
University of Michigan School of Public
Health

The University of Michigan Department of Biostatistics Working
Paper Series

Year  Paper 

Bayes Factors Based on Test Statistics

Valen Johnson∗

∗University of Michigan School of Public Health, valenj@umich.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/umichbiostat/paper30

Copyright c©2004 by the author.



Bayes Factors Based on Test Statistics

Valen Johnson

Abstract

Traditionally, the use of Bayes factors has required the specification of proper
prior distributions on model parameters implicit to both null and alternative hy-
potheses. In this paper, I describe an approach to defining Bayes factors based on
modeling test statistics. Because the distributions of test statistics do not depend
on unknown model parameters, this approach eliminates the subjectivity normally
associated with the definition of Bayes factors. For standard test statistics, includ-
ing the 2, F, t and z statistics, the values of Bayes factors that result from this
approach can be simply expressed in closed form.
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Abstract. Traditionally, the use of Bayes factors has required the specifica-

tion of proper prior distributions on model parameters implicit to both null

and alternative hypotheses. In this paper, I describe an approach to defining

Bayes factors based on modeling test statistics. Because the distributions of

test statistics do not depend on unknown model parameters, this approach

eliminates the subjectivity normally associated with the definition of Bayes

factors. For standard test statistics, including the χ2, F , t and z statistics, the

values of Bayes factors that result from this approach can be simply expressed

in closed form.

1. Introduction

Bayes factors are the cornerstone of Bayesian hypothesis testing (e.g., Jeffreys

1961). In contrast to classical p values, the value of a Bayes factor has a direct

interpretation in terms of whether or not a hypothesis is true: It represents the

factor by which data modify the prior odds of two hypotheses to give the poste-

rior odds. Unfortunately, the values of Bayes factors often depend critically on the

prior densities assigned to the model parameters inherent to null and alternative

hypotheses. In addition, the calculation of Bayes factors usually involves the evalu-

ation of high dimensional integrals. For this reason, Bayes factors are employed less
1
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2 VALEN JOHNSON

frequently than they otherwise would be, although progress in developing methodol-

ogy to reduce both the computational burden and the subjectivity of Bayes factors

is proceeding rapidly.

The volume of research on Bayes factors makes it impractical to review here.

However, readers interested in a recent review of this topic can consult Kass and

Raftery (1995). Controversies surrounding the use of Bayes factors and comparisons

of p values to Bayes factors are described by, among others, Edwards, Lindman and

Savage (1963), Berger and Sellke (1989), and Sellke, Bayarri, and Berger (2001).

In this article, I propose a new approach towards defining Bayes factors. My ap-

proach eliminates most of the subjectivity associated with the definition of Bayes

factor, and it drastically simplifies their computation. This innovation is achieved

by modeling the sampling distributions of test statistics rather than the sampling

distribution of individual observations. Because the distribution of a test statistic

under the null hypothesis is completely specified–that is, it does not depend on un-

known parameters–no prior specification on model parameters is required. When

the alternative hypothesis is only vaguely specified as representing the negation of

the null hypothesis, this approach leads to a convenient and parsimonious param-

eterization of the distribution of the test statistic under a reasonably broad class

of alternative models. In such cases, I show that minimum bounds on the Bayes

factor in favor of the null hypotheses can be determined by maximizing over the

marginal likelihood of the data under the alternative hypothesis (see also, Good

1986, who explores maximization over Bayes factors in more traditional settings).

For standard test statistics, including χ2, F, t and z statistics, maximization of the
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BAYES FACTORS BASED ON TEST STATISTICS 3

marginal likelihood under the alternative hypothesis can be achieved analytically,

leading to simple, closed form expressions for the associated Bayes factors.

The primary objection that might be raised to this formulation involves the

manner in which models for the original data are circumvented. However, the

practice of modeling transformations of data is not uncommon in statistics: Analysis

of principal components, binning data to intervals, modeling reconstructed images

rather than raw image data, and performing cluster analysis and statistical tests on

processed probe cell intensities in bioinformatics are but a few of the many examples

in which raw data are discarded in order to simplify subsequent analyses. Still,

modeling test statistics rather than raw data is a cause for concern, and it becomes

an important issue if the test statistic selected to test a hypothesis does not capture

most of the information contained in the data for that purpose. Of course, similar

comments apply also to p values. Whether this methodology is more useful than

traditional Bayes factors in a particular application ultimately depends on whether

the loss of information incurred by modeling the distribution of the test statistic is

offset by the elimination of the requirement to specify prior distributions on model

parameters when default or subjective choices for these priors are not available.

A more serious concern that stems from modeling the distribution of test statistic

rather than raw data involves the potential loss of coherence. That is, the Bayes

factor between, say, models 1 and 2 does not necessarily equal the Bayes factor

between models 1 and 3 multiplied by the Bayes factor between models 3 and 2.

This is so because the test statistics used to compute these Bayes factors may

represent different transformations of the data. The extent to which coherency is

violated by using “similar” test statistics is not examined in this article. Instead,
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4 VALEN JOHNSON

attention here is focused on the specific problem of testing null hypotheses against

their negation.

2. χ2 Tests Associated with Multinomial Data

2.1. Simple Null Hypotheses. To illustrate the essential ideas behind the use

of test statistics to compute Bayes factors, consider Pearson’s χ2 goodness-of-fit

statistic for testing a simple null hypothesis versus the negation of that hypothesis.

Under the assumption of multinomial sampling, suppose that data have been binned

into K predefined cells, and let n′ = (n1, . . . , nK) denote the observed frequencies

in the K cells. Let p′ = (p1, . . . , pK) denote the probabilities of these cells under the

null hypothesis, and let q′ = (q1, . . . , qK) denote the multinomial probability vector

under the alternative hypothesis. Define µ = {pi−qi} and assume that the elements

of µ, {µi}, are Op(1/
√

n), where n =
∑

ni. From a practical perspective, this is

the case of primary interest, as it is neither feasible to detect smaller deviations

from the null as the sample size becomes large, nor is it challenging to detect larger

ones. Let κ denote the vector with components µi/
√

pi and define

V′ =
(

n1 − np1√
np1

, . . . ,
nK − npK√

npK

)
.

Under these assumptions, Lemma 1 follows from standard results on the distribution

of quadratic forms. Here and for the remainder of the article, I adopt notation

similar to that used in Rao (1973). Proofs of lemmas follow directly from theorems

and results provided there.
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BAYES FACTORS BASED ON TEST STATISTICS 5

Lemma 1. Under the alternative hypothesis, the asymptotic distribution of x ≡

V′V is χ2
K−1(nκ′κ), that of a χ2 distribution on K − 1 degrees of freedom and

non-centrality parameter nκ′κ.

Of course, under the null hypothesis, the asymptotic distribution of x is χ2
K−1,

a central χ2 distribution on K − 1 degrees of freedom.

Because the distribution of x under the null hypothesis is completely specified,

we need only specify a prior distribution on the non-centrality parameter of the χ2

distribution under the alternative hypothesis to calculate a Bayes factor between

the two models.

To motivate a model for the non-centrality parameter nκ′κ, I assume that under

the alternative hypothesis the probability vector q is drawn from a Dirichlet distri-

bution with parameter cp. That is, the prior mean of q is p and the variance of the

components of q is inversely proportional to c+1. To maintain the constraint that

µ = Op(1/
√

n), I assume also that c = O(n). This assumption follows the general

philosophy espoused by Jeffreys (1961) and subsequently used by many others, in-

cluding, in this context, Albert (1990). According to it, the value of a parameter

in a vaguely specified alternative model is assumed to be distributed near its value

under the null hypothesis for the simple reason that the null hypothesis would not

be subjected to testing if it was not at least considered plausible.

Under these assumptions, the asymptotic distribution of κ′κ is specified in

Lemma 2.

Lemma 2. For large c, the distribution of (1 + c)κ′κ is χ2
K−1, a central χ2 distri-

bution on K − 1 degrees of freedom.
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6 VALEN JOHNSON

This result does not rely heavily on the assumption that q is drawn from a

Dirichlet distribution; that assumption is made only to facilitate the conceptual

modeling of q in what follows. Other distributions that approach a multivariate

normal distribution for large values of their parameter and having the same first

and second order moments lead to the same result.

With these facts in hand, the strategy for defining a Bayes factor in this context

can be summarized as follows. The null hypothesis that the multinomial proba-

bility is equal to p has been operationalized by recasting the null hypothesis as

the statement that x is distributed as a χ2 random variable on K − 1 degrees of

freedom. The alternative hypothesis that the multinomial probability vector is not

equal to p has been recast as the statement that x is distributed as a non-central

χ2 random variable on K − 1 degrees of freedom. Finally, by assuming that the

distribution of the multinomial probability vector under the alternative hypothesis

is distributed around p with a Dirichlet distribution, the asymptotic distribution

of the non-centrality parameter of the alternative’s non-central χ2 distribution is

found to be distributed as a scaled version of a central χ2 distribution.

The probability density function of a non-central χ2
s(λ) random variable y can

be expressed

f(y | s, λ) = e−λ/2
∞∑

r=0

1
r!Γ(r + s/2)

(
λ

2

)r (
1
2

)r+s/2

yr+s/2−1e−y/2.

It follows that the conjugate prior density for the non-centrality parameter is a

gamma distribution. If z ≡ nκ′κ, then according to the prior model assumed for

the non-centrality parameter under the alternative hypothesis, the marginal density

of the χ2 statistic x, say ma(x), under the alternative hypothesis can be expressed
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BAYES FACTORS BASED ON TEST STATISTICS 7

in closed form as

ma(x) =
∫ ∞

0

f(x |K − 1, z) g

(
z

∣∣∣∣ K − 1
2

,
1 + c

2n

)
dz

= g

[
x

∣∣∣∣ K − 1
2

,
1 + c

2(1 + c + n)

]
.(1)

Here, the function g(· | a, b) represents a gamma density with shape parameter a

and scale parameter b.

Coupled with the simple form of the marginal density of x under the null

hypothesis–a chi-squared probability density function–we can use (1) to express

the Bayes factor between the null and alternative hypothesis as

Bayes factor =
g

(
x

∣∣ K−1
2 , 1

2

)
g

[
x

∣∣∣ K−1
2 , 1+c

2(1+c+n)

]
=

(
1 + c + n

1 + c

)K−1
2

exp
[

−nx

2(1 + c + n)

]
(2)

Recalling that c = O(n) and letting c = αn− 1, α > 1/n, (2) can be re-written as

(3) Bayes factor =
(

α + 1
α

)K−1
2

exp
[

−x

2(α + 1)

]
.

Several approaches can be taken to handling the nuisance parameter α in this

equation. Guidance regarding plausible choices found through a consideration of

the sampling properties of the maximum likelihood estimate of p, say p̂, under the

null hypothesis. In large samples, the distribution of (p̂−p)′(p̂−p) under the null

is distributed as 1/n times a χ2
K−1 random variable. According to the alternative

hypothesis, the distribution of (q−p)′(q−p) is distributed as 1/(αn) times a χ2
K−1

random variable. From a substantive perspective, it seems reasonable to assume
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8 VALEN JOHNSON

that the distribution of q under the alternative hypothesis should be more dispersed

around p than the maximum likelihood estimate is, which leads to a preference for

values of α smaller than one. For example, a value of α = 1/9 reflects an assumption

that the standard deviation of the distribution of q around p under the alternative

hypothesis is 3 times greater than the standard error of the maximum likelihood

estimate. By varying α appropriately, the probability that (q−p)′(q−p) is greater

than (p̂− p)′(p̂− p) can be subjectively fixed at any pre-selected level.

With these considerations in mind, the most objective approach towards assign-

ing a value to α is marginal maximum likelihood estimation, possibly under the

constraint that α ≤ 1. That is, α can be determined so as to maximize the mar-

ginal likelihood of the data under the alternative hypothesis. If no constraint is

imposed on the value of α, then the resulting Bayes factor has the simple inter-

pretation as representing the minimum amount of evidence contained in the test

statistic against the null hypothesis. However, because the alternative hypothesis

collapses onto the null hypothesis as α →∞, values of the Bayes factor close to or

equal to one should be interpreted only as providing no evidence against the null

hypothesis when the marginal maximum likelihood estimate of α is large. Note

that the minimum Bayes factor against the null hypothesis cannot exceed 1.0 if α

is left unconstrained.

A better approach towards setting the value of α is marginal maximum like-

lihood estimation under the constraint that α ≤ 1. Under this constraint, the

distribution of q under the alternative hypothesis is forced to be more dispersed

than the sampling distribution of the maximum likelihood estimate of p under the
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BAYES FACTORS BASED ON TEST STATISTICS 9

null hypothesis. Imposing this constraint on α eliminates the constraint on the

Bayes factor, permitting it to assume any value on the positive real line.

The value of α that maximizes the marginal density of the data under the alter-

native hypothesis is

(4) α =
K − 1

x− (K − 1)
,

provided that the chi-squared statistic x exceeds its expectation under the null

hypothesis (i.e., x > K − 1). At this value of α, the Bayes factor equals

(5)
(

x

K − 1

)K−1
2

exp
[
−x− (K − 1)

2

]
.

This value represents a lower bound on the weight of evidence in favor of the

null hypotheses and is explored further in Section 2.2. When x < K − 1, the

minimum value of the Bayes factor is one. As stated previously, this value is

achieved by letting α → ∞, or when the alternative hypothesis concentrates its

mass on p. The constrained maximum likelihood estimate for α is obtained by

taking the minimum of (4) and 1.0; the corresponding value of the Bayes factor is

obtained by substituting this value of α and x into (3).

Finally, a subjective view can be adopted and the value of α (or a prior distri-

bution on α) can be specified on the basis of scientific considerations and available

prior knowledge regarding the nature of plausible alternatives.

2.2. Composite Hypotheses. Now consider a null hypothesis in which the multi-

nomial cell probabilities represent functions of a s-dimensional parameter vector

θ, where s < K − 1. That is, assume that the multinomial cell probabilities

Hosted by The Berkeley Electronic Press



10 VALEN JOHNSON

p1(θ), . . . , pK(θ) are specified functions of a parameter vector θ, and let θ̂ denote

the maximum likelihood estimate of θ (or another efficient estimator of θ in the

sense specified in Cramér (1946)). Suppose also that each pk(θ) possesses continu-

ous first partial derivatives with respect to each of the components of θ and define

M to be the (K × s) matrix of rank s having elements {p−1/2
i ∂pi/∂θj}. Let θ0

denote the point in the s-dimensional space of θ for which the Kullback-Leibler in-

formation between p(θ) and q, the true value of the multinomial probability vector

under the alternative hypothesis, is maximized. The Kullback-Leibler information

is defined at any value of θ by

E
[
log

(
p(θ)
q

)]
=

∫
log

(
p(θ)
q

)
q dq,

where the dependence on data has been suppressed in both densities. If V is now

redefined to represent the vector

V′ =

n1 − p1(θ̂)√
np1(θ̂)

, . . . ,
nK − pK(θ̂)√

npK(θ̂)

 ,

and µ is redefined to be the vector with components {pi(θ0)−qi}, then the following

lemma applies.

Lemma 3. Under the alternative hypothesis, the asymptotic distribution of V′V

is χ2
K−s−1(nκ′κ), where κ is the vector having components µi/

√
pi(θ0).

The distribution of V′V under the null hypothesis is χ2
K−s−1.

Specifying an appropriate alternative model for the deviation of q from p(θ0) is

somewhat more complicated here than it was in the case of a simple null hypothesis.

The difficulty arises from the constraint that q be “close” to a probability vector

http://biostats.bepress.com/umichbiostat/paper30
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satisfying the functional constraints p(θ). However, a natural way to view this

problem is to assume that both q and p(θ0) are generated jointly from the following

sampling procedure. First, a point p∗(θ) satisfying the constraints imposed by the

null model is selected at random. (The prior distribution from which the given

value of θ is drawn is arbitrary and does not affect the asymptotic results that

follow.) Under the alternative hypothesis, the true multinomial probability q is

then drawn from a Dirichlet distribution with parameter cp∗(θ). For large c, the

error term µ can be written

µ
a=

(
I−MJ−1M′) (q− p∗) = q− p(θ0)

where

p(θ0)
a= p∗ + MJ−1M′(q− p∗)

and J = M′M. Here, a= denotes asymptotic equivalence. Given this alternative

model for the generation of q, we obtain the following result.

Lemma 4. Under the assumptions stated above, if κ denotes the vector with com-

ponents µi/
√

pi(θ0), the asymptotic distribution of (1 + c)κ′κ is χ2
K−s−1.

Noting that p(θ0) maximizes the Kullback-Leibler information to q among prob-

ability vectors satisfying the given constraints, the proofs of these lemmas follow

directly from results given in Rao (1973).

The similarity of Lemmas 3 and 4 to Lemmas 1 and 2 implies that the results of

Section 2.1 can be applied to composite hypotheses by simply substituting (K−s−1)

for (K − 1) in (1-5) (when x > K − s− 1).

Hosted by The Berkeley Electronic Press



12 VALEN JOHNSON

In current statistical practice, the value of Pearson’s χ2 statistic is used to cal-

culate a p value against a null hypothesis. Usually, the null hypothesis is rejected

when a p value less than 0.05 is observed. It is therefore of some interest to examine

the probability that the null hypothesis is true (as calculated from (5) and (3) when

the p value of the test just achieves its critical value of 0.05. Figure 2 displays this

probability as a function of the degrees of freedom of the χ2 test statistic when

α is determined by unconstrained marginal maximum likelihood estimation. Be-

cause the marginal density of the data under the alternative hypothesis has been

maximized with respect to the parameter α, the probabilities displayed in Figure 2

represent the minimum probability that the null hypothesis is true when the alter-

native hypothesis takes the form specified above. For one degree of freedom, the

probability that the null hypothesis is true is 0.32; at 100 degrees of freedom, the

probability that the null hypothesis is true is 0.22. The value of α at 100 degrees

of freedom is 4.1. Figure ?? displays the probability that the null hypothesis is

true when the χ2 statistic is equal its .95 quantile under the null when values of α

are estimated using marginal maximum likelihood estimation under the constraint

that α < 1.

The compliment to Figure 2 is provide in Figure 3. In Figure 3, p values of

the χ2 statistics that lead to a 5% probability that the null is true are displayed.

Perhaps not surprisingly, these p-values are substantially smaller than 0.05.

2.2.1. A contingency table example. It is interesting to compare the Bayes factor

based on the χ2 statistic, as proposed above, to more traditionally-computed Bayes

factors for the purpose of testing independence of row and column classifications in

contingency tables. Of course, the values of the traditional Bayes factors depend

http://biostats.bepress.com/umichbiostat/paper30
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Figure 1. The posterior probability that the null hypothesis is
true when Pearson’s χ2 statistic is observed to equal its .95 quantile
under the null, equal prior probability is assigned to the null and
alternative hypotheses, and α is determined from unconstrained
maximum likelihood estimation.

on the prior densities assumed for the multinomial probability vector under the

null and alternative models. For that reason, we consider Bayes factors based on

only two prior specifications here. Both are based on priors that are approximately

equivalent to the implicit assumption made on the alternative hypothesis assumed

in the derivation of the Bayes factors above. The first, based on Albert (1990),

uses a prior density for the multinomial probability under the alternative model
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Figure 2. The posterior probability that the null hypothesis is
true when Pearson’s χ2 statistic is observed to equal its .95 quan-
tile under the null, equal prior probability is assigned to the null
and alternative hypotheses, and α is determined from constrained
marginal maximum likelihood estimation.

that is “concentrated about the ‘independence surface’.” The second, based on

methodology described in Good and Crook (1987), employs a mixed Dirichlet prior

with hyperparameter values determined using empirical Bayes methodology.
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Figure 3. The p values required of the χ2 test statistic for the
null hypothesis to be true with posterior probability 0.05 when the
prior odds are 1.

The particular contingency table considered here is taken from White and Eisen-

berg (1959) and is also discussed in Albert (1990). The data represent a cross-

classification on cancer site and blood type for 707 stomach cancer patients. The

data appear in Table 1.

Pearson’s χ2 statistic for the test of independence for White and Eisenberg’s

data is 12.65 on 6 degrees of freedom. Based on (5), the Bayes factor on the odds

for the independence model against a general alternative is 0.337.
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16 VALEN JOHNSON

Blood Group
Site O A B or AB
Pylorus and antrum 104 140 52
Body and fondus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

Table 1. White and Eisenberg’s classification of cancer patients

The prior models underlying the computation of the Bayes factors proposed in

Albert (1990) and Good and Crook (1987) are rather intricate, as are the methods

for numerically evaluating them. For this reason, a detailed description of these

methodologies is not presented here. Instead, only those details required for the

replication of results are presented; interested readers should consult the original

articles for more complete accounts.

The computation of the Bayes factor for independence under Albert’s model re-

quires the specification of a hyperparameter w. Albert recommends a value of one

for this hyperparameter, which corresponds to placing a uniform prior on second

stage Dirichlet distributions for the marginal multinomial probabilities under the

null. Accepting that recommendation, I take w = 1. A second parameter, K, is

used to control the dispersion of the multinomial probabilty vector around the inde-

pendence surface under the alternative model. The minimum Bayes factor against

independence in this formulation can be obtained by minimizing an approximation

to the Bayes factor given in Albert with respect to K. Doing so leads to a Bayes

factor in favor of independence equal to 0.331.

To compute the Bayes factor under Good and Crook’s model assumptions, a

prior density is required on a hyperparameter k0 that determines the degree of

smoothing applied in an empirical Bayes prior density on the row and column

http://biostats.bepress.com/umichbiostat/paper30



BAYES FACTORS BASED ON TEST STATISTICS 17

probabilities under the null model. To estimate this probability, Good and Crook

suggest mixing over a log-Cauchy density with lower and upper quartiles given by 10

and 50 divided by the number of rows or columns. Accepting this recommendation,

if the Bayes factor is minimized over the value of a second hyperparameter κ,

and if Good and Crook’s suggestion to assume that the mixing density on the

Dirichlet priors represents a point mass at h(κ), then a mininum Bayes factor in

favor of independence of 0.327 is obtained. This figure agrees well with Bayes factor

obtained using Albert’s prior assumptions, and suggests some degree of robustness

of Bayes factors obtained when this general approach towards specifying vague

alternative models is adopted.

Both of these Bayes factors also agree well with the Bayes factor based on the

χ2 statistic, suggesting that little information has been lost by modeling the distri-

bution of the test statistic directly.

3. F, t and z tests

Consider now the problem of testing the validity of a linear constraint on a

regression parameter. Suppose that

y |β, σ2 ∼ N(Xβ, σ2I),

where y is an n× 1 observation vector, β is an r × 1 regression parameter, X is a

n× r matrix of rank r, and σ2 is a scalar variance parameter. Assume further that

under the null hypothesis, H′β = ξ, where H is an m× k matrix of rank k whose

range space is contained in the range space of X′. As Rao (1973. page 191) notes,

there then exists a matrix C such that H = X′XC where the rank of XC is k.

Hosted by The Berkeley Electronic Press



18 VALEN JOHNSON

If we define R2
1 by

R2
1 = min(y −X′β)′(y −Xβ),

minimized over all β subject to the condition H′β = ξ, and R2
0 to be the corre-

sponding minimum when β is unconstrained, then under the null hypothesis the

quantity

f =
(R2

1 −R2
0))/k

R2
0/(n− r)

is distributed as Fk,n−r, a central F distribution on (k, n− r) degrees of freedom.

Now suppose that under the alternative hypothesis, β is generated by the fol-

lowing mechanism. First, a value of the regression parameter satisfying the null

hypothesis is selected. Denote this value by β∗. Next, β is drawn from a r-variate

normal distribution centered on β∗ and having covariance matrix τσ2(X′X)−1.

Again, this is the case of practical interest because values of β not drawn from a

distribution similar to this will either be accepted or rejected with probability close

to 0 or 1 as the number of observations becomes large. Note also that the marginal

variances of the components of β around the point β∗ are typically O(1/n), mak-

ing the deviation of the components of β away from the null hypothesis Op(1/
√

n)

under the alternative.

Under this scheme for generating β under the alternative hypothesis, the distri-

bution of H′β is normally distributed with mean ξ and covariance matrix equal to

τσ2H′(X′X)−1H. Under both the null and alternative hypotheses, the distribution

of R2
1 −R2

0 is χ2
k(λ) where the non-centrality parameter λ can be expressed

λ = σ−2(H′β − ξ)′(C′X′XC)−1(H′β − ξ).

http://biostats.bepress.com/umichbiostat/paper30
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Under the alternative, it follows that λ/τ is distributed as a χ2
k random variable,

and that the distribution of f given λ has a non-central F distribution with density

function

p(f |λ) =
(

k

m

)k/2

e−λ/2
∞∑

r=0

(
kλ

2m

)r 1
r!

B

(
k

2
+ r,

m

2

)
fr−1+k/2(

1 + k
mf

)r+(k+m)/2
.

In this equation, m = n−r and B(s, t) = Γ(s+ t)/[Γ(s)Γ(t)]. Marginalizing over λ,

it can be shown that the distribution of f/(1 + τ) under the alternative hypothesis

has a central Fk,m distribution.

For f > 1, the marginal maximum likelihood estimate of τ based on the observed

value of f under the alternative hypothesis is τ = f − 1. At this value of τ , the

marginal density of f is

(6) p(f | τ = f − 1) = B

(
k

2
,
m

2

) (
k

m

)k/2 1(
1 + k

m

)(k+m)/2

1
f

.

It follows that the minimum Bayes factor in favor of the null hypothesis for f > 1

is

(7) Bayes factor =
[ m

k + 1
m
k + f

] k+m
2

f
k
2 .

For large f , the minimum Bayes factor is approximately f−(m/2).

Following the discussion of Section 2, in applications it usually makes sense

to constrain the value of τ to be greater than 1.0. Under such a constraint, the

dispersion of the regression parameter specified in the alternative model is forced to

be as great as the dispersion of the least squares estimate of the regression parameter

under the null. With this further assumption, the constrained marginal likelihood
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estimate of τ is equal to the maximum of 1 and f −1, and the corresponding Bayes

factor is given by

(8) BF = (1 + τ)
k
2

[
1 + kf

m+mτ

1 + kf
m

] k+m
2

The case k = 1 is of particular interest as it corresponds to the t-test for a

normal mean when the variance is unknown. In this case, the minimum Bayes

factor against the null reduces to

(9)
(

m + 1
m + f

)m+1
2 √

f

where f = t2.

Figure 4 depicts the minimum posterior probability that the null hypothesis is

true for t-tests as a function of the degrees of freedom m, assuming prior odds of 1

between the null and alternative.

The one-sample z statistic can be obtained from (9) by taking the limit as m →

∞. Taking this limit, we find that the Bayes factor for testing the value of a normal

mean is

(10) Bayes factor =
√

f exp
(
−f − 1

2

)

This is the same as the result derived in Section 2 based on a χ2
1 distribution.

3.1. Hald’s data. The performance of Bayes factors based on F test statistics can

be illustrated using Hald’s regression data. This data set is discussed in Zellner

(1984), and was used by Berger and Pericchi (1996) to compare intrinsic Bayes
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Figure 4. The posterior probability that the null hypothesis is
true as a function of the observed f statistic when the numerator
degrees of freedom is 1 (assuming prior odds equal to 1). From
top to bottom, the curves represent the null’s posterior probability
when the degrees of freedom in the denominator are 5, 10, 25, and
500.

factors to Bayes factors calculated under model assumptions described in Zellner

and Siow (1980).

There are four regressors in this data set. Following Berger and Pericchi, we

denote them by 1, 2, 3, and 4, and let c denote the constant term corresponding
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to the intercept. As Berger and Pericchi point out, “this data set is somewhat ex-

treme because of the very small sample size (n=13) and because the design matrix

is nearly singular.” Berger and Pericchi calculate several versions of their intrin-

sic Bayes factor for the submodels obtained by including subsets of regressors in

the normal regression model. They also provide a table in which these values are

displayed next to Bayes factors obtained under Zellner and Siow’s model assump-

tions. Based on these comparisons, Berger and Pericchi argue in favor of the use

of arithmetic intrinsic Bayes factors based on either improper reference priors or

modified Jeffreys’ priors. The values of the Bayes factors obtained by Zellner and

Siow are based on a multivariate Cauchy alternative model containing an improper

prior on the scale parameter. Though this definition of the Bayes factors is not

mathematically legitimate, Zellner and Siow make the implicit assumption that

the unspecified normalizing constant associated with their improper prior model is

common to both null and alternative hypotheses and so cancels out of subsequent

calculations.

Table 2 displays the intrinsic Bayes factors recommended by Berger and Pericchi

and the Bayes factors produced under Zellner and Siow’s model. Also displayed

are Bayes factors based on the F statistic. Two such Bayes factors are provided.

The first was obtained by maximizing over the (unconstrained) marginal likelihood

of the data under the alternative model (BFmax), and the second by fixing τ = 9

(BF9). As discussed previously, this value of τ represents an assumption that the

standard deviation of β under the alternative hypothesis is 3 times greater than

the standard error of the least squares estimate of the regression parameter under

the null hypothesis.
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Model BFmax AIBF1 AIBF2 ZS BF9

1,2,3,c 1.0 0.29 0.29 0.3 0.32
1,2,4,c 1.0 0.26 0.26 0.3 0.32
1,3,4,c 1.0 0.31 0.32 0.36 0.40
2,3,4,c 1.99 1.2 1.2 1.11 1.75
1,2,c 1.0 0.18 0.19 0.26 0.23
1,3,c 36,823 8,242 15,873 2,439 2,221
1,4,c 1.36 0.46 0.45 0.56 0.71
2,3,c 526 216 361 90.9 285
2,4,c 9,415 2,774 5,071 833 1335
3,4,c 20.5 13.1 13.8 7.14 20.42
1,c 20,643 4,159 8,531 3,125 1,997
2,c 5,557 1,910 3,564 1,176 1,178
3,c 111,508 22,842 52,084 11,494 3,318
4,c 5,037 851 1705 1,087 1,126
c 235,712 19,722 37,830 11,236 4,134

Table 2. Bayes factors for Hald’s data. The second column pro-
vides the Bayes factor obtained from the F statistic for the sub-
model regression against the full model when τ is determined by
maximizing the marginal likelihood under the alternative (7). The
third and fourth columns provide the arithmetic intrinsic Bayes
factors based on reference and modified Jeffreys priors, respec-
tively. The fifth column lists the Bayes factors proposed in Zellner
and Siow, and the sixth column the Bayes factor obtained from
the F statistic with τ = 9. Values of AIBF1, AIBF 2, and ZS are
taken from Berger and Pericchi (1996). To facilitate comparison
with results cited in Berger and Percchi, Bayes factors reflecting
the odds of the alternative to the null hypothesis (rather than null
to alternative) are provided.

As expected, the values of BFmax displayed in Table 2 provide an upper bound

for the remaining Bayes factors in the table. Loosely speaking, BFmax tends to be

2-3 times larger than the values of the arithmetic intrinsic Bayes factors based on

the modified Jeffreys priors, and 4-6 times greater than the values of the arithmetic

intrinsic Bayes factors based on the reference priors. The multiplicative inverse of

the values of BFmax are closest to the p-values based on F tests.

There is relatively close agreement between Zellner and Siow’s Bayes factors and

the Bayes factor based on the F statistic with τ = 9.
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The Bayes factors corresponding to the constrained marginal maximum likeli-

hood estimates of τ were identical to the unconstrained values except where the

unconstrained value is listed as 1.0. For these entries, the Bayes factors based on

constrained marginal maximum likelihood estimation of τ , under the constraint

that τ > 1, were 0.71, 0.71, 0.81, 0.79, in order of appearance in Table 2.

4. Extensions to other test statistics

Conclusions from Section 2 can be extended to other χ2 statistics, like the score

test, likelihood ratio test, and Wald’s test, although the motivation for the probabil-

ity models underlying the alternative hypotheses is less natural for those statistics

than it is for Pearson’s statistic. To see why, consider as an example the score test.

If the efficient score is denoted by V and the information matrix by J, then the

score statistic is V′J−1V. The most direct line of reasoning leading to a “conjugate

hypothesis” under which the distribution of the score statistic has a non-central χ2

distribution is an assumption that the distribution of V under the alternative hy-

pothesis is Gaussian with a non-zero mean, say λ, and covariance matrix J. If

λ is assumed to follow a Gaussian distribution, then the results of Section 2 can

also be extended to the score statistic. However, the specification of an alterna-

tive probability model on the score vector itself, rather than on a parameter in

a data model, seems less intuitive than the specification of a Dirichlet prior on a

multinomial probability vector. Still, the specification of a scaled χ2 distribution

on the noncentrality parameter, with degrees of freedom equal to that of the test

statistic, appears to work well for other χ2 statistics, and makes subsequent anal-

yses tractable. As a “conjugate” alternative, this approach seems to offer many

advantages.
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Bayes factors can be defined from test statistics in many small sample settings

as well. Fisher’s exact test provides an interesting case in point. By conditioning

on row and column totals in a 2 × 2 table, the counts in a contingency table are

known to follow a (central) hypergeometric distribution. When the null hypothesis

is false, the natural alternative model is that the counts follow a non-central hyper-

geometric distribution with, say, non-centrality parameter φ. If φ is parameterized

so as to represent the odds ratio, then it is natural to define a class of alternative

models by assuming that log(φ) is drawn from a symmetric distribution centered

on 0 with scale parameter, say, σ. With such a definition of the alternative model,

it is a simple matter to numerically maximize the marginal likelihood of the data

with respect to the scale parameter σ to obtain the Bayes factor of the test. And,

of course, the use of Bayes factors in this context eliminates the necessity of deter-

mining which of several possible tail probabilties are relevant to the calculation of

the p value.

Fisher’s tea-tasting experiment (1935) is perhaps the most famous example of the

exact test for independence in contingency tables. In this experiment, a colleague

of Fisher claimed to be able to distinguish whether tea was added to milk or milk

to tea. After being told that four cups of tea had been prepared each way, she

was able to correctly identify three of four cups of each preparation after tasting

them in randomized order. The resulting 2 × 2 table contained entries (3,1,1,3).

The probability of this table according to a central hypergeometric distribution is

.229. The only table that is more extreme is the table (4,0,0,4), corresponding to

all correct identifications. That table has probability .014, leading to a one-sided p

value of .243.
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The Bayes factor in favor of the null, when log(φ) is assumed drawn from a

N(0, σ2) distribution and the marginal density of the alternative is maximized with

respect to σ, is .90. The maximum marginal likelihood of the data is achieved when

σ = 1.3. Thus, there is some evidence against the null, but its posterior probability

(assuming equal prior odds) is relatively high, equalling .47.

5. Summary

By modeling the distribution of test statistics directly, Bayes factors can be

computed in many standard problems without the specification of subjective prior

densities. Because the distribution of the test statistic does not involve unknown

parameters, no prior densities are involved in the calculation of the marginal density

of the data under the null. Alternative models can often be defined in a natural

way as the “non-central” version of the test statistic’s distribution under the null

hypothesis. Doing so introduces a noncentrality parameter that must be modeled,

but for standard test statistics a conjugate prior density or other convenient prior

density for the noncentrality parameter is often apparent and typically involves a

only single scale parameter. Marginalizing over the noncentrality parameter and

maximizing with respect to this scale parameter leads to the maximum marginal

likelihood estimate of the density of the data under the alternative, which in turn

leads to what might be considered a default Bayes factor.

In this article, attention has focused on the calculation of Bayes factors using

classical test statistics. Similar methodology can also be adapted for application to

Bayesian test statistics, as described in, for example, Johnson 2003. In that context,

a sequence of correlated χ2 test statistics are generated from the posterior distri-

bution on the parameter space. However, further methodological developments are
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needed to combine information across such sequences to obtain an overall Bayes

factor for the test.

Bayes factors based on test statistics are numerically easy to compute, and re-

quire neither the specification of prior densities on model parameters nor the ex-

plicit specification of alternative models. For normal-theory test statistics, they are

actually easier to compute than p values, and so can be applied routinely to com-

mon testing problems. The methodology proposed here thus provides practitioners

with an alternative to p values for summarizing evidence against null hypotheses.

Because the value of a Bayes factor represents the modification of the probability

that a hypothesis is true based on test data, routine use of these default Bayes

factors would reduce the confusion that often occurs when p values are reported

to non-statisticians, who then interpret the p value as the probability that the null

hypothesis is true.
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