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Bayes Model Selection with Path
Sampling: Factor Models and Other
Examples
Ritabrata Dutta and Jayanta K. Ghosh

Abstract. We prove a theorem justifying the regularity conditions which are
needed for Path Sampling in Factor Models. We then show that the remain-
ing ingredient, namely, MCMC for calculating the integrand at each point in
the path, may be seriously flawed, leading to wrong estimates of Bayes fac-
tors. We provide a new method of Path Sampling (with Small Change) that
works much better than standard Path Sampling in the sense of estimating
the Bayes factor better and choosing the correct model more often. When
the more complex factor model is true, PS-SC is substantially more accurate.
New MCMC diagnostics is provided for these problems in support of our
conclusions and recommendations. Some of our ideas for diagnostics and
improvement in computation through small changes should apply to other
methods of computation of the Bayes factor for model selection.
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sampling, Laplace approximation.

1. BAYES MODEL SELECTION

Advances in MCMC techniques to compute the pos-
terior for many complex, hierarchical models have
been a major reason for success in Bayes modeling
and analysis of complex phenomena (Andrieu, Doucet
and Robert, 2004). These techniques along with ap-
plications are surveyed in numerous papers, including
Chen, Shao and Ibrahim (2000), Liu (2008) and Robert
and Casella (2004). Moreover, many Bayesian books
on applications or theory and methods provide a quick
introduction to MCMC, such as Gelman et al. (2004),
Ghosh, Delampady and Samanta (2006), Gamerman
and Lopes (2006) and Lynch (2007).

Just as the posterior for the parameters of a given
model are important for calculating Bayes estimates,
posterior variance, credibility intervals and a general
description of the uncertainty involved, one needs to
calculate Bayes factors for selecting one of several
models. Bayes factors are the ratio of marginals of
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given data under different models, when more than one
model is involved and one wishes to choose one from
among them, based on their relative or posterior proba-
bility. The ratio of marginals measures the relative pos-
terior probability or credibility of one model with re-
spect to the other if we make the usual objective choice
of half as prior probability for each model.

Although there are many methods for calculating
Bayes factors, their success in handling complex mod-
ern models is far more limited than seems to be gener-
ally recognized. Part of the reason for lack of aware-
ness of this is that model selection has become im-
portant relatively recently. Also, one may think that,
in principle, calculation of a BF can be reduced to the
calculation of a posterior, and hence solvable by the
same methods as those for calculating the posterior.
Reversible Jump MCMC (RJMCMC) is an innovative
methodology due to Green (1995), based on this simple
fact. However, two models essentially lead to two dif-
ferent sets of states for any Markov chain that connects
them. The state spaces for different models often dif-
fer widely in their dimension. This may prevent good
mixing and may show up in the known difficulties of
tuning RJMCMC. For a discussion of tuning difficul-
ties see Robert and Casella (2004).
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Another popular method for calculating BF is path
sampling (PS), which is due to Gelman and Meng
(1998) and recently re-examined by Lefebvre et al.
(2009). Our major goal is to explore PS further in the
context of nested, relatively high-dimensional covari-
ance models, rather than nonnested low-dimensional
mean models, as in the last reference. The new exam-
ples show both similarities and sharp changes from the
sort of behavior documented in Lefebvre et al. (2009).

We consider three paths, namely, the geometric mean
path, the arithmetic mean path and the parametric
arithmetic mean path, which appear in Gelman and
Meng (1998), Lefebvre et al. (2009), Ghosh and Dun-
son (2008), Ghosh and Dunson (2009), Lee and Song
(2002) and Song and Lee (2006). Other applications of
path sampling and bridge sampling (with some modifi-
cations) appear in Lartillot and Philippe (2006), Friel
and Pettitt (2008), Xie et al. (2011) and Fan et al.
(2011). Our priors are usually the diffuse Cauchy pri-
ors, first suggested by Jeffreys (1961) and since then
recommended by many others, including Berger (per-
sonal communication), Liang et al. (2008), Gelman
(2006) and Ghosh and Dunson (2009). But we also ex-
amine other less diffuse priors too, going all the way to
normal priors. Since Lefebvre et al. (2009) have stud-
ied applications of PS to mean like parameters, we fo-
cus on covariance models. We restrict ourselves gen-
erally to factor models for covariance, which have be-
come quite popular in recent applications, for example,
Lopes and West (2004), Ghosh and Dunson (2008),
Ghosh and Dunson (2009) and Lee and Song (2002).
The recent popularity of factor models is due to the
relative ease with which they may be used to provide a
sparse representation of the covariance matrix of mul-
tivariate normal data in many applied problems of fi-
nance, psychometry and epidemiology; see, for exam-
ple, the last three references. Also, often it leads to
interesting scientific insight; see Bartholomew et al.
(2002).

In addition to prior, likelihood and path, there are
other choices to be made before PS can be imple-
mented, namely, a method of discretizing the path, for
example, by equispaced points or adaptively (Lefebvre
et al., 2009) and how to integrate the score function
of Gelman and Meng (1998) at each point in the dis-
crete path. A popular method is to use MCMC. These
more technical choices are discussed later in the pa-
per. Along with PS, we will consider other methods
like Importance Sampling (IS) and its descendants like
Annealed Importance Sampling (AIS), due to Neal

(2001), and Bridge Sampling (BS), due to Meng and
Wong (1996).

We now summarize our contribution in this paper.
In Section 2 we review what is known about path

sampling and factor models. We introduce factor mod-
els, a suitable path and suitable diffuse t-priors. The
path we use was first introduced in Gelman and Meng
(1998) for mean models and by Lee and Song (2002)
and Ghosh and Dunson (2009) for factor models.

In Section 2.4 we prove a theorem (Theorem 2.1)
which essentially shows that except for the conver-
gence of MCMC estimates for expected score function
Et(U(θ, t)) at each grid point t in the path, all other
needed conditions for PS will hold for our chosen path,
prior and likelihood for factor models. In one of the
remarks following the theorem we generalize this re-
sult to other paths. Remark 3 points to the need for
some finite moments for the prior, not just for Theo-
rem 2.1 to hold but for the posterior to behave well.
Then in Remark 5 we provide a detailed, heuristic ar-
gument as to why the MCMC may fail dramatically
by not mixing properly if the data has come from the
bigger of the two models under consideration. If our
heuristics is correct, and there is a small interval where
Et(U(θ, t)) oscillates most, then a grid size that is a
bit coarse will not only be a bit inaccurate, it will be
very wrong. Even if the grid size is sufficiently small,
one will need to do MCMC several times with differ-
ent starting points just to realize PS will not work. Our
new proposal avoids these problems but will require
more time if many models are involved.

In Section 3 we give an argument as to why the above
is unlikely to be true if the data has come from the
smaller model. More importantly, in Section 3.3 we
propose a modification of PS, which we call Path Sam-
pling with Small Change (PS-SC) which is expected to
do better.

Implementation of PS and PS-SC can be very time
consuming due to the need of MCMC sampling for
each grid point along the path. Time can be saved if we
can implement PS and PS-SC by parallel computation,
as noted by Gelman and Meng (1998).

In Section 3.4 we show MCMC output for the vari-
ous cases discussed and validate our heuristics above.
The diagnostics via projection into likelihood space
should prove useful for other model selection prob-
lems. Our gold standard is PS-SC, based on an MCMC
with the number of draws m = 50,000 and burn-in of
1000, if necessary. But actually in our examples m =
6000 and burn-in of 1000 suffices for PS-SC. For other
model selection rules we also go up to m = 50,000 if



BAYES MODEL SELECTION 97

necessary. After Section 3.4, having shown our modi-
fied PS, namely, PS-SC, is superior to PS under both
models, we do not consider PS in the rest of the paper.

In the last two sections we touch on the following
related topics: effects of grid size, alternative path, al-
ternative methods and performance of PS-SC and some
other methods in very high-dimensional simulated and
real examples. PS-SC seems to choose the true mod-
els in the simulated cases and relatively conservative
models for real data. In Section 5 we explore various
real life and high-dimensional factor models, with the
object of combining PS-SC with two of the methods
which do relatively well in Section 4 to reduce the time
of PS-SC in problems with the number of factors rather
high, say, 20 or 26, for which PS-SC can be quite slow.
For these high-dimensional examples, we use Laplace
approximation to marginals for preliminary screening
of models. A few general comments on Laplace ap-
proximation in high-dimensional problems are in Sec-
tion 5.

In Appendix A.1 we introduce briefly a few other
methods like Annealed Importance Sampling (AIS)
which we have compared with PS-SC. Finally, Ap-
pendix A.2 points to some striking differences be-
tween what we observe in factor models and what
one might have expected from our familiar classi-
cal asymptotics for maximum likelihood estimates.
Of course, as pointed out by Drton (2009), classical
asymptotics does not apply here, but it surprised us that
the differences would be so stark. It is interesting and
worth pointing out that the Bayes methods like PS-SC
can be validated partly theoretically and partly numer-
ically in spite of a lack of suitable asymptotic theory.

2. PATH SAMPLING AND FACTOR MODELS

In the following subsections we review some basic
facts about PS, including the definition of the three
paths and the notion of an optimal path. More impor-
tantly, since our interest would be in model selection
for covariance rather than mean, we introduce factor
models and then PS for factor models in Sections 2.3
and 2.4.

Section 2.1 is mostly an introduction to PS and re-
views previous work. After that we show the failure of
PS-estimates in a toy problem related to the modeling
of the covarince matrix in Section 2.2. In Section 2.3
we introduce factor models and our priors. Section 2.4
introduces paths that we consider for factor models and
a theorem showing the regularity conditions needed for
validity of PS under factor models. Then in a series

of remarks we extend the theorem and also study and
explain how the remaining ingredient of PS, namely,
MCMC, can go wrong. We show a few MCMC outputs
to support our arguments in Section 3.4. This particular
theme is very important and will come up several times
in later sections or subsections where related different
aspects will be presented.

2.1 Path Sampling

Among the many different methods related to im-
portance sampling, the most popular is Path Sampling
(PS). However, PS is best understood as a limit of
the simpler Bridge Sampling (BS) (Gelman and Meng,
1998). So we first begin with BS.

It is well known that unless the densities of the sam-
pling and target distributions are close in relative im-
portance sampling weights, Importance Sampling (IS)
will have high variance as well as high bias. Due to
the difficulty of finding a suitable sampling distribution
for IS, one may try to reduce the difficulty by introduc-
ing a nonnormalized intermediate density f1/2 that acts
like a bridge between the nonnormalized sampling den-
sity f1 and nonnormalized target density f0 (Meng and
Wong, 1996). One can then use the identity Z1/Z0 =
Z1/2/Z0
Z1/2/Z1

and estimate both the numerator and denom-
inator by IS. Extending this idea, Gelman and Meng
(1998) constructed a whole path ft : t ∈ [0,1] connect-
ing f0 and f1. This is also like a bridge. Discretizing
this, they get the identity Z1/Z0 = ∏L

l=1
Z(l−1/2)/Z(l−1)

Z(l−1/2)/Z(l)
,

which leads to a chain of IS estimates in the numerator
and denominator. We call this estimate the Generalized
Bridge Sampling (GBS) estimate.

More importantly, Gelman and Meng (1998) intro-
duced PS, which is a new scheme, using the idea of a
continuous version of GBS but using the log scale. The
PS estimate is calculated by first constructing a path as
in BS. Suppose the path is given by pt : t ∈ [0,1] where
for each t , pt is a probability density. Then we have the
following definition:

pt(θ) = 1

zt

ft (θ),(2.1)

where ft is an unnormalized density and zt =∫
ft (θ) dθ is the normalizing constant. Taking the

derivative of the logarithm on both sides, we obtain
the following identity under the assumption of inter-
changeability of the order of integration and differenti-
ation:

d

dt
log(zt ) =

∫ 1

zt

d

dt
ft (θ)μ(dθ)

(2.2)

= Et

[
d

dt
logft (θ)

]
= Et

[
U(θ, t)

]
,
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where the expectation Et is taken with respect to
pt(θ) and U(θ, t) = d

dt
logft (θ). Now integrating (2.2)

from 0 to 1 gives the log of the ratio of the normaliz-
ing constants, that is, log BF in the context of model
selection:

log
[
Z1

Z0

]
=

∫ 1

0
Et

[
U(θ, t)

]
dt.(2.3)

To approximate the integral, we discretize the path
with k points t(0) = 0 < t(1) < · · · < t(k) = 1 and
draw m MCMC samples converging to pt(θ) at each of
these k points. Then estimate Et [U(θ, t)] by
1
m

∑
U(θ(i), t) where θ(i) is the MCMC output. To es-

timate the final log Bayes factor, commonly numerical
integration schemes are used. It is clear that MCMC at
different points “t” on the path can be done in parallel.
We have used this both for PS and for our modification
of it, namely, PS-SC introduced in Section 3.3.

Gelman and Meng (1998) showed there is an opti-
mum path in the whole distribution space providing a
lower bound for MCMC variance, namely,[

arctan
H(f0, f1)√

4 − H 2(f0, f1)

]2/
m,

where f0 and f1 are the densities corresponding to the
two models compared and H(f0, f1) is their Hellinger
distance. Unfortunately in nested examples f0 and f1
are mutually orthogonal, so H(f0, f1) takes the trivial
value of two. Moreover, m is so large that the lower
bound becomes trivial and unattainable. However, in a
given problem, one path may be more suitable or con-
venient than another.

Following Gelman and Meng (1998) and Lefebvre
et al. (2009), we consider three paths generally used for
the implementation of PS. The Geometric Mean Path
(GMP) and Arithmetic Mean Path (AMP) are defined
by the mean [ft = f

(1−t)
0 f t

1 and ft = tf0 + (1 − t)f1,
resp.] of the densities of two competing models for
each model Mt : t ∈ (0,1) along the path. Our notation
for the Bayes factor is given later in equation (2.6).

One more common path is obtained by assuming a
specific functional form fθ for the density and then
constructing the path in the parametric space (θ ∈ �)
of the assumed density. If θt = tθ0 + (1 − t)θ1, then
ft,θt is the density of the model Mt , where f0,θ0 = f0
and f1,θ1 = f1. We denote this third path as the Para-
metric Arithmetic Mean Path (PAMP). The PAMP path
was shown by Gelman and Meng (1998) to minimize
the Rao distance in a path for model selection about
normal means. More importantly, it is very convenient

for use of MCMC, as shown for some factor models by
Song and Lee (2006) and Ghosh and Dunson (2009),
and for linear models by Lefebvre et al. (2009). Im-
plementation of PS with the paths mentioned above is
denoted as GMP-PS, AMP-PS and PAMP-PS. In view
of the discussion in Lefebvre et al. (2009) regarding
the degeneracy of the AMP-PS, we will only consider
PAMP-PS and GMP-PS.

Unlike Lefebvre et al. (2009), who study models
about means, our interest is in studying model selec-
tion for covariance models, specifically factor models
with different number of factors. These are discussed in
the Sections 2.3 and 2.4. Performance of PS for covari-
ance models can be very different from the examples in
Lefebvre et al. (2009). In the next subsection we give
a toy example of covariance model selection where PS
fails and our proposed modification PS-SC is also not
applicable.

2.2 Covariance Model: Toy Example

To illustrate the difficulties in calculation of the BF
that we discuss later, we begin by considering a prob-
lem where we can calculate the true value of the Bayes
factor.

Assuming Yp ∼ N(0,�), for some m < p we wish
to test whether Y1,...,m and Ym+1,...,p are independent
or not. If � = (A11 A12

A′
12 A22

)
where Y1,...,m ∼ N(0,A11)

and Ym+1,...,p ∼ N(0,A22), then the competitive mod-
els for a fixed m will be M0 :A12 = 0 vs M1 :A12 �= 0.
Under M1 we use an inverse-Wishart prior for the co-
variance matrix, as it helps us to calculate the true BF,
using the conjugacy property of the prior. Under M0 we
take A11, A22 to be independent, each with an inverse
Wishart prior.

We illustrate the above problem with p = 10 and

m = 7 for a positive definite matrix �0 = ( A0
11 A0

12
(A0

12)
′ A0

22

)
(given in Appendix A.3). We implement the path sam-
pling for this problem connecting M0 and M1, using a
Parametric Arithmetic Mean Path:

Mt :yi ∼ N

(
0,� =

(
A0

11 tA0
12

t
(
A0

12

)′
A0

22

))
.(2.4)

For every 0 ≤ t ≤ 1, the � matrix is positive definite,
being a convex combination of two positive definite
matrices. For t = 0 and t = 1 we get the models M0
and M1.

We can estimate the Bayes factor by using the path
sampling schemes as described earlier. We simulated
two data sets, one each from M0 and M1, and report
the true BF value with the PS estimate in Table 1. Here
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TABLE 1
Performance of PS in toy example modeling covariance: Log

Bayes factor (MCMC-standard deviation)

Method Data 1 Data 2

True BF value 258.38 −132.87
PS estimate of BF 184.59 (0.012) −20.11 (0.008)

the reported Bayes factor is defined as the ratio m1
m0

,
where m1 and m0 are the marginals under the models
M1 and M0, respectively.

The values in the table show us that the estimated BF
value is off by an order of magnitude when M0 is true.
The value is relatively stable as judged by the MCMC-
standard deviation based on 10 runs and near to the true
value for M1.

2.3 Factor Models and Bayesian Specification of
Prior

A factor model with k factors is defined as n i.i.d.
observed r.v.’s

yi = �ηi + εi, εi ∼ Np(0,�),

where � is a p × k matrix of factor loadings,

ηi = (ηi1, . . . , ηik)
′ ∼ Nk(0, Ik)

is a vector of standard normal latent factors, and εi

is the residual with diagonal covariance matrix � =
diag(σ 2

1 , . . . , σ 2
p). Thus, we may write the marginal

distribution of yi as Np(0,	), 	 = ��′ + �. This
model implies that the sharing of common latent fac-
tors explains the dependence in the outcomes and the
outcome variables are uncorrelated given the latent fac-
tors.

A factor model, without any other constraints, is
nonidentifiable under orthogonal rotation. Post-
multiplying � by an orthogonal matrix P , where P is
such that PP ′ = Ik , we obtain exactly the same 	 as in
the previous factor model. To avoid this, it is custom-
ary to assume that � has a full-rank lower triangular
structure, restricting the number of free parameters in
� and � to q = p(k + 1) − k(k − 1)/2, where k must
be chosen so that q ≤ p(p + 1)/2. The reciprocal of
diagonal entries of � forms the precision vector here.

It is well known that maximum likelihood estimates
for parameters in factor models may lie on bound-
aries and, hence, likelihood equations may not hold
(Anderson, 1984). The Bayes estimate of 	 defined
as average over MCMC outputs is well defined, easy

to calculate and, being average of positive definite ma-
trices, is easily seen to be positive definite. This fact
is used to search for maximum likelihood estimates
(mle) or maximum prior×likelihood estimates (mple)
in a neighborhood of the Bayes estimate.

We also note for later use the following well-known
simple fact, for example, Anderson (1984). If the like-
lihood is maximized over all positive definite matrices
	, not just over factor models, then the global maxi-
mum for n independent observations exists and is given
by

	̂ = 1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′.(2.5)

From the Bayes model selection perspective, a spec-
ification of the prior distribution for the free elements
of � and � is needed. Truncated normal priors for
the diagonal elements of �, normal priors for the
lower triangular elements and inverse-gamma priors
for σ 2

1 , . . . , σ 2
p have been commonly used in practice

due to conjugacy and the resulting simplification in
posterior distribution. Prior elicitation is not common.

Ghosh and Dunson (2009) addressed the above prob-
lems by using the idea of Gelman (2006) to introduce
a new class of default priors for the factor loadings
that have good mixing properties. They used the Gibbs
sampling scheme and showed there was good mixing
and convergence. They used parameter expansion to in-
duce a class of t or folded t-priors depending on sign
constraints on the loadings. Suitable t-priors have been
very popular. We use the same family of priors but con-
sider a whole range of many degrees of freedom going
all the way to the normal and use the same Gibbs sam-
pler as in Ghosh and Dunson (2008). We have used a
modified version of their code.

In the factor model framework, we stick to the con-
vention of denoting the Bayes factor for two models
with latent factors h − 1 and h as

BFh,h−1 = mh(x)

mh−1(x)
,(2.6)

where mh(x) is the marginal under the model having
h latent factors. So the Bayes factor for the simpler
model (defined as M0) and complex model (defined as
M1) with h − 1 and h latent factors will be defined as
BFh,h−1. We choose the model with h and h − 1 la-
tent factors, respectively, depending on the value of the
log Bayes factor being positive and negative. Alterna-
tively, one may choose a model only when the value of
log BF is decisively negative or positive, say, less than
or greater than a chosen threshold.
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2.4 Path Sampling for Factor Models

There are several variants of path sampling which
have been explored in different setups, depending on
choice of path, prior and other tuning parameters (grid
size and MCMC sample size). In the factor model setup
the parametric arithmetic mean path (PAMP) [used by
Song and Lee (2006) and Ghosh and Dunson (2009)]
seems to be the most popular one. We also consider
Geometric Mean Path (GMP) along with the PAMP for
the factor model.

By constructing a GM path from corresponding prior
to the posterior, we can estimate the value of the log-
marginal under both M0 and M1, which in turn leads
us to an estimate of the log-BF. We will first describe
the two paths and their corresponding score functions
to be estimated along the path.

(i) Parametric arithmetic mean path: Lee and Song
(2002) used this path in factor models, following an ex-
ample in Gelman and Meng (1998). Ghosh and Dun-
son (2008) also used this path along with parameter
expansion. Here we define M0 and M1 to be the two
models corresponding to the factor model with factors
h−1 and h, respectively, and then connect them by the
path Mt :yi = �tηi + εi,�t = (λ1, λ2, . . . , λh−1, tλh),
where λj is the j th column of the loading matrix. So
for t = 0 and t = 1 we get the models M0 and M1. The
likelihood function at grid point t is a MVN which is
denoted as f (Y |�,�,η, t). We have independent pri-
ors π(�),π(�),π(η) and a score function,

U(�,�,η,Y, t)
(2.7)

=
n∑

i=1

(yi − �tηi)
′�−1(

0p×(h−1), λh

)
ηi.

For fixed and ordered grid points along the path t(0) =
0 < t(1) < · · · < t(S) < t(S+1) = 1, our path sampling
estimate for the log Bayes factor is

log(B̂Fh:h−1)
(2.8)

= 1

2

S∑
s=0

(ts+1 − ts)
(
Ês+1(U) + Ês(U)

)
.

We simulate m samples of (�ts,i ,�i, ηi : i = 1, . . . ,m)

from the posterior distribution of (�ts ,�,η) at the
point 0 ≤ ts ≤ 1 and use them to estimate Ês(U) =
1
m

∑
U(�ts,i ,�i, ηi, y),∀s = 1, . . . , S + 1.

(ii) Geometric mean path: This path is constructed
over the distributional space (Gelman and Meng,
1998), hence, we model the density for the model

Mt at each point along the grid. We use the den-
sity ft (�,�,η|Y) = f (y|�,�,η)tπ(�,�,η) as the
unnormalized density for the model Mt connecting
the prior and the posterior, when π(�,�,η) and
f (y|�,�,η) are the prior and the likelihood function,
respectively. By using PS along this path we can find
the log marginal for the models M0 and M1, as the
normalizing constant for the prior is known. Hence,
the log BF can be estimated by using those estimates
of the log marginal for those models. The score func-
tion U(�,�,η,Y, t) will be the log likelihood func-
tion logf (y|�,�,η).

The theorem below verifies the regularity conditions
of path sampling for factor models. For PS to succeed
we also need convergence of MCMC at each point in
the path. That will be taken up after proving the theo-
rem.

THEOREM 2.1. Consider path sampling for factor
models with parametric arithmetic mean path (PAMP)
and likelihood as given above for factor models. As-
sume prior is proper and the corresponding score func-
tion is integrable w.r.t. the prior:

(1) The interchangeability of integration and differ-
entiation in (2.2) is valid.

(2) Et(U) is finite as t → 0.
(3) The path sampling integral for factor models,

namely, (2.3), is finite.

PROOF. Here, for notational convenience, we write
(�,�,η) = θ . When f (Y |θ) and π(θ) are the likeli-
hood function of the data and the prior density function
for the corresponding parameter, respectively, then the
following is equivalent to showing equation (2.2):

d

dt

∫ ∞
−∞

f (Y |θ, t)π(θ) dθ =
∫ ∞
−∞

d

dt
f (Y |θ, t)π(θ) dθ.

We can write the LHS as the following:

= lim
δ→0

∫ ∞
−∞

f (Y |θ, t + δ) − f (Y |θ, t)

δ
π(θ) dθ

= lim
δ→0

∫ ∞
−∞

f ′(Y |θ, t ′
)
π(θ) dθ , t ′ ∈ [t, t + δ]

= lim
δ→0

∫ ∞
−∞

U
(
Y |θ, t ′

)
f

(
Y |θ, t ′

)
π(θ) dθ,

where t ′ ∈ [t, t + δ]. U is a quadratic function in θ

and, hence, its absolute value is bounded above by
a quadratic function in θ , free of t but depending
on Y . f (Y |θ, t ′) is bounded by the global maximum
of the MVN likelihood, say, M , achieved at 	̂ [equa-
tion (2.6)]. Now applying the moment assumptions for
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π(θ), we can use the Dominated Convergence theorem
(DCT) and take the limit within the integral sign. The
rest of statements 2 and 3 follow similarly. �

In Remark 1 we extend the theorem to other paths.
Then in a series of remarks we study various aspects
like convergence and divergence of PS, that are closely
related to the theorem. All the remarks are related to the
theorem and insights gained from its proof. Remark 5
is the most important.

REMARK 1. For PS with GMP, the score function
is the log likelihood function which can be bounded
as before by using the RHS of equation (2.5). Also,
f (y|�,�,η)t ≤ (1 ∨ f (y|	̂)) with 	̂ as in equation
(2.5). We believe a similar generalization holds for
most paths modeling means of two models. Now the
proof of Theorem 2.1 applies exactly as before (i.e., as
for PAMP). We exhibit performance of PS for this path
in Section 4.

REMARK 2. If we further assume the MCMC aver-
age at each point on the grid converges to the Expecta-
tion of the score function of MCMC, then the theorem
implies the convergence of PS. We showed the inte-
grand is continuous on [0, 1]. So by continuity it can
be approximated by a finite sum. Now take the limit of
the MCMC average at each of these finitely many grid
points. However, even if the MCMC converges in the-
ory, the rate of convergence may be very slow or there
may be a problem with mixing even for m = 50,000,
which we have taken as our gold standard for good
MCMC. This problem will be apparent to some extent
from high MCMC standard deviation.

REMARK 3. As t → 0 the likelihood is practi-
cally independent of the extra parameters of the bigger
model, so that a prior for those parameters (conditional
on other parameters) will not learn much from data.
In particular, the posterior for these parameters will re-
main close to the diffuse prior one normally starts with.
If the prior fails to have the required finite moment in
the theorem, the posterior will also be likely to have
large values for moments, which may cause conver-
gence problems for the MCMC. That’s why we chose a
prior making the score function integrable. In the proof
of the theorem, we have assumed the first two moments
of the prior to be finite. In most numerical work our
prior is a t with 5 to 10 d.f.

REMARK 4. In the same vein, we suggest that even
when the integral at t near zero converges, the con-
vergence may be slow for the following reason. Con-
sider a fixed (�t ,�,η) with a large posterior or neg-
ative value of U(�t,�,η)L(�t,�,η) at point t , the

same large value will occur at (1
t
�t ,�,η) with prior

weight π(1
t
�t ,�,η). For priors like t-distribution

with low degrees of freedom, π(1
t
�t ,�,η) will not

decay rapidly enough to substantially diminish the con-
tribution of the large value of U(�t,�,η)L(�t,�,η)

at (�t ,�,η).

REMARK 5. The structure of the likelihood and
prior actually provides insight as to when the MCMC
will not converge to the right distribution owing to bad
mixing. To this end, we sketch a heuristic argument be-
low, which will be supported in Section 3.4 by MCMC
figures:

(1) The maximized likelihood remains the same
along the whole path, because the path makes a one-
to-one transformation of the parameter space as given
below.

(2) If the MLE of λh at t = 1 is λ̂h, then the MLE

at t = t ′ is λ̂h

t ′ (subject to variation due to MCMC at
two different points at the path), which goes to infin-
ity as t goes to zero. This happens as the λ̂h remains
the vector among λ′

h (where λ′
h is the MCMC sample

from model Mt at t) having the highest maximum like-
lihood. Hence, as t → 0, π(λ̂h/t) → 0 at a rate de-
termined by the tail of the prior. The conflict between
prior and maximized likelihood may also be viewed as
a conflict between the nested models, with the prior fa-
voring the parsimonious smaller model. This inherent
conflict in model selection seems to have the following
implications for MCMC.

We expect to see a range (say, [t1, t2]) near zero
showing a conflict between prior and maximized likeli-
hood. Definitely the points t1 and t2 are not well speci-
fied, but we treat them as such so as to understand some
underlying issues of mixing and convergence here. On
the set of points t > t2 the MCMC samples are ex-
pected to be around the points maximizing likelihood,
whereas for t < t1 they will be nearly zero due to the
concentration around a value λh which is both the prior
mode and the mle under M0, namely, λh = 0. But for
any point in the range [t1, t2], they will span a huge
part of the parameter space, ranging from points max-
imizing likelihood to ones having higher prior prob-
ability, showing a lot of fluctuations from MCMC to
MCMC. The MCMC outputs in Section 3.4 show both
clusters but having highly fluctuating values (Figure 1,
Section 3.4) for the proportions of the clusters.

Equation (2.7) tells us that the score function is pro-

portional to
λ′

h

t
(where λ′

h is the MCMC sample from
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model Mt at t). Hence, we will see Et(U) as an in-
creasing function while t → t2 from the right-hand side
[(2) in Remark 5]. This leads to a lot of variation of
the estimate of Et(U) for different MCMC samples in
the range [t1, t2] as explained above. Also, as explained
above, for t < t1, the score function will concentrate
near zero.

The width of the zone of conflict (here t2 − t1) will
shrink, if we have a relatively strong decaying tail of
the prior. On the other hand, for heavy-tailed priors
we may see these above mentioned fluctuations for a
longer range, causing a loss of mass from the final in-
tegration. These problems are aggravated by the high
dimension of the problem and the diffuse spread of the
prior on the high-dimensional space. This may mean
the usual BF estimated by PS will be off by an order
of magnitude. We will see the implications reflected
in some figures and tables in the next section, when
we study PAMP-PS for factor models in detail in Sec-
tion 3.

REMARK 6. We have checked that adaptive choice
of grid points by Lefebvre et al. (2009), which im-
proves accuracy in their two examples with GMP, does
not help in the case of the very large fluctuations
described above. It seems to us that adaptive choice
would work better when the two models tested are less
dissimilar than the models in Remark 5, for example,
when the smaller of two nested models is true (Sec-
tion 3.1) or when our proposed modification of PS is
used (Section 3.3). However, we have not verified this
because even without adaptive choice, our new pro-
posal worked quite well in our examples.

We note in passing that in both the examples of
Lefebvre et al. (2009), the two models being tested
have maximum likelihoods that differ by fifteen in the
log scale, whereas for the models in Remark 5 they dif-
fer by much more, over a hundred.

3. WHAT DO ACTUAL COMPUTATIONS TELL US?

Following the discussion in the previous section, we
would like to study the effects of the theoretical obser-
vations in the previous section for the implementation
of path sampling. Here we only consider the PAMP
for PS, and for notational convenience we will men-
tion it as just PS. After studying estimated BF’s in sev-
eral simulated data sets (not reported here) from vari-
ous factor models, we note a few salient features. Error
in estimation of the BF or the discrepancy between dif-
ferent methods tends to be relatively large, if one of the

TABLE 2
Loading factors used for simulation

Factor 1 0.89 0 0.25 0 0.8 0 0.5
Factor 2 0 0.9 0.25 0.4 0 0.5 0

following is true: the data has come from the complex
model rather than the simpler model, the prior is rela-
tively diffuse or the value of the precision parameters
are relatively small. Different subsections study what
happens if the complex or simpler model is true, the
effect of the prior, the grid size and the MCMC size.
These are done in Sections 3.1–3.3.

In Section 3.3 we introduce a new PS scheme, which
operates through a chain of paths, each path involving
two nested models with a small change between the
contiguous pairs. The new scheme is denoted as Path
Sampling with Small Changes (PS-SC). The effect of
precision parameters will also be studied in this sub-
section for PS-SC. Then we study the MCMC samples
and try to understand their behavior from the point of
view of explaining the discrepancy between different
methods for estimating Bayes factors and why PS-SC
does better than PS in Section 3.4.

Our simulated data are similar to those of Ghosh and
Dunson (2009) but have different parameters. We use
a 2-factor model and a 1-factor model as our com-
plex model M1 and simpler model M0, respectively, to
demonstrate the underlying issues. The loading param-
eters and the diagonal entries of the � matrix are given
in Tables 2 and 3. In simulation we take model M0 or
M1 as true but � is not changed. Of course, if the one-
factor model M0 is true, then since it is nested in M1,
M1 is also true.

3.1 Issues in Complex (2-Factor) Model

We will study the effect of grid size, prior and the
behavior of MCMC, keeping in mind Theorem 2.1 and
the remarks in Section 2. For path sampling with the
PAM path, we now discuss the effect of the prior and
the two tuning parameters, namely, the effect of the
grid size and MCMC size, on the estimated value of the
BF and their standard deviation. Following the discus-
sion in Remarks 3 and 4, we know that limt→0 Et(U)

is finite and path sampling converges under some finite

TABLE 3
Diagonal entries of �

0.2079 0.19 0.15 0.2 0.36 0.1875 0.1875
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TABLE 4
PAM-PS: Dependance of log BF21 over prior, 2-factor model true

PS using grid size 0.01

t1 t5 t10 t90 normal

2.62 14.42 22.45 70.20 70.25
3.67 11.90 21.39 68.70 68.72
3.00 13.43 21.31 47.06 47.21
4.29 13.17 18.49 48.03 48.13
4.20 13.11 18.48 47.70 47.74

moment assumption for the prior. The prior considered
in PS by Ghosh and Dunson (2008) are Cauchy and
half-Cauchy, which do not have any finite moments
and so U is not integrable. We therefore choose a rel-
atively diffuse prior, but with enough finite moments
for U . For finite mean and variance one needs a t with
at least four degrees of freedom. Our favorites are t-
distributions with 5 to 10 degrees of freedom. We show
results for 5 and 10 d.f. only. But we first explore the
sensitivity of the estimate to changes in d.f. of the t-
distribution as prior, over a range of 1 through 90. The
BF values change considerably until we reach about
40 d.f. and then it stabilizes. In Table 4 we report the
log BF values estimated for 5 data sets simulated from
a 2-factor model using different priors. The behavior
of the estimated log BF with the change of d.f. contin-
uously from 1 to 100 is shown in Figure 1 for the 3rd
data set.

We can see the estimate of the BF changing with
the change in the pattern of the tail of the prior. The
effect of the grid size and MCMC size on MCMC-

FIG. 1. Dependance of log BF21 over prior for 3rd data set.

TABLE 5
PAM-PS: Dependence of log BF21 (MCMC-standard deviation)

estimates over grid size and MCMC size, 2-factor model true

Grid size 0.01 0.001

MCMC size Prior Data 2 Data 2

5000 t10 21.26 (1.39) 21.26 (1.29)
N(0,1) 66.89 (4.15) 67.21 (3.28)

50,000 t10 23.71 (1.21) 23.57 (0.52)
N(0,1) 68.21 (3.62) 68.23 (3.11)

standard deviation of the estimate are studied, using
priors t10 and N(0,1) and reported in Table 5. We re-
port the mean of the estimates found from 25 differ-
ent MCMC runs and the corresponding standard de-
viation as MCMC-standard deviation. The study has
been done on the 2nd of the 5 data sets simulated from
model 1 earlier.

As expected, Table 5 shows a major increase of
MCMC size and finer grid size reduces the MCMC-
standard deviation of the estimator. The difference be-
tween the mean values of BF estimated by t10 and
N(0,1) differ by an order of magnitude. We will
study these issues as well as special patterns exhibiting
MCMC in Section 3.4. Though the different variants of
PS compared here differ in their estimated value of BF,
they still choose the correct model 100% of the time.

3.2 Issues in Simpler (1-Factor) Model

Now we study the scenario when the 1-factor model
is true focusing on the effect of prior, grid size and
MCMC size on the estimated Bayes factor (Table 6).
In this scenario the estimates do not change much with
the change of prior, so we will report the estimates for
prior t10 and N(0,1) with different values of MCMC
size and grid size.

This table shows us that the MCMC-standard devia-
tion improves with the finer grid size and large MCMC

TABLE 6
PAM-PS: Dependence of log BF21 (MCMC-standard deviation)

estimates over grid size and MCMC size, while 1-factor model true

Grid size 0.01 0.001

MCMC size Prior Data 1 Data 1

5000 t10 −4.26 (0.054) −4.27 (0.044)
N(0,1) −4.62 (0.052) −4.60 (0.051)

50,000 t10 −4.24 (0.012) −4.24 (0.007)
N(0,1) −4.60 (0.006) −4.62 (0.005)



104 R. DUTTA AND J. K. GHOSH

size as expected, but the estimated values of BF21 re-
main mostly the same. As noted earlier, PS chooses the
correct model 100% of the time when M0 is true.

We explain tentatively why the calculation of BF is
relatively stable when the lower dim model M0 is true.
Since M0 is nested in M1, M1 is also true in this case,
which in turn implies both max likelihoods (under M0
and M1) are similar and smaller than for data coming
from M1 true (but not M0). This tends to reduce or at
least is associated with the reduction of the conflict be-
tween the two models or prior and likelihood along the
path mentioned in Remark 5.

Moreover, the score function for small t causes less
problem since for data under M0, λ′

2 is relatively small
compared with that for data generated under M1.

So we see when two models are close in some
sense, we expect their likelihood ratio will not fluctuate
widely provided the parameters from the two parame-
ter spaces are properly aligned, for example, if found
by minimizing a K-L divergence between the corre-
sponding densities or taking a simple projection from
the bigger space to the smaller space. This is likely to
make importance sampling more stable than if the two
models were very different. It seems plausible that this
stability or its lack in the calculation of BF will also
show up in methods like PS that are derived from im-
portance sampling in some way. Ingenious modifica-
tions of importance sampling seems to mitigate but not
completely solve the problem. Following this idea of
closer models in some sense, we modify PS in a simi-
lar manner below.

3.3 Path Sampling with Small Changes: Proposed
Solution

In Remark 5, Section 3.1, a prior-likelihood conflict
was identified as a cause of poor mixing. This will be
re-examined in the next subsection. In the present sub-
section we propose a modification of PS which tries to
solve or at least reduce the magnitude of this problem.

To solve this problem without having to give up our
diffuse prior (we will be using t with 10 d.f. as our
prior), we try to reduce the problem to a series of one-
dimensional problems so that the competing models
are close to each other. We calculate the Bayes factor
by using the path sampling step for every single param-
eter that may be zero, keeping others fixed. It is easily
seen that the original log Bayes factor is the sum of all
the log Bayes factors estimated in these smaller steps.
We denote this procedure as PS-SC (Path Sampling
with Small Change) and implement with the paramet-
ric arithmetic mean path (PAMP). (As pointed out by

a Referee, there is scope for exploring other paths,
including a search for an optimal one, to reduce the
MCMC-variance.) More formally, if we consider λ2 as
a p-dimensional vector, then M0 and M1 differ only in
the last p − 1 parameters, as λ21 is always zero due to
the upper-triangular condition. We consider p models
M ′

i : i = 1, . . . , p, where for model M ′
i we have first i

parameters of λ2 being zero correspondingly. If we de-
fine BF′

i,i+1 = mi(x)
mi+1(x)

, when mi(x) is the marginal for

the model M ′
i , then

log BF21 =
p−1∑
i=1

log BF′
i,i+1.

So we perform p − 1 path sampling computations to
estimate log BF′

i,i+1,∀i = 1, . . . , p − 1. And for each
of the steps the score function will be of the following
form:

U ′
i (�,�,η,Y, t)

=
n∑

j=1

(yj − �tηi)
′

· �−1(
0p×(h−1), [0i;λh,i+1;0p−i−1])ηi,

where �t = (λ1, [0i; tλ2,i+1;λ2,(i+2,...,p)]).
As in the case of the small model true, the max like-

lihoods under both models are close, and generally the
two models are close, suggesting fluctuations are less
likely and true BF is not very large. This seems gener-
ally to lead to stability of computation of BF.

Also, the parameter λ′
2 is now one dimensional. So

the score function is more likely to be small than when
λ′

2 is a vector as under PS. We also notice that in each
step the score function is not anymore proportional to
λ′

2
t

but rather to
λ′

2i

t
which will be much smaller in

value, hence reducing the fluctuation and loss of mass.
Computational implementation shows it to be sta-

ble for different MCMC size and grid size regarding
MCMC-standard deviation and also produces a smooth
curve of Et(U) for every single step. Here we use
an MCMC size of 5000/50,000 and grid size of 0.01
for our study and report the corresponding estimated
BF values for two data sets from 1-factor and 2-factor
models, respectively. The MCMC-standard deviation
of the estimates along with the mean of the estimated
value over 25 MCMC runs are reported in Table 7. PS-
SC has smaller standard deviation than PS under both
M0 and M1. In Section 2 and Section 3.4, we argue
that, at least under M1, PS-SC provides a better esti-
mate of BF.
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TABLE 7
log BF21 (MCMC-standard deviation) estimated by PAM-PS-SC and PAM-PS

True model MCMC size PS-SC PS (t10) PS (N(0,1))

1-factor 5000 −8.09 (0.013) −4.26 (0.054) −4.62 (0.052)

1-factor 50,000 −8.08 (0.0067) −4.24 (0.012) −4.60 (0.0065)

2-factor 5000 80.14 (0.66) 21.26 (1.39) 66.89 (4.15)

2-factor 50,000 80.75 (0.54) 23.71 (1.21) 68.21 (3.62)

Now we see the effect of changing the precision pa-
rameters keeping the factor loadings as before. The di-
agonal entries of � are in Table 8. The precision of
these 3 models lie in the ranges of [2.77, 6.55], [1.79,
2.44], [1.36, 1.66], respectively.

We study PS-SC for 6 data sets generated from the
3 models (2 data sets with n = 100 from each model:
Data 1 from 1-factor and Data 2 from 2-factor model)
and report the estimated Bayes factor value in Table 9.

The effect of precision parameters is seen on the es-
timated value of the Bayes Factor (BF), more promi-
nently when the 2-factor model is true. Generally, the
absolute value of the BF decreases with the decrease in
the value of the precision parameters. For the smaller
value of precision parameters, we expect the model
selection to be less conclusive, explaining the pattern
shown in the estimated BF values.

Under M1, PS is often bad in estimating the Bayes
Factor (BF21), but since the true Bayes factor is large,
it usually chooses the true model as often as PS-SC.
When M0 is true, PS is much better in estimating the
Bayes factor, but since the Bayes factor is usually not
that large, it does not choose M0 all the time. The prob-
ability of choosing M0 correctly depends on the data
in addition to the true values of the parameters. PS-SC
does better than PS in all these cases; it estimates BF21

better and chooses the correct model equally or more
often. The sense in which PS-SC estimates BF21 bet-
ter has been discussed in detail earlier in this section.
Under M0 PS-SC estimates BF21 better by having a
smaller, that is, more negative, value than PS.

TABLE 8
Diagonal entries of � in the 3 different models: the first one is

modified from Ghosh and Dunson (2008)

Model 1 0.2079 0.19 0.15 0.2 0.36 0.1875 0.1875
Model 2 0.553 0.52 0.48 0.54 0.409 0.55 0.54
Model 3 0.73 0.71 0.67 0.7 0.599 0.67 0.72

3.4 Issues Regarding MCMC Sampling

This subsection is best read along with the remarks
in Section 2. We first study the graph of Et(U) and
the likelhood values for the MCMC samples at t for
both the t10 and N(0,1) prior (Figures 2 and 3). We
will plot the likelihood as a scalar proxy since we can
not show fluctuations of the vector of factor loadings
in the MCMC output. The clusters of the latter can be
inferred from the clusters of the former. We will ar-
gue that there are two clusters at each grid point and
the mixing proportion of the two clusters has a definite
pattern.

Under the true 2-factor model M1, denote λ′ =
[λ′

1, λ
′
2], where λ′

i is the loading for the corresponding
latent factor under Mt . Here λ′

2 is a 7×1 vector and be-
comes zero, as it approaches M0 from M1 (as t → 0).
The posterior distribution at each Mt can be viewed
roughly as a sort of mixture model with two compo-
nents representing M0 and M1, the form of the like-
lihood as given in Theorem 2.1. In the diagram (Fig-
ure 4) of the log-likelihood of MCMC samples, we see
two clear clusters around log-likelihood values −850
and −925, representing MCMC outputs with nonzero
λ′

2 and zero λ′
2 values, respectively. We may think of

them as coming from the component corresponding to
M1 (cluster 2) and the component corresponding to M0
(cluster 1). Samples of both clusters are present in the
range [0.03, 0.2], while samples appear to be predom-
inantly from cluster 2 until t = 0.1. A good represen-
tation of samples from cluster 1 are only present in the
range [0, 0.1]. In the range [0.03, 0.2], both clusters
occur with proportions varying a lot. Moreover, here
the magnitude of the score function is proportional to
λ′

2
t

. We see these fluctuations in Figure 4 in the region
[0.03, 0.2]. This is also brought out by the MCMC stan-
dard deviation of Et(U) which are of order of 30–50
in the log scale.

We notice the absence of any samples from M1 for
t < 0.03, except some chaotic representation for a few
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TABLE 9
log BF21 (MCMC-standard deviation) estimation by PS-SC: effect of precision parameter

Model True model Data PS-SC PS (t10)

Model 1 1-factor Data 1 −8.09 (0.012) −3.84 (0.055)

2-factor Data 2 71.59 (0.66) 19.81 (1.38)

Model 2 1-factor Data 1 −11.01 (0.0066) −3.09 (0.0277)

2-factor Data 2 51.41 (0.3658) 2.8 (1.9104)

Model 3 1-factor Data 1 −5.13 (0.0153) −2.6 (0.0419)

2-factor Data 2 3.975 (0.0130) 2.2 (0.3588)

random values of t (notice in the figure, a spike repre-
senting samples from M1 at t = 0.016), clearly rep-
resenting poor mixing of MCMC samples near the
model M0.

The new method PS-SC stabilizes the estimated
Bayes factor value with a very small MCMC-standard
deviation. Here we check through Figures 5 and 6
that it avoids prior-likelihood conflict and the problem
about mixing for MCMC samples seen for the stan-
dard PS. We concentrate our study for the first step of
PS-SC. In this step only the first component of λ′

2, λ′
22

converges to zero as t → 0. So here we consider the
spread of the MCMC sample of λ′

22 for different values
of t near t = 0, from both PS and PS-SC in Figures 5
and 6 by considering the histogram of MCMC sam-
ple of λ′

22. We can easily notice that the spread of the
MCMC sample fluctuates in between the two modes in
a chaotic manner showing poor or unstable mixing for
PS, whereas PS-SC samples come from both the clus-

ters and slowly shift toward the prior mode as t → 0.
We have also studied but do not report similar nice be-
havior regarding mixing of MCMC of PS-SC for the
data simulated from the 1-factor model.

The poor mixing discussed above for MCMC out-
puts for PS will now be illustrated with plots of auto-
correlation for λ′

22 for different lags (Figure 7). For the
sake of comparison, we do the same for PS-SC (Fig-
ure 8). Clearly, except very near t = 0, that is, in what
we have called the chaotic zone, the autocorrelations
for PS are much bigger than those for PS-SC. How-
ever, near t = 0, though plots in both Figures 7 and 8
are small, those for PS are slightly smaller. We have no
simple explanation for this.

Poor mixing seems to lead to missing mass and ran-
dom fluctuations for calculations for Et(U). This prob-
ably explains the discrepancy we have noticed in the
estimation of BF by PS as compared with PS-SC. We
now look at autocorrelations for a first factor loading

FIG. 2. Et (U) for prior t10 and N(0,1), 2-factor model is true.
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FIG. 3. Log-likelihood for prior t10 and N(0,1), 2-factor model is true.

in Figure 7 and second factor loading in Figure 8. The
top rows in each of the two figures show zero autocor-
relation, as they are very close to t = 0. On the other
hand, high autocorrelations are shown in the next two
rows. We believe they correspond to what we called a
chaotic region. The bottom two rows of Figure 8 show

small autocorrelation. They correspond to the second
factor loading which comes only in model 2, and they
also depict the zone dominated by model 2. The other
figure is in the same zone as in the previous line, but
the variable considered is a 1-factor loading. Here au-
tocorrelation also eventually tends to 0, but its values

FIG. 4. Et (U) and Log-likelihood for prior t10 in the range t ∈ [0,0.2], 2-factor model is true.
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FIG. 5. Histograms for λ′
22 for different values of t near t = 0 (MCMC size used 50,000), using PS.

are bigger than in Figure 8. We do not have any simple
explanation for this higher autocorrelation.

The above discussion covers the case when the more
complex model is true. If the simpler model (M0) is
true, as noted in Section 3.3 both PS and PS-SC per-
form well in estimating the Bayes factor as well as
choosing the correct model. The Bayes factor based
on PS-SC provides stronger support for the true model
than the Bayes factor based on PS.

To check whether PSSC works well in other exam-
ples as in the factor model, we try to explore its impact

on our earlier toy example. In this case, we were un-
able to implement path sampling with small changes,
but rather used a pseudo-PSSC scheme. Going back to
our example where we have taken m = 7 and p = 10,
we define a sequence of models as the following:

Mi :yi ∼ N

(
0,� =

(
A11 0

0 A22

))
when A11 is (i × i) matrix for i = 7,8,9,10.

We can see our previously defined M0 and M1 are now
M7 and M10, respectively. For our pseudo-PSSC, we

FIG. 6. Histograms for λ′
22 for different values of t near t = 0 (MCMC size used 50,000), using PS-SC.
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FIG. 7. Autocorrelation for λ′
22 for different values of t near t = 0 (MCMC size used 50,000), using PS.

estimate log BFi,i+1 by log BF between the models M ′
0

and M ′
1, with m = i and p = i + 1:

M ′
t :yi ∼ N

(
0,� =

(
A11 tA12

t (A12)
′ A22

))
.

Still being underestimates on each step, this method
improves on the standard path sampling in terms of
Bayes factor estimation, as we can see in the Table 10.

4. IMPLEMENTATION OF OTHER METHODS

We have explored several methods of estimating the
ratio of normalizing constants, for example, the meth-
ods of Nielsen (2004), DiCiccio et al. (1997), Rue,

Martino and Chopin (2009) and Chib (1995). The
method of Rue, Martino and Chopin (2009) models
a link function of means, but here we are concerned
with models for the variance–covariance matrix. We
could not use Chib’s method here since for our param-
eter expanded prior the full conditionals of the origi-
nal model parameters are not available. But we were
able to implement the deterministic variational Bayes
method of Nielsen (2004) and the Laplace approxima-
tion with a correction due to DiCiccio et al. (1997).
Since the results were not satisfactory, we do not re-
port them in this paper. In the variational Bayes ap-
proach, the method selected the correct model approx-

FIG. 8. Autocorrelation for λ′
22 for different values of t near t = 0 (MCMC size used 50,000), using PS-SC.
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TABLE 10
Performance of PS and pseudo-PS-SC in toy example modeling

covariance: Log Bayes factor (MCMC standard deviation)

Method Data 1 Data 2

True BF value 258.38 −132.87
PS estimate of BF 184.59 (0.012) −20.11 (0.008)

pseudo-PSSC estimate of BF 195.35 (0.011) −25.21 (0.007)

imately 80% of the time, but the estimated logBF val-
ues were considerably over (or under) estimated. The
variational Bayes method is worth further study, pos-
sibly with suitable modifications. It appears to us it is
still not understood when Belief Propagation provides
a good approximation to a marginal or not, for exam-
ple, Gamarnik, Shah and Wei (2010) commented: Only
recently we have witnessed an explosion of research for
theoretical understanding of the performance of the BP
algorithm in the context of various combinatorial opti-
mization problems, both tractable and intractable (NP-
hard) versions.

Following the discussion in Section 2.4, we have im-
plemented the GMP-PS. Here the marginal for both
models is estimated by constructing a path between
the prior distribution to the posterior distribution of the
model. Due to very high-dimensionality of the model,
the modes of prior and posterior distribution are far
apart. So as discussed before, the MCMC sampling
along the path fails to sample smoothly and fluctuates
between the two modes in a chaotic way near the prior
mode. Hence, the estimate of the marginal of both the
models becomes very unstable. Due to the poor es-
timation of BF, this method also fails to choose the
correct model very often. As in the case of GMP-PS,
the AIS with the GM path also did not work well.
Hence, we implemented the AIS with the PAM-path.
Implementation of PAM-AIS is also very time inten-
sive, so we have only implemented PAMP-AIS with
MCMC sample size 5000. PAM-AIS not only shows
very high MCMC-standard deviation, but it also fails
to choose the correct model many a time, when the 2-
factor model is correct. The last methods we looked at
are the following:

(1) Importance Sampling (IS).
(2) Newton-Raftery approximation (BICM).
(3) Laplace/BIC type approximation (BICIM).

IS is the most easy to implement and shows mod-
erately good results in choosing the correct model
(Ghosh and Dunson, 2008)). We study the stability of

TABLE 11
Study of IS, BICM and BICIM for different MCMC size: Estimated

Bayes factor (MCMC standard deviation)

Method(MCMC-size)/
true model 2-factor model 1-factor model

IS (10,000) 109.78 (168.72) 0.0749 (0.1063)

IS (50,000) 97.12 (61.25) −5.39 (84.35)

IS (100,000) 86.92 (110.35) −3.07 (10.41)

IS (200,000) 83.66 (58.53) −2.69 (2.96)

BICM (10,000) 68.66 (0.93) −5.72 (0.62)

BICIM (10,000) 67.9 (0.11) −5.3 (0.57)

PS-SC (5000) 80.75 (0.63) −8.08 (0.0013)

Bayes factor values estimated by IS with the change of
the MCMC size in Table 11.

Similarly, we also study the stability of the estimates
of the Bayes factor by BICM and BICIM (explained
in A.1.3 in the Appendix) using MCMC sample size
10,000, where both of these methods show signifi-
cantly less amount of MCMC-standard deviation than
other methods considered. Hence, we will only con-
sider PS-SC, BICM and BICIM to explore model se-
lection for a dimension much higher than previously
considered.

5. EFFECT OF PRECISION PARAMETERS AND
HIGH-DIMENSIONAL (SIMULATED AND REAL)

DATA SET

Our goal is to explore if PS-SC may be made more
efficient by combining with BICM and BICIM and also
to explore the number of dimensions much higher than
before and the real life examples.

In the examples in this section, p varies from 6 to 26.
We have 2 examples of real life examples with p = 6
and 26 and a simulated example with p = 20. As ex-
pected, PS-SC still takes a long time, even with a paral-
lel processing for high-dimensional examples. We ex-
plore whether PS-SC can be combined with BICM and
BICIM to substantially reduce time, since their perfor-
mance seems much faster than PS-SC.

We compare the behavior of these methods for a
higher-dimensional model and for some real data sets
taken from Ghosh and Dunson (2009) and Akaike
(1987). We first consider one 3-factor model with p =
20 and n = 100 in Table 12.

We notice that all the methods are selecting correct
models for all the 3 data sets, but based on our earlier
discussion of PS-SC, we believe only this method pro-
vides a reliable estimate of BF. Now we will compare
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TABLE 12
Simulated model (p = 20, n = 100) and (k = the number of true factors): Comparison of log Bayes factor

Data BF PS-SC BICM BICIM

Data1 (k = 1) BF21 −25.91 (0.0233) −32.68 −38.01
BF32 −24.84 (0.0594) −21.18 −38.24
BF43 −22.79 (0.0483) −19.81 −43.77

Data2 (k = 2) BF21 225.81 (4.2099) 248.09 219.87
BF32 −23.61 (0.0160) −23.59 −46.17
BF43 −19.18 (0.0297) −20.3 −47.98

Data3 (k = 3) BF21 152.07 (1.7422) 185.45 162.3
BF32 104.17 (2.5468) 198.1 168.54
BF43 −17.35 (0.0276) −29.73 −48.24

the methods for some real data sets. We choose two
data sets: “Rodent Organ Data” from Ghosh and Dun-
son (2009) and “26-variable Psychological Data” from
Akaike (1987). These data sets have been normalized
first before analyzing them further. We not only study
the estimated Bayes factor but also the model chosen
by them.

In the “Rodant Organ Data” the model chosen by PS-
SC and other methods are, respectively, the 3-factor
model and 2-factor model (Table 13). For the “26-
variable Psychological Data,” PS-SC and BICM/BICIM
choose the model with 3 factors and 4 factors, respec-
tively (Table 14). The models chosen by PS-SC and the
other methods are close, but as expected differ a lot in
their estimate of BFs.

There is still no rigorously proved Laplace approx-
imation for relatively high-dimensional cases because
of analytical difficulties. Problems of determining sam-
ple size in hierarchical modeling, pointed out by Clyde
and George (2004), are avoided by both versions of our
approximations (Appendix A.1.3). These two methods
seem to be good as a preliminary searching method to
narrow the field of plausible models before using PS-
SC. This saves time relative to PS-SC for model search
as seen in the previous examples.

TABLE 13
Rodant organ weight data (p = 6, n = 60): Comparison of log

Bayes factor

Bayes factor PS-SC BICM BICIM

log BF21 4.8 26.34 21.57
log BF32 10.52 −3.14 −10.01
log BF43 −3.28

6. CONCLUSION

We have studied PS for factor models (and one other
toy example) and have identified the component of PS
that is most likely to go wrong and where. This is partly
based on the fact that we have a relatively simple suffi-
cient condition for factor models (Theorem 2.1). Typ-
ically, for the higher-dimensional model the MCMC
output for finding the integral along grid points in the
path may become quite unreliable at some parts of the
path. Some insight about why it happens and how it can
be rectified has been suggested. MCMC seems to be
unreliable for PS when the higher-dimensional model
is true. The problem is worse the more the two models
differ, as when a very high-dimensional model is being
compared to a low-dimensional model.

The suggestion for rectification was based on the in-
tuition that PS, like importance sampling itself, seems
more reliable when the two marginal densities in the
Bayes factor are relatively similar, as is the case when
the smaller of two nested models is true. Based on this
intuition, we suggested PS-SC and justified PS-SC by
comparing MCMC output and MCMC standard devia-
tion of both PS-SC and PS.

TABLE 14
26-variable psychological data (p = 26, n = 300): Comparison of

log Bayes factor

Bayes factor PS-SC BICM BICIM

log BF21 122.82 205.27 188.19
log BF32 35.27 71.05 35.5
log BF43 −10.7 23.16 7.55
log BF54 −33.32 −4.63 −25.51
log BF65 −16.7 −17.32 −43.21
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It is our belief that the above insights as to when
things will tend to go wrong and when not, will also
be valid for the other general strategy for selection
from among nested models, namely, RJMCMC. Piyas
Chakraborty in Purdue is working on a change point
problem in several parameters where Shen and Ghosh
(2011) have an accurate approximation to the Bayes
factor, which may be used for validation. He will ex-
plore small changes as well as adaptive MCMC.

Our work has focused on model selection by Bayes
factors, which seems very natural since it provides pos-
terior probability for each model. However, model se-
lection is a complicated business and one of its major
purposes is also to find a model that fits the data well.
Several model selecting statisticians feel this should
also be done along with calculation of Bayes factors.

However, there has not been a good discussion on
how one should put together the findings from the two
different approaches. We hope to return to these issues
in a future communication.

A natural future direction of our study of factor mod-
els is to add to the model an unknown mean vector with
a regression setup. The problem now would be to si-
multaneously determine a parsimonious model for both
the variance–covariance matrix and the mean vector.
There are natural priors for these problems, but com-
putation of the Bayes factor seems to be a challenging
problem.

APPENDIX

A.1 Other Methods

A.1.1 Importance sampling. Suppose we have two
densities proportional to two functions f (x) and g(x),
which are feasible to evaluate at every x, but one of
the distributions, say, the one induced by f (x), is not
easy to sample. Then the importance sampling (IS) es-
timate of the ratio of normalizing constants is based
on m independent draws x1, . . . , xm generated from the
distribution defined by g(x). We first compute the im-
portance weights wi = f (xi)

g(xi)
and then define the IS es-

timate:

1

m

m∑
i=1

wi.(A.1)

Under the assumption that g(x) �= 0 when f (x) �= 0,
1
m

∑m
i=1 wi converges as m → ∞ to Zf /Zg , when

Zf = ∫
f (x) dx and Zg = ∫

g(x) dx are the normaliz-
ing constants for f (x) and g(x). The variability of the
IS estimate depends heavily on the variability of the
weight functions. So to have a good IS estimate, we

need to have g(x) as a good approximation to f (x),
which is difficult to achieve in problems with high
or moderately high-dimensional, possibly multimodal
density.

Analysis of Bayesian factor models using IS has
been introduced by Ghosh and Dunson (2008). The IS
estimator of BF for factor models is based on m sam-
ples θ

(h)
i from the posterior distribution, under M(h)

B̂Fh−1,h = 1

m

m∑
i=1

p(y|θ(h)
i , k = h − 1)

p(y|θ(h)
i , k = h)

,(A.2)

which in turn is based on the following identity:∫
p(y|θ(h), k = h − 1)

p(y|θ(h), k = h)
p

(
θ(h)|y, k = h

)
dθ(h)

=
∫

p
(
y|θ(h), k = h − 1

) p(θ(h))

p(y|k = h)
dθ(h)(A.3)

= p(y|k = h − 1)

p(y|k = h)
.

Ghosh and Dunson (2008) implemented IS with a
parameter expanded prior. They also have noted that
IS is fast and often (90%) chooses the correct model
in simulation. In our simulation IS chooses a true big-
ger model correctly, but a 20% error rate was observed
when the smaller model is true.

A.1.2 Annealed importance sampling. Following
Neal (2001), we consider densities pt : t ∈ [0,1] join-
ing the densities p0 and p1. We choose densities by dis-
cretizing the path pt(i) where 0 = t(1) < · · · < t(k) = 1
and then simulate a Markov chain designed to con-
verge to pt(k)

. Starting from the final states of the
previous simulation, we simulate some number of it-
erations of a Markov chain designed to converge to
pt(k−1)

. Similarly, we simulate some iterations starting
from the final steps of pt(j)

designed to converge to
pt(j−1)

until we simulate some iterations converging
to pt(1)

. This sampling scheme produces a sample of
points x1, . . . , xm and then we compute the weights
wi = p1(xi )

p0(xi )
. Then the estimate of the ratio of normaliz-

ing constant becomes as follows:

1

m

m∑
i=1

wi.(A.4)

Notice that while both AIS and PS are based on
MCMC runs along a path from one model to another,
the MCMC’S are drawn at each point, but the details
are very different. Due to the better spread of MCMC
samples, the estimates in AIS seem to be better than
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those calculated by IS when the smaller model is true,
helping in correct model selection and also improving
the estimation of Bayes factors. However, simulations
show that AIS has the same problem as IS in estimating
the Bayes factor when the bigger model is true.

A.1.3 BIC type methods: Raftery–Newton and our
method using information matrix. In contrast to the
methods previously discussed, we try to directly es-
timate the marginal under each model and then use
these marginals to find the Bayes factor. We know that
BIC is an approximation to the log-marginal based
on a Laplace-type approximation of the log-marginal
(Ghosh, Delampady and Samanta, 2006), under the as-
sumption of i.i.d. observations. Thus,

log
(
m(x)

) ≈ log
(
f (x|θ̂ )π(θ̂)

)
+ (p/2) log(2π) + (p/2) log(n)(A.5)

+ log
(∣∣H−1

1,θ̂

∣∣1/2)
,

where H1,θ̂
is the observed Fisher Information matrix

evaluated at the maximum likelihood estimator using a
single observation. For BIC we just use

log
(
m(x)

) ≈ log
(
f (x|θ̂ )π(θ̂)

) + (p/2) log(n)
(A.6)

≈ log
(
f (x|θ̂ )

) + (p/2) log(n),

ignoring other terms as they are O(1).
It is known BIC may be a poor approximation to

the log-marginal in high-dimensions (Berger, Ghosh
and Mukhopadhyay, 2003). To take care of this prob-
lem, Raftery et al. (2007) suggest the following. Sim-
ulate i.i.d. MCMC samples from the posterior distri-
butions, evaluate independent sequence of log(prior ×
likelihood)s (log-p.l.) {lt : t = 1, . . . ,m}, and then an
estimate for the marginal is

log
(
m(x)

) ≈ l̄ − s2
l

(
log(n) − 1

)
,(A.7)

where l̄ and s2
l will be the sample mean and variance

of lt ’s. We call this method BICM, following the con-
vention of Raftery et al. (2007).

In order to apply (A.5), we do not need to evaluate n

since it cancels by combining the last two terms. This
suggests the approximation (A.5) take care of the point
raised by Clyde and George (2004). However, (A.7)
does use n, but we do not know the impact on the ap-
proximation.

We have also used the Laplace approximation (A.5)
without any change as likely to work better than the
usual BIC. We compute the Information Matrix at the
maximum prior × likelihood (mpl) value under the

model and impute its value in the computation of the
marginal. To find the mpl estimate, we use the MCMC
sample from the posterior distribution and pick the
maxima in that sample. Then we search for the mple
in its neighborhood, using it as the starting point for
the optimization algorithm. In our simulation study, it
has been seen to give very good results similar to the
computationally intensive numerical algorithms used
to find the maximum of a function over the whole pa-
rameter space seen by taking repetition of MCMC runs
and large MCMC samples. In the spirit of Raftery et al.
(2007), we call this method BICIM, indicating the use
of Information Matrix based Laplace Approximation.
We also used several other modifications that did not
give good results, so are not reported.

A.2 A Theoretical Remark on the Likelihood
Function

It appears that the behavior of the likelihood, for ex-
ample, its maximum, plays an important role in model
selection, specifically in the kind of conflict we see
between PS and the Laplace approximations (BICM,
BICIM) when the bigger model is true (and the prior is
a t with a relatively small d.f.). The behavior seems to
be different from the asymptotic behavior of maximum
likelihood under the following standard assumptions.
Assume dimension of the parameter space is fixed and
usual regularity conditions hold. Moreover, when the
big model is true but the small model is assumed (so
that it is a misspecified model), the Kullback–Liebler
projection of the true parameter space to the parameter
space of the small model exists (Bunke and Milhaud,
1998).

FACT. Assume the big model is true, and the small
model is false. Then, as may be verified easily by the
Taylor expansion,

(1) logL(θ̂big) − logL(θtrue(big)) = OP (1)

(2) logL(θ̂small) − logL(KL projection of θtrue(big)

to �small) = OP (1)

(3) logL(θtrue(big)) − logL(KL projection of
θtrue(big) to �small) = OP (n)

and
(4)

logL(θ̂big) − logL(θ̂small)

= logL(θtrue(big))

− logL(KL projection of θtrue(big) to �small)(A.8)

+ OP (1)

= OP (n).
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The maximized likelihood for factor models sub-
stantially overestimates the true likelihood, unlike rela-
tion (1) above. Unfortunately, as pointed out in Drton
(2009), the asymptotics of mle for factor models is still
not fully worked out.

A.3 Matrix Used for the Toy Example

�0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

128.35 52.69 −19.25 −11.86 24.34

52.69 73.37 −21.04 −37.85 12.29

−19.25 −21.04 30.86 8.63 −1.41

−11.86 −37.85 8.63 80.49 4.66

24.34 12.29 −1.41 4.66 15.45

8.80 8.74 −13.58 3.26 2.58

10.63 15.60 −3.03 −49.24 2.05

13.75 12.09 −11.64 −9.68 3.72

−7.40 −14.08 21.28 22.18 −1.31

−29.80 −17.27 22.05 8.52 −7.87

8.80 10.63 13.75 −7.40 −29.80

8.74 15.60 12.09 −14.08 −17.27

−13.58 −3.03 −11.64 21.28 22.05

3.26 −49.24 −9.68 22.18 8.52

2.58 2.05 3.72 −1.31 −7.87

31.37 11.62 −4.85 −16.89 −20.10

11.62 58.09 7.00 −19.58 5.16

−4.85 7.00 26.59 −3.04 11.17

−16.89 −19.58 −3.04 31.81 22.86

−20.10 5.16 11.17 22.86 64.68

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A.4 Choice of Prior Under M0

A referee has asked whether under M0, the prior for
the extra parameter can be chosen in a same optimal
or philosophically compelling manner. This has been
a long-standing problem, but the method followed for
factor models is one of the standard procedures, ap-
parently first suggested by Edwards, Lindman and Savage
(1984).

This prior is mentioned by Edwards, Lindman and Sav-
age (1984) and may be justified as follows. One tries
to ensure the extra parameter has similar roles under
both the models. If the joint prior of (θ1, θ2) under M1

is π(θ1, θ2), then the natural prior for (θ2|θ1) is the usual
conditional density of π(θ2|θ1). In our case π(θ1, θ2) =
π(θ1)π(θ2). So π(θ2|θ1) is as we have chosen. This is
one of the standard default choices. Another default
choice is due to Jeffreys (1961), but when θ1, θ2 are
independent, both lead to the same choice. If we in-
troduce a prior (e.g., minimizing MCMC-variance), it
may not be acceptable to Bayesian philosophy.
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