BAYES SOLUTIONS OF SEQUENTIAL DECISION PROBLEMS
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Summary. The study of sequential decision functions was initiated by one of
the authors in [1]. Making use of the ideas of this theory the authors succeeded in
[4] in proving the optimum character of the sequential probability ratio test.
In the present paper the authors continue the study of sequential decision funec-
tions, as follows:

a) The proof of the optimum character of the sequential probability ratio
test was based on a certain property of Bayes solutions for sequential decisions
between two alternatives, the cost function being linear. This fundamental
property, the convexity of certain important sets of a priori distributions, is
proved in Theorem 3.9 in considerable generality. The number of possible deci-
sions may be infinite.

b) Theorem 3.10 and section 4 discuss tangents and boundary points of these
sets of a priori distributions. '

(These results for finitely many alternatives were announced by one of us
in an invited address at the Berkeley meeting of the Institute of Mathematical
Statistics in June, 1948)’

¢) Theorem 3.6 is an existence theorem for Bayes solutions. Theorem 3.7
gives a necessary and sufficient condition for a Bayes solution. These theorems
generalize and follow the ideas of Lemma 1 of [4]

d) Theorems 3.8 and 3.8.1 are continuity theorems for the average risk func-
tion. They generalize Lemma 3 in [4]

e) Other theorems give recursion formulas and inequalities which govern
Bayes solutions.

1. Introduction. In a previous publication of one of the authors [1] the decision
problem was formulated as follows: Let X = {z:;} ¢ = 1, 2, -+, ad inf.) be
a sequence of chance variables. An observation on X is given by a sequence
x = {z;} G =1,2, .-, ad inf.) of real values, where z; denotes the observed
value of X; . A sequence x is also called a sample or sample point, and the totality
M of all possible sample points z is called the sample space. Let G(z) denote the
probability that X; < z;for¢ = 1,2, ---, ad inf.; i.e,, G is the cumulative dis-
tribution function of X. In a statistical decision problem @ is assumed to be un-
known. It is merely known that G is an element of a given class @ of distribution
functions. There is given, furthermore, a space D* whose elements d represent
the possible decisions that can be made in the problem under consideration.

1A brief statement of some of the results of the present paper is to be found
in the authors’ paper of the same name in the Proc. Nat. Acad. Sei. U. 8. A., Vol 35 (1949),
pp. 99-102.
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The problem is to construct a function d = D(z), called the decision function,
which associates with each sample point z an element d of D* so that the decision
d = D(z) is made when x is observed.

Occasionally we shall use the symbol D to denote a decision funection D(x).
This will be done especially when we want to emphasize that we mean the whole
decision function and not merely a particular value of it corresponding to some
particular z.

If d = D(x) is the decision function adopted and if z° = {2} (¢ = 1,2, ---)
is the particular sample point observed, the number of components of z° we have -
to observe in order to reach a decision is equal to the smallest positive integer
n = n(z") with the property that D(z) = D(z") for any z for whichz, = 2, - - - ,
2. = 3. If no finite n exists with the above property, we put n(z) = o.If
d(z) is equal to a constant d, we put n(x) = 0. We shall call n(x) the number
of observations required by D when x is the observed sample. Of course, n(x)
depends also on the decision rule D adopted. To put this in evidence, we shall
occasionally write n(z, D) instead of n(z). If Dy is a decision function such that
n(z, Do) has a constant value over the whole sample space M, we have the classical
non-sequential case. If n(x, Dy) is not constant, we shall say that D, is a sequential
decision function.

In the remainder of this section we shall sketch briefly some of the fundamental
notions of the theory without regard to regularity conditions. The latter will be
discussed in the next section.

In [1] a weight function W(@, d) was introduced whichexpresses theloss suffered
by the statistician when G is the true distribution of X and the decision d is
made. Let ¢(n) denote the cost of making n observations; i.e., ¢(n) is the cost
of observing the values of X, --- , X,, . Then, if the decision function d = D(z)
is adopted and G is the true distribution of X, the expected value of the loss due
to .possible erroneous decisions plus the expected cost of experimentation is

given by
(1.1) (G, D) = f" WG, D(z)] dG(z) + fv cin(x, D)) dG(x).

The above expression is called the risk when D is the decision function adopted

and @ js the true distribution.
Let £ be an a priori probability distribution on Q; i.e., £ is a probability measure
defined over a suitably chosen Borel field® of subsets of 2. Then the expected value

of (G, D) is given by

(1.2) r, D) = fn r(G, D) dt.

2 A Borel field is an aggregate of sets such that a) the null set is a member of the field,
b) the complement with respect to the entire space (here M) is a member of the field, ¢)
the sum of denumerably many members of the field is itself in the field.
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The above expression is called the risk when £ is the a priori distribution on 2
and D is the decision function adopted.

We shall say that the decision function D, is a Bayes solution relative to the
a priori distribution £ if

(1.3) r(&, Do) S r, D) for all D.

If there existed an a priori distribution on  and if this distribution were known,
we could put ¢ equal to this a priori distribution and a Bayes solution relative to
£ would provide a very satisfactory solution of the decision problem. In most
applications, however, not even the existence of an a priori distribution can be
postulated. Nevertheless, the study of Bayes solutions corresponding to various
a priori distributions is of great interest in view of some results given in [1].
Tt was shown in {1} that under rather general conditions the class C of the Bayes
solutions corresponding to all possible a priori distributions £ has the following
property: If D, is a decision function that is not an element of C, there exists
a decision function D, in C such that

(1.4) (G, D) = r(@, D) for all G
and
(1.5) r{(G, D;) < r(@, D) for at least one G.

It was furthermore shown in [1] that under general conditions a minimax
solution D, of the decision problem is also a Bayes solution corresponding to
some a priori distribution £. By a minimax solution we mean a decision function
Dy such that, for all D

(1.6) Sup (@, Dy) = Sup (G, D).

2. Regularity conditions and other assumptions. We shall make the following
assumptions:

AssumpTioN 1. The chance variables are identically and independently distributed.
The common distribution is either discrete or absolutely continuous.

Let p(a | F) denote the elementary probability law of X; when F is the dis-
tribution of X ;i.e., when F is discrete, p(a | F) is the probability that X, = a,
and when F is absolutely continuous, p(a | F) is the probability density of X
at a. '

In the space M of sequences z let B be the smallest Borel field which contains
all sets of points £ which are defined by the relations

x: < a; t=1,2, ... ad inf,,

where the a; are real numbers or + «. Each admissible® F induces a probability
meagure F*(B) on M; the totality of these probability measures is Q. Let H*

3 An F or F* is admissible if F* is in Q.
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be a given Borel field of subsets of ©. The only subsets of @ which we shall dis-
cuss in this paper will be members of H*, and all probability measures on @
which we shall discuss will be measurable (H*). This will henceforth be assumed
without further repetition.

Let A* be any set in H*, and A the set of F which corresponds to the F* in
A*. The sets A form a Borel field, say H. By definition, the probability measure
of a set A according to a probability measure £(H*) on Q is to be the same as the
probability measure of A* according to &.

Let M X Q be the Cartesian product of M and @ ([5], page 82), and K be the
smallest Borel field of subsets of M X Q which contains the Cartesian product
of any member of B by any member of H*.

For a given decision function d = D(z), W(F, D(z)) i8 a function of F and z.
Herecafter. in this paper we shall limit ourselves to functions D(z) such that
W(F, D(x)) is measurable (K), and n{z, D) is measurable (B).

It is true that in Section 1, W was given as a function of G, the distribution of
X. Because of Assumption 1, G = F*, and there is a one-to-one correspondence
between F and F*. Thus we may, in appropriate places, interchange them freely.

AsSUMPTION 2. For every real a, except possibly on a Borel set* whose probabil-
1ty 1s zero according to every admissible F, p(a | F) exists and is a function of a and
F whichismeasurable (K). If the admissible distributions F are discrele, thereexisls a
fized sequence (b} (G = 1,2, - -, adinf.) of real values suchthat Y11 p(b; | F) =
1 for all admassible F.

AssumpTiON 3. W(F, d) is bounded. For every d in D*, W(F, d) is a function
of F which ts measurable (H).

In what follows £ will always denote a probability measure (H*) on 2. Thus

wed) = [ WE, ) de

exists. .
AssumpTiON 4. The function c(n) = cn. Without loss of generality we may
take ¢ = 1, so that c¢(n) = n.

We shall introduce the following convergence definition in the space D*:
the sequence {d;} converges to dp if

lim W(F, d;) = W(F, do)

uniformly in the admissible F’s.

AssumptiON 5. The space D* is compact in the sense of the above convergence
definition.

One can easily verify that, if lim d; = d, , then

§—00

lgnwW(E, d)) = W, do);

4 A Borel set is a member of the smallest Borel field which contains all the open sets of
the real line.
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i.e., W(¢, d) is a continuous function of d. Thus, because of Assumption 5, the
minimum of W (¢, d) with respect to d exists.
We shall now show that, under the above conditions

@.1) f" WIF* D(z)] dF*(z)

exists and is a function of F* measurable (H*). For any j let B; be the set in B
such that n(z, D) = j. Then it is enough to show that, for any j,

(22) WIF*, D(z)] dF*(z)
Rj

exists and is a function of F* measurable (H*).

In the discrete case, the integral (2.2) is equal to the sum®
2.3 > WIF* D@)p@ | F) - p(z;| F).

(Z1reenZj) €R 5

For fixed values of x;, -+, x;, the expression under the summation sign is
obviously a function of F* measurable (H*). Since, because of Assumption 2,
there are only countably many points (z;, - -+, ;) in B;, the sum (2.3) must
be a function of F* measurable (H*).

In the absolutely continuous case, the integral (2.2) is equal to (2.4)

24) [ wirs, p@n ot | F) a4

where »(j) is Borel measure in the j-dimensional Euclidean space. The integrand
is measurable (K). Hence, the integral (2.4) exists and is a function of F* measur-
able (H*) (see [5], Chapter III, Theorems 9.3 and 9.8).

3. Some results concerning Bayes solutions. If £ is the a priori probability
measure on , the a posteriori probability of a subset » of @ for given values
Zy, -+, Tm of the first m chance variables is given by

fp(xxlF)'-‘p(xm|F)dE

(31) E(OJ |E; L1y ’xm) = «
[ o P - plen ! P) e

Let

(3.2) pol€) = 1\/911 W, d).

For any positive integral value m, let p.(£) denote the infimum of r(¢, D) with
respect to D where D is restricted to decision functions for which n(x, D) = m
for all z. For any positive integer m, let d = D™(z) denote a decision function

s Because of the definition of B; we may, in the expressions (2.3) and (2.4), proceed as
if R; were a Borel set in j-dimensional Euclidean space.
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D for which n(z, D) < m for all x. Thus, we can write

33) pm(E) = IDIf,.f r¢ D™) (m = 1,2, ---, ad inf.).
Let
34) p(€) = Il;f r (¢ D).

We shall first prove several theorems concerning the functions po(£), pwm(£),

and p(£).
TueoreM 3.1. The following recursion formula holds:®

B9 p® = Min [ ®,1+ [ paled p(a]8) o]
(m=0,1,2, ---,ad inf.)

where
(3.6) £a(w) = £(w | £, a) and p(a | £ = fnp(alF) dt.

Proor: Let pm () (m = 1,2, -- - , ad inf.) denote the infimum of r(¢, D) with
respect to D where D is subject to the restriction that n(z, D) = 1 and = m for
all z. Clearly,

3.7) pmi1(E) = Minpo(®), pmsa(®)].

Let pm(E | @) denote the infimum with respect to D of the conditional risk (con-
ditional expected value of W[F, D(z)] + n(x, D)) when the first observation
zi on X, is a and D is restricted to decision functions for which n(z, D) = 1 and
< m for all z. Let D(m) be the temporary generic designation of such a decision
function. Let D(m | a) be the decision function which is obtained from D(m)
when the first observation is a. Finally let 7(¢, D | a) be the conditional risk when
the a priori distribution function is £, D is the decision function and requires at
least one observation, and the first observation is a. We then have that

r&, Dim + 1) | @) = r(ta, D(m + 1| a)) + 1.
Hence
(3.8) pmi1(E | @) = pm(ta) + 1.

The unconditional quantity P (#) must clearly be equal to the average value
of the infimum of the conditional risk. Thus we have

39 paa® = [ okt ] opa] )da.

¢ If the distribution of X is discrete, the integration with respect to a is to be replaced
by summation with respect to a. This remark refers also to subsequent formulas.
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Equation (3.5) follows from (3.7), (3.8) and (3.9).
TrEOREM 3.2. The function p(£) salisfies the following equation:

:p(Ea)P(a | £) da + 1].

3.10) (©) = Min | @), [

The proof of this theorem is omitted, since it is essentially the same as that of
Theorem 3.1.
TueoreM 3.3." The following inequalities hold:

2
(3.11) 05 pul®) —p®) S0 (m=12-,adinf)
where W, 18 the least upper bound of W(F, d). .
Proor: Let {D;} (i = 1,2, ---, ad inf.) be a sequence of decision functions
such that

(3.12) lim 7(§ Dy) = p(&).

Let, furthermore, P;(£) denote the probability that at least m observations will
be made when D; is the decision function adopted and £ is the a priori probability
measure on . Since p(§) < W, and since

(3.13) r§ D:) 2 mPy(§),

it follows from (3.12) that
(3.14) lim sup Py(f) < %’

Let D7 be the decision function obtained from D; as follows: D{(z) = Di(z)
for all z for which n(z, D;) < m. D?(x) is equal to a fixed element d, for all x for
which n(z, D)) > m.®

Clearly,
(3.15) r(&, DY) = r(§ Di) + Po(E)Wo.
From (3.12), (3.14) and (3.15) it follows that

2
(3.16) lim sup r(¢, D7) < o(®) + 2°.

Since pm(€) cannot exceed the left hand member of (3.16), the second half of
(3.11) follows from (3.16). The first half of (3.11) is obvious.

7 This theorem is essentially the same as Lemma 2.1 in [6].

8 We verify that W(F, DY) is measurable (K), as follows: Consider the set V of couples
(F, z) such that W(F, D} (z)) < c, where ¢ is some real constant. We want to show that
VK. For this purpose let Vo be the set of couples (F, x) such that W(F, D; (z)) < ¢. Then
ViseK. Let V. be the set of z's such that n(z, D;) £ m. Then Vie B, (@ X V1) = VK,
VoVaeK. Let Vs = M — V, . For every z¢Vs we have W(F, D7 (z)) = W(F, do). Let V, be
the set of F’s such that W(F, ds) < c. Then V; ¢« H by Assumption 3. Finally we have V =
VoVe + Vi X Vi, 80 that V eK.
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The immediate consequence of Theorem 3.3 is the relation’

(8.17) lim pnm(8) = p(§).

TuEOREM 3.4. If £ and & are two probability measures on Q such that'®
(3.18) £ < 1 4 eforall o,

fz(w)

then
(3.19) (&) = (1 4 &p&).

Proor: It follows from (3.18) that .
(3.20) r(&,D) = (1 4+ €r(t:, D) for all D.

Hence, (3.19) must hold.
The above theorem permits the computation of a simple and in many cases

useful lower bound of [ p(E)pa | £) da as follows:

For any real value g, let ¢ be a non-negative value (not necessarily finite) de-
termined such that

£(w)

< . .
3.21) B) = 14 eforall w
Then
622 [ oe) palpdan z [ P9 paipda=pie) [T2E1D gy
Since ¢, = 0 and since po(¢) = p(£), we obviously have
323)  p@® f ”(“"’:) oz p(d) —[1 - .oi)(il f) da]po(a.
Hence, we obtain the inequality
(3.24) L p(t) pla|®) da = p()) — pol®) [1 - {’(1' ‘E) a].

An upper bound of the Ieft hend member in (3 24) is obtained by replacing
pby po;ie.,

(3.25) [ rtip@lda s [ mewial s de.

* A proof of (3.17) is contained implicitly in the work of Arrow, Blackwell and Girshick

([2], Section 1.3).
10 The left member of (3.18) is defined to be equal to 1 when f(w) = &(w) = 0.
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The bounds given in (3.24) and (3.25) may be useful in constructing Bayes
solutions, since the following theorem holds:
Treorem 3.5. If

3.26) w® > [ mIp@|Hda+ 1,
then p(£) < po(E). If

(3.27) (@) [1 - :il(‘_‘l_L? da] <1,
then p(8) = m(®)-

The above theorem is an immediate consequence of (3.10), (3.24) and (3.25).

A decision procedure relative to a given a priori probability measure & will
be given with the help of the function p(¢) as follows: If p(&) = po(fo), take a
final decision d for which W (& , d) is minimized. If p(£) < po(%0), take an observa-
tion on X, and compute the a posteriori probability measure & . If p(&) =
po(£1), stop experimentation with a final decision d for which W (¢, d) is minim-
ized. If p(£1) < po(t1), take an observation on X, and compute the a posteriori
probability measure £; corresponding to the observed values of X; and X, , and
0 on. The above decision procedure will be shown later to be a Bayes solution.
Theorem 3.5 permits one to decide whether p(f) < po(£) or = po(¢) whenever
£ satisfies (3.26) or (3.27). Theorem 3.5 will be useful when the class of all £'s
for which neither (3.26) nor (3.27) holds is small.

For the purposes of the next theorem let D designate the decision procedure
described in the preceding paragraph. (We shall shortly show that D is a decision
function in the sense of our definition.)

Let D° be the decision procedure where the first observation is taken and then
one proceeds according to D.

We shall now prove that D and D’ are Bayes solutions. More precisely, we
shall prove the following theorem:"

TuEoreM 3.6. For any ¢ D and D’ as defined above are decision functions.
Let D be any decision function for which n(zx, D) Z 1 and let

p*® = Inf r(t, D).

Then

r(&, D) = p(§)
and

r(¢, D) = o*(®).

11 This theorem follows also from some earlier more general existence theorems ([6],
Theorems 2.4 and 3.3). (See also [4], Lemma 1.) The validity of Theorem 3.6 was proved
also by Arrow, Blackwell and Girshick [2].
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In view of this theorem, the operation “infimum with respect to D’ in the
definitions of p(£), and p*(¥) can be replaced by “minimum with respect to D.”

First we shall establish the measurability properties of D and D°. Since the
proofs are similar, we restrict ourselves to consideration of D. Let ..z, be
the a posteriori distribution (3.1). From the (B) measurability of po(fzl ,,,,, ,,,,)
and p(t.,....z,) it follows easily that n(z, D) is measurable (B). It remains to
prove that W(F D(z)) is measurable (K). For this purpose, let L’ = @, --,di,)

be a sequence 7 dense in D*, i.e., for any d ¢ D* there exists a g ¢ D* such that

geL and |W(F,d) — W(F,g)| < % uniformly in F. (The existence of such

a sequence follows from Assumption 5.) Let now D;(z) be a decision function
defined as follows:

n(x’ D)) = n(xa D)

Suppose n(z, D) = m when the observations are z; , - -+ , Tm . We define Dy(z)
to be such that D;(z) is an element of L’ and
(3.28) W (Esim » Dil@)) = Min Wiks,,...zn , d),

i.e., Di(z) takes the minimizing value of d. For any fixed d, the set of x’s satisfying
the equation D;(z) = d is without difficulty shown to be (B) measurable. Since
D;(x) assumes only a finite number of values in D*, it follows from Assumption 3
that W(F, D,(x)) is measurable (K). Now -

lim W(F, Di(z)) = W(F, D(z)),

so that W(F, D(x)) is measurable (K).
We shall now prove that D is a Bayes solution, i.e., that

(3.29) o(€) = (¢ D).
In a similar way it can be proved that
(3.30) o*§) = r, D).

If po(¢) = p(£), there can be no better decision function (from the point of
view of reducing the risk) than D, i.e., D is a Bayes solution. Suppose then that

(3.31) po(§) > p(8).

If (3.31) holds and D is not a Bayes solution, there exists a decision  function
D, such that

(3.32) r( D) < r(¢, D)
and

(3.33) r(¢, Dy) < '”(5)2___+—"(€)
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Now D, must require that at least one observation be taken, else (3.33) could
not hold. Thus D and D, both require at least one observation.

Suppose one observation is taken. Let r(¢, D | a) denote the conditivnal risk
of proceeding according to D when £ is the a priori distribution and a is the
first observation. For a given D we have that r(¢, D | a) is a function only of
£, . In particular r(¢, D | @) and r(¢, D; | @) are functions only of £, .

We can now apply to r(¢, D |a) and r(¢, D;|a) the same argument that
was applied above to r(¢, D) and r(g, D,), and conclude again as follows: when-
ever po(fs) = p{¢.) (when one takes no more observations according to D),
taking additional observations cannot diminish the conditional risk below
r(¢, D | a) (D, may require an additional observation without having

T(EJ Dl I a) > T(E, D | a)'

This can happen when po(£s) = p*(£s)). Whenever po(£s) > p(éa) (when D re-
quires us to take another observation) two cases may occur: either a) D; requires
us to take another observation, in which case its decision is the same as that of
D, or b) D, requires us to stop taking observations. There exists then another
decision function whose conditional risk is less than

po(£a) ;— p(£a) 1

Both this decision function and D require that another observation be taken.
We conclude that up to and including the first observation, D coincides either
with D, or with another decision function D; whose risk is not greater than that
of D1 .

We continue in this manner for 2, 3, - - - observations. The above argument is
always valid because of Assumption 4 and because the past history of the process
(the sequence of observations) enters only through the a posteriori probability.
Thus we conclude that for any positive integer k there exists a decision function
Dy such that up to and including the k-th observation D gives the same decision
as D and the risk corresponding to D; does not exceed the risk corresponding
to Dy . Since limg— (¢, Di) = 7(¢, D), (3.32) cannot hold. Hence (3.29) holds and
D is a Bayes solution.

For any probability measure £ on @ one of the following three conditions
must hold: 4

(1) Ming W (¢, d) < r(£, D) for any D for which n(zx, D) = 1

(2) Ming W(¢, d) < r(, D) for all D for which n(x, D) = 1
sign holds for at least one D with n(z, D) = 1.

(3) There exists a D with n(z, D) = 1 such that Ming W(§, d) > r(§, D).

In view of Theorem 3.6, the conditions (1), (2) and (3) can be expressed by:
(1) po(®) < p*(), (2) p(®) = p*(&) and (3) p(§) > p*(£), respectively.

We shall say that a probability measure £ on Q is of the first type if it satisfies
(1), of the second type if it satisfies (2), and of the third type if it satisfies (3).
Since the a posteriori probability defined in (3.1) is also a probability measure

and the equality
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on @, any a posteriori probability measure will be one of the three types men-
tioned above.

We shall now prove the following characterization theorem:

TaEOREM 3.7.° A necessary and sufficient condition for a decision function
d = Dy(z) to be a Bayes solution relative to a given a priori distribution & is that
the following three relations be fulfilled for any sample point x, except perhaps
on a set whose probability measure is zero when & is the a priori distribution in Q:

(a) For any m < n(z, Dy), the a posteriors distribution £(w | & , 21, -+ , Tm) IS
either of the second or of the third type,

(b) For m = n(z, Dy), the a posterior: distribution &w | &, %1, -+ - , Tm) I8 either
of the first or the second type,

(¢) For m = n(z, D), we have

Mm W(En ..... T 3 d) W(Ezl.....zm s Do(x))'
where £.,,..,2,, stands for an a priori distribution that is equal to the a posterior:
dzstmbutwn correspondmg tok,x1, ", Tm.

Proor: We shall omit the proof of the sufficiency of the conditions (a), (b)
and (c), since it is essentially the same as that of Theorem 3.6. To prove the
necessity of these conditions, let d = Dy(x) be a decision function and let M*
denote the set of all sample points z for which at least one of the relations (a),
(b) and (¢) is violated. First, we shall show tht M* is a set measurable (B).
Let My be the set of all z’s for which (a) is violated, M3 the set of all z’s for
which (b) is violated, and M3 the set of all z’s for which (c¢) is violated. Clearly.
M* is shown to be measurable (B) if we can show that M¥(¢ = 1, 2, 3) is meas-
urable (B). Let M&.(r = 1,2, --- , ad inf) denote the subset of M7 for which
the first violation of the corresponding condition occurs for the samplez, , - - - , z\.
We merely have to show that M7, is measurable (B) for all ¢ and r. The meas-
urability of M3, follows from the fact that Ming W(k,,....., , d) and

W[E:;.....z, ’ Do(ﬂf)]

are functions of = measurable (B). To show the measurability of M 4 and M3, | it
is sufficient to show that the set of all samples z, --- , x, for which &,,,...., i8
of type #( = 1, 2, 3) is measurable (B). But this follows from the fact that
po(§zy...nz,) and p*(£s,,...2,) are functions of (z;, - -, zr) measurable (B). Hence,
M* is proved to be measurable (B).

For any z in M* let m(x) be the smallest positive integer such that at least
one of the relations (a), (b) and (¢) is violated for the finite sample

Tr, %2y 3 Tom(a) -

Clearly, if « is a point in M*, then also any sample point y is in M* for which
Y1 = %1, ,Ym@ = Tme . Let ° be any particular sample point in M* and
let #(£0, Do, 2}, -+ , Tmn) denote the conditional risk when & is the a priori

12 See also the proof of Lemma 1 in {4].
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distribution in Q, Dy is the decision function adopted and the first m(z") observa-
tions are equal to 7, - - - , Tmwo) , Tespectively; ie., r(t, Do, 1, -+« , Tweo)
is the conditional expected value of W(F, Dy(x)) + n(z, D,), when & is the
a priori distribution in @, D, is the decision function adopted and 23 , - - , Zo o)
are the first m(z") observations.

Let Dy(z) be the decision function determined as follows: for any z not in
M* we put Di(z) = Do(z). For any z in M*, let n(z; , D)) be equal to the smallest
integer n(x) = m(x) for which

PO(E::.---:%(:)) = P(szmnzu(z))
and the value of D;(z) is determined so that condition (¢) of our theorem is
fulfilled. Since, for any positive integer m, the subset of M* where m(z) = m
is (B) measurable, D,(z) has the proper measurability properties. Applying
Theorem 3.6, we see that
(334) "'(20 ’ D, 1 T1y 000, xm(z)) = P(Ezl,....z,,.(z))
for any x in M*. On the other hand, since D, violates at least one of the condi-
tions (a), (b), and (¢) at every point z in M*, we have
(3'35) T(EO ] DO ’ 21 y " xm(z)) > p(E’l ----- %(z))
for every z in M*. If the probability measure of M* is positive when &, is the
a priori probability measure, the above two relations imply that

r(§o0 , Do) > r(ko, D).

Thus, D, is not a Bayes solution and the proof of Theorem 3.7 is complete.
We shall now prove the following continuity theorem.™
THEOREM 3.8. Let {¢;} (1 = 0,1,2, --- | ad inf.) be a sequence of probability
measures on Q such that

£i(w) _

(3.36) lim 22— = 1 uniformly in w.
im0 Eo(w)

Then

(3.37) l'l:l: p(&:) = p(&o).

Proor: It follows from (3.36) that for any ¢ > 0, we have for almost all
values ¢

£i(w) £o(w)
(3.38) B <1+ eand o) <1+ eforall w.

Our theorem is an immediate consequence of (3.38) and Theorem 3.4.

13 A proof of this theorem for finite @ was given by G. W. Brown and is included in [2].
See also Lemma 3 in {4].
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A stronger continuity theorem is the following:
TrEOREM 3.8.1. Let {£}, (¢ = 0, 1, 2, - -, ad inf.) be a sequence of probabitity
measures on  such that

‘111’2 £iw) = &olw)

uniformly in w. Then (3.37) holds.
Proor: It follows from (3.11) that

"1‘1_1.1010 pm(§) = p(®)

uniformly in ¢£. Hence it is sufficient to prove that, under the conditions of the
theorem, .

{ifi Pm(Ei‘) = Pm(EO)

for any m. Let D™ (z) denote a decision function for which » (z, D™) < m for
all z. It follows that, for a fixed m, (¥, D™) is bounded, uniformly in F and D™
(Assumptions 3 and 4). From the hypothesis on {£;} it then follows that

lim r(&;, D) = r(&, D™)

uniformly in D™. From this the desired result follows readily.

A class C of probability measures £ on Q will be said to be convex if for any
two elements £ and £ of C and for any positive value A < 1, the probability
measure £ = A + (I — A) & is an element of C.

For any element dy of D, let C; 4, denote the class of all probability measures
£of type i G = 1, 2, 3) for which W(¢, do) = Mdin W (&, d). Let Cy denote the

set-theoretical sum of Cy,4 and Cz,4 . We shall now prove the following theorem.
THEOREM 3.9. For any element d, the classes Cy,a and Ca are convez.
Let £ and £ be two elements of C;4. Then for any decision function D(z)
which requires at least one observation we have

(3.39) Wt ,d) <r(k,D)and Wk, d) < r(&,d).

Let £ = A1 + (1 — \) & where X is a positive number <1. Clearly,
(3.40) W d) =MW, d) + 1 =N Wk,d

and

(8.41) (¢ D) = M(&, D) + (1 — \) r(&, D).

From (3.39), (3.40) and (3.41) we obtain

(3.42) W, d) < r(§, D) and W(, d) = 1\/£1n W (¢, d*).

Hence ¢ is an element of C;.4 and the convexity of C,q4is proved. The convexity
of Cj can be proved in the same way by replacing < by = in (3.39) and (3.42).

14 See also Lemma 2 in [4].
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We shall say that a set L of probability measures £ is a linear manifold if
for any two elements & and £ of L, § = afi + (1 — a) & is also an element of
L for any real value a for which af; + (1 — @) & is a probability measure. A
linear manifeld L will be said to be tangent to Cg if the intersection of L and
C,.a is not empty, but the intersection of L and C,; is empty.

- For any decision function D(z) and for any element d of D*, let L(D, d)
denote the linear manifold consisting of all ¢ which satisfy the equation

(3.43) W, d) = (& D).

TueoreM 3.10. Let & be an element of Ca.a and let Do(z) be a decision function
that requires at least one observation and is such that W(Eo , d) = r(&, Do). Then
the linear manifold L(D, , d) ts tangent to Ca.

PrOOF: & is obviously an element of L(Dy, d). Thus the intersection of L(Dy , d)
and C,q is not empty. For any element £ of Cy,a we have W(& ,d) < r(&, D)
for any D that requires at least one observation. Hence, W(& , d) < (&, Do)
and, therefore, & cannot be an element of L(Dy , d). This proves our theorem.

4. Applications to the case where @ and D* are finite. In this section we shall
apply the general results of the preceding section to the following special case: the
space Q consists of a finite number of elements, Fy , - - - , Fy (say), and the space
D* consists of the elements. d, , - -- , dx where d; denotes the decision to accept
the hypothesis H; that F; is the true distribution. Let

4.1) W(F;,d;) = W;; = 0fori = jand >0 for ¢ 5 j.

It will be sufficient to discuss the casesk = 2 and k = 3, since the extension to
E > 8 will be obvious. We shall first consider the case k& = 2. In this case any
a priori distribution £ is represented by two numbers g, and g, where g. is the
a priori probability that F;is true (i = 1, 2). Thus, g; 2 O and g1 + ¢. = 1
Let £; denote the a priori distribution corresponding to g; = 1 (¢ = 1, 2). Clearly
Cg, contains £ but not &, and C4, contains £ but not £ . Because of Theorems
3.9 and 3.7, Cs, and C, are closed and convex. Furthermore, we obviously
have

4.2) geWa < Wi for all £in Ca,
and 7
(43) 92W21 = 91W12 for all E in Cdz .

Let & = (g',’ , gg) be the a priori distribution for which
(4-4) gng = ggWu .

It follows from (4.2) and (4.3) that there exist two positive numbers ¢’ and
¢* such that

(4.5) 0<¢

A

g’ <1
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and such that the class Ca, consists of all £ for which g, < ¢/, and the class Ca,
consists of all £ for which g, = ¢”.

Thus, the following decision procedure will be a Bayes solution relative to
the a priori distribution & = (g1, ¢2): If g2 < ¢’ or = ¢, do not take any observations
and make the corresponding final decision. If ¢’ < g» < ¢, continue taking observa-
tions until the a posteriori probability of H, is either = ¢ or S ¢'. If this a
posteriori probability vs = ¢, accept Hy , and if it is < ¢’, accept H, .

The a posteriori probability of H, after the first m observations have been
made is given by

(4.6) = g2 P(1 | Fs) -« p(zm| Fe)
. Gam @ | Fy) - p@m | F1) + gap(a: | Fa) e P(@m | F)°

If ¢ < g < ¢ and if the probability (under F; as well as under F,) is zero that
gem = ¢ or = ¢’ for some m, then it follows from Theorem 3.8 that the above
described Bayes solution is essentially unique; i.e., any other Bayes solution
can differ from the one given above only on a set whose probability measure
is zero under both F; and F, .

Provided that at least one observation is made, one can easily verify that the
above described Bayes solution is identical with a sequential probability ratio
test for testing H, against H, . The sequential probability ratio test is defined
as follows (see [3]): Two positive constants A and B (B < A) are chosen. Ex-
perimentation is continued as long as the probability ratio

Pzm p(xlle) <o p(m | Fy)
Pim  p(xi| F1) - p(xm | F1)

(4.7)

satisfies the inequality B < Prm - 4 14 P2m > A, accept H, . If ;’2"‘ < B, accept

DPim Pim
H, . The Bayes solution described above coincides with this probability ratio
test for properly chosen values of the constants 4 and B.

The results described above for & = 2 are essentially the same as those con-
tained in Lemmas 1 and 2 of an earlier publication [4] of the authors.

We shall now discuss the case & = 3. Any a priori distribution £ can be repre-
sented by a point with the barycentric coordinates g1, g, and g; , where g; is
the a priori probability of H:(¢ = 1, 2, 3). The totality of all possible a priori
distributions £ will fill out the triangle 7 with the vertices 0;, 0, and 0; where
0. represents the a priori distribution corresponding to g; = 1 (see Figure 1).

Clearly, the vertex 0; is contained in Cga, . Thus, because of Theorem 3.9,
Cyu(i = 1, 2, 3) is a convex subset of T containing the vertex 0;, as indicated
in Figure 1.

If one of the components of £ = (g,, g2, ¢;) is zero, say ¢g; = 0, then H; can
be disregarded and the problem of constructing Bayes solutions reduces to the
previously considered case where k£ = 2. Thus, in particular, the determination
of the boundary points Py, P;, ---, Ps of Cq;, Cy4, and Cg, which are on the
boundary of the triangle T, reduces to the previously considered case, & = 2.
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It follows from Theorems 3.8 and 3.9 that the intersection of Ca; with any
straight line 7'; through 0; is a closed segment. One endpoint of this segment
is, of course, 0;. Let B; denote the other endpoint. It follows from Theorem
3.7 that B; must be a point of C,,4; . Any interior point of 0;B; can be shown
to be an element of C; 4, . The proof of this is very similar to that of Theorem
3.9.

We shall now show how tangents to the sets Cs, , C4, and Ca, can be con-
structed at the boundary points Py, P,, --- , Ps. Consider, for example, the
boundary point P; of Cg4, that lieson the line 0; 0, . Let &; be the a priori distribu-
tion represented by the point P, . Since the a priori probability of Hj; is zero
according to & , we can disregard H; in constructing Bayes solutions relative
to £ . Let Di(z) be a sequential probability ratio test for testing H, against H,

Fia. 1

which requires at least one observation and which is a Bayes solution relative
to & . Since & is a boundary point, such a decision function D, exists. Thus, we
have

(4.8) W, di) = (e, D) = I%f r(& , D).

Let «:; denote the probability of accepting H; when H; is true and D, is the
decision function adopted. Let, furthermore, n; denote the expected number
of observations required by the decision procedure when F; is true and D,
is adopted. Then, for any a priori distribution ¢ = (g, g, gs) we have
(4.9) r& D) = X g:Wisess + 20 gons

and
(4.10) Wt d) = 2 g:Wa.
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Thus, the linear manifold L(D;, d;) is simply “the straight line given by the
equation

(4.11) Z g Wa = Z '5 Wija{j + Z gin; .
] L 1% 1

This straight line goes through P; and, because of Theorem 3.10, it is tangent
to Cy4, . Tangents at the same points P, - - - , Pg can be constructed in a similar
way.

The convexity properties of the sets Cy,(z = 1, 2, - - - , k) were established by
the authors prior to the more general results described in Sections 2 and 3 and
were stated by one of the authors in an address given at the Berkeley meeting
of the Institute of Mathematical Statistics, June, 1948. More general results
when @ and D* are finite, admitting also non-linear cost functions, were obtained
later by Arrow, Blackwell and Girshick [2].
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