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ABSTRACT

We introduce BAYES-LOSVD, a novel implementation of the non-parametric extraction of line-of-sight velocity distributions
(LOSVDs) in galaxies. We employed Bayesian inference to obtain robust LOSVDs and associated uncertainties. Our method relies
on a principal component analysis to reduce the dimensionality on the set of templates required for the extraction and thus increase
the performance of the code. In addition, we implemented several options to regularise the output solutions. Our tests, conducted
on mock spectra, confirm the ability of our approach to model a wide range of LOSVD shapes, overcoming limitations of the most
widely used parametric methods (e.g., Gauss-Hermite expansion). We present examples of LOSVD extractions for real galaxies with
known peculiar LOSVD shapes, including NGC 4371, IC 0719, and NGC 4550, using MUSE and SAURON integral-field unit (IFU)
data. Our implementation can also handle data from other popular IFU surveys (e.g., ATLAS3D, CALIFA, MaNGA, SAMI).

Key words. methods: data analysis – techniques: spectroscopic – galaxies: general – galaxies: kinematics and dynamics –
galaxies: elliptical and lenticular, cD – galaxies: spiral

1. Introduction

Galaxies are made up of stars that move on orbits with differ-
ent degrees of coherence around their nuclei. Each orbital group
contains detailed information about the assembly history of each
component and thus retains some memory of the different accre-
tion events suffered by the galaxy over time. This information
is encoded in their line-of-sight velocity distribution (LOSVDs),
and thus by extracting this property we have access to vital clues
to unravel the formation and evolution of galaxies we see today.
The analysis of the LOSVD can be done directly in the Milky
Way and in the local Universe by tracing the motions of stars
with common stellar populations along a given line of sight (e.g.,
Norris 1986; Tolstoy et al. 2004; Deason et al. 2011; Kunder
et al. 2012; Ness et al. 2013; Debattista et al. 2015; Zoccali
et al. 2017; Du et al. 2020). This is a much more difficult task in
nearby galaxies beyond the Local Group, where stars are unre-
solved and thus the LOSVD at a given position in a galaxy rep-
resents multiple populations along that line of sight.

The extraction of the LOSVD of galaxies has been an active
field of research for many decades. Both parametric and non-
parametric approaches have been developed over the years to
address this issue. Interestingly, original implementations pri-
oritised non-parametric over parametric recoveries, something
that has radically changed in the last few decades. The most
popular approaches include: Fourier correlation quotient (FCQ;
Simkin 1974; Sargent et al. 1977; Franx & Illingworth 1988;

⋆ Details of the code and relevant documentation are freely
available in the dedicated repository: https://github.com/
jfalconbarroso/BAYES-LOSVD

Bender 1990); cross-correlation (XC or CCF; Tonry & Davis
1979; Statler 1995); maximum penalised likelihood (MPL;
Saha & Williams 1994; Merritt 1997; Pinkney et al. 2003);
and direct fitting in pixel space (e.g., Rix et al. 1992; Kuijken
& Merrifield 1993; van der Marel & Franx 1993; Gebhardt et al.
2000; Kelson et al. 2000; Cappellari & Emsellem 2004; Ocvirk
et al. 2006; Chilingarian et al. 2007).

The extraction of the LOSVD is a degenerate problem,
as there are an indefinite number of combinations of stellar
populations and LOSVD shapes that can explain a particular
spectroscopic observation. Breaking the degeneracies implies
perfect knowledge of the underlying stellar populations that con-
tribute to a particular line of sight. In the last few decades,
this issue has been mitigated with the advent of a large number
of intermediate-resolution stellar libraries and stellar population
models (see e.g., Bruzual & Charlot 2003; Valdes et al. 2004;
Coelho et al. 2005; Sánchez-Blázquez et al. 2006; Prugniel et al.
2007; Vazdekis et al. 2010; Gonneau et al. 2020; Maraston et al.
2020) that have helped to greatly reduce the so-called effect of
template mismatch (e.g., Falcón-Barroso et al. 2003). Another
important aspect is the uncertainty of the recovered LOSVD.
The methods cited above handle this in different ways. Most of
them approach it using Monte Carlo simulations to perturb the
input spectrum several times with some known observed uncer-
tainty (however, see de Bruyne et al. 2003 for a more realistic
approach). While in recent years the use of parametric forms of
the LOSVD has prevailed in the literature (e.g., Emsellem et al.
2011; Falcón-Barroso et al. 2017; van de Sande et al. 2017), it
is becoming increasingly clear that non-parametric approaches
are needed to describe the complexity in the LOSVD shapes
observed in real data (e.g., Jore et al. 1996; Kuijken et al. 1996;
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Halliday et al. 2001; González-García et al. 2006; Katkov et al.
2011; Coccato et al. 2013; Fabricius et al. 2014; Pizzella et al.
2018) and numerical simulations (e.g., Jesseit et al. 2007; Martig
et al. 2014; Schulze et al. 2017).

Bayesian inference methods (e.g., Hoffman & Gelman 2014)
offer a natural way of treating both: (1) the uncertainties in the
fitting process, with the advantage that they allow the inclu-
sion of our knowledge of the problem during the fitting process
via priors on the input parameters; and (2) the true, complex,
non-parametric nature of the LOSVDs. Saha & Williams (1994,
hereafter SW94) already considered this particular way of fram-
ing the problem, but limitations in computer performance did
not allow them to perform a fully general optimisation of both
the LOSVDs and templates. In this paper, we revise the SW94
approach and use the latest developments on Bayesian inference
and dimensionality reduction techniques to develop a Python1

implementation that can efficiently handle template optimisation
and robust LOSVD extraction simultaneously.

The paper is organised as follows. We describe the problem
of LOSVD extraction, the techniques for dimensionality reduc-
tion of the templates and LOSVD regularisation in Sect. 2. We
present our tests on mock spectra in Sect. 3 and apply our extrac-
tion methods to real data in Sect. 5. We provide all the necessary
technical details of our python implementation in Sect. 4, and
provide a summary of the paper and outlook for future applica-
tions of this methodology in Sect. 6.

2. The LOSVD extraction

A LOSVD represents the distribution of the number of stars as a
function of velocity along a particular line of sight in a galaxy. In
spectroscopic data of nearby galaxies, the LOSVD is the broad-
ening function to be applied to the spectrum of the underlying
stellar populations. In essence, the extraction of the LOSVD is a
deconvolution problem.

2.1. The equation

In its simplest form, the equation that describes the model to be
fit to the data can be expressed in mathematical terms as:

Gmodel (λ) =
K∑

k=1

[wk · Tk(λ)] ⋆ B +C(n), (1)

where wk are the weights for each stellar population template
(Tk), B is the broadening function (i.e. the LOSVD), the ⋆
operator is a convolution, and C(n) is an additive polynomial
of order n. The polynomial term is convenient to reduce the
impact of template mismatch (which can happen even with the
most complete template libraries) and other imperfections dur-
ing data reduction (e.g., non-perfect sky subtraction and/or scat-
tered light). The equation can become more complicated if the
effects of dust attenuation and/or calibration issues between data
and templates are to be taken into account (see Eq. (11) in
Cappellari 2017 for a more complete example). The implemen-
tation presented in this paper uses the prescription shown in
Eq. (1), as we have checked that it works for a wide range of
datasets, but it can be easily extended to include other correction
terms if required.

1 https://www.python.org/

The optimisation procedure involves the minimisation of the
residuals:

rp =
Gdata(xp) −Gmodel(xp)

∆Gdata(xp)
, (2)

where xp is the value of the data or model at a given pixel, Gdata
is the observed spectrum, ∆Gdata are the observed uncertainties,
and Gmodel is the model presented in Eq. (1). The most com-
monly used method for the minimisation of Eq. (2) is a least
squares one, as there are plenty of computer implementations
(e.g., Lawson & Hanson 1974; Moré et al. 2001; Jones et al.
2001) to perform the fits very efficiently.

Inspired by the work of SW94, we opted for revisiting their
Bayesian non-parametric approach for the LOSVD extraction.
There were three main aspects of SW94 that were not possible
to explore given the computer capabilities and/or mathematical
methods available at the time: (1) the Markov chain Monte Carlo
(MCMC) sampling strategy; (2) template optimisation; and (3)
different forms of regularisation for the LOSVD. We describe
the new improvements in the following sections.

2.2. Markov chain Monte Carlo sampling

There are multiple possible strategies for the sampling of
parameter space in Bayesian inference frameworks. Classical
approaches include Metropolis-Hastings (Metropolis et al. 1953;
Hastings 1970) or Gibbs (Geman & Geman 1984) samplers.
With more complex models, the field has experienced a spur of
new methods to efficiently probe large parameter spaces includ-
ing nested sampling (e.g., Buchner 2016), Hamiltonian Monte
Carlo (e.g., Duane et al. 1987), or Stein Variational Gradient
Descent (e.g., Liu & Wang 2016) to cite a few. We refer the inter-
ested reader to Chi Feng’s Github webpage2 for a demo on the
performance of different samplers.

The SW94 approach relied on the Metropolis algorithm for
the exploration of parameter space. Our implementation is based
on the No-U-Turn-Sampler (NUTS) introduced by Hoffman &
Gelman (2014), that has proven to be a much more effective sam-
pler. This is part of the Stan3 package (Carpenter et al. 2017),
which is our software of choice for the MCMC sampling. Stan
is a probabilistic programming language for statistical modelling
and data analysis used in many fields, from physics or engineer-
ing to social sciences. We refer the interested reader to Stenning
et al. (2016), Asensio Ramos et al. (2017), Parviainen (2018),
Lamperti et al. (2019), and Dullo et al. (2020) for a few exam-
ples of Stan applications in astronomy.

Besides the sampling scheme, one of the main advantages
of our implementation within the Stan framework is the use of
the simplex (i.e. a vector of positive values whose sum is equal
to one) to describe the LOSVD. This type of parametrisation
provides, naturally, physical and normalisation constraints, and it
allows for a very efficient exploration of parameter space during
minimisation (Betancourt 2012).

2.3. Template optimisation

A crucial element in the recovery of the LOSVD is the basis of
stellar templates used to fit the observed spectra. Ideally, such a
basis should contain stellar spectra covering the widest possible
range of stellar parameters (i.e. Teff , [Fe/H], log(g), and stellar

2 http://chi-feng.github.io/mcmc-demo/
3 https://mc-stan.org/
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Fig. 1. Comparison of spectral fitting quality and LOSVD recovery for different numbers of PCA components. Each column presents input spectra
with different stellar populations (young and old on the left and the right respectively). The input spectra have a S/N of 50 per pixel. All panels
are plotted on the same scale. The black lines on the main panels are the input test data, while the red line shows the best fitting model. Residuals
are indicated in green. The spectral fits are carried out with 2, 5, and 10 PCA templates (from top to bottom as indicated). In the insets, the input
LOSVD is a Gaussian centred at zero and a velocity dispersion of 150 km s−1 (indicated in red). Units of the abscissae in the insets are km s−1.
The recovered median values of the LOSVDs are indicated with a thick black line. 16%−84% and 1%−99% confidence limits at each point are
indicated in dark and light blue, respectively. An order 2 auto-regressive prior was used to perform the fitting (see Sect. 2.4 for details).

abundances) or stellar population models with a good sampling
of, for example, ages, metallicities, IMF shapes and slopes, and
possibly different chemical abundance ratios. As already men-
tioned in the introduction, this is now possible with the advent
of the latest stellar libraries and models.

Using the typical set of ∼500−1000 templates, the minimisa-
tion involves finding the weights (wk) for each of them and per-
forming the convolution of the LOSVD on ∼1000 spectral pixels
per fitting iteration. This is a very time-consuming task even for
the most efficient Bayesian samplers. Since reducing the num-
ber of pixels to fit may not be an option, we are thus left with
the only alternative of decreasing the number of templates to be
used in the optimisation process. This will have the advantage
of not only reducing the number of parameters (i.e. wk), but also
boosting minimisation performance by very large factors (e.g.,
from days to minutes).

There are a number of well-known techniques for dimen-
sionality reduction that one could use to whittle down the
number of templates: for example, independent component
analysis (Lu et al. 2006), factor analysis (Nolan et al. 2006),
non-negative matrix factorisation (Blanton & Roweis 2007),
diffusion maps (Richards et al. 2009), or K-means (Sánchez
Almeida & Allende Prieto 2013). Among all alternatives, we
favoured the well-known principal component analysis (PCA)
method. PCA has been extensively used in astrophysics for prob-
lems very much related to spectral fitting (e.g., Ronen et al. 1999;

Li et al. 2005; Chen et al. 2012) and has proven to be both robust
and very effective in speeding up calculations. With regard to our
particular problem, the use of PCA has improved performance
from several days to a few minutes (i.e. a 500-fold decrease in
computing time).

In practice, the use of PCA means capturing well over 99%
of the variance present in a template library of ∼1000 spec-
tra with fewer than ten PCA components. Figure 1 shows the
effect of using different numbers of PCA components during the
fit for two mock spectra4 with a signal-to-noise ratio per pixel
(hereafter S/N) of 50. It is remarkable how as few as two PCA
components can already reproduce the observed spectrum with
great accuracy. This is in part due to the use of additive poly-
nomial that helps to reduce potential template mismatch issues.
We checked the recovery for different types of stellar popula-
tions (as shown in the two columns), and the extracted LOSVD
is less accurate for young stellar populations with a low number
of PCA components. This is not unexpected given that spectra
of younger populations show greater variation, which is diffi-
cult to capture with just two PCA components. We noticed that
the closer the input spectrum is to the average spectra of the

4 For reference, for this particular case, the continuum-to-line ratio
(defined as 100×σresiduals/σspectrum) is 13% and 23% for the young and
old populations, respectively: almost independent of the number of PCA
components used in the fitting procedure.
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templates (i.e. intermediate stellar populations in our particular
case), the better the recovery is for low number of PCA com-
ponents. In general, our tests suggest that five PCA components
suffice to recover the input LOSVD with great accuracy, with a
clear improvement as S/N increases.

The optimal selection of the number of PCA components is
not a well defined quantity, however. Choosing a number of PCA
components that would explain a certain variance of the spectra
(e.g., compatible with the noise of the spectrum) seems a rea-
sonable approach. However, in practice, for real data this means
selecting a different number of components for each spectrum
of the dataset, which is very impractical. In our experience, for
typical S/N ratios between 50 and 100, it is sufficient to choose
a number between five and ten PCA components5. In our imple-
mentation, this number is a free parameter that the user has to
decide on before runtime.

2.4. LOSVD regularisation

The extraction of the LOSVD is a degenerate problem with a
large number of LOSVD shapes and combinations of templates
that can reproduce the observed spectrum with great accuracy.
Nevertheless, the range of allowed LOSVD solutions can be con-
strained for reasonably high S/N data.

There are different ways to impose some level of regularisa-
tion onto the output LOSVD. In our bayesian approach they are
expressed in the form of priors over the LOSVD. We explored
four different types of priors:
1. No regularisation:

LOSVDi ∼ N(0, σ2), (3)

where LOSVDi is the ith velocity element of the LOSVD,
and N(0, σ2) represents a normal distribution with mean
zero and variance σ2. This is a fairly uninformative prior
that assumes the same level of uncertainty on all LOSVD
elements.

2. Random-walk prior:

LOSVDi ∼ N(LOSVDi−1, σ
2), (4)

where the ith element of the LOSVD is linked to the previous
one. This type of prior was the one proposed by SW94. We
set the prior for the first element to LOSVD0 ∼ N(0, σ2).

3. Auto-regressive prior:

LOSVDi ∼ N

α +
N∑

k=1

βk × LOSVDi−k, σ
2

 . (5)

This is a more general form of prior that becomes equal to
the random-walk for α = 0 and β = 1 for k = 1. Stronger
regularisation is obtained by increasing the order k, which
links more consecutive LOSVD elements. We imposed the
same prior used for the random-walk approach to the first
element of the LOSVD, and used weakly informative normal
priors for α and β.

4. Penalised B-splines
B-splines are a special type of piecewise polynomials con-
trolled by knots that are often used for interpolation (e.g.,
Press et al. 2003). One of the major difficulties on the def-
inition of B-splines is the choice of the number of knots to
define the polynomial function. In our Stan implementation,

5 This is using the MILES models (Vazdekis et al. 2010).

No regularisation

4800 4900 5000 5100 5200 5300 5400 5500
Wavelength (Å)

Auto-Regressive prior

600 400 200 0 200 400 600
Velocity (km s 1)

600 400 200 0 200 400 600
Velocity (km s 1)

Fig. 2. LOSVD recovery for no regularisation and an auto-regressive
(order 2) prior. Colours as in Fig. 1.

we followed the example provided by Milad Kharratzadeh6,
and rather than establishing a relation between different ele-
ments of the LOSVD, we applied random-walk priors to the
B-spline coefficients such that

a1 ∼ N(0, 1), ai ∼ N(ai−1, τ), τ ∼ N(0, 1). (6)

This approach promotes smoothness in the resulting
LOSVD, preventing excessive wiggling in the solution.
Another important parameter that controls the level of flexi-
bility of the B-splines is the B-spline order k.

An interesting feature of our procedure is that we do not impose
any pre-defined value to σ2 or τ during the fitting process. In
fact, they are considered nuisance parameters, and we let the
quality of the data establish their optimal distributions. Far from
being unconstrained, it turns out that both parameters are well
behaved and display fairly tight distributions.

We illustrate the effect of the choice of prior for the LOSVD
and its uncertainties in Fig. 2. We created a test spectrum for this
purpose with a Gaussian LOSVD and a S/N = 100 per spec-
tral pixel. The figure shows the difference between no regulari-
sation and an auto-regressive prior of order 2. Both approaches
deliver an indistinguishable fit to the input spectrum and capture
the Gaussian nature of the input LOSVD. However, the level of
uncertainty displayed by the case without regularisation is far
larger than that of the auto-regressive prior. These results are
very much in agreement with the findings of Saha & Williams
(1994). As we show in Sect. 3, this difference persists even at
the highest S/N levels and is related to the number of degrees of
freedom of one method versus the other.
6 https://mc-stan.org/users/documentation/

case-studies/splines_in_stan.html
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Fig. 3. LOSVD recovery for different S/Ns and types of regularisation.
We used a double-Gaussian LOSVD profile as an example (indicated in
red). Left column: solutions for extraction with no regularisation, right
column: results for an order 2 auto-regressive prior. Each row represents
two cases for a different S/N per pixel as indicated. All panels are plotted
on the same scale. Colours as in Fig. 2.

2.5. Likelihood

Besides the priors, for the minimisation process, we need to
define the form of the likelihood of our data given a model. In
our problem, we assume that our spectroscopic observations can
be explained by a normal distribution, such that

Gdata (λ) ∼ N(Gmodel (λ), σ2
Gdata

), (7)

where Gdata (λ) is the observed input spectrum, Gmodel (λ) is our
model, and σ2

Gdata
is the variance of the observed spectrum.

Equation (1) is adequate to define our model when a full tem-
plate library is to be used during the minimisation process. In our
case, however, the use of PCA components transforms that equa-
tion to the following:

Gmodel (λ) =

T̃ +
K∑

k=1

wk · PCAk(λ)

 ⋆ B +C(n), (8)

where wk are now the weights for each PCA component (PCAk),
T̃ is the mean template of the input library, B is the broadening
function (i.e. the LOSVD), the ⋆ operator is a convolution, and
C(n) is an additive polynomial of order n. Our implementation
in Stan supports both forms of equations, but it is significantly
more efficient with Eq. (8).

3. Tests on simulated data

We checked the performance of our implementation in differ-
ent circumstances by creating mock spectra for a wide range of
S/Ns and input LOSVD shapes. While some of the LOSVDs
were arbitrarily defined by combining Gaussian functions, oth-
ers come from numerical simulations and are thus more realistic.
Here, we choose to illustrate a case with an input spectrum with
an intermediate-age stellar population, but results are consis-
tent when other populations were used. Our fits were performed
using five PCA components.

Figure 3 shows an example of the recovery of an extreme
case of LOSVD shape (i.e. a double-Gaussian profile) for a range
of S/Ns and two prior assumptions. The effect of regularisation is
evident from the lowest to the highest S/Ns. With no regularisa-
tion, there is a large range of possible solutions, as displayed by
the confidence intervals, even at S/N = 200. It is interesting to
note that the level of uncertainty decreases drastically with S/N
when no regularisation is applied, while the improvement is not
so large when priors are used. Regularised solutions come at the
price of introducing some bias (see Sect. 5 for an example). This
is most acute for the lowest S/Ns, where the regularised solution
fails to capture the double-peaked nature of the input LOSVD. It
is clear, however, that at S/N = 10, even non-regularised solu-
tions cannot reproduce the input LOSVD. It seems that at an
S/N of 25, the non-regularised solution already clearly reveals
the double-peak feature, while the regularised one does not. This
is an important result, as it shows that non-regularised solutions
are more accurate at low S/N regimes, at the expense of larger
uncertainties.

In Fig. 4, we present how the different types of regularisation
methods listed in Sect. 2.4 influence the recovery of the range
of input LOSVDs we prepared for these tests. The S/N of the
input data is 50 per spectral pixel. The first thing to notice is that
the overall level of accuracy in the LOSVD recovery is rather
good (i.e. the input LOSVD is contained within the confidence
levels) for all LOSVD shapes. Nevertheless, as expected from
previous figures, the use of different priors result in different con-
fidence intervals. An interesting feature is the difference in the
confidence intervals between random-walk and auto-regressive
(order 1) priors. This is entirely driven by the reduced number
of degrees of freedom of the former compared to the latter (see
Sect. 2.4). Perhaps one of the most important messages from the
figure is that subtle details can be extracted at S/N = 50. This
is particularly striking for the case displayed in the bottom row.
This LOSVD is made of two Gaussians: a prominent one centred
at −200 km s−1, and a faint component located at 500 km s−1. The
goal of this test was to check the ability of the code to recover
the presence of potential small satellites being accreted onto a
galaxy. This appears to have been achieved for any choice of
regularisation, with a slightly better recovery of the faint com-
ponent with the random-walk and auto-regressive priors. These
results are quite encouraging, as it means that there is no need
for very high S/N ratios to detect this kind of feature. We pro-
vide versions of Fig. 4 for different S/Ns in Appendix A.

4. Implementation with pyStan

There are many alternatives one could choose from to implement
all the ideas proposed in Sect. 2. Specifically, in Python some
of the most popular packages include emcee7 (Foreman-Mackey
et al. 2013) and pyMC38 (Salvatier et al. 2016), but we invite the

7 https://emcee.readthedocs.io/
8 https://docs.pymc.io/
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Fig. 4. LOSVD recovery for different input LOSVDs and types of regularisation. Colours as in Fig. 2. Each row represents a particular LOSVD
shape for different types of regularisation. These are solutions for input spectra with S/N = 50 per pixel. All panels are plotted on the same scale.

reader to consult Gabriel Perren’s webpage9 for a comprehensive
list of options. We picked pyStan10 as our package of choice to
develop BAYES-LOSVD as it offers a convenient python inter-
face to Stan.

BAYES-LOSVD is built in a modular fashion to make it very
simple for the end user to extend its capabilities. This includes
the addition of (1) read-in routines for data of a new instrument;
(2) new Stan models with different kinds of regularisation; and
(3) new template libraries. Our current implementation supports
datacubes from the MUSE-WFM, SAURON, ATLAS3D, CALIFA,
MaNGA, and SAMI surveys, as well as the possibility to read stan-
dard 2D FITS format files with spectra along the rows. The lin-
early sampled input spectra are pre-processed before execution,
allowing the user to pick the level of Voronoi binning (using
Cappellari & Copin 2003 implementation), the velocity range,
and sampling of the output LOSVD. In this process, the desig-
nated templates will be prepared accordingly, with the possibility
of switching off the reduction of the template basis with the PCA
scheme described in Sect. 2.3.

Upon execution, the user can decide whether to analyse the
entire set of Voronoi bins or a just a selection of them. Dis-
tributed computing is implemented natively, so that multiple
spectra can be executed in parallel on multi-CPU machines. On
output, by default, only summary statistics are stored. MCMC
posterior distributions are described with highest density inter-
val estimators (e.g., Kruschke 2014), which are more accu-
rate to describe highly skewed distributions (as opposed to the
standard percentiles approach). They are stored on disc in HDF5
format11. Diagnostic plots are also created if requested. Users
wanting to delve into the details can chose to save the entire

9 https://gabriel-p.github.io/pythonMCMC/
10 https://pystan.readthedocs.io
11 https://www.h5py.org/

posterior distribution values, which can then be easily analysed
using the Arviz12 package.

Performance and execution times depend very much on the
data, and on the parameters used for the LOSVD extraction.
Thanks to Stan, convergence is usually achieved with a very
small number of iterations. In all the tests presented here, three
chains with 500 iterations (i.e. warm-up+ sampling) sufficed to
obtain well-behaved posterior distributions. A typical spectrum
with ∼500 pixels (e.g., 4800−5500 Å region) and S/N = 50
per pixel, a velocity range of ±700 km s−1 with a sampling of
50 km s−1, and five PCA components would require ∼10 min on
a cluster with Intel Xeon E5-2630 (v4) CPUs.

There is one major bottleneck in our implementation: convo-
lution is performed in direct space given Stan’s current inability
to handle complex numbers. This has a very strong impact when
wide spectral ranges are to be fitted. Based on discussions on
the Stan forum13, we are aware that fast Fourier transforms will
be possible in the not-so-distant future. Another aspect where
we could already optimise performance is the likelihood evalua-
tion. The latest version of Stan has introduced new features that
can accelerate this process by large factors by distributing its
computation over many CPUs. This is unfortunately not avail-
able in the pyStan version (v2.19) we are using, but it will be
available with the release of pyStan (v3). Therefore, there is
still room for performance improvements in the mid-term. We
remain alert and will update the code to keep up with any new
developments.

The code can be accessed via a dedicated Github repos-
itory14. Detailed documentation can be found on the same
page.

12 https://arviz-devs.github.io/arviz/
13 https://discourse.mc-stan.org/
14 https://github.com/jfalconbarroso/BAYES-LOSVD
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Fig. 5. BAYES-LOSVD extraction for NGC 4371. Top panel: Hubble
Space Telescope colour image based on the F475W and F850LP filters.
North is up and east to the left. Bottom panels: LOSVDs extracted at
different locations (as indicated with black crosses on the image). On
the left, without regularisation, and on the right with an order 2 auto-
regressive prior. Colours as in Fig. 2. Red lines correspond to the best
Gauss-Hermite LOSVD extracted with pPXF (see Sect. 5.1 for details).

5. Application to real data

We now turn our attention to the recovery of LOSVD using
real data from different instruments. Here, we show examples
of LOSVDs for three galaxies presenting LOSVDs with varying
degrees of complexity. We chose data from MUSE-WFM and
SAURON IFUs, but we note that the code has also been bench-
marked with data from some of the most popular IFU surveys
(e.g., ATLAS3D, CALIFA, MaNGA, SAMI).

5.1. NGC 4371

The first case we present is NGC 4371. This galaxy was stud-
ied in great detail by Gadotti et al. (2015) using the MUSE IFU,
and it was part of the pilot programme for the TIMER survey
(Gadotti et al. 2019). NGC 4371 is interesting as it is a fairly old
system (i.e. ≥7 Gyr throughout) with evidence of a fossil nuclear

stellar ring void of star formation (e.g., Erwin et al. 2001). Fol-
lowing the study of Gadotti et al. (2015), we extracted spectra
with a 3.0′′ aperture in three positions of the galaxy: at the cen-
tre, the nuclear stellar ring, and a location along the bar. The S/N
of the spectra in the three apertures is well above 100 per pixel.
We imposed a velocity sampling of 50 km s−1.

Figure 5 shows the results of our analysis. The three
LOSVDs are different from each other in different aspects. While
the LOSVDs at the centre and bar regions display fairly Gaussian
profiles, the ring-dominated region is clearly asymmetric and
skewed. The panels on the left-hand side show solutions with
no regularisation, and the ones on the right used an order 2 auto-
regressive prior. In essence, we see the same behaviour observed
with the test data in previous sections with non-regularised solu-
tions giving larger confidence intervals than the regularised ones.
The two sets of solutions are very much consistent with each
other, as was also observed in our experiments. These results
presented in the figure were obtained by applying our method
to spectra in the 4800−5300 Å wavelength range. We also com-
puted solutions based on spectra around the calcium triplet
region (8450−8700 Å) and obtained identical solutions (thus not
shown here). This was not totally unexpected since there is no
evidence of multiple stellar populations in this galaxy.

In addition, for comparison, we plot the best Gauss-Hermite
LOSVD extracted with pPXF (Cappellari 2017). In this partic-
ular case, the agreement between the recovered LOSVDs with
our method and pPXF is very good. This is especially true for
the almost Gaussian LOSVDs at the centre and bar locations of
the galaxy. At the ring, the regularised solution does not match
the pPXF result as closely as the non-regularised one, but differ-
ences are still within a 1%−99% percentiles of our non paramet-
ric extraction. While for cases like this one, the advantage of the
non-parametric approach may not seem evident, it is important to
note that the Gauss-Hermite parametrisation allows for negative
values on the wings of the LOSVD. This situation occurs for h3
and h4 values such as 0.1, and −0.1 respectively, which are not
uncommon in the kinematic maps presented in many IFU sur-
veys. Since we constrained the LOSVD during the fit to admit
only positive values, our method overcomes this limitation and
provides naturally physically meaningful LOSVDs.

5.2. IC 0719

The second case we studied was IC 0719, a spectacular case
displaying multiple kinematic components (Katkov et al. 2013;
Pizzella et al. 2018). This galaxy is made of stars in two counter-
rotating large-scale discs with distinct stellar populations. In addi-
tion, it has an ionised gas component showing the same sense
of rotation of the secondary, lower-mass, younger stellar disc.
We used MUSE observations around the 4800−5300 Å region
to extract three apertures along the major axis of the galaxy. As
for the case of NGC 4371, the S/N of the spectra is well above
100 per pixel. We imposed a velocity sampling of 50 km s−1.

Figure 6 shows an almost perfect Gaussian LOSVD profile
at the centre of the galaxy, while LOSVDs along the major axis
display clear double-peaked shapes. This is in perfect agree-
ment with the analysis performed by Pizzella et al. (2018). For
comparison, we also plot the best-fit Gauss-Hermite LOSVD
parametrisation obtained with pPXF (in red). Here, it becomes
obvious that the Gauss-Hermite expansion cannot reproduce
such complicated shapes well, and it shows LOSVD wings that
have slightly negative values. Although not obvious due to the
normalisation, for the aperture at 17′′ the pPXF extraction cre-
ates a third peak in the LOSVD at velocities ∼500 km s−1, where
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Fig. 6. BAYES-LOSVD extraction for IC 0719. Top panel: Sloan Dig-
ital Sky Survey colour image based on the g, r, i filters. The image has
been rotated so that the major axis is parallel to the abscissae. Bottom
panels: LOSVDs extracted at different locations along the major axis
of the galaxy (as indicated with black crosses on the image). In the left
column, without regularisation, and in the right one with an order 2
auto-regressive prior. Colours are the same as in Fig. 2. Red lines cor-
respond to the best Gauss-Hermite LOSVD extracted with pPXF (see
Sect. 5.2 for details).

the non-parametric approach goes effectively to zero. It is worth
highlighting the level of complexity of the recovered LOSVDs
despite the smooth morphological appearance. The same applies
to NGC 4550, as we discuss in Sect. 5.3, and emphasises the
need for the non-parametric LOSVD extraction in galaxies. This
topic is gaining attention in the literature, and non-parametric
LOSVDs are now being routinely included in the dynamical
modelling of early-type galaxies (e.g., Mehrgan et al. 2019;
Neureiter et al. 2021).

Another interesting aspect to explore in this galaxy is the
non-parametric extraction of the LOSVD in wavelength regions
sensitive to different stellar populations. This is actually possible
with MUSE data, and it will be a subject of analysis in Rubino
et al. (in prep.).

5.3. NGC 4550

The last case we analysed was NGC 4550, another classical
showcase galaxy with prominent double-peaked LOSVD pro-
files. We extracted LOSVDs from SAURON spectra (Emsellem

et al. 2004). We performed our calculations in the wavelength
range between 4800−5300 Å and at a S/N = 150 per spectral
pixel. We analysed the results along the major axis of the galaxy
at three of the locations presented in Rix et al. (1992). Since their
data were not in electronic form, we digitised them using the
WebPlotDigitiser15 tool (Marin et al. 2017) and then fitted the
LOSVDs with double-Gaussian profiles for best reproduction.
Figure 7 (top panel) shows the F555W/F814W colour image
from the Hubble Space Telescope. Remaining panels show our
recovered LOSVDs at the three positions along the major axis,
as indicated. Each row corresponds to a location, while each col-
umn uses different priors for the LOSVD extraction: no regular-
isation, auto-regressive (order 2), and auto-regressive (order 1).
The red lines show the results of Rix et al. (1992).

The first thing to notice is the excellent agreement between
our LOSVDs and those of Rix et al. (1992) when no regulari-
sation is used. The complexity of the LOSVDs increases as we
move away from the centre of the galaxy, as they become double-
peaked from 7.6′′. The results of Rix et al. (1992) are well within
our 16%−84% confidence intervals (dark blue shaded region)
despite the different sampling in velocity.

As opposed to IC 0719, the situation is drastically differ-
ent when regularisation is applied, however. Our auto-regressive
(order 2) solutions are not capable of capturing the double-
peaked nature of the LOSVDs at larger distances from the cen-
tre. We investigated the source for this discrepancy and con-
cluded that it is related to the intrinsic difference in velocity
between the two peaks and the velocity sampling used to extract
the LOSVDs. In other words, the level of correlation between
velocity bins imposed by this prior is too strong and smooths
the solution too much. In order to check this, we extracted the
LOSVDs with an auto-regressive (order 1) prior, but we sam-
pled the LOSVD in steps of 30 km s−1 instead of the 60 km s−1

used in all the other extractions. This is shown in the right-most
column. It clearly shows that the two peaks can be recovered
with a less stringent prior and finer sampling in velocity.

Based on these findings, we warn the reader that it is nec-
essary to understand the implications of using regularisation in
their analysis. We therefore recommend potential users to per-
form non-regularised fits on their data and carefully consider the
velocity sampling to be used in the LOSVD extraction.

6. Summary and conclusions

The advent of very high quality data from many integral-field
spectrographs and surveys has opened the possibility of effi-
ciently extracting LOSVDs from galaxies. At the same time,
great progress in computer performance, algorithms, and math-
ematical methods make it possible to handle large datasets.
Inspired by the work of SW94, we developed a Bayesian infer-
ence approach to the LOSVD extraction from spectra. The code
improves on SW94 in three main areas: (1) the MCMC sam-
pling strategy; (2) the possibility of different forms of regulari-
sation for the LOSVD; and (3) template optimisation based on
PCA components. Our tests on mock data indicate that LOSVD
recovery is accurate for spectra with S/N > 50 with as few as
five PCA templates. Regularised solutions provide less uncer-
tain LOSVDs, but it is at the expense of biased solutions for low
S/Ns. We also successfully applied our approach to MUSE and
SAURON data, displaying many interesting features and warning

15 https://automeris.io/WebPlotDigitizer
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Fig. 7. BAYES-LOSVD extraction for NGC 4550. Left panel: Hubble Space Telescope colour image based on the F555W and F814W filters.
North is up and east to the left. Other panels: LOSVDs extracted at several locations along the major axis of the galaxy (as marked by the black
crosses). Each row corresponds to a different location from the centre of the galaxy (in arcsec) as shown on the first column. Each column uses a
different kind of regularisation, as indicated in the top row. Colours are the same as in Fig. 2. Red lines show Rix et al. (1992) LOSVDs at those
locations.

the users to be careful with regularised solutions in some situa-
tions (see Sect. 5.3 for an example). The use of non-regularised
solutions should therefore be preferred, as it provides non-biased
solutions.

On the technical side, our implementation is very versatile
and allows the possibility of extending its capabilities on dif-
ferent fronts (i.e. inclusion of read-in routines for data of new
instruments, new Stan models with different kinds of regulari-
sation, and/or addition of new template libraries). The code and
documentation can be downloaded from the repository indicated
in Sect. 4.

The complexity in the kinematics observed in IFU surveys
(e.g., Krajnović et al. 2011), but also numerical simulations
(e.g., Martig et al. 2014; Schulze et al. 2017; Walo-Martín
et al. 2020), clearly indicates that a non-parametric approach is
necessary to capture the great level of detail that current data
offer. This has been shown for decades in early-type galaxies,
but the potential is much greater in late-type spiral systems,
which display much more complex structures. In this respect,
recent and upcoming large-scale IFU facilities (e.g., VIRUS-
W, Fabricius et al. 2008; MEGARA, Gil de Paz et al. 2018
and WEAVE-LIFU, Dalton et al. 2018) operating at spectral
resolutions above R ≥ 5000 open the door to explore the
details of the LOSVDs in low velocity dispersion regimes (e.g.,
galaxy discs, dwarf galaxies), in which it has been very hard
to operate with current instrumentation. The non-parametric
description of the LOSVDs will also have a big impact on the
decomposition of galaxies into their kinematic/dynamical com-
ponents. Current efforts rely heavily on the smooth LOSVDs
provided by Gauss-Hermite parametrisations (e.g., Tabor et al.
2017; Coccato et al. 2018; Oh et al. 2020). There is thus a great
potential to go beyond those (necessary) efforts to explore galaxy
mass assembly.
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Appendix A: S/N trends

In this appendix, we present the equivalent figures to Fig. 4 for
different S/Ns. It is evident that the LOSVD recovery worsens

as S/N decreases. It is interesting to see that not all the features
are captured well, even at S/N = 100 (e.g., small bump on the
positive wing of the case in the bottom row in all figures).
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Fig. A.1. Same as Fig. 4, but for S/N = 10.
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Fig. A.2. Same as Fig. 4, but for S/N = 25.
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Fig. A.3. Same as Fig. 4, but for S/N = 100.
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Fig. A.4. Same as Fig. 4, but for S/N = 200.
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