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Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both
estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior
probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence
measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to
investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via
Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum
parsimony bootstrap proportion (MP-BP). We simulated the evolution of DNA sequence on 17-taxon topologies under
18 evolutionary scenarios and examined the performance of these methods in assigning confidence to correct
monophyletic and incorrect monophyletic groups, and we examined the effects of increasing character number on
support value. BMCMC-PP and ML-BP were often strongly correlated with one another but could provide substantially
different estimates of support on short internodes. In contrast, BMCMC-PP correlated poorly with MP-BP across most of
the simulation conditions that we examined. For a given threshold value, more correct monophyletic groups were
supported by BMCMC-PP than by either ML-BP or MP-BP. When threshold values were chosen that fixed the rate of
accepting incorrect monophyletic relationship as true at 5%, all three methods recovered most of the correct relationships
on the simulated topologies, although BMCMC-PP and ML-BP performed better than MP-BP. BMCMC-PP was usually
a less biased predictor of phylogenetic accuracy than either bootstrapping method. BMCMC-PP provided high support
values for correct topological bipartitions with fewer characters than was needed for nonparametric bootstrap.

Introduction

Confidence measures play an important role in
phylogenetics, especially when trees serve as the con-
ceptual framework for the study of trait evolution. These
measures allow workers to identify trees or parts of a tree
that are well supported by the data and thus adequate to
serve as the basis for evolutionary inference of biological
systems (Huelsenbeck, Rannala, and Masly 2000; Lutzoni
et al. 2001; Pagel and Lutzoni 2002). Arguably the most
commonly used confidence method in phylogenetics has
been nonparametric bootstrapping, a statistical technique
invented by Efron (1979) and first applied to the
phylogeny problem by Felsenstein (1985). Phylogenetic
nonparametric bootstrapping involves the random resam-
pling (with replacement) of characters from the original
data to generate pseudoreplicate data matrices identical in
size to the original matrix. These pseudoreplicates are then
subjected to the same phylogenetic searches as the original
data set. Bootstrap support for a group of interest is
calculated as the proportion of times that the group is
obtained in the pseudoreplicates.

The rationale for the resampling of the original matrix
is that the distribution of the pseudoreplicates around the
observed data is a valid approximation of the distribution
of observed data sets on the true, unknown process that
generates the data sets (Efron 1979; Efron Halloran, and
Holmes 1996). In phylogenetic terms, this suggests that
a monophyletic group that receives a high bootstrap
proportion would be expected to be recovered by other

analyses of new data sets that were generated by the same
underlying process (Felsenstein 1985), and it is for this
reason that the bootstrap is sometimes described as
a measure of repeatability (Berry and Gascuel 1996;
Felsenstein 1985; Hillis and Bull 1993).

Hillis and Bull (1993) examined the performance of
nonparametric bootstrapping as a measure of phylogenetic
accuracy, that is, the probability that a given monophyletic
group appears on the true tree. Their finding, that bootstrap
proportions greater than 50% underestimated phylogenetic
accuracy, sparked a flurry of papers that sought to clarify
the interpretation of bootstrap ‘P’ values (Felsenstein and
Kishino 1993; Li and Zharkikh 1994; Sanderson 1995;
Zharkikh and Li 1995; Berry and Gascuel 1996; Newton
1996). An important point that emerged from this scrutiny
was that phylogenetic accuracy, sensu Hillis and Bull
(1993), is not a quantity that bootstrapping typically tests
and, furthermore, that bootstrapping may overestimate or
underestimate phylogenetic accuracy depending on the
condition under which the data were generated (e.g.,
Efron, Halloran, and Holmes 1996; Felsenstein and
Kishino 1993). In addition, type I error, which is the
quantity that many workers desire the bootstrap to reflect,
is only approximated by the conventional bootstrap
procedure (Efron, Halloran, and Holmes 1996). A more
complex, two-step bootstrapping procedure is necessary to
transform bootstrap proportions into standard frequentist
confidence intervals. Despite these studies, conventional
nonparametric bootstrapping is still widely viewed as
providing a measure of phylogenetic accuracy (e.g.,
Murphy et al., 2001).

Thus, nonparametric bootstrapping has been used to
measure three quantities (Berry and Gascuel 1996):
repeatability, the probability of observing a given result
in future repeated sampling of the same underlying
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character distribution; accuracy (Hillis and Bull 1993), the
probability that a given monophyletic group is present on
the true tree; and type I error rate (Felsenstein and Kishino
1993), assuming a null model of nonmonophyly. The
theoretical justification for interpreting nonparametric
bootstrap values as measures of repeatability is quite
strong (Efron and Tibshirani 1993, 1998; Efron, Halloran,
and Holmes 1996), and most of the debate over the
bootstrap has focused on whether and how the bootstrap
proportion can be meaningfully related to phylogenetic
accuracy and frequentist testing (e.g., Sanderson 1995;
Berry and Gascuel 1996). Threatening to add to the
confusion over the interpretation of bootstrap values in
phylogenetics is the increasingly widespread use of
Bayesian methods to calculate the Bayesian confidence
limits (posterior probabilities) for monophyletic relation-
ships.

Bayesian Confidence Methods

Bayesian inference in phylogenetics has become
increasingly common since its development in the late
1990s (see reviews in Huelsenbeck et al. 2001; Lewis
2001). Broadly speaking, in Bayesian inference one makes
use of Bayes’s theorem to condition inferences about the
value of some parameter of interest on the observed data.
Bayesian inference focuses on the quantity known as the
posterior probability, defined as the probability of some
hypothesis conditional on the observed data. The posterior
probability is proportional to the product of the likelihood
of the data, given that the hypothesis is correct and the
prior probability of the hypothesis before any data have
been collected

In Bayesian phylogenetics, parameters such as the
tree topology, branch lengths, and substitution parameters,
are modeled as probability distributions. Using Bayes’s
theorem, the posterior probability of any of one of these
parameters may be expressed as the marginal distribution
of those remaining. Solving analytically for the posterior
probability requires the integration of the likelihood
function over all possible values of the remaining
parameters, which is effectively intractable for even
moderately complex problems. Modern Bayesian methods
use Markov chain Monte Carlo methods to approximate
this integration by simulating draws from the joint
posterior distribution of all model parameters. Posterior
probabilities for the parameters of interest are calculated
using the Markov chain samples. For example, the
posterior probability of a tree or bipartition in a tree is
determined simply by examining the proportion of all of
the Markov-chain samples that contain the topological
bipartition of interest.

The Meaning and Measure of Confidence Values

Despite the growing popularity of Bayesian methods
in phylogenetics (see Lewis 2001), there is no current
consensus of how posterior probabilities should be
interpreted relative to more traditional support measures
such as the bootstrap. Efron, Halloran, and Holmes (1996)
pointed out that bootstrap values correspond closely to
posterior probabilities calculated under a multinomial
model of site pattern frequency, and some workers have
also implied that posterior probabilities derived from
standard likelihood models of sequence evolution (i.e.,
those calculated by programs such as MrBayes [Huelsen-
beck 2000] and BAMBE [Larget and Simon 1999]) are
also closely equivalent to likelihood bootstrap proportions
(e.g., Larget and Simon 1999). Others have noted that
posterior probabilities are often much higher than the
associated bootstrap proportion and have cited this as
evidence that the Bayesian posterior probabilities do not
suffer from the conservative bias that has been attributed to
bootstrap values with regards to phylogenetic accuracy
(Murphy et al. 2001).

The purpose of the current study is to investigate the
comparative behavior of nonparametric bootstrapping and
Bayesian Markov chain Monte Carlo (BMCMC) methods
in assigning confidence to phylogenetic results. Simula-
tions are powerful tools for evaluating the performance of
phylogenetics methods because the true tree and generat-
ing model are known a priori (e.g., Hillis, Allard, and
Miyamoto 1993). For this study, we chose to explore the
performance of these methods under evolutionary scenar-
ios that were designed to approximate a single gene study
(1,000 base pairs) of a moderate number of taxa (17) rather
than a simple four-taxon case in order to obtain a better
understanding of how these methods perform under
conditions more typical of real data sets. We quantified
performance of support methods on a range of these
topologies to address several fundamental questions about
Bayesian posterior probabilities and bootstrap proportions.
First, we compare how bootstrap and BMCMC assign
confidence to the same correct internodes on a tree to
determine if they are essentially equivalent techniques.
Second, we compare the width of confidence envelopes for
these two kinds of confidence by adopting the traditional
interpretation of the bootstrap as a measure of repeatability
and the posterior probability as the probability that
a monophyletic group is correct. Third, we investigate
the performance of these methods in estimating phyloge-
netic accuracy and explore the consequence of construct-
ing decision rules from support values on rates of type I
error and on other performance benchmarks that we derive
from our simulations. Finally, we compared the sensitivity

FIG. 1.—Comparison between Bayesian and nonparametric bootstrap methods in assigning confidence to the same correct internodes on pectinate
topologies. Shown are box plots, which indicate the 10%, 25%, median, 75%, and 90% interval boundaries of support for each of the 14 internodes on
the indicated topology. Results from low-rate trees (0.08 expected changes per site as measured from the root of the tree to any tip) are in the first
column, and results for high-rate trees (0.30 expected changes per site from root to tip of the tree) are in the second column. For each scenario, Bayesian
Markov chain Monte Carlo posterior probabilities (BMCMC-PP) are shown in the top plot, followed by maximum likelihood bootstrap proportion
values (ML-BP) and maximum parsimony bootstrap proportion values (MP-BP). Numbers in bold in lower right or lower middle of each graph indicate
the median percentage of correct nodes (out of 14 possible) that received support >70%/>95% over the 100 replicates.
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of these methods to phylogenetic signal by describing the
effects of increasing character number on support value.

Methods
Simulations

We simulated data on fully pectinate and fully
symmetric topologies of 17 taxa (details of the topological
conditions examined in this study are available online at
http//:www.molbiolevol.org.) We varied branch lengths of
the pectinate trees in the following ways: all internodes
equal, basal internodes short, basal internodes long, middle
internodes short, middle internodes long (fig. 1). Symmet-
ric topologies were varied in the same ways except that we
did not examine cases where the middle internodes were
short or long (fig. 2). In addition, we constructed one
symmetric topology that did not assume a molecular clock
(fig. 2). We examined each of these nine topologies at low
(0.08 expected changes per site) and high (0.30 expected
changes per site) rates of character evolution. In total, our
simulation universe was made up of 2 3(5 pectinate 1 4
symmetric trees) 5 18 evolutionary scenarios. For each
scenario we used Seq-Gen (Rambaut and Grassly 1997) to
evolve 100 data sets with 1,000 base pairs of sequence,
each under a Kimura 2-parameter model with a transition:
transversion ratio of 2 (K2P with ti:tv 5 2). This relatively
simple model was chosen to provide a fair comparison
between model-based (maximum likelihood and Bayesian)
methods and equally weighted parsimony, without being
completely unrealistic.

Our study largely focused on differences between
likelihood nonparametric bootstrapping and Bayesian
posterior probabilities. As currently implemented, both
methods require a model of evolution in a fundamentally
similar way and so a comparison between likelihood
bootstrapping and BMCMC is informative about their
relative performance in estimating confidence. Due to the
time required to perform likelihood bootstrapping, parsi-
mony bootstrapping is sometimes the only confidence
measure reported, even in cases where both maximum
parsimony and maximum likelihood topologies are
obtained (e.g., Koulianos and Schmid-Hempel 2000;
Rodriguez-Robles and De Jesus-Escobar 2000). We chose
to include parsimony bootstrapping in our study to
investigate whether parsimony bootstrap values provided
a reasonable estimate of the likelihood bootstrap pro-
portion under our simulation conditions. However, it is
useful to point out that we expect parsimony bootstrapping
to perform more poorly than either of the model-based
methods; the deck is effectively stacked against it because
the underlying model of sequence evolution is also the
model used by likelihood bootstrapping and BMCMC to
assess confidence.

For each of the 100 replicates, we calculated
Bayesian posterior probabilities and bootstrap proportions
for all internodes. To calculate posterior probabilities of
internodes, we used MrBayes 1.1 (Huelsenbeck 2000) to
run a 100,000-generation Markov chain under a Kimura
2-parameter model, sampling every 100 generations. We
used the default (flat) priors for the transition-transversion

ratio (uniform 0–100), branch length (uniform 0–10), and
tree topology. Base frequencies were fixed to be equal. We
ran one cold and three heated chains simultaneously
(Geyer 1991; Huelsenbeck and Ronquist 2001). Visual
inspection of samples from each scenario suggested that
the Markov chain reached stationarity within 5,000
generations, but we discarded the first 30,000 generations
to ensure that stationarity was reached. Posterior proba-
bilities were calculated from the 700 remaining trees by
examining the frequency of occurrence of correct
bipartitions in the MCMC sample. Maximum parsimony
and maximum likelihood bootstrap proportions were
calculated using the full heuristic search option in PAUP*
(Swofford 1998) version 4b8 with 200 total pseudorepli-
cates saving all equally optimal trees, Tree Bisection-
Reconnection branch swapping, and two random addition
sequences per pseudoreplicate. The maximum likelihood
bootstrapping analyses were performed the same way as
the parsimony bootstrapping analyses, except that searches
were conducted under the model used to generate the data
(K2Pwith ti:tv5 2),whereasmaximumparsimony searches
on bootstrapped data sets were performed assuming that all
costs for changes among nucleotides were equal to one step.

Performance Benchmarks

We used a number of benchmarks to assess the
performance of maximum parsimony bootstrap propor-
tions (MP-BP), maximum likelihood bootstrap proportions
(ML-BP), and Bayesian Markov chain Monte Carlo
posterior probabilities (BMCMC-PP). First, we examined
the correlation of support values among all three methods
across all scenarios to examine the degree of correspon-
dence between bootstrapping and Bayesian analysis.
Second, we compared support assigned by each method
to a tree by calculating median support of each of the 14
internodes across all 100 replicates. We also examined the
median percentage of correct internodes across the tree (#
supported/14) that each method supported above arbitrary
cut-off values of 70% and 95% over the 100 replicates.
This provided a heuristic indication of the relative
capability of these methods to assign support to correct
internodes. One may also use this measure to determine
the type I error rate (the rate of rejecting the null model
when it is true, which in the case of our simulations is the
rate of rejecting correct topological bipartitions) for basing
a decision rule on either of these cut-off values. Type I
error rate for a particular decision rule can be calculated as
1 minus the proportion of total supported correct
internodes.

We compared the relative tendencies of these
methods to assign high support to wrong internodes in
two ways. First, we examined the raw number of incorrect
internodes that each method supported above 70% and
95%. Second, we found the 95% threshold value for each
method by following the procedure outlined below.

1. For each method and each scenario, we assembled all
incorrect topological bipartitions that received support
values of 1% or greater. Support values for wrong
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FIG. 2.—Comparison between Bayesian and nonparametric bootstrap methods in assigning confidence to the same correct internodes on symmetric
topologies. Shown are box plots that indicate the 10%, 25%, median, 75%, and 90% interval boundaries of support for each of the 14 internodes on the
indicated topology. Results from low-rate trees (0.08 expected changes per site as measured from the root of the tree to any tip) are in the first column,
and results for high-rate trees (0.30 expected changes per site from root to tip of the tree) are in the second column. For each scenario, Bayesian Markov
chain Monte Carlo posterior probabilities (BMCMC-PP) are shown in the top plot, followed by maximum likelihood bootstrap proportion values (ML-
BP) and maximum parsimony bootstrap proportion values (MP-BP). Numbers in bold in lower right hand of each graph indicate the median percentage
of correct nodes (out of 14 possible) that received support >70%/>95% over the 100 replicates.

Comparing Bayesian and Bootstrap Confidence Methods 259



bipartitions across replicates of the same scenario were
pooled.

2. For each method and each scenario, we created
a frequency histogram ordered by support values.
These plots were always heavily skewed to the left
because most of the incorrectly supported topological
bipartitions had support values of 10% or less.

3. Moving along the x-axis from 0% to 100% support
value of the frequency histogram, we determined the
support value that accommodated 95% of the incorrect
bipartitions. Less than 5% of all of the incorrect,
supported topological bipartitions received support
higher than this threshold value. Methods that tend to
assign high support to a larger number of internodes
should have a higher threshold value than those that do
not. We compared the 95% threshold value for each
method.

4. Finally, we compared the number of correct topological
bipartitions that were supported at or above the 95%
threshold value for incorrect bipartitions.

The number of topological bipartitions supported at
the 95% threshold value thus provides a standard for
comparison among the three support methods. It represents
a trade-off between accepting correct internodes while
simultaneously ensuring that 95% of the incorrect,
supported internodes are rejected.

We also calculated the phylogenetic accuracy of these
methods. To determine the relative performance of
Bayesian and bootstrapping methods in estimating accu-
racy (sensu Hillis and Bull 1993), we calculated this
parameter as a function of increasing support value. For
a given support category, accuracy equaled the number of
correct internodes divided by the number of correct and
incorrect internodes across the 100 replicates of the
scenario, multiplied by 100.

To examine the effects of increasing data set size on
confidence level, we performed two simulations in which
the number of characters was gradually increased using the
clocklike and nonclocklike symmetric topologies (lse and
lncl trees; fig. 2). We used Seq-Gen (Rambaut and Grassly
1997) to evolve 5,000 base pairs of sequence on each
topology under the same model (K2P, ti:tv 5 2) used in
the earlier simulations. Confidence analyses were per-
formed as outlined above on an initial data set size of 50
characters for the lse tree and 100 characters for the lncl
tree. Data set size was gradually increased until all
methods assigned 95% support values or the 5,000-
character limit was reached. Simulations were repeated 25
times for each topology to calculate the median support
value for each data set size.

Results
Correlation Among Support Values from Bayesian
MCMC and Nonparametric Bootstrap Methods

We excluded three scenarios (lse, hse, and hslb) from
our calculations of correlations between Bayesian and
bootstrap methods, because all or nearly all of the support
values were 100%. For 12 of the 15 remaining scenarios,

BMCMC-PP and ML-BP values were strongly correlated
(r2 . 0.8, P< 0.05) (correlations for topological scenarios
lpe, lssb, and hssb were only weakly correlated [r2 , 0.8]).
ML-BP support values showed strong correlation with
MP-BP for only seven scenarios (lncl, lplb, lplm, lpsb,
lpsm, lslb, and lssb), whereas BMCMC-PP and MP-BP
correlated strongly in only a single scenario (lplb). For
the 12 scenarios in which BMCMC-PP and ML-BP were
strongly correlated, half were low-rate trees and half
were high-rate trees. In contrast, ML-BP and MP-BP were
strongly correlated only on low-rate trees.

Comparison of Bootstrap and Bayesian Methods in
Assigning Confidence to Specific Internodes

Across all 18 scenarios, some general patterns of
support were evident. All three methods tended to assign
lower support to regions at the base of the tree and where
relative branch length was short (figs. 1 and 2). Median
BMCMC internodal support was almost always equal to or
higher than ML and MP bootstrap support. In problematic
regions of the tree, MP-BP was usually lower than ML-BP
and was sometimes much lower. Except for the nonclock-
like symmetric trees (lncl and hncl), the pectinate
topologies generally contained more problematic regions
than the symmetric topologies. Median nodal support was
usually higher on high-rate trees than on low-rate trees for
BMCMC-PP and ML-BP. In contrast, median support
from MP-BP decreased on many internodes when
compared with their low-rate counterpart trees, especially
in scenarios where internodes at or near the base of the tree
were relatively short (see hpsb, hpsm, hssb, and hncl
scenarios, figs. 1 and 2). For symmetric topologies,
BMCMC and ML bootstrap support values were improved
when using data sets generated with high-rate trees
compared with data derived from low-rate trees. As
expected, the opposite behavior was observed for MP
bootstrap. For the most basal internodes of pectinate
topologies, all methods performed more poorly with high-
rate tree data sets than with low-rate tree data sets.
However, the reverse was true for the most apical
internodes of pectinate topologies.

Variance in support value was usually greater for
MP-BP than for ML-BP and BMCMC-PP. For the latter,
variance in nodal support was generally smaller than
variance for ML-BP when internode length was relatively
long. Median support for internodes in these situations was
also generally very high. When internode length was short,
BMCMC-PP variance sometimes exceeded that of ML-BP
(e.g., lpsb internode 3 and lplm internode 2, fig. 1).
Median support for the shortest internodes was generally
lower, although it was sometimes still quite high (e.g., lplb
internode 13, fig. 1). Internodes that showed extreme
fluctuation in support values were generally very short. In
most cases, these internodes were so short that maximum
likelihood was unable to reconstruct the internode in all
100 replicates of a particular scenario (results not shown).
For any given cut-off value, BMCMC-PP always assigned
support to an equal or greater average number of correct
internodes than either MP-BP or ML-BP, and ML-BP
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always performed as well as, or better than, MP-BP (figs. 1
and 2). Thus, for arbitrarily chosen decision rules of 70%
and 95%, rates of type I error (the rate of rejecting true
internodes) were lower for BMCMC-PP than for either
bootstrapping method. Differences in performance among
support methods were most apparent at the highest
confidence levels (>95%) and were quite striking in
some instances. For example, on the low-rate pectinate
topology with equal length internodes (lpe) approximately
nine correct internodes received a PP of 95% compared
with approximately six and four that were supported by
ML-BP and MP-BP, respectively. Symmetric topologies
appeared to pose less of a challenge to the reconstruction
algorithms than did the pectinate topologies. In three
scenarios (lse, hse, and hslb), all methods assigned 100%
support to all internodes. Furthermore, differences among
the three methods were generally higher on the high-rate
trees than on the low-rate trees.

None of the methods assigned support to a large
number of incorrect internodes, which was not surprising
given the relatively favorable evolutionary conditions
under which we simulated these data sets (table 1).
Parsimony assigned moderate (.70%) support to the
largest number of incorrect internodes (;2.3 internodes/
scenario for MP-BP versus ;0.7 internodes/scenario for
ML-BP and ;1.9 internodes/scenario for BMCMC-PP,
averaged over all 18 scenarios). BMCMC-PP assigned
high (.95%) support to more incorrect internodes than
either bootstrapping method (;0.14 internodes/scenario
for BMCMC-PP, ;0.03 internodes/scenario for ML-BP,
and ;0.06 internodes/scenario for MP-BP, averaged over
all 18 scenarios), although the overall rate of assigning
high support to incorrect internodes was extremely low.
However, as a result of this tendency of wrong topological
bipartitions to have higher posterior probabilities than
bootstrap proportions, the 95% threshold value (the
support value that was greater than or equal to 95% of
the support values that wrong internodes received) was
highest for BMCMC-PP (fig. 3A). Using a decision rule
constructed to minimize the rate of accepting incorrect
bipartitions would generally allow one to recover most
correct monophyletic relationships regardless of the support
method (fig. 3B). However, ML-BP recovered slightly more
correct internodes than BMCMC-PP (13.8 versus 13.6) and
both model-based methods recovered more internodes than
MP-BP (13.1). MP-BP also showed the greatest variance in
performance across scenarios, occasionally recovering
fewer than 12 correct internodes/tree.

Although all three methods assigned high support to
few incorrect internodes, we identified some scenario
replicates in which BMCMC-PP assigned a 95% or greater
posterior probability to an incorrect internode, whereas
ML-BP and MP-BP assigned much lower support
(table 1). These internodes were all found in regions of
low-rate trees with the shortest internodes, and maximum
likelihood trees for these replicates also contained the
wrongly supported internodes. Thus, sampling error
associated with evolving data at a slow rate on regions
of the model topology with the shortest internodes could
occasionally produce data sets with signal that was
incongruent with the model topology.

Comparison of Bayesian and Bootstrap Methods in
Estimating Phylogenetic Accuracy

We were unable to plot accuracy versus increasing
support for four symmetric scenarios (lse, hse, lslb, and
hslb) because all or nearly all of the internodes received
100% support. In the remaining 14 scenarios (fig. 4), all
three methods generally underestimated the true accuracy
at levels of support greater than 50%. This bias was often
less pronounced for BMCMC-PP. However, the latter
overestimated accuracy at moderately high support levels
in one scenario (lplm). BMCMC-PP appeared to lie closest
to the line of perfect correspondence between accuracy and
support for most scenarios.

For any particular topology, posterior probabilities
and bootstrap proportions showed the greatest disparity on
the shortest internodes. When we examined the effects of
branch length on support across all scenarios, we found
that posterior probabilities exceeded 95% for many very
short internodes (as short as 1.3 expected changes). In
contrast, maximum parsimony and likelihood bootstrap
proportions did not reach 95% on branches shorter than
three expected changes. BMCMC-PP assigned 100%
confidence to some internodes with as few as 1.3 expected
changes in contrast to ML-BP, which required at least 5
expected changes and MP-BP, which required 6.7
expected changes. ML and MP bootstrap proportions of
70% or more were obtained for branch lengths as short as
1.7 expected changes.

Sensitivity to the Amount of Phylogenetic Signal

Simulation on lse and lncl topologies to investigate
the effects of increasing number of characters on support
values revealed that the BMCMC-PP assigned 95%
support to all internodes with a smaller number of
characters relative to both bootstrapping methods. On the
symmetric clocklike topology lse (fig. 5A), tip internodes

Table 1
Number of Wrong Topological Bipartitions Receiving
Moderate and High Support

Simulation BMCMC-PP ML-BP MP-BP

lpe 5a,0b 2,0 9,0
lpsb 3,2 4,0 9,0
lplb 13,1 1,0 4,0
lpsm 12,0 2,0 3,0
lplm 23,2 8,0 18,1
hpe 4,0 3,0 15,1
hpsb 25,1 15,0 35,0
hplb 9,2 6,0 5,0
hpsm 16,2 5,1 27,1
hplm 18,2 12,1 31,0
lse 0,0 0,0 0,0
lssb 0,0 0,0 0,0
lslb 25,1 15,0 35,0
lncl 12,1 2,0 7,0
hse 0,0 0,0 0,0
hssb 2,0 3,0 5,0
hslb 0,0 0,0 0,0
hncl 9,1 6,0 50,4

a Number of times across all 100 simulation replicates that an incorrect

topological bipartition received a support value greater than 70.
b Number of times across all 100 simulation replicates that an incorrect

topological bipartition received a support value greater than 95.
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(7 to 14) received a median support of 95% with 100 to
150 characters for BMCMC-PP, compare with 200 to 300
characters for ML-BP and MP-BP. All internodes received
95% support at 200 characters with BMCMC-PP,
compared with 300 characters for ML-BP and 350 for
MP-BP. We observed a similar pattern on the nonclocklike
topology lncl (fig. 5B), with all internodes reaching a 95%
posterior probability at 1,600 characters and a 95%
likelihood bootstrap proportion at 2,000 characters.
Parsimony bootstrap values decreased with increasing

data set size for internodes 1, 3, and 7 on this tree. This is
most likely due to maximum parsimony being inconsistent
under such conditions (see Discussion). Even when these
three internodes are excluded from this comparison, MP-
BP constantly required the largest number of characters
when discrepancies among methods were detected (fig.
5B). In several cases (e.g., lse topology, internodes 11, 12,
and 13) BMCMC-PP reached support values of 95% or
higher with fewer characters than MP-BP required to reach
support values of 70% or higher. In the most extreme

FIG. 3.—Comparison between Bayesian and nonparametric bootstrap
methods in assigning support values for incorrect internodes. Shown are
box plots that indicate the 10%, 25%, median, 75%, and 90% interval
boundaries of 95% threshold values for incorrect, supported bipartitions
from 15 scenarios. Average support values are indicated by squares
within the box plot. Due to an extremely low number of incorrect
topological bipartitions, it was not possible to calculate threshold values
for three scenarios (lse, hse, and hslb), which were excluded from the
analysis. (A) Distribution of 95% threshold values for incorrect, supported
bipartitions from 15 scenarios. On average, all three methods assigned
low support to most of the incorrectly supported bipartitions, although
Bayesian Markov chain Monte Carlo posterior probability (BMCMC-PP)
assigned higher support to a greater proportion of them than did either
bootstrapping method. (B) Distribution of the number of correct
internodes supported at or above the 95% threshold value from A for
each of the 18 scenarios. See text for an explanation of how this threshold
value was determined.

FIG. 4.—Relationship between phylogenetic accuracy and Bayesian
and nonparametric bootstrap methods. Accuracy was computed at 10%
intervals and is equal to the number of correct internodes divided by the
number of correct and incorrect internodes times 100 across the 100
replicates. Dotted line represents perfect correspondence between support
and accuracy.
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example, on internode 8 of the lncl topology, BMCMC-PP
reached 95% support with 300 characters while BP-MP
required 700 characters to reach a 70% support value.

Discussion
Behavior and Performance of Bayesian MCMC Versus
MP and ML Bootstrap

On the basis of our simulations, we draw a number of
conclusions about the comparative behavior and perfor-

mance of Bayesian MCMC sampling and bootstrapping in
assessing phylogenetic confidence. Most generally, Bayes-
ian posterior probabilities and the bootstrap proportion are
not equivalent measures of confidence. For a given data set
BMCMC-PP will, on average, attach high confidence to
a greater number of correct internodes than does non-
parametric bootstrapping (figs. 1 and 2). As a result, type I
error rates (the frequency of rejecting true monophyletic
groups) for an arbitrary determined decision rule are likely
to be lower for BMCMC-PP than for bootstrapping.

FIG. 5.—Comparison of Bayesian and nonparametric bootstrap support values with increasing number of characters on (A) clocklike and (B)
nonclocklike symmetric topologies (lse and lncl trees). Each simulation was repeated 25 times for each topology to calculate the median support value
for each data set size. BMCMC-PP 5 Bayesian Markov chain Monte Carlo posterior probability, ML-BP5 maximum likelihood bootstrap proportion,
MP-BP 5 maximum parsimony bootstrap proportion.
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However, when support values are standardized by the
95% threshold value for wrong monophyletic groups,
BMCMC-PP and ML-BP perform very similarly in
recovering correct internodes (fig. 3B). MP-BP performs
more poorly and has higher variance, although all methods
performed well under most of our simulation conditions.
Bayesian posterior probabilities are a better estimator of
accuracy (sensu Hillis and Bull 1993) than bootstrap
proportions for support values greater than 50% (fig. 4;
Wilcox et al. 2002). Thus a posterior probability of 70% is
likely to correspond to an accuracy near 70%, whereas
a 70% bootstrap proportion is often close to a 95%
accuracy (Hillis and Bull 1993). Workers who desire to
interpret posterior probabilities as an accuracy indicator
should take care to adopt appropriately high posterior
probabilities to ensure that they are reaching the desired
level of accuracy.

Confidence on Short Internodes

We found the greatest disparity in Bayesian and
bootstrapping methods to occur in regions of the tree
where internodes are short or the number of characters is
relatively small (e.g., figs. 1, 2, and 5). It thus appears that
BMCMC-PP is able to attach very high posterior
probabilities to branches with very small amounts of
character change (Kauff and Lutzoni 2002) and may
indicate that this method has a greater sensitivity to the
signal in a data set than are ML-BP and MP-BP. The
disparity may be quite large in some instances, and a rather
substantial increase in number of characters may be
required to get the likelihood or parsimony bootstrap
proportion to converge on the posterior probability (e.g.,
fig. 5).

This is an attractive behavior of BMCMC-PP because
it offers the possibility of obtaining confidence on short
internodes, which are commonly both particularly in-
teresting and poorly supported by bootstrapping in many
studies. However, the price for this increased sensitivity
could be an increased tendency of BMCMC-PP to assign
high confidence to incorrect internodes, especially in
situations where character sampling has not been sufficient
to recover the correct topology. In this scenario, analogous
to the simulation replicates that contained wrong inter-
nodes with high posterior probabilities in our study (table
1), sampling error on regions of the tree with small
amounts of character change will occasionally produce
data matrices that produce an incorrect internode under
likelihood analysis. It is possible that the number of
characters supporting this incorrect internode will some-
times fall below the critical value necessary to garner
a high bootstrap value (Felsenstein 1985), although the
posterior probability will reach 95% or higher. In contrast,
the inherent low sensitivity of character resampling
methods such as bootstrapping, when very few characters
contribute to a specific internal branch length, may
sometimes be a virtue. Workers relying on Bayesian
posterior probabilities to assess confidence should pay
particular attention to the length of supported branches
since our results suggest that occasionally very short,
wrong branches may receive a high posterior probability.

Why Are Bootstrap Proportions and MCMC-Calculated
Posterior Probabilities Different?

From a Bayesian perspective, the multinomial model
of site pattern frequencies proposed by Efron (Efron 1979;
Efron, Halloran, and Holmes 1996) as one explanation of
the bootstrap procedure is vastly different from the model
of sequence evolution employed by MrBayes. In the first,
the site pattern frequencies are the only parameters. In the
second, branch length, substitution rate matrix, tree
topology, and base frequency are all parameterized and
the site patterns are not. Given the distinct differences in
how the data are modeled, it is not surprising, at least to
the Bayesian, that the posterior distributions on internodes
do not correspond exactly: they are formulaically different.
A fairly straightforward way to interpret posterior
probabilities and bootstrap proportions would be to
acknowledge that these methods measure different features
of the data. For example, an internode with a very high
posterior probability but a moderate bootstrap value
should be interpreted as an internode that has a high
probability of being correct, conditional on the data that
has been collected so far (and the model of evolution). It is
also an internode that is highly dependent on the
underlying composition of the data matrix and as such
may not be observed when additional characters are
gathered. Both methods may provide useful measures of
the data.

Parsimony as an Alternative to Likelihood Bootstrapping

As expected, equally weighted maximum parsimony
bootstrapping usually performed poorly relative to max-
imum likelihood bootstrapping under our simulation
conditions. The difference between likelihood and parsi-
mony bootstrapping was most dramatic in the pectinate
scenarios, where parsimony usually supported less than
half of all correct internodes with a bootstrap proportion
greater than 80%. Furthermore, MP bootstrapping was
usually more susceptible than ML bootstrapping to
assigning high support values to incorrect internodes (fig
3 and table 1). We attribute this result to higher statistical
inconsistency for MP (e.g., Huelsenbeck 1997, 1998)
because the estimates differed most strongly in regions of
the trees with a combination of relatively short internodes
and long branches (e.g., internodes 1, 3, and 7 of figure
5B). Our results suggest that even in relatively simple
scenarios with moderate amounts of data, long-branch
attraction may negatively affect confidence estimates on
a phylogeny when using equally weighted MP as the
optimization criterion. Therefore, equally weighted MP
bootstrapping should not be used to approximate ML
bootstrap values.

Bayes or Bootstrap?

To answer this question, phylogeneticists must have
some idea of what they would like their confidence method
to measure. Nonparametric bootstrapping is appropriate if
one is interested in the sensitivity of observed results to the
sampling error associated with collecting characters from
a hypothesized underlying character distribution. If one is
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willing to specify a fully probabilistic model of character
evolution and wishes to place confidence limits on the
results of an analysis conditioned on the observed data and
that model, Bayesian posterior probabilities are the ap-
propriate confidence measure to use. In cases where one
decides to bootstrap, it is useful to note that it may require
a relatively large amount of data to obtain high confidence
on short internodes (Berbee, Carmean, and Winka 2000)
compared with BMCMC-PP. When assessing posterior
probabilities, it is important to remember that confidence
values estimated on extremely short internodes may
sometimes be sensitive to the underlying stochastic process.

We suggest that BMCMC-PP is a useful method to
use when systematists wish to show how well the data
support the results of model-based phylogenetic analysis.
The posterior probability enjoys a straightforward in-
terpretation as the probability that a particular mono-
phyletic group is correct, which may be how most
systematists already interpret bootstrap proportions on
optimal trees. Furthermore, the posterior probability
appears to have some desirable frequentist properties,
particularly with regard to the rate of rejecting true
topological bipartitions. BMCMC-PP also appears to have
increased sensitivity to phylogenetic signal, which may
allow workers to achieve high confidence in a correct
result with fewer characters. However, BMCMC-PP also
appears to be more susceptible than likelihood boot-
strapping to assigning high confidence to incorrect short
internodes. This should not be interpreted as an indication
that nonparametric bootstrapping is always less likely to
provide high support to wrong relationships. Because MP-
BP is more sensitive to long-branch attraction than are
ML-BP and BMCMC-PP, nonparametric bootstrapping is
more likely to assign high support values to incorrect
internodes when parsimony is chosen as the optimization
criterion. Additional work is needed to determine the
circumstances where the more conservative nature of
likelihood bootstrapping may be preferred to the increased
power of BMCMC-PP.
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