, the lives of

animals, and scientific funding provided by society. Conse-

quently, research unlikely to produce diagnostic outcomes

is inefficient and can even be considered unethical (Halpern

et al. (Halpern et al., 2002); Emanuel et al. 2000; but see

Bacchetti et al. 2005).

To summarize, the primary purpose of a prospective

design analysis is to assist in the design of studies that

increase the probability of obtaining compelling evidence, a

necessary requirement for strong inference.

Design analysis for Bayes factor designs

We apply design analysis to studies that report the Bayes

factor as a measure of evidence. Note, first, that we seek

to evaluate the operational characteristics of a Bayesian

research design before the data are collected (i.e., a prospec-

tive design analysis). Therefore, our work centers on design,

not on inference; once specific data have been collected,

pre-data design analyses are inferentially irrelevant, at least

from a Bayesian perspective (Bayarri et al., 2016; Wagen-

makers et al., 2014). Second, our focus is on the Bayes

factor as a measure of evidence, and we expressly ignore

both prior model probabilities and utilities (Berger, 1985;

Taroni et al., 2010; Lindley, 1997), two elements that are

essential for decision making yet orthogonal to the quantifi-

cation of evidence provided by the observed data. Thus, we

consider scenarios where “the object of experimentation is

not to reach decisions but rather to gain knowledge about

the world” (Lindley, 1956, p. 986).

Target outcome of a Bayes factor design

analysis: strong evidence and no misleading evidence

In the context of evaluating the empirical support for

and against a null hypothesis, Bayes factors quantify the

strength of evidence for that null hypothesis H0 relative to

the alternative hypothesis H1. To facilitate strong inference,

we wish to design studies such that they are likely to result

in compelling Bayes factors in favor of the true hypothesis

– thus, the informativeness of a design may be quantified by

the expected Bayes factor (Good, 1979; Lindley, 1956; Cav-

agnaro et al., 2009), or an entire distribution of Bayes factors.

Prior to the experiment, one may expect that in the major-

ity of data sets that may be obtained the Bayes factor will

point towards the correct hypothesis. However, for particu-

lar data sets sampling variability may result in a misleading
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Bayes factor, that is, a Bayes factor that points towards the

incorrect hypothesis. For example, even when H0 holds in

the population, a random sample can show strong evidence

in favor of H1, just by sampling fluctuations. We term this

situation false positive evidence (FPE). If, in contrast, the

data set shows strong evidence for H0, although in reality

H1 is correct, we term this false negative evidence (FNE).

In general terms, misleading evidence is defined as a situ-

ation where the data show strong evidence in favor of the

incorrect hypothesis (Royall, 2000).

Research designs differ with respect to their probability

of generating misleading evidence. The probability of yield-

ing misleading evidence is a pre-data concept that should

not be confused with a related but different post-data con-

cept, namely the probability that a given evidence in a

particular data set is misleading (Blume, 2002).

The expected strength of evidence (i.e., the expected BF)

and the probability of misleading evidence are conceptu-

ally distinct, but practically tightly related properties of a

research design (Royall, 2000), as in general higher evi-

dential thresholds will lead to lower rates of misleading

evidence (Blume, 2008; Schönbrodt et al., 2015). To sum-

marize, the joint goal of a prospective design analysis should

be a high probability of obtaining strong evidence and a low

probability of obtaining misleading evidence, which usually

go together.

Dealing with uncertainty in expected effect size

Power in a classical power analysis is a conditional power,

because the computed power is conditional on the assumed

true (or minimally interesting) effect size. One difficulty is

to commit to a point estimate of that parameter when there is

considerable uncertainty about it. This uncertainty could be

dealt with by computing the necessary sample size for a set

of plausible fixed parameter values. For example, previous

experiments may suggest that the true effect size is around

0.5, but a researcher feels that the true effect could as well

be 0.3 or 0.7, and computes the necessary sample sizes for

these effect size guesses as well. Such a sensitivity analysis

gives an idea about the variability of resulting sample sizes.

A problem of this approach, however, is that there is no

principled way of choosing an appropriate sample size from

this set: Should the researcher aim for the conservative esti-

mate, which would be highly inefficient in case the true

effect is larger? Or should she aim for the optimistic esti-

mate, which would lead to a low actual power if the true

effect size is at the lower end of plausible values?

Prior effect size distributions quantify uncertainty

Extending the procedure of a sensitivity analysis, however,

one can compute the probability of achieving a research goal

0.0 0.3 0.5 0.7 1.0

Effect size (Cohen's d)

P
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Fig. 1 A hypothetical prior distribution expressing the uncertainty

about the true effect size. Figure available at https://osf.io/qny5x/,

under a CC-BY4.0 license

averaged across all possible effect sizes. For this purpose,

one has to define prior plausibilities of the effect sizes, com-

pute the distribution of target outcomes for each effect size,

and then obtain a weighted average. This averaged prob-

ability of success has been called “assurance” (O’Hagan

et al., 2005) or “expected Bayesian power” (Spiegelhalter

et al., 2004), and is the expected probability of success with

respect to the prior.2

In the above example, not all of the three assumed effect

sizes (i.e, 0.3, 0.5, and 0.7) might be equally plausible. For

example, one could construct a prior effect size distribution

under H1 that describes the plausibility for each choice (and

all effect sizes in between) as a normal distribution cen-

tered around the most plausible value of 0.5 with a standard

deviation of 0.1: δ ∼ N (0.5, σ = 0.1), see Fig. 1.

Garthwaite et al. (2005) give advice on how to elicit a

prior distribution from experts. These procedures help an

expert to formulate his or her substantive knowledge in

probabilistic form, which in turn can be used for Bayesian

computations. Such an elicitation typically includes several

steps, for example asking experts about the most plausible

value (i.e., about the mode of the prior), or asking about the

quantiles, such as ‘Please make a guess about a very high

value, such that you feel there is only a 5 % probability the

true value would exceed your guess’.

2It is possible to construct an unconditional effect size prior that

describes the plausibility of effect sizes both under H1 and H0, for

example by defining a prior effect size distribution that assigns con-

siderable probability to values around zero and the opposite direction,

or by using a mixture distribution that has some mass around zero, and

some mass around a non-zero effect size (Muirhead & Soaita, 2013).

Here, in contrast, we prefer to construct a conditional effect size prior

under H1 and to contrast it with a point H0 that has all probability

mass on zero. Hence, the result of our design analysis is a conditional

average probability of success under H1, which Eaton et al. (2013)

consider to be the most plausible average probability for sample size

planning.

https://osf.io/qny5x/
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Morris et al. (2014) provide an online tool that can help

to fit an appropriate distribution to an experts’ input3.

Design priors vs. analysis priors

Two types of priors can be differentiated (Walley et al.,

2015; O’Hagan and Stevens, 2001). Design priors are used

before data collection to quantify prior beliefs about the true

state of nature. These design priors are used to do design

analyses and in general to assist experimental design. Anal-

ysis priors, in contrast, are used for Bayesian statistical

analysis after the data are in.

At first glance it might appear straightforward to use

the same priors for design planning and for data analysis.

Both types of priors, however, can serve different goals. The

design prior is used to tune the design before data collection

to make compelling evidence likely and to avoid misleading

evidence. The target audience for a design analysis is mainly

the researcher him- or herself, who wants to design the most

informed study. Hence, design priors should be based on

the researcher’s experience and can contain a lot of existing

prior information and experience to aid an optimal planning

of the study’s design. Relying on a non-central, highly infor-

mative prior (in the extreme case, a point effect size guess as

in classical power analysis) can result in a highly efficient

design (i.e., with a just large-enough sample size) if the real

effect size is close to that guess. On the other hand, it bears

the risk to end up with inconclusive evidence if the true

effect is actually smaller. A less informative design prior, in

contrast, will typically lead to larger planned sample sizes,

as more plausibility is assigned to smaller effect sizes.4

This increases the chances of compelling evidence in the

actual data analysis, but can be inefficient compared to a

design that uses a more precise (and valid) effect size guess.

Researchers may balance that trade-off based on their sub-

jective certainty about plausible effect sizes, utilities about

successful or failed studies, or budget constraints. Whenever

prospective design analyses are used to motivate sample

size costs in grant applications, the design priors should be

convincing to the funder and the grant reviewers.

The analysis priors that are used to compute the BF, in

contrast, should be convincing to a skeptical target audi-

ence, and therefore often are less informative than the

3http://optics.eee.nottingham.ac.uk/match/uncertainty.php
4In Bayesian parameter estimation so called uninformative priors are

quite common. A very wide prior, such as a half-normal distribution

with mean=0 and SD=10, however, should not be used for design anal-

ysis, as too much probability mass is placed upon unrealistically large

effect sizes. Such a design analysis will yield planned sample sizes

that are usually too small, and consequently the actual data analy-

sis will most likely be uninformative. As any design choice involves

the fundamental trade-off between expected strength of evidence and

efficiency, there exists no “uninformative” design prior in prospective

design analysis.

design priors. In the examples of this paper, we will use

an informed, non-central prior distribution for the planning

stage, but a default effect size prior (which is less informative)

for data analysis.

Three exemplary designs for a Bayes factor design

analysis

In the next sections, we will demonstrate how to conduct

a Bayes Factor Design Analysis. We consider three design

perspectives:

1. Fixed-n design: In this design, a sample of fixed size

is collected and one data analysis is performed at the

end. From this perspective, one can ask the following

design-related questions: Given a fixed sample size and

the expected effect size – what BFs can be expected?

What sample size do I need to have at least a 90 % prob-

ability of obtaining a BF10 of, say, 6 or greater? What is

the probability of obtaining misleading evidence?

2. Open-ended sequential designs: Here participants are

added to a growing sample and BFs are computed

until a desired level of evidence is reached (Schönbrodt

et al., 2015). As long as researchers do not run out of

participants, time, or money, this approach eliminates

the possibility of ending up with weak evidence. With

this design, one can ask the following design-related

questions: Given the desired level of evidence and the

expected effect size – what distribution of sample sizes

can be expected? What is the probability of obtaining

misleading evidence?

3. Sequential designs with maximal n: In this modification

of the open-ended SBF design, participants are added

until (a) a desired level of evidence is obtained, or (b)

a maximum number of participants has been reached.

If sampling is stopped because of (b), the evidence will

not be as strong as desired initially, but the direction and

the strength of the BF can still be interpreted. With this

design, one can ask the following design-related ques-

tions: Given the desired level of evidence, the expected

effect size, and the maximum sample size – what dis-

tribution of sample sizes can be expected? How many

studies can be expected to stop because of crossing

the evidential threshold, and how many because nmax

has been reached? What is the probability of obtaining

misleading evidence?

As most design planning concerns directional hypothe-

ses, we will focus on these in this paper. Furthermore,

in our examples we use the JZS default Bayes factor for

a two group t-test provided in the BayesFactor package

(Morey & Rouder, 2015) for the R Environment for Statis-

tical Computing (R Core Team, 2014) and in JASP (JASP

http://optics.eee.nottingham.ac.uk/match/uncertainty.php
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Team, 2016). The JZS Bayes factor assumes that effect

sizes under H1 (expressed as Cohen’s d) follow a central

Cauchy distribution (Rouder et al., 2009). The Cauchy dis-

tribution with a scale parameter of 1 equals a t distribution

with one degree of freedom. This prior has several conve-

nient properties and can be used as a default choice when

no specific information about the expected effects sizes is

available. The width of the Cauchy distribution can be tuned

using the scale parameter, which corresponds to smaller or

larger plausible effect sizes. In our examples below, we use

a default scale parameter of
√

2/2. This corresponds to the

prior expectation that 50 % of probability mass is placed on

effect sizes that have an (absolute) size smaller than
√

2/2,

and 50 % larger than
√

2/2. Note that all computations and

procedures outlined here are not restricted to these specific

choices and can be easily generalized to undirected tests and

all other flavors of Bayes factors as well (Dienes, 2014).

Fixed-n design

With a pre-determined sample size, the following ques-

tions can be asked in a design analysis: (a) What is the

expected distribution of obtained evidence? (b) What is the

probability of obtaining misleading evidence? (c) Sample

size determination: What is the necessary sample size that

compelling evidence can be expected with sufficiently high

probability?

Monte Carlo simulations can be used to answer these

questions easily. In our example, we focus on a test for the

difference between two population means (i.e., a Bayesian

t-test; Rouder 2009). For didactic purposes, we demonstrate

this design analysis with a fixed expected effect size (i.e.,

without a prior distribution). This way the design analy-

sis is analogous to a classical power analysis in the NHST

paradigm, that also assumes a fixed effect size under H1.

The recipe for our Monte Carlo simulations is as follows

(see also Kruschke 2014):

1. Define a population that reflects the expected effect

size under H1 and, if prior information is available,

other properties of the real data (e.g., specific distribu-

tional properties). In the example given below, we used

two populations with normal distributions and a fixed

standardized mean difference of δ = 0.5.

2. Draw a random sample of size nfixed from the popula-

tions (all n refer to sample size in each group).

3. Compute the BF for that simulated data using the analy-

sis prior that will also be used in the actual data analysis

and save the result. In the example given below, we

analyzed simulated data with a Cauchy prior (scale

parameter =
√

2/2).

4. Repeat steps 2 and 3, say, 10,000 times.

5. In order to compute the probability of false-positive evi-

dence, the same simulation must be done under the H0

(i.e., two populations that have no mean difference).

Researchers do not know in advance whether and to what

extent the data will support H1 or H0; therefore, all simula-

tions must be carried out both under H1 and H0 (see step 5).

Figure 2 provides a flow chart of the simulations that com-

prise a Bayes factor design analysis. For standard designs,

readers can conduct their own design analyses simulations

using the R package BFDA (Schönbrodt, 2016; see https://

github.com/nicebread/BFDA).5

The proposed simulations provide a distribution of

obtained BFs under H1, and another distribution under H0.

For these distributions, one can set several thresholds and

retrieve the probability that a random study will provide a

BF in a certain evidential category. For example, one can set

a single threshold at BF10 = 1 and compute the probability

of obtaining a BF with the wrong direction. Or, one can aim

for more compelling evidence and set thresholds at BF10 =

6 and BF10 = 1/6. This means evidence is deemed inconclu-

sive when 1/6 < BF10 < 6. Furthermore, one can define

asymmetric thresholds under H0 and H1. Depending on the

analysis prior in the computation of the BF, it can be expen-

sive and time-consuming to gather strong evidence for H0.

In these cases one can relax the requirements for strong H0

support and still aim for strong H1 support, for example by

using thresholds 1/6 and 20 (Weiss, 1997).

Expected distribution of BFs and rates of misleading

evidence

Figure 3 compares the BF10 distribution that can be

expected under H1 (top row) and under H0 (bottom row).

The simulations were conducted with two fixed sample

sizes: n = 20 (left column) and n = 100 (right column). Evi-

dence thresholds were defined at 1/6 and 6. If an effect of

δ = 0.5 exists and studies with n = 20 are conducted, 0.3 %

of all simulated studies point towards the (wrong) H0 (BF

< 1/6). This is the rate of false negative evidence, and it is

visualized as the dark grey area in the top density of Fig. 3A.

Conversely, 21.1 % of studies show H1 support (BF10 > 6;

light gray area in the top density), which is the probability of

true positive results. The remaining 78.5 % of studies yield

inconclusive evidence (1/6< BF10 < 6; medium grey area

in the top density).

If, however, no effect exists (see bottom density of

Fig. 3A), 0.9 % of all studies will yield false-positive evi-

dence (BF10 > 6), and 13.7 % of all studies correctly

support H0 with the desired strength of evidence (BF10 <

5The R code is also available on the OSF (https://osf.io/qny5x/).

https://github.com/nicebread/BFDA
https://github.com/nicebread/BFDA
https://osf.io/qny5x/
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1/6). A large majority of studies (85.5 %) remain inconclu-

sive under H0 with respect to that threshold. Hence, a design

with that fixed sample size has a high probability of being

uninformative under H0.

With increasing sample size the BF distributions under

H1 and H0 diverge (see Fig. 3B), making it more likely

to obtain compelling evidence for either hypothesis. Con-

sequently, the probability of misleading evidence and the

probability of inconclusive evidence is reduced. At n = 100

and evidential thresholds of 6 and 1/6 the rate of false nega-

tive evidence drops from 0.3 % to virtually 0 %, and the rate

of false positive evidence drops from 0.9 % to 0.6 %. The

probability to detect an existing effect of δ = 0.5 increases

from 21.1 % to 84.0 %, and the probability to find evidence

in favor of a true H0 increases from 13.7 % to 53.4 %.

Sample size determination

For sample size determination, simulated sample sizes can

be adjusted until the computed probability of achieving a

https://osf.io/qny5x
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research goal under H1 is close to the desired level. In our

example, the necessary sample size of achieving a BF10 > 6

under H1 with a probability of 95 % would be n = 146. Such

a fixed-n Bayes factor design with n = 146 implies a false

negative rate of virtually 0 %, and, under H0, a false positive

rate of 0.4 % and a probability of 61.5 % to correctly supportH0.

In a pre-data design perspective the focus is on the fre-

quentist properties of BFs. We should mention that this can

be complemented by investigating the Bayesian properties

of BFs. From that perspective, one can look at the probabil-

ity of a hypothesis being true given a certain BF (Rouder,

2014). When H1 and H0 have equal prior probability, and

when the analysis prior equals the design prior, then a single

study with a BF10 of, say, 6 has 6:1 odds of stemming from H1.

The goal of obtaining strong evidence can be achieved

by planning a sample size that ensures a strong enough BF

with sufficient probability. There is, however, an easier way

that guarantees compelling evidence: Sample sequentially

and compute the BF until the desired level of evidence is

achieved. This design will be explained in the next section.

Open-ended sequential bayes factor design: SBF

In the planning phase of an experiment, it is often difficult to

decide on an expected or minimally interesting effect size.

If the planned effect size is smaller than the true effect size,

the fixed n will be inefficient. More often, presumably, the

effect size is overestimated in the planning stage, leading to

a smaller actual probability to detect a true effect.

A proposed solution that is less dependent on the true

effect size is the Sequential Bayes Factor (SBF) design

(Schönbrodt et al., 2015). In this design, the sample size

is increased until the desired level of evidence for H1 or

H0 has been reached (see also Wald 1945; Kass & Raftery

1995; Berger et al. 1994; Dienes 2008; Lindley 1956). This

principle of “accumulation of evidence” is also central to

optimal models for human perceptual decision making (e.g.,

random walk models, diffusion models; e.g., Bogacz et al.

2006; Forstmann et al. 2016). This accumulation principle

allows a flexible adaption of the sample size based on the

actual empirical evidence.

In the planning phase of a SBF design, researchers define

an a priori threshold that represents the desired grade of

evidence, for example a BF10 of 6 for H1 and the recipro-

cal value of 1/6 for H0. Furthermore, an analysis prior for

the effect sizes under H1 is defined in order to compute

the BF. Finally, the researcher may determine a minimum

number of participants to be collected regardless, before the

optional stopping phase of the experiment (e.g., nmin = 20

per group).

https://osf.io/qny5x
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After a sample of nmin participants has been collected, a

BF is computed. If this BF does not exceed the H1 thresh-

old or the H0 threshold, the sample size is increased as

often as desired and a new BF computed at each stage (even

after each participant). As soon as one of the thresholds is

reached or exceeded, sampling can be stopped. One promi-

nent advantage of sequential designs is that sample sizes are

in most cases smaller than those from fixed-n designs with

the same error rates.6 For example, in typical scenarios the

SBF design for comparing two group means yielded about

50 % smaller samples on average compared to the optimal

NHST fixed-n design with the same error rates (Schönbrodt

et al., 2015).

With regard to design analysis in a SBF design, one

can ask: (a) What is the probability of obtaining mislead-

ing evidence by stopping at the wrong threshold? (b) What

is the expected sample size until an evidential threshold is

reached?

In the example for the SBF design, we use a design prior

for the a priori effect size estimate: d ∼ N (0.5, σ = 0.1)

(see Fig. 1). In our hypothetical scenario this design prior is

inspired by relevant substantive knowledge or results from

the published literature. Again, Monte Carlo simulations

were used to examine the operational characteristics of this

design:

1. Define a population that reflects the expected effect size

under H1 and, if prior information is available, other

properties of the real data. In the example given below,

we used two populations with normal distributions and

a standardized mean difference that has been drawn

from a normal distribution N (0.5, σ = 0.1) at each

iteration.

2. Draw a random sample of size nmin from the popula-

tions.

3. Compute the BF for that simulated data set, using the

analysis prior that will also be used in the actual data

analysis (in our example: a Cauchy prior with scale

parameter =
√

2/2). If the BF exceeds the H1 or the

H0 threshold (in our example: > 6 or < 1/6), stop sam-

pling, and save the final BF and the current sample size.

If the BF does not exceed a threshold yet, increase sam-

ple size (in our example: by 1 in each group). Repeat

step 3 until one of both thresholds is exceeded.

4. Repeat steps 1 to 3, say, 10,000 times.

6For a procedure related to the SBF, the sequential probability ratio

test (SPRT; Wald 1945), it has been proven that this test of two sim-

ple (point) hypotheses is an optimal test. That means that of all tests

with the same error rates it requires the fewest observations on average

(Wald & Wolfowitz, 1948), with sample sizes that are typically 50 %

lower than the best competing fixed-n design.

5. In order to compute the rate of false-positive evidence

and the expected sample size under H0, the same simu-

lation must be done under the H0 (i.e., two populations

that have no mean difference).

This design can completely eliminate weak evidence,

as data collection is continued until evidence is conclusive

in either direction. The consistency property ensures that

BFs ultimately drift either towards 0 or towards ∞ and

every study ends up producing compelling evidence – unless

researchers run out of time, money, or participants (Edwards

et al., 1963). We call this design “open-ended” because there

is no fixed termination point defined a priori (in contrast to

the SBF design with maximal sample size, which is outlined

below). “Open-ended”, however, does not imply that data

collection can continue forever without hitting a threshold;

in contrast, the consistency property of BFs guarantees that

the possibility of collecting samples indefinitely is zero.

Figure 4 (top) visualizes the evolution of the BF10 in sev-

eral studies where the true effect size follows the prior dis-

tribution displayed in Fig. 1. Each grey line in the plot shows

how the BF10 of a specific study evolves with increasing n.

Some studies hit the (correct) H1 boundary sooner, some

later, and the distribution of stopping-ns is visualized as the

density on top of the H1 boundary. Although all trajecto-

ries are guaranteed to drift towards and across the correct

threshold in the limiting case, some hit the wrong H0 thresh-

old prematurely. Most misleading evidence happens at early

stages of the sequential sampling. Consequently, increas-

ing nmin also decreases the rate of misleading evidence

(Schönbrodt et al., 2015). Figure 4 (bottom) shows the same

evolution of BFs under H0.

Expected rates of misleading evidence

If one updates the BF after each single participant under

this H1 of d ∼ N (0.5, σ = 0.1) and evidential thresholds

at 6 and 1/6, 97.2 % of all studies stop at the correct H1

threshold (i.e., the true positive rate), 2.8 % stop incorrectly

at the H0 threshold (i.e., the false negative rate). Under the

H0, 93.8 % terminate at the correct H0 threshold, and 6.2 %

at the incorrect H1 threshold (i.e., the false positive rate).

The algorithm above computes the BF after each single

participant. The more often a researcher checks whether the

BF has exceeded the thresholds, the higher the probability of

misleading evidence, because the chances are increased that

the stop is at a random extreme value. In contrast to NHST,

however, where the probability of a Type-I error can be

pushed towards 100 % if enough interim tests are performed

(Armitage et al., 1969), the rate of misleading evidence has

an upper limit in the SBF design. When the simulations

are conducted with interim tests after each single partici-

pant, one obtains the upper bound on the rate of misleading
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evidence. In the current example this leads to a maximal

FPE rate of 6.2 %. If the BF is computed after every 5

participants, the rate is reduced to 5.2 %, after every 10 par-

ticipants to 4.5 %. It should be noted that these changes

in FPE rate are, from an inferential Bayesian perspective,

irrelevant (Rouder, 2014).

Expected sample size

In the above example, the average sample size at the stop-

ping point (across both threshold hits) under H1 is n = 53,

the median sample size is n = 36, and 80 % of all studies

stop with fewer than 74 participants. Under H0, the sample

size is on average 93, median = 46, and 80 % quantile =

115. Hence, although the SBF design has no a priori defined

upper limit of sample size, the prospective design analysis

reveals estimates of the expected sample sizes.

Furthermore, this example highlights the efficiency of

the sequential design. A fixed-n Bayes factor design that

also aims for evidence with BF10 ≥ 6 (resp. ≤ 1/6) with

the same true positive rate of 97.2 % requires n = 241

participants (but will have different rates of misleading

evidence).

Sequential Bayes factor with maximal n: SBF+maxN

The SBF design is attractive because a study is guaranteed

to end up with compelling evidence. A practical drawback

of the open-ended SBF design, however, is that the BF can

meander in the inconclusive region for hundreds or even

thousands of participants when effect sizes are very small

(Schönbrodt et al., 2015). In practice, researchers do not

have unlimited resources, and usually want to set a maxi-

mum sample size based on budget, time, or availability of

participants.

The SBF+maxN design extends the SBF design with

such an upper limit on the sample size. Data collection is

stopped whenever one of both evidential thresholds has been

exceeded, or when the a priori defined maximal sample

size has been reached. When sampling is stopped because

https://osf.io/qny5x
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nmax has been reached, one can still interpret the final

BF. Although it has not reached the threshold for com-

pelling evidence, its direction and strength can still be

interpreted.

When planning an SBF+maxN design, one can ask: (a)

How many studies can be expected to stop because of

crossing an evidential threshold, and how many because of

reaching nmax?, (b) What is the probability of obtaining mis-

leading evidence?, (c) If sampling stopped at nmax: How

many of these studies have a BF that points into the cor-

rect direction? ( d) What distribution of sample sizes can be

expected?

Again, Monte Carlo simulations can be used to examine

the operational characteristics of this design. The computa-

tion is equivalent to the SBF design above, with the only

exception that step 3 is terminated when the BF exceeds the

H1 or H0 threshold, or n reaches nmax.

To highlight the flexibility and practicality of the

SBF+maxN design, we consider a hypothetical scenario in

which a researcher intends to test as efficiently as possi-

ble, has practical limitations on the maximal sample size,

and wants to keep the rate of false positive evidence low.

To achieve this goal, we introduce some changes to the

example from the open-ended SBF design above: Asym-

metric boundaries, a different minimal sample size, and a

maximum sample size.

False positive evidence happens when the H1 boundary

is hit prematurely although H0 is true. As most mislead-

ing evidence happens at early terminations of a sequential

design, the FPE rate can be reduced by increasing nmin (say,

nmin = 40). Furthermore, the FPE rate can be reduced by

a high H1 threshold (say, BF10 >= 30). With an equally

strong threshold for H0 (1/30), however, the expected sam-

ple size can easily go into thousands under H0 (Schönbrodt

et al., 2015). To avoid such a protraction, the researcher may

set a lenient H0 threshold of BF10 < 1/6. Finally, due to

budget restrictions, the maximum affordable sample size is

defined as nmax = 100. With these settings, the researcher

trades in a higher expected rate of false negative evidence

(caused by the lenient H0 threshold), and some probabil-

ity of weak evidence (when the study is terminated at nmax)

for a smaller expected sample size, a low rate of false posi-

tive evidence and the certainty that the sample size does not

exceed nmax.

To summarize, in this final example we set evidential

thresholds for BF10 at 30 and 1/6, nmin = 40, and nmax

= 100. The uncertainty about the effect size under H1 is

expressed as δ ∼ N (0.5, σ = 0.1). Figure 5 visualizes

the trajectories and stopping point distributions under H1

(results under H0 not shown). The upper and lower densities

show the distribution of n for all studies that hit a threshold.

The distribution on the right shows the distribution of BF10

for all studies that stopped at nmax.

Expected stopping threshold (H1, H0, or nmax) and

expected rates of misleading evidence

Under H1 of this example, 70.6 % of all studies hit the

correct H1 threshold (i.e., the true positive rate), 1.6 % hit

the wrong H0 threshold (i.e, the false negative rate). The

remaining 27.8 % of studies stopped at nmax and remained

inconclusive with respect to the a priori set thresholds.

One goal in the example was a low FPE rate. Under H0

(not displayed), 70.9 % of all studies hit the correct H0

threshold and 0.6 % hit the wrong H1 threshold (i.e., the

false positive rate). The remaining 28.5 % of studies stopped

at nmax and remained inconclusive with respect to the a

priori set thresholds.

Again, these are the maximum rates of misleading evi-

dence, when a test after each participant is computed. More

realistic sequential tests, such as testing after every 10

participants, will lower these rates.

Distribution of evidence at nmax

The BF of studies that did not reach the a priori threshold for

compelling evidence can still be interpreted. In the current

example, we categorize the inconclusive studies into results

that show at least moderate evidence for either hypothe-

sis (BF < 1/3 or BF > 3) or are completely inconclusive

(1/3 < BF < 3). Of course any other threshold can be

used to categorize the non-compelling studies; in general a

BF of 3 provides only weak evidence for a hypothesis and

implies, from a design perspective, a high rate of misleading

evidence (Schönbrodt et al., 2015).

In the current example, under H1, 15.5 % of all stud-

ies terminated at nmax with a BF10 > 3, meaning that

these studies correctly indicated at least moderate evidence

for H1. 11.6 % of studies remained inconclusive (1/3 <

BF10 < 3), and 0.7 % pointed towards the wrong hypothesis

(BF10 < 1/3). Under H0, 1.1 % incorrectly pointed towards

H1, 10.8 % towards H0, and 16.6 % remained inconclusive.

Expected sample size

The average expected sample size under H1 (combined

across all studies, regardless of the stopping condition) is n

= 69, with a median of 65. The average expected sample size

under H0 is n = 66, with a median of 56. Hence, the average

expected sample size is under both hypotheses considerably

lower than nmax, which has been defined at n = 100.

Discussion

We explored the concept of a Bayes Factor Design Analysis,

and how it can help to plan a study for compelling evidence.



Psychon Bull Rev (2018) 25:128–142 139

Sample size

B
a
y
e
s

 f
a
c
to

r 
( B

F
1
0
)

40 55 70 85 100

1/10

1/3

1

3

10

30

100

Strong H0

Moderate H0

Anecdotal H0

Very strong H1

Strong H1

Moderate H1

Anecdotal H1

Fig. 5 The Sequential Bayes Factor With Maximal n design under H1 (results under H0 not shown). The densities and example trajectories are

based on a true effect size of δ ∼ N (0.5, σ = 0.1), evidential thresholds at 30 and 1/6, and nmax = 100 in each group. Figure available at https://

osf.io/qny5x, under a CC-BY4.0 license

Pre-data design analyses allow researchers to plan a study

in a way that strong inference is likely. As in frequentist

power analysis, one has to find a trade-off between the rates

of misleading evidence, the desired probability of achiev-

ing compelling evidence, and practical limits concerning

sample size. Additionally, in order to compute the expected

outcomes of future studies, one has to make explicit one’s

assumption for several key parameters, such as the expected

effect size under H1. Any pre-data analysis is conditional

on these assumptions, and the validity of the results depends

on the validity of the assumptions. If reality does not follow

the assumptions, the actual operational characteristics of a

design will differ from the results of the design analysis.

For example, if the actual effect size is smaller than anti-

cipated, a chosen design has actually higher FNE rates and,

in the sequential case, larger expected sample sizes until a

threshold is reached.

In contrast to p-values, the interpretation of Bayes fac-

tors does not depend on stopping rules (Rouder, 2014). This

property allows researchers to use flexible research designs

without the requirement of special and ad-hoc correc-

tions. For example, the proposed SBF+maxN design stops

abruptly at nmax. An alternative procedure is one where the

evidential thresholds gradually move closer together as n

increases. This implies that a lower grade of evidence is

accepted when sampling was not already stopped at a strong

evidential threshold, and puts a practical (but not fixed)

upper limit on sample size (for an application in response

time modeling see Boehm et al. 2015). The properties of

this special design (or of any sequential or non-sequential

BF design) can be evaluated using the same simulation

approach outlined in this paper. This further underscores

the flexibility and the generality of the sequential Bayesian

procedure.

From the planning stage to the analysis stage

This paper covered the planning stage, before data are col-

lected. After a design has been chosen, based on a careful

evaluation of its operational characteristics, the actual study

is carried out (see also Fig. 2). A design analysis only relates

to the actual inference if the same analysis prior is used

in the planning stage and in the analysis stage. Addition-

ally, the BF computation in the analysis stage should con-

tain a sensitivity analysis, which shows whether the infer-

ence is robust against reasonable variations in the analysis

prior.

It is important to note that, in contrast to NHST, the

inference drawn from the actual data set is entirely inde-

pendent from the planning stage (Berger & Wolpert, 1988;

Wagenmakers et al., 2014; Dienes, 2011). All inferential

information is contained in the actual data set, the analysis

prior, and the likelihood function. Hypothetical studies from

the planning stage (that have not been done) cannot add any-

thing. From that perspective, it would be perfectly fine to

use a different analysis prior in the actual analysis than in

the design analysis. This would not invalidate the inference

(as long as the chosen analysis prior is defensible); it just

would disconnect the pre-data design analysis, which from

a post-data perspective is irrelevant anyway, from the actual

analysis.

Unbiasedness of effect size estimates

Concerning the sequential procedures described here, some

authors have raised concerns that these procedures result

in biased effect size estimates (e.g., Bassler et al. 2010;

kruschke 2014). We believe these concerns are overstated,

for at least two reasons.

https://osf.io/qny5x
https://osf.io/qny5x
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First, it is true that studies that terminate early at the

H1 boundary will, on average, overestimate the true effect.

This conditional bias, however, is balanced by late ter-

minations, which will, on average, underestimate the true

effect. Early terminations have a smaller sample size than

late terminations, and consequently receive less weight in a

meta-analysis. When all studies (i.e., early and late termi-

nations) are considered together, the bias is negligible (Fan

et al., 2004; Schönbrodt et al., 2015; Goodman, 2007; Berry

et al., 2010). Hence, across multiple studies the sequential

procedure is approximately unbiased.

Second, the conditional bias of early terminations is

conceptually equivalent to the bias that results when only

significant studies are reported and non-significant stud-

ies disappear into the file drawer (Goodman, 2007). In all

experimental designs –whether sequential, non-sequential,

frequentist, or Bayesian– the average effect size inevitably

increases when one selectively averages studies that show

a larger-than-average effect size. Selective publishing is

a concern across the board, and an unbiased research

synthesis requires that one considers significant and non-

significant results, as well as early and late terminations.

Although sequential designs have negligible unconditional

bias, it may nevertheless be desirable to provide a principled

“correction” for the conditional bias at early terminations,

in particular when the effect size of a single study is evalu-

ated. For this purpose, Goodman (2007) outlines a Bayesian

approach that uses prior expectations about plausible effect

sizes (see also Pocock and Hughes 1989). This approach

shrinks extreme estimates from early terminations towards

more plausible regions. Smaller sample sizes are naturally

more sensitive to prior-induced shrinkage, and hence the

proposed correction fits the fact that most extreme devia-

tions from the true value are found in very early terminations

that have a small sample size (Schönbrodt et al., 2015).

Practical considerations

Many granting agencies require a priori computations for

the determination of sample size. This ensures that pro-

posers explicitly consider the expected or minimally rele-

vant effect size. Such calculations are necessary to pinpoint

the amount of requested money to pay participants.

The SBF+maxN design seems especially suitable for a

scenario where researchers want to take advantage of the

high efficiency of a sequential design but still have to define

a fixed (maximum) sample size in a proposal. For this pur-

pose, one could compute a first design analysis based on

an open-ended SBF design to determine a reasonable nmax.

If, for example, the 80 % quantile of the stopping-n dis-

tribution is used as nmax in a SBF+maxN design, one can

expect to hit a boundary before nmax is reached in 80 %

of all studies. Although there is a risk of 20 % that a

study does not reach compelling evidence within the fund-

ing limit, this outcome is not a “failure” as the direction and

the size of the final BF can still be interpreted. In a sec-

ond design analysis one should consider the characteristics

of that SBF+maxN design and evaluate whether the rates of

misleading evidence are acceptable.

This approach enables researchers to define an informed

upper limit for sample size, which allows them to apply for

a predefined amount of money. Still, one can save resources

if the evidence is strong enough for an earlier stop, and in

almost all cases the study will be more efficient than a fixed-

n NHST design with comparable error rates (Schönbrodt

et al., 2015).

Conclusion

In the planning phase of a study it is essential to carry

out a design analysis in order to formalize one’s expecta-

tions and facilitate the design of informative experiments.

A large body of literature is available on planning frequen-

tist designs, but little practical advice exists for research

designs that employ Bayes factors as a measure of evi-

dence. In this contribution we elaborate on three BF designs

–a fixed-n design, an open-ended Sequential Bayes Fac-

tor (SBF) design, and an SBF design with maximal sample

size– and demonstrate how the properties of each design can

be evaluated using Monte Carlo simulations. Based on the

analyses of the operational characteristics of a design, the

specific settings of the research design can be balanced in

a way that compelling evidence is a likely outcome of the

to-be-conducted study, misleading evidence is an unlikely

outcome, and sample sizes are within practical limits.
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