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Abstract

Although Bayesian linear mixed effects models are increasingly popular for analysis of within-subject designs in psychology

and other fields, there remains considerable ambiguity on the most appropriate Bayes factor hypothesis test to quantify

the degree to which the data support the presence or absence of an experimental effect. Specifically, different choices for

both the null model and the alternative model are possible, and each choice constitutes a different definition of an effect

resulting in a different test outcome. We outline the common approaches and focus on the impact of aggregation, the effect

of measurement error, the choice of prior distribution, and the detection of interactions. For concreteness, three example

scenarios showcase how seemingly innocuous choices can lead to dramatic differences in statistical evidence. We hope this

work will facilitate a more explicit discussion about best practices in Bayes factor hypothesis testing in mixed models.

Keywords Random effects · ANOVA · Model comparison

In a typical response time experiment, multiple partici-

pants complete multiple trials in multiple conditions. For

example, in a lexical decision task (Meyer & Schvaneveldt,

1971), 30 participants may be instructed to decide as quickly

and accurately as possible whether or not 100 individually

presented letter strings are words (e.g., FISH) or nonwords

(e.g., DRAPA). A possible experimental manipulation may

concern the type of motor effector — on half of the trials

participants have to press the response buttons with their

thumbs, and on the other half they have to use their index

fingers.

In such two-condition within-participant designs,

researchers are generally interested in the effect of the

experimental manipulation. As a first step, researchers

often address the question of whether or not the manipula-

tion may be said to have had an effect, for instance, whether

or not response times (RTs) differ when people respond

with their thumbs rather than with their index fingers.1

1We assume that interest centers on RT for correct responses to word

stimuli. It is standard practice to log-transform the RTs, in order to

satisfy the normality assumption of linear models. In the remainder
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Several statistical methods are available to test for such a

difference between conditions and the choice among them

cannot be based on statistical considerations alone—each

of these approaches instantiates a different interpretation of

the main question of interest.

The oldest and most common analysis approach is to

conduct a repeated measures (RM) analysis of variance

(ANOVA), which in the case of two conditions is

equivalent to a paired-samples t-test. In the scenario above,

participants’ RTs for individual trials are first averaged

within each condition, resulting in two average RTs per

participant, one for each condition. We term this averaging

process aggregation. Following aggregation, participants’

average RTs are then subjected to a one-way RM ANOVA.

This method accounts for the correlation between the

averaged observations that is caused by some participants

generally being faster or slower than others (i.e., the

presence of baseline differences or random intercepts). This

is in contrast to a between participants ANOVA, which

is not designed to account for correlated observations.

Nonetheless, both types of ANOVA have in common

that they are applied to observations averaged across

multiple trials. Aggregating individual response times loses

information and limits the questions that can be addressed.

For example, aggregated RM ANOVA cannot be used to

of this article, we draw our synthetic observations from normal

distributions where relevant, thus generating what can be considered

log-transformed RTs.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-021-00113-2&domain=pdf
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assess whether the experimental manipulation affects all

participants alike, or whether the effect of the manipulation

differs per participant.

In contrast, mixed effects models (also referred to as

hierarchical or multilevel models) make use of the full (i.e.,

unaggregated) data set. These models typically account for

the nested data structure by modelling baseline differences

in general response speed across participants (as in RM

ANOVA) as well as differences in the magnitude of the

condition effect across participants (i.e., random slopes).

By modelling individual RTs, mixed effects models enable

researchers to ask more specific questions. As in RM

ANOVA, mixed effects models estimate the average effect

of condition (i.e., the fixed effect), but additionally they

can be used to examine the extent to which the effect

of condition differs between participants (i.e., the random

effect).

The example given here can be generalized in two

ways. First, while condition is a categorical variable, the

same framework can be applied to continuous predictor

variables. Second, the random effects grouping factor (in

the example above, “participant” is the grouping factor) can

be any categorical variable in the design for which there

are multiple observations. For instance, instead of modelling

differences between individual participants, we could model

a difference in the effect of the manipulation for different

groups of people (e.g., two different geographical regions).

Furthermore, in the case of multiple grouping factors, the

random effects can either be nested or crossed. In the case of

nested random effects, not all levels of one grouping factor

are measured for the other grouping factor. For example,

if both “participant” and “region” are used as grouping

factors, the structure is nested, because each participant

will be either from one region or the other. In the case of

crossed random effects, all levels of one grouping factor are

measured for the other grouping factor. For example, if both

“participant” and “item” are used as grouping factors, the

structure is crossed when all participants complete all items,

because for each participant, there are observations for each

item (for more examples, see Baayen et al. 2008; Quené &

Van den Bergh 2008; Singmann & Kellen, 2019).

Although alluded to by (Fisher, 1935) and (Yates, 1935),

the first explicit definition of random intercepts was given

by Jackson (1939), who proposed to account for individual

differences in intelligence in order to more accurately assess

the reliability of mental tests.

Since their introduction, mixed effects models have

seen an increase in statistical development (e.g., Scheffe

1956; Kempthorne 1975; Efron and Morris 1977; Nelder

1977; Lindstrom & Bates 1990), and arguably rank among

the most important statistical ideas of the last 50 years

(Gelman & Vehtari, 2020). The application of mixed

effects models has been particularly stimulated by software

implementations (e.g., lme4, Bates et al. (2015b); nlme,

Pinheiro and Bates (2000) and Pinheiro et al. (2020); and

afex, Singmann et al. 2020) and tutorial papers (e.g.,

Baayen et al. 2008; Judd et al. 2012, 2017; Singmann and

Kellen 2019).

Here we focus on Bayesian inference for mixed effects

models, and specifically on Bayes factor hypothesis tests

(e.g., Rouder et al. 2012; Clyde et al. 2011).2 Despite

the availability of Bayesian tutorials (Shiffrin et al., 2008;

Rouder et al., 2013; Sorensen et al., 2016) and software

alternatives (e.g., Morey & Rouder 2018; Carpenter et al.

2017; Goodrich et al. 2020; Bürkner 2017; Thalmann &

Niklaus 2018; JASP Team 2020), there remains a lack of

clarity and consensus about how to best conduct Bayesian

model comparison when considering mixed effects.

Examining the effect of a manipulation requires the

specification of both a null model, which assumes no

effect of the manipulation, and an alternative model. In the

frequentist framework, a well-cited recommendation for the

specification of the alternative mixed effects model of the

full data is to specify a “maximal” model (i.e., the model

that includes all fixed and random effects justified by the

study design). In particular, failure to include random slopes

can inflate Type 1 or Type 2 error probabilities (Bates et al.

2015a; Matuschek et al. 2017, but see Barr et al. 2013b;

Berkhof & Kampen 2004; Schielzeth & Forstmeier 2008;

Heisig & Schaeffer 2019). Despite the fact that there are

multiple suitable null models that the maximal model can

be compared to, the appropriate specification of the null

model is much less discussed. This is problematic because

the choice of the null model (just like the alternative model)

defines the question we ask about the condition effect.

Several decisions need to be made when testing for

the effect of a manipulation in an experimental within-

participant designs: Which model comparisons are both

suitable and sensible, whether or not to aggregate, how

to quantify effects, and how to set prior distributions.

The aim of the current paper is to list the available

options and demonstrate their impact on inference. We hope

our exposition provides a common starting ground for a

discussion among experts in the field of Bayes factor model

comparison. We further hope that this discussion will foster

the development of a much needed set of guiding principles

for the applied researcher who ventures into the realm of

Bayesian mixed models.

The outline of this paper is as follows. We start by

defining the possible models that can be compared when

random effects are considered. Then, we present a simple

synthetic data set to illustrate the differences in model

comparisons, as well as the effect of aggregating the

2We use the terms “hypothesis test” and “model comparison”

interchangeably.
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data. The second example demonstrates how the different

mixed model comparisons behave when analyzing data

sets with either few accurate measurements or many noisy

measurements. As a third example, we present a real-

life data set that underscores these modelling questions,

and highlights the added complexity of having multiple

independent variables of interest. Table 1 below provides

the main research questions that are explored, including the

relevant examples for each question.

The Candidate Models

In this section we define the candidate models for a one-

factorial design. Suppose I participants each observe M

trials in each of J conditions. For this research scenario,

there are the following six candidate models (Fig. 1), each

with different theoretical underpinnings:

Model 1. Intercept (μ) only, no fixed effect of condition

and no random effects for participants. With

subscript i for the ith participant, j for the j th

condition, and m for the mth trial, the model

for the observed values Yijm can be written as

a function of the grand mean μ and the error

variance σ 2
ǫ . We give this definition below, and

then expand it for each subsequent model:

Yijm ∼ N(μ, σ 2
ǫ ). (1)

Model 2. Fixed effect ν of condition, but no random

effects for participants. The term xj is a design

element that encodes condition (i.e., x1 = −1/2,

x2 = 1/2 if J = 2), which ensures the sums-

to-zero constraint for the fixed effects (Rouder

et al., 2012).3 The resulting model can be written

as follows:

Yijm ∼ N(μ + xjν, σ 2
ǫ ). (2)

Model 3. No fixed effect of condition, but random

intercepts αi specific to the ith participant. In

contrast to Models 1 and 2, this model includes

baseline differences. The random intercepts are

distributed normally around the grand mean μ,

with standard deviation σα . Random intercepts

can also be understood as a main effect of

participant. When σα is 0, Model (3) reduces to

Model (1). In one-way RM ANOVA, this model

is typically used as the null model. Since this

model includes neither fixed nor random effect

3This setup is known as effect coding, and implies that the μ parameter

is the grand mean. For designs with > 2 factor levels, multiple coding

vectors are used. In the remainder of the manuscript we consider

only cases with two levels. The questions we pose here do not

fundamentally change when the number of levels is increased.

of condition, we refer to this model as the Strict

null. The model can be written as follows:

Yijm ∼ N(αi, σ
2
ǫ ),

αi ∼ N(μ, σ 2
α ).

(3)

Model 4. Fixed effect ν of condition and random inter-

cepts αi for participants. In one-way RM

ANOVA, this model is used as the alternative

model. The model can be written as follows:

Yijm ∼ N(αi + xjν, σ 2
ǫ ),

αi ∼ N(μ, σ 2
α ).

(4)

Model 5. No fixed effect, but random intercepts αi and

slopes θi specific to the ith participant. The

random slopes are distributed normally around

0, with standard deviation σθ . In general,

random slopes can also be understood as

an interaction effect between condition and

participant (Nelder, 1977). When σθ is 0, Model

(5) reduces to Model (3). In essence, this model

postulates that there is an effect of condition

in each participant, but that it varies across

participants in a perfectly balanced way, such

that the average effect is 0 across participants.

We therefore refer to this model as the Balanced

null. The model can be written as follows:

Yijm ∼ N(αi + xj θi, σ
2
ǫ )

αi ∼ N(μ, σ 2
α )

θi ∼ N(0, σ 2
θ )

(5)

Model 6. The full model, with fixed effect ν of condition,

random intercepts αi , and random slopes θi for

participants. All previous models are restrictions

of this model. For mixed models in the frequen-

tist framework, this is the often-recommended

alternative model (Barr, 2013a). The model can

be written as follows:

Yijm ∼ N(αi + xj θi, σ
2
ǫ )

αi ∼ N(μ, σ 2
α )

θi ∼ N(ν, σ 2
θ )

(6)

We do not entertain all possible combinations of

parameters (e.g., models with random slopes but no random

intercepts, or models without a grand mean), because

we consider them both theoretically and statistically

inappropriate in the current mixed modeling setting.

Additionally, in the remainder of this article we do not

discuss explicitly modeling the correlation between the

random slopes and random intercepts. Failure to account for

correlated random effects can lead to misleading results, for

instance in the context of ceiling effects, where participants

with high intercepts will be inherently limited in their effect.
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Table 1 Summary of the different modeling questions faced when conducting a Bayes factor mixed model comparison

Question Related example

What are the appropriate model comparisons for a one-factorial design? 1, 2

What are the appropriate model comparisons for a two-factorial design? 3

What is the effect of aggregation? 1, 2

How should prior distributions be specified in the context of random effects? 2

Is it desirable to have different inference for many noisy observations, compared to few accurate observations? 2

How to cope with a growing model space, as the design becomes more complex? 3

The right column indicates which of the presented examples are relevant to each question

For all models, σ 2
ǫ denotes the error variance, which

is the variance in the data left unexplained by the model.

The explained variance of a mixed model is the sum of

the variance induced by the fixed effect, the variance of

the random intercepts σ 2
α , and the variance of the random

slopes σ 2
θ (Rights & Sterba, 2019). Together the explained

variance and σ 2
ǫ make up the total variance of the data

y. Random effects are a source of systematic variation

that, if unaccounted for in the model, may be incorrectly

attributed to the explained variance of a fixed effect, or the

error variance, leading to conclusions about the fixed effect

that are either overly permissive, or overly conservative,

respectively (Barr et al., 2013b).

TheModel Comparisons

With the series of six models defined, we can use model

comparisons to assess whether or not there is an effect

of condition. Between the six models under consideration

we can make n(n−1)
2

= 15 model comparisons that can

be applied to either the full data or the aggregated data.

The models differ from each other with respect to the

three parameters of interest: ν, σα, and σθ . The appropriate

model comparison depends on the research question at

hand, since each comparison answers a different question.

Specifically, the combined choice of the null and alternative

model constitute different definitions of what it means for

a manipulation to have an effect: Model (4) posits that the

fixed effect manifests in every participant, whereas Model

(6) posits that the fixed effect is the average of participant-

specific effects that vary in magnitude. Below, we consider

three model comparisons that we consider to be primarily

relevant to the current scenario.

We start by outlining the popular RM ANOVA procedure,

which compares Model (3) to Model (4). This procedure

uses one observation per participant and per level of each

factor (i.e., M = 1). In cases where M > 1, the observations

are typically aggregated first, even though aggregation is

not strictly required.4 The aggregation discards information

about the distribution of each participants’ observations

within each condition. As a consequence, it becomes

impossible to distinguish between systematic random slope

variance and random error variance (i.e., aggregation

confounds the random slopes variance with the residual

variance). However, a benefit of aggregation is that it greatly

reduces the impact of random slopes in the inference for

a fixed effect and therefore eliminates the inflation of

Type 1 and Type 2 error rates that ignoring random slopes

typically entails (see Examples 1 & 2 for a demonstration).

Comparing Model (3) to Model (4) on the full data, on the

other hand, does suffer from this inflation, and we therefore

do not consider it appropriate. The comparison of Model

(3) to Model (4) on the full data might be applicable under

the strict assumption that there are no random slopes. In the

remainder of this manuscript, we focus on scenarios where

random slopes cannot be excluded a priori.

We now outline the comparisons of models that contain

random slopes. In the frequentist framework, it is often

recommended to use the maximal mixed model justified by

the design (Barr, 2013a). The presence of the fixed effect ν

is typically tested by means of a t- or F -test. This procedure

implicitly compares the full model (Model (6)) to the full

model without the fixed effect (Model (5)).

Since random slopes are in fact an interaction effect

between the fixed effect of condition and the random effect

of participant, specifying a model that includes random

slopes without the corresponding fixed effect (i.e., Model

(5)) can be seen as conceptually problematic. Specifically,

Rouder et al. (2016) argues that a model containing an

interaction effect without the main effect is only plausible

when the exact levels of each factor are picked such that the

4Barr (2013a) notes this as one of the three common misconceptions

about conventional RM ANOVA. While Barr does not advise to

conduct the typical RM ANOVA (i.e., without considering the random

slopes) using the non-aggregated data, it is technically possible to do

so.
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Fig. 1 A graphical representation of the postulations for the six

models, in the case where I = 3 participants each observe M = 1

trial in each of J = 2 conditions. The models in the left column

postulate no fixed effect of condition, whereas the models in the right

column postulate a fixed effect of condition. The models in the top row

postulate no random effects, the models in the middle row postulate

random intercepts only, and the models in the bottom row postulate

random intercepts and random slopes. The arrows indicate the nested

structure of these six models, where each model on the left is nested in

the model on the right, and each model is nested in the model that is

located below

true main effects perfectly cancel, which in most practical

applications seems implausible. If we accept this argument

while still accounting for random slopes, the implied model

comparison is between the full model (Model (6)) and

the model with only the random intercepts (Model (3)).

However, this model comparison comes with its own set of

challenges: The increase in model validity coincides with a

loss of diagnostic specificity: when Model (6) outperforms

Model (3), we can only conclude that the data offer support

for the presence of a fixed effect, random effect, or both a

fixed and random effect.

Note that, for aggregated data, Models (5) and (6) are not

identified.5 We therefore only consider model comparisons

involving Models (5) and (6) when applied to the full data.

Thus, based on different considerations, we identify

three possible model comparisons, where the last two

comparisons are named after the null model that is being

used:

1. The RM ANOVA comparison: Model (3) vs Model (4)

using the aggregated data

2. The Balanced null comparison: Model (5) vs Model (6)

using the full data

3. The strict null comparison: Model (3) vs Model (6)

using the full data

Examples

Although all three comparisons outlined in the previous

section can be viable options in an applied setting, they

may lead to dramatically different conclusions. In order to

illustrate the different behaviors of the three comparisons,

we now discuss three data examples. We follow each

example with several concrete questions that we hope will

serve as useful starting points for discussion.

All Bayes factors presented below are computed using

the BayesFactor package (Morey & Rouder, 2018), using

the default settings for the multivariate Cauchy prior

distributions (scale set to 0.5 and 1 for fixed effects and

random effects, respectively). The BayesFactor package

specifies Jeffreys’s prior on the grand mean and error

variance (i.e., f (μ, σ 2) ∝
1
σ 2 ) and does not explicitly model

correlations between random slopes and intercepts. Each

example also includes a reference to the analysis code in the

Online Supplementary Material.

Example 1: The Effect of Aggregation

We start with a relatively simple scenario, where I =

20 participants complete M = 15 trials in each of

J = 2 conditions for a total of 600 observations.6 The

purpose of this example is to illustrate the effect of random

slopes on the different model comparisons, and how each

5Technically, in the Bayesian framework random slopes can be

included even for the aggregated data. In this case the estimates will be

informed entirely by the prior distribution. Therefore, in most practical

applications this approach is not useful.
6These data were generated using a Shiny app we developed to

better understand these model comparisons under different population

parameters. The app can be found at https://bayesianmixedmodels.

shinyapps.io/mixedModelsMarkdown/ and the R-script for these

specific data at https://osf.io/tjgc8/.

https://bayesianmixedmodels.shinyapps.io/mixedModelsMarkdown/
https://bayesianmixedmodels.shinyapps.io/mixedModelsMarkdown/
https://osf.io/tjgc8/
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comparison reacts to the process of aggregation. Figure 2

shows both the full data and the aggregated data, where

each color corresponds to a different participant. The data

were simulated with a medium fixed effect (ν = 0.5),

random intercepts (σ 2
α = 0.5), and random slopes (σ 2

θ = 1).

The difference between the top-left and top-right panels

clearly underscores the process of aggregating, where a

lot of information is discarded. The random slopes are

evidenced by the different orientations of the lines in

the plots in the bottom row: some participants exhibit an

increase from condition 1 to condition 2, while for other

participants this effect is reversed. To further demonstrate

the effect of aggregation, we present the results for all three

comparisons, for both the full and aggregated data.

The different model comparisons yield widely different

Bayes factors. For comparison purposes we report the

natural logarithm of the Bayes factor throughout this

manuscript. When log
(

BFA,N

)

> 0, Model A is preferred;

when log
(

BFA,N

)

< 0, Model N is preferred. Note that

log
(

BFA,N

)

= 3 corresponds to
(

BFA,N

)

≈ 20. First,

consider the results for the full data set:

1. The RM ANOVA comparison: log
(

BF4,3

)

= 10.81

2. The Balanced null comparison: log
(

BF6,5

)

= 0.04

3. The strict null comparison: log
(

BF6,3

)

= 65.5

The RM ANOVA comparison on the full data highlights

why it is important to include random slopes whenever

possible. The true difference between the condition means

is modest, and so is the sample size — yet this model

comparison yields overwhelming evidence in favor of a

fixed effect of condition, a result caused by the presence and

pronounced influence of the random slopes. This behavior

aligns with the inflation of Type 1 error probabilities in

the frequentist framework as demonstrated by Barr et al.

(2013b), who therefore advised against performing the RM

ANOVA comparison on the full data. Since the Balanced

null comparison controls for random slopes by including

the random slopes term in both models, it does not suffer

from the overconfidence displayed in the RM ANOVA

comparison. The Strick null comparison yields extreme

evidence in favor of Model (6), but based on this comparison

alone it is impossible to conclude whether this evidence is

due to the random slopes, the fixed effect, or both.

Now, consider the results for the aggregated data:

1. The RM ANOVA comparison: log BF4,3 = 0.2

2. The Balanced null comparison: log BF6,5 = 0.16

3. The strict null comparison: log BF6,3 = −0.21

For the two comparisons where only one or none of

the models include a random slope (i.e., the Strict null

comparison and the RM ANOVA comparison, respectively),

aggregation greatly impacts the Bayes factor. For both

comparisons, the previously overwhelming Bayes factor

plummets to around 0, leaving it undecided about which

Fig. 2 Synthetic data for

Example 1: the effect of

aggregation. The top-left panel

presents the full data set, and the

top-right panel the aggregated

data, where the average value is

taken per participant, per

condition. The different point

colors correspond to different

participants. The bottom row

presents the full data for five

example participants, including

their condition means. Some

participants display an increase

as a result of the manipulation,

whereas other participants

display a decrease. Note that the

overall and participant-specific

condition means are exactly the

same for both versions of the

data
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model best predicted the data. This demonstrates that

aggregation eliminates the presence of random slopes:

for the Strick null comparison, there is no longer any

evidence for the alternative model, and for the RM ANOVA

comparison there is no longer the inflation of the evidence

in favor of a fixed effect.

In contrast, the Balanced null comparison appears

relatively stable and is barely in favor of Model (6) in both

cases, since the two rival models both include the random

slopes. However, we should stress that conducting the

Balanced null and Strick null comparisons on aggregated

data is unorthodox (i.e., the random slopes estimates are

entirely informed by the prior distribution), and that we

present these two Bayes factors merely as an illustration.

Taken together, these results suggest that there are

two valid methods to test for the presence of a fixed

effect, and only the fixed effect, of condition in the

presence of random slopes: either performing the Balanced

null comparison on the full data, or performing the RM

ANOVA comparison on the aggregated data. In order to

avoid the demonstrated inflation of the fixed effect when

performing the RM ANOVA comparison on the full data,

we therefore only consider the this comparison for the

aggregated data and not the full data in the remainder of this

manuscript.

The considerations above motivate the following ques-

tions:

1. What are the relevant model comparisons for a one-

factorial design?

(a) When is aggregation an appropriate procedure?

2. Should more models be considered than the ones

described here?

3. If strictly interested in the fixed effect only, when

should the RM ANOVA comparison be used instead of

the Balanced null comparison?

Example 2: The Effect of Measurement Error

For the second example, we again consider RTs of I =

20 participants in J = 2 conditions. However, the

measurements are done with an instrument that can either

measure quickly but inaccurately, or measure accurately but

slowly. Thus, there is a trade-off between the measurement

error and the number of trials that can be measured

in the experiment. If this trade-off is perfectly balanced

(i.e., the observed condition means, observed participant

means within each condition, and the within-participant

standard errors of the condition means are identical) does

it matter which setting we choose? In other words, can

a noisy measurement instrument be compensated for by

collecting many data points per participant? The purpose

of this example is to demonstrate how the different model

comparisons behave as both the measurement error and

number of trials decrease.

In order to implement the trade-off between number of

trials and measurement error, we can start with the data set

that has 100 trials per participant, per condition. Then, the

average RT can be taken of every 10 trials a participant

completes. This results in 10 scores per participant, per

condition. For both of these data sets, the participant means

for each condition and the within-participant standard errors

for the fixed effect of condition in a hierarchical model are

identical. The difference between these data sets lies in the

trial level variance (i.e., the residual variance). Multiple data

sets can be created this way by using different numbers

of trials to average across. Doing so illustrates how the

different model comparisons develop as the number of

trials decreases, but the accuracy of those measurements

increases. When the number of averages equals 100, the

full data is used; when the number of averages equals 1,

we obtain the fully aggregated data set. We also create

intermediate data sets by taking 50, 10, 5, and 2 averages

per participant, per condition. Since the RM ANOVA

comparison is performed on the aggregated data and would

remain identical, we consider only the Balanced null and

Strick null comparisons for these different versions of the

data.

Figure 3 shows how each Bayes factor changes as

the number of trials decreases and the accuracy of each

individual trial increases. The three panels correspond to

three different models that generated the data. In the first

panel, data were simulated under the model without a fixed

effect or random slopes (i.e., Model (3)). In the second

panel, data were simulated for a fixed effect only (i.e.,

Model (4)). In the third panel, data were simulated under a

fixed effect and random slopes (i.e., Model (6)). The code

for the data generation and analysis is available at https://

osf.io/jsgm3/.

The effect of decreasing the number of trials in the data

is the most pronounced in the strict null comparison, where

the log Bayes factor gets less decisive (i.e, closer to 0) as the

data set goes towards full aggregation in all three settings.

As was illustrated in Example 1, the process of aggregation

confounds the random slope variance with residual variance.

This results in a less decisive Bayes factor for the Strick null

comparison, as only one of the two models being compared

includes the random slopes term.

In the top panel, the data were generated under the null

model of the strict null comparison, and in the bottom panel

the data were generated under the alternative model of that

comparison. For these settings, it is not surprising that those

models receive the most support in their favor, although the

magnitudes of the Bayes factors seem too extreme in light

of the relatively low sample sizes.

https://osf.io/jsgm3/
https://osf.io/jsgm3/
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Fig. 3 Bayes factors for Example 2 across the various comparisons, for

different levels of aggregation. The y-axis shows log(BFA,N ), where

A refers to the alternative model, and N refers to the null model of

that specific comparison. The lower x-axis denotes how many averages

are taken; 100 indicates the use of the full data, and 1 indicates the

use of the aggregated data. The upper x-axis denote the measurement

error, which decreases as the number of trials decreases. The Strick

null comparison is highly influenced by the presence or absence of

random slopes, although this sensitivity dramatically decreases as the

number of trials decreases. The Balanced null comparison remains

relatively stable around values of −1.5 and 5 in the top and bottom

panels, respectively

Surprisingly, the middle panel still depicts overwhelming

evidence in favor of the alternative model (i.e., model 6),

even though the data generating model did not include

random effects. The Balanced null comparison in the middle

panel also depicts evidence in favor of model 6, but to a

much lesser extent than the Strick null comparison. Since

both comparisons have the same alternative model, this

difference in behavior is due to the null model. It seems that

the null model in the Balanced null comparison (i.e., model

5) is able to model the data better than the null model in

the Strick null comparison (i.e., model 3). This suggests that

a random slopes term can, to some degree, account for a

fixed effect in the data. Moreover, by definition, adding a

random effect inherently increases a models robustness to

the added variance induced by extreme values in the tails of

the distribution.

The Balanced null comparison is relatively stable in

the top and bottom panels, which confirms the balance

between the number of trials and their accuracy. Since this

comparison is between two models that both contain the

random slopes factor, these Bayes factors do not reflect the

effect of averaging on the random slope variance. Combined

with the results from Section 1, this suggests that the process

of aggregation mainly affects those model comparisons

where only one of the models under consideration includes

random slopes. However, the Balanced null comparison is

not entirely stable across the different levels of averaging.

We suspect that the (relatively minor) instability of the

Balanced null comparison is largely due to a component

of Bayesian mixed modeling that we have not addressed

so far: the prior distribution. Until now, we have used the

default settings for the scale settings of the multivariate

Cauchy prior distributions, which are 0.5 and 1 for the fixed

effects and random effects, respectively. The widths of these

distributions reflect which standardized effect sizes are to

be expected under each model. The standardization of the

effect sizes is influenced by the measurement error, since

observing the same mean difference between conditions,

but with a smaller measurement error, results in a larger

effect size. Thus, the prior distribution ought to reflect

information about the expected measurement error: when

this error is small, we can expect larger effect sizes and the

prior distribution should be wider, and vice versa.

We suspect that using the same prior distribution for each

level of aggregation is in part what leads to the extreme

levels of evidence obtained for the full data sets in the

Strict null comparisons, which seems overly sensitive to the

presence of absence of random slopes in the data. In the

case where there is only a fixed effect and no random slopes

(middle panel of Fig. 3), the Strick null comparison yields

far more decisive Bayes factors than the Balanced null

comparison, which does not seem desirable. We therefore

wish to underscore the importance of having a sensible prior

specification (i.e., accounting for the trial level variance)

when random slopes are considered in only one of the two

models under consideration.

Finally we focus on the difference between the Strict

null and the Balanced null comparisons. In the former

comparison, the null model (Model (3)) postulates that none

of the participants is affected by condition, whereas the

alternative model (Model (6)) postulates that participants

are affected differently. For the Balanced null comparison,

both the null model (Model (5)) and the alternative

model (Model (6)) postulate that participants are affected

differently by condition, but only the latter model postulates
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an overall effect. When there are more observations per

participant, the error variance and the random slope variance

can be disentangled more easily. Since the Strick null

comparison focuses more on individual differences than

the Balanced null comparison, collecting more data points

will lead to more decisive Bayes factors in the Strick null

comparison than in the Balanced null comparison.

The above considerations motivate the following ques-

tions:

1. How should the prior distributions for the fixed and

random effect be constructed?

(a) How can we construct an effect size that is

meaningfully standardized? In other words, what

variance should we standardize by?

2. Since there is overlap of the predictive space of Model

4 (fixed effect, but no random slopes) and Model 5

(random slopes, but no fixed effect), there is a certain

degree of model mimicry: random slopes in a model

account for variations due to a fixed effect (e.g., see

also the middle panel of Fig. 3, where Model 6 receives

far more support in the Strick null than in the Balanced

null due to the random slopes in Model 5). Can we

therefore meaningfully disentangle a fixed effect and

random slopes, both statistically and theoretically?

Example 3: A Random Interaction Effect

Up to now, our discussion on mixed models has only dealt

with the relatively simple case of a single independent

variable of interest (e.g., condition).

The purpose of the present example is to highlight how

mixed model comparisons are affected by the presence of

multiple independent variables of interest, and to explore

which models to consider when testing for the presence

of an interaction effect. Due to the addition of a second

independent variable of interest, the possibility emerges

to test for an interaction effect between the two variables

that, just like a main effect, can have a fixed and a

random component. Just as for the main effects, each

cell of the interaction (i.e., each combination of levels

from each factor) requires multiple measurements within

each participant for the random interaction effect to be

identifiable.

To demonstrate the decisions that arise when testing for

an interaction effect, we consider a real world example by

Lukács et al. (2020).7 In this scenario, the hold-duration of a

7In fact, a forum post commenting on diverging results in the

frequentist and the Bayesian RM ANOVA provided additional

motivation for the current project. In the post, the p-value yielded

evidence in favor of the interaction effect, while the Bayesian

RM ANOVA yielded evidence against the interaction effect. Upon

investigating the issue, it became clear that inference for an interaction

response button was measured in I = 116 participants, who

completed an item recognition task where they used either

thumb or index finger (factor A, with two levels) to respond

to either a probed or irrelevant item (factor B, with two

levels). For the RM ANOVA comparison, we can consider

the aggregated case with one observation per participant,

per cell of the design (i.e., per level of A, per level of B).

For instance, the aggregated data contains one observation

for the hold-duration of participant 4, where they responded

with their thumb to an irrelevant item. Figure 4 presents

these aggregated data.

For aggregated data, the analysis of choice is typically

a RM ANOVA, where only the fixed effects of A, B, and

A×B are considered. However, despite of the aggregation,

it is possible to fit random slopes for A and B, because there

are 2 observations for each level of A, and 2 observations

for each level of B, for each participant. On the other hand,

the aggregation prevents the calculation of random slopes

for the interaction effect as there is only one observation

for each combined cell of A×B.8 Considering the full data

instead of the aggregated data enables the fitting of random

slopes for main and interaction effects. Figure 5 presents the

full data that contains multiple observations per cell of the

research design.

In this example, we are interested in whether there is an

interaction effect A×B, as the original authors postulated

that participants might keep the response button pressed for

a longer period of time when responding to an irrelevant

probe (factor B), and that this difference in hold-duration

might differ per response mechanism (factor A). Because

we previously defined the models in a scenario with only

a single variable of interest, we will alter the models under

consideration. We list the models under consideration in

Table 2, and below we describe the process of constructing

these models.

We start with the commonalities. Previously, this was

only μ and σǫ , but now this includes all parameters that are

essential: the main effects of A and B (due to marginality;

see also Wagenmakers et al. 2018, and references therein),

and the random intercepts for each participant (due to the

repeated measures design). This defines a new version of

Model (1). Next, we add the fixed interaction effect of the

two factors, A×B, and create a new version of Model (2).

However, these two models can also include random

slopes for the main effect of A and B, since these are now

identifiable. Thus, we can define Model 3 and 4, which

are similar to the updated Models 1 and 2, but with added

effect, in the context of mixed effects, is not a straightforward

endeavor.
8In general terms, aggregation of the data limits random slopes to only

be fitted to (K −1)-order effects, where K is the number of categorical

independent variables measured within each participant. In the case

above, K = 2, so we can still fit random slopes for first-order effects.
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Fig. 4 Aggregated data for Example 3, where we consider only the

average observation per participant, per cell of the design. Each point

in the plot represents one aggregated hold-duration. The left panel has

factor A on the x-axis and factor B indicated by the colors of the points.

The right panel has factor B on the x-axis and factor A indicated by the

colors of the points. The lines connect the condition means in order to

illustrate whether or not there is an interaction effect. If the two lines

are not parallel, this is an indication of an interaction effect. There

appears to be a main effect of factor A (i.e., responses made with the

thumb are faster than those made with the index finger)

random slopes for A and B. Finally, we can add the random

slopes for the interaction effect to these newly defined

models 3 and 4, and create the updated versions of models

(5) and (6), respectively.

With the updated models, we can consider the different

model comparisons again. The RM ANOVA comparison,

which is based on the aggregated data, can be either between

Model 1 and Model 2 or between Model 3 and Model

4, based on whether or not the random effects for A and

B are included. We will refer to the former comparison

as the “minimal” RM ANOVA comparison, as it includes

no random slopes at all. As before, both versions of the

RM ANOVA take the approach of minimizing the random

effects through aggregation, in order to focus on the fixed

effect at hand. The Balanced null comparison (Model 5

vs Model 6), on the other hand, accounts for the random

effect by including it in both models that are compared,

such that the only difference between the models is the

Fig. 5 Full data for Example 3, where we consider all observations per

participant, per cell of the design. The distributions of hold-duration

for five example participants for each combination of conditions A and

B are shown in two rows. The top row shows factor A on the x-axis,

and indicates factor B with the different colors. The bottom row shows

factor B on the x-axis, and indicates factor A with the different colors.

The points indicate the participant means for level of A and B. The lines are

drawn between the points to indicate the change in hold-duration. If these

two lines are not parallel, this is an indication of an interaction effect. A

random interaction effect then means that different participants exhibit

varying degrees of the two lines not being parallel
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Table 2 Model definitions for a 2 × 2 design when analyzing an interaction effect

Model Specification

(1) A + B + id

(2) A + B + id + A×B

(3) A + B + id + B×id + A×id

(4) A + B + id + A×B + B×id + A×id

(5) A + B + id + B×id + A×id + A×B×id

(6) A + B + id + A×B + B×id + A×id + A×B×id

All models contain the fixed effect of A and B, and the random intercept for each participant. In the model specification, “id” refers to a random

effect: “+id” refers to the random intercept, while “×id” refers to the random slope (e.g., B×id denotes random slopes for the main effect of B).

Models 2, 4, and 6 contain the fixed interaction effect of A and B. Models 3–6 contain random slopes for the main effects of A and B. Models 5

and 6 contain random slopes for the interaction effect of A and B

fixed effect of interest. The Strick null comparison (Model

3 vs Model 6) makes a different statement. Analogous to

the earlier examples, the difference between the two models

under consideration is the combination of both the fixed

and random effect. It therefore quantifies evidence for the

presence or absence of a general effect of condition.

The differences between these four comparisons are

again reflected in the diverging Bayes factors:9

1. The minimal RM ANOVA comparison: log BF2,1 =

−1.75

2. The RM ANOVA: log BF4,3 = 2.26

3. The Balanced null comparison: log BF6,5 = −1.59

4. The Strict null comparison: log BF6,3 = −34.35

The RM ANOVA comparison is the only case where

there is evidence in favor of an interaction effect.

Interestingly, there is a discrepancy between the two RM

ANOVA comparisons, which means that including the

random effects for A and B has consequences for the

interaction effect. A possible explanation for this is the

presence of a strong random and fixed effect for A. This

result stands in contrast to the frequentist results in Barr

(2013a), who demonstrated that excluding the non-critical

random slopes yields similar results to the approach that

does include the non-critical slopes.

The Balanced null comparison agrees with the minimal

RM ANOVA comparison and provides moderate evidence

against the presence of a fixed interaction effect. The Strict

null comparison also agrees but yields a much stronger

Bayes factor, which implies that there is also no evidence

for a random interaction effect. Table 3 shows all possible

Bayes factor comparisons between the 6 models outlined

here, for both the full and aggregated data. From these

comparisons, it is clear that there is evidence in favor of

random effects of A and/or B, because of the overwhelming

9The R-script with the analysis code can be found at https://osf.io/

cw5jd/.

Bayes factors comparing Models 3, 4, 5, and 6 (i.e., the

models with the random effects of A and B) to Models 1 and

2 (i.e., the models without the random effects of A and B).

For instance, while Model 1 is marginally better than Model

2 for the full data (log(BF1,2) = 1.03), Model 1 is heavily

outperformed by Model 3 (log(BF1,3) = −4286.09). Based

on the table, Model 4 (i.e., the model with the random and

fixed main effects) performed the best for both versions

of the data: all the Bayes factors in row 4 are positive,

indicating that there is at least moderate support for Model

4 compared to the model in the column, for both aggregated

and full data.

The considerations above motivate the following ques-

tions:

1. What are the relevant model comparisons for a main

effect in a two-factorial design?

2. What are the relevant model comparisons for an

interaction effect in a two-factorial design?

(a) Should the random main effects be included in all

comparisons?

(a) How can we explain the difference between the two

versions of the RM ANOVA comparison?

3. For this example, is it theoretically meaningful to

analyze random main effects when the data is

aggregated?

Discussion

This manuscript illustrated the three main choices faced

by researchers who apply mixed models: when and why

to aggregate, which model comparisons to use when

testing hypotheses about the presence or absence of an

effect, and whether or not to collect more (albeit noisier)

observations per participant. Testing for a fixed effect is

not straightforward in the presence of random effects, and

https://osf.io/cw5jd/
https://osf.io/cw5jd/
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Table 3 Bayes factors for all pairs of models defined in Table 2

Model (1) (2) (3) (4) (5) (6)

(1) 1.03 −4286.09 −4286.47 −4253.33 −4251.74

(2) −1.75 −4287.12 −4287.50 −4254.36 −4252.77

(3) 248.67 250.42 −0.38 32.76 34.35

(4) 250.93 252.68 2.26 33.14 34.73

(5) 247.84 249.59 −0.83 −3.09 1.59

(6) 250.67 252.42 2.00 −0.26 2.83

The cell entries are log(BFR,C), where R refers to the model in the row, and C refers to the model in the column. Bayes factors above the diagonal

are for the full data, and under the diagonal are for the aggregated data

we presented three approaches to do so. First, the data can

be aggregated, which minimizes the impact of the random

effects in the inference for a fixed effect. Second, two

models can be compared that both include the random

effects, which controls for the random effects. Third, the

fixed and random effect can be considered together, instead

of trying to dissect the general effect into its constituent

elements. Each of these three approaches has their own

implications for the three main choices, and—especially in

the case where more than one variable is considered—the

consequences of these different choices can be profound.

Our aim is for this manuscript to initiate a discussion on

best practices in Bayes factor model comparison in mixed

models. Table 1 outlines the specific questions and their

relevant examples. We note that this is not an exhaustive list

of questions worth discussing in the context of mixed model

comparison and we welcome contributors to go beyond.

Mixed model comparisons are surprisingly intricate, and a sys-

tematic discussion of the most pressing topics is long overdue.

We hope that this discussion will result in broad

consensus on best practices, even if this consensus is

that those who apply mixed models should be aware

what models are being compared and, consequently, what

questions are being answered.

Supplementary Information The online version contains supplemen-

tary material available at doi:10.1007/s42113-021-00113-2.
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