
Bayesian Active Learning for Posterior Estimation

Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos
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Abstract

This paper studies active posterior estimation in a
Bayesian setting when the likelihood is expensive
to evaluate. Existing techniques for posterior esti-
mation are based on generating samples represen-
tative of the posterior. Such methods do not con-
sider efficiency in terms of likelihood evaluations.
In order to be query efficient we treat posterior esti-
mation in an active regression framework. We pro-
pose two myopic query strategies to choose where
to evaluate the likelihood and implement them us-
ing Gaussian processes. Via experiments on a se-
ries of synthetic and real examples we demonstrate
that our approach is significantly more query effi-
cient than existing techniques and other heuristics
for posterior estimation.

1 Introduction

Computing the posterior distribution of parameters given ob-
servations is a central problem in statistics. We use the pos-
terior distribution to make inferences about likely parameter
values and estimate functionals of interest. For simple para-
metric models we may obtain the posterior in analytic form.
In more complex models where the posterior is analytically
intractable, we have to resort to approximation techniques. In
some cases, we only have access to a black box which com-
putes the likelihood for a given value of the parameters.

Our goal is an efficient way to estimate posterior densities
when calls to this black box are expensive. This work is
motivated by applications in computational physics and cos-
mology. Several cosmological phenomena are characterized
by the cosmological parameters (e.g. Hubble constant, dark
energy fraction). Given observations, we wish to make in-
ferences about the parameters. Physicists have developed
simulation-based probability models of the Universe which
can be used to compute the likelihood of cosmological param-
eters for a given observation. Figure 1 shows different scenar-
ios to estimate / compute the likelihood. Many problems in
scientific computing have a similar flavour. Expensive sim-
ulators in molecular mechanics, computational biology and
neuroscience are used to model many scientific processes.

Our contribution is to propose a query efficient method for
estimating posterior densities when the likelihood function is
expensive to evaluate. We adopt a Bayesian active regres-
sion approach on the log likelihood using the samples it has
already computed. We refer to this approach as Bayesian Ac-
tive Posterior Estimation (BAPE). We propose two myopic
query strategies on the uncertainty regression model for sam-
ple selection. Our implementation uses Gaussian processes
(GP) [Rasmussen and Williams, 2006] and we demonstrate
the efficacy of the methods on multiple synthetic and real ex-
periments.

2 Related Work

Practitioners have conventionally used sampling schemes
[MacKay, 2003] to approximate the posterior distributions.
Rejection sampling and various MCMC methods are com-
mon choices. The advantage of MCMC approaches is their
theoretical guarantees with large sample sets [Robert and
Casella, 2005] and thus they are a good choice when like-
lihood evaluations are cheap. However, none of them is in-
tended to be query efficient when evaluations are expensive.
Some methods spend most of their computation evaluating
point likelihoods and then discard the likelihood values after
doing an acceptance test. This gives insight into the poten-
tial gains possible by retaining those likelihoods for use in
regression. Despite such deficiencies, MCMC remains one of
the most popular techniques for posterior estimation in exper-
imental science [Foreman-Mackey et al., 2013; Parkinson et
al., 2006; Landau and Binder, 2005; Liu, 2001].

Approximate Bayesian computation (ABC) [Marin et al.,
2012; Marjoram et al., 2003] is a method of last resort for
estimating posteriors when a likelihood can not be computed.
Unfortunately, it still requires the same generation of simu-
lated data, which is expensive in our setup, and it does not
address efficient selection of parameter values to be tested at
all. Nested Sampling [Skilling, 2006] is a technique com-
monly used is Astrostatistics. Kernel Bayes’ Rule [Fukumizu
et al., 2014] is a non-parametric method of computing a pos-
terior based on the embedding of probabilities in an RKHS.
All these methods require sampling from a distribution and do
not address the question of which samples to choose if gen-
erating them is expensive. The work in Bryan et al. [2006]
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Figure 1: Illustrations of Cosmological Experiments. (a): Given a parameter value θ the oracle produces several simulations Xsim. The
likelihood P (Xobs|θ) can then be estimated via a density estimate using Xsim at the given θ. (b): The oracle directly computes the likelihood
using a physical model of the universe.

actively learns level sets of an expensive function and derives
confidence sets from the results. Gotovos et al. [2013] also
actively learn level sets via a classification approach. Our
work is more general since we estimate the entire posterior.

Our methods draw inspiration from Gaussian Process based
active learning methods such as Bayesian optimisation (BO)
[Mockus and Mockus, 1991], Bayesian quadrature (BQ) [Os-
borne et al., 2012], active GP Regression (AGPR) [Seo et al.,
2000] and several others [Srinivas et al., 2010; Gunter et al.,
2014; Ma et al., 2014; Krause et al., 2008; Kandasamy et al.,
2015]. These methods have a common modus operandi to
determing the experiment θt at time step t: Construct a util-
ity function ut based on the posterior GP conditioned on the
queries so far. Then maximize ut to determine θt. ut(θ) cap-
tures the value of performing an experiment at point θ. Ex-
isting theoretical results [Golovin and Krause, 2011] justify
such myopic strategies for homogeneous and stateless utility
functions. Maximizing the typically multimodal ut is itself a
hard problem. However, it is generally assumed that querying
the function is more costly than this maximization [Brochu et
al., 2010; Srinivas et al., 2010]. The key difference in such
methods is essentially in the specification of ut to determine
the next experiment. In our work, we adopt this strategy. We
present two utility functions for active posterior estimation.

3 Bayesian Posterior Estimation

Problem Setting: We formally define our posterior distribu-
tion estimation problem in a Bayesian framework. We have a
bounded continuous parameter space Θ for the unknown pa-
rameters (e.g. cosmological constants). Let Xobs denote our
observations (e.g. signals from telescopes). For each θ ∈ Θ
we have the ability to query an oracle for the value of the like-
lihood L(θ) = P (Xobs|θ), but these queries are expensive.
Assuming a prior Pθ(θ) on Θ, we have the posterior Pθ|Xobs

.

Pθ|Xobs
(θ|Xobs) =

L(θ)Pθ(θ)∫
Θ
L(θ)Pθ(θ)

=
L(θ)Pθ(θ)

P (Xobs)
(1)

We wish to obtain an estimate P̂θ|Xobs
of Pθ|Xobs

while min-
imizing our queries to the oracle.

Some smoothness assumptions on the problem are warranted
to make the problem tractable. In the Bayesian framework it
is standard to assume that the function of interest is a sample
from a Gaussian Process. In what follows we shall model the
log joint probability of the cosmological parameters and the

observations via a GP1. This is keeping in line with Adams
et al. [2008] who use a similar prior for GP density sampling
and similar smoothness assumptions in Srinivas et al. [2010].
Assume that we have already queried the likelihood oracle at
t − 1 points, and for each query point θi the oracle provided
us with Li ≈ P (Xobs|θi) answers. Let At−1 = {θi,Li}t−1

i=1
denote the set of these input output pairs. We build our GP
on Bt−1 = {θi, log(LiPθ(θi))}t−1

i=1 input output pairs. If g
is a sample from this GP, then f = exp g/

∫
exp g denotes a

sample from the induced uncertainty model Fθ|Xobs
for the

posterior Pθ|Xobs
. Finally, given any estimate P̂At(Xobs, θ)

of the log joint probability, the estimate of the posterior dis-
tribution is,

P̂At(θ|Xobs) =
exp P̂At(Xobs, θ)∫
Θ
exp P̂At(Xobs, θ)

(2)

At time t, we wish to select the point θt for the next experi-
ment to evaluate the likelihood. We adopt a myopic strategy
here by picking the point that maximizes a utility function.
Our utility function needs to capture a measure of divergence
D(·‖·) between the densities. To construct this utility func-
tion, note that ideally we would like to select θt to satisfy

θt = argmin
θ+∈Θ

D(Pθ|Xobs
‖ P̂At−1∪{(θ+,L(θ+))} ) (3)

where P̂At−1∪{(θ+,L(θ+))} is our estimate of the posterior us-
ing At−1 ∪ {(θ+,L(θ+))}. Obviously, this objective is not
accessible in practice, since we know neither Pθ|Xobs

nor

L(θ+). As surrogates to this ideal objective in Equation (3),
in the following subsections we propose two utility functions
for determining the next point: Negative Expected Diver-
gence (NED) and Exponentiated Variance (EV). The first,
NED adopts a Bayesian decision theoretic approach akin to
Settles [2010]. Here, we choose the point in Θ that yields
the minimum expected divergence for the next estimate over
the uncertainty model. Unfortunately, in our setting, the NED
utility is computationally demanding. Therefore, we propose
a cheaper alternative EV. In our experiments we found that
both strategies performed equally well – so EV is computa-
tionally attractive. That said, some cosmological simulations
are very expensive (taking several hours to a day) so NED
is justified in such situations. We present our framework for
BAPE using an appropriate utility function ut in Algorithm 1.

1We work on the log joint probability since the log smoothes out
a function and is more conducive for GP modeling. We also avoid

issues such as non-negativity of P̂A
m(θ|Xobs). Osborne et al. [2012]

also use a similar log-transform before applying a GP.
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Figure 2: (a): Samples drawn from the GP uncertainty models in the log joint probability space. (b): The same samples after exponentiation.
High variance in the low likelihood regions are squashed and low variances in the high likelihood regions are blown up. This is the key insight
that inspires our methods. (c) and (d) are the true log joint probability and joint probability in blue. Assume that we have already queried at
the brown crosses and let the red circles (a) and (b) be candidates. In BAPE we would be interested in querying (b) but not (a) . In AGPR we
would be interested in both (a) and (b) whereas in BO we would be keen in neither.

Algorithm 1 Bayesian Active Posterior Estimation

Given: Input space Θ, GP prior µ0, k0.
For t = 1, 2, . . . do

1. θt = argmaxθt∈Θ ut(θ)
2. Lt ← Query oracle at θt.
3. Obtain posterior conditioned on (θi,LiPθ(θi))

t
i=1

3.1 Negative Expected Divergence (NED)

Equation 3 says that we should choose the point that results
in the highest reduction in divergence if we knew the likeli-
hood and the true posterior at that point. In NED, we choose
the point with the highest expected reduction in divergence.
For this we first build uncertainty models for the value of the
likelihood at θ+ (L(θ+)) and the posterior (Fθ|Xobs

). For
the next evaluation we choose the point that minimizes the
expected divergence between these models and the next esti-
mate. Precisely,

uNED
t (θ+) = −Ep+

Eh D(h ‖ P̂A∪{(θ+,p+)}
m+1 ). (4)

Here p+ is sampled from LA(θ+),the uncertainty of the like-

lihood at θ+. The density h is sampled from F
A∪{(θ+,p+)}
θ|Xobs

,

the uncertainty model of the posterior obtained by adding

(θ+, p+). P̂
A∪{(θ+,p+)}
m+1 denotes the estimate of the posterior

obtained by re-training the GP with (θ+, p+) as the (m+1)th

point along with the m points already available. The first ex-
pectation above captures our uncertainty over L(θ+) while
the second captures our remaining uncertainty over Pθ|Xobs

after observing L(θ+). Equation (4) says that you should
minimize the expected divergence by looking one step ahead.

The expectations in the NED utility above are computation-
ally intractable. They can only be approximated empirically
by drawing samples and require numerical integration. For
these reasons we propose an alternate utility function below.
In our experiments we found that both EV and NED per-
formed equally well.

3.2 Exponentiated Variance (EV)

A common active learning heuristic is to choose the point
that you are most uncertain about for the next experiment.

As before we use a GP on the log joint probability. At any
given point in this GP we have an associated posterior vari-
ance of the GP. However, this variance corresponds to the un-
certainty of the log joint probability whereas our objective is
in learning the joint probability – which is a multiplicative
factor away from the posterior. Therefore, unlike in usual GP
active learning methods Seo et al. [2000], the variance of in-
terest here is in the exponentiated GP. The posterior mean and
variance at θ+ of our log-joint GP are given by,

µ(θ+)
∆
= EFθ|X

obs

logP (Xobs, θ+) =

k(A, θ+)
⊤k(A,A)−1j (5)

σ2(θ+)
∆
= VFθ|X

obs

logP (Xobs, θ+) =

k(θ+, θ+)− k(A, θ+)
⊤k(A,A)−1k(A, θ+)

where k(A,A) ∈ R
m×m is the kernel matrix of A,

k(A, θ+) ∈ R
m is the kernel vector from θ+ to A and

j = (logLiPθ(θi))
m
i=1 ∈ R

m. By observing that an exponen-
tiated Gaussian is a log Normal distribution, the EV utility
function is given by

uEV
t (θ+) = VFθ|X

obs

P (Xobs, θ+) = (6)

exp(2µ(θ+) + σ2(θ+))(exp(σ
2(θ+))− 1)

We choose the point maximizing the above variance. The
exp(2µ(θ+)) will squash high variances in the low likelihood
regions and amplify low variances in the high likelihood re-
gions (Fig 2(a), 2(b)).

Its important to distinguish our objective in this work from
similar active learning literature in the GP framework. In
BO, the objective is to find the maximum of a function. This
means that once the active learner realises that it has found
the mode of a function it has less incentive to explore around
as it would not improve the current maximum values. For
instance, consider the log joint probability in Figure 2(c) and
the joint probability in Figure 2(d). We have shown the points
where we have already queried at as brown crosses and the
red circles (a) and (b) show possible candidates for the next
query. In BO, the active learner would not be interested in
(b) as, by virtue of points (3), (4), (5) it knows that (b) is
not likely to be higher than (4). On the other hand, in BAPE
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we are keen on (b) as knowing it with precision will signifi-
cantly affect our estimate of the posterior (Fig 2(d)). In par-
ticular to know the posterior well we will need to query at
the neighborhood of modes and the heavy tails of a distribu-
tion. A BO utility is not interested in such queries. On the
other extreme, in AGPR the objective is to learn the function
uniformly well. This means in the same figures, AGPR will
query point (a). However, given sufficient smoothness, the
joint probability will be very low there due to exponentiation.
Therefore, the BAPE active learner will not be interested in
(a). As figures 2(a) and 2(b) indicate, while we model the
log joint probability as a GP we are more interested in the
uncertainty model of the posterior/ joint probability. Finally,
as a special case for BQ, Osborne et al. [2012] consider eval-
uating the model evidence–i.e. the integral under the condi-
tional. Their utility function uses approximations tailored to
estimating the integral well. Note that our goal of estimating
the posterior well is more difficult than estimating an integral
under the conditional as the former implies the latter but not
vice versa.

4 Other Algorithms for Comparison

We list some potential alternatives for posterior estimation
and describe them here.

1. MCMC - Density Estimation (MCMC-DE): We imple-
ment MCMC with a Metropolis Hastings (MH) chain and
use kernel density estimation (KDE) on the accepted points
to estimate the posterior. When comparing MCMC against
NED/EV we consider the total number of queries and not just
those accepted. There are several variants of the MH proposal
scheme and several tuning parameters. Comparing to all of
them is nontrivial. We use MH in its basic form using a fixed
Gaussian proposal distribution. Practitioners usually adjust
the proposal based on the acceptance rate. Here, we chose
the proposal manually by trying different values and picking
the one that performed best within the queries used. Note that
this comparison is advantageous to MCMC. In one experi-
ment we test with Emcee [Foreman-Mackey et al., 2013], a
popular package for Affine Invariant MCMC which automat-
ically fine tunes the proposal bandwidth based on acceptance
rate [Foreman-Mackey et al., 2013].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-
DE we use a MH Chain to generate the samples. However,
this time we regress on the queries (not samples) to estimate
the posterior. We include this procedure since MCMC can be
viewed as a heuristic to explore the parameter space in high
likelihood regions. We show that a principled query strategy
outperforms this heuristic.

3. Approximate Bayesian Computing (ABC): There are
several variants of ABC [Marjoram et al., 2003; Peters et al.,
2012]. We compare with a basic form given in Marin et al.
[2012]. At each iteration, we randomly sample θ from the
prior and then sample an observation Xsim from the likeli-
hood. If d(Xsim,Xobs) < ǫ we add θ to our collection.
Here d(·, ·) is some metric on a sufficient statistic of the ob-
servation and ǫ > 0 is a prespecified threshold. We perform a

KDE on the collected samples to estimate the posterior. The
performance of ABC depends on ǫ: As for MCMC-DE we
choose ǫ by experimenting with different values and choos-
ing the value which gives the best performance within the
queries used. We compare with total number of parameter
values proposed and not just those retained.

4. Uniform Random Samples (RAND): Here, we evalu-
ate the likelihood at points chosen uniformly on Θ and then
regress on these points.

5 Experiments

We first look at a series of low and high dimensional synthetic
and real astrophysical experiments. NED is only tested on
low dimensional problems since empirical approximation and
numerical integration is computationally expensive in high
dimensions. Further, since the inner expectation in Equa-
tion (4) is expensive we approximate it using a one sample
estimate. We use a squared exponential kernel in all our ex-

periments. The bandwidth for the kernel was set to be 5n−1/d

where n is the total number of queries and d is the dimension.
This was following several kernel methods (such as kernel

regression) which use a bandwidth on the order O(n
−c1
c2+d )

[Györfi et al., 2002]. Other kernel hyperparameters was set
via cross validation every 20 iterations. In our experiments,
EV slightly outperforms NED probably since the EV util-
ity can be evaluated exactly while NED can only approxi-
mated. We omit most technical details of the experiments
due to space constraints.

Low Dimensional Synthetic Experiments:
To illustrate our methods we have two simple yet instructive
experiments. In the first, the parameters space is Θ = (0, 1)
equipped with a Beta(1.2, 1) prior. We draw θ from the prior,
and then draw 500 samples from a Bernoulli(θ2 + (1 − θ)2)
distribution: i.e. Xobs ∈ {0, 1}500. The ambiguity on the
true value of θ creates a bimodal posterior. Figure 3(a) com-
pares NED/EV against the other methods as a function of
the number of queries. The second is a 2D problem with
Θ = (0, 1)2. Here we artificially created a 3-modal log-joint
posterior shown by green contours in Figure 3(c). Figure 3(b)
compares all methods. As we artificially constructed the log
likelihood ABC does not apply here. Figure 3(c) shows the
points chosen by the NED query strategy in order. It shows
that we have learned the high log joint probability regions
well at the expense of being uncertain at low log joint proba-
bility areas. However, this does not affect the posterior signif-
icantly as they are very small after exponentiation. Our pro-
posed methods outperform existing methods and other heuris-
tics by orders of magnitude on these simple experiments.

Higher Dimensional Synthetic Datasets:
We test in d = 5 and 15 dimensions. We construct
an artificial log likelihood so that the resulting posterior
is mixture of 2 Gaussians centred at 0 and 1. We eval-
uate performance by the ability to estimate certain linear
functionals. The exact value of these functionals can be
evaluated analytically since we know the true posterior.
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Figure 3: (a), (b): A comparison of NED/EV against MCMC-DE, ABC, MCMC-R, RAND procedures for the 1D and 2D synthetic
experiments respectively. The x-axis is the number of queries and the y-axis is the KL divergence between the truth and the estimate. All
figures were obtained by averaging over 60 trials. (c): The 100 points chosen by NED for the 2D experiment in the order they were queried.
The green contours are the true posterior. Initially the algorithm explores the space before focusing on the high likelihood regions.

We use a uniform prior. Our log-likelihood is, ℓ(θ) =

log(0.5N (θ;0, 0.5
√
dI) + 0.5N (θ;1, 0.5

√
dI)). Our func-

tionals are T1 = E
∑d

i=1 Xi, T2 = E
∑d

i=1 X
2
i , T3 =

E
∑d−1

i=1 X2
i Xi+1 and T4 = E

∑d−2
i=1 XiXi+1Xi+2. For

MCMC-DE, we draw samples Z1, Z2, . . . from the true like-
lihood. To estimate Ti = Eφi(X) we use the empirical esti-

mator T̂i = 1/N
∑

k φi(Zk). For EV , MCMC-R and RAND
we first use the queried points to obtain an estimate of the log-
likelihood by regressing on the likelihood values as explained
before. Then we run an MCMC chain on this estimate to col-
lect samples and use the empirical estimator for the function-
als. Note that evaluating the estimate, unlike the likelihood,
is cheap. ABC does not apply in this experiment. The results
are shown in Figure 4. They demonstrate the superiority of
our query strategy over the alternatives.

Type Ia Supernovae:
We use supernovae data for inference on 3 cosmological pa-
rameters: Hubble Constant (H0 ∈ (60, 80), Dark Matter
Fraction ΩM ∈ (0, 1) and Dark Energy Fraction ΩΛ ∈ (0, 1).
The likelihood for the experiment is given by the Robertson–
Walker metric which models the distance to a supernova
given the parameters and the observed red-shift. The dataset
is taken from Davis et al [2007]. The parameter space is
taken to be Θ = (0, 1)3 (For H0 we map it to (60, 80) using
an appropriate linear transform). We test NED/EV against
MCMC-DE, ABC, MCMC-R, RAND and Emcee. For ABC,
sampling from the likelihood is as expensive as computing
the likelihood. Figure 5(a) compares all methods. Figure 5(b)
shows the points queried by EV and the marginals of the true
posterior. The KL for RAND decreases slowly since it ac-
cumulates points at the high likelihood region very slowly.
MCMC-R performs poorly since it has only explored part of
the high likelihood region. For NED/EV after an initial ex-
ploration phase after which the error shoots down.

Luminous Red Galaxies:
Here we used data on Luminous Red Galaxies (LRGs) for
inference on 8 cosmological parameters. We use software
and data from Tegmark et al [2006]. Our parameter space is
taken to be (0, 1)8 by appropriately linear transforming the

range of the variables. Each query takes about 4-5 seconds.
In EV determining the next point takes about 0.5-1 seconds
with ≈ 2000 points and about 10-15 seconds with ≈ 10000
points. In this regime, EV is wall clock time competitive with
other methods. ABC does not apply in this experiment.

Fig. 6a shows points queried by MCMC, RAND and EV pro-
jected on the first 2 dimensions. MCMC has several high
likelihood points but its queries are focused on a small region
of the space. RAND does not have many points at high like-
lihood regions. EV has explored the space fairly well and at
the same time has several queries at high likelihood regions.
Fig 6c shows the evaluated log likelihood at each query. It
shows that as predicted EV first explores the space (high like-
lihood queries are sparse) and then exploits the high likeli-
hood regions. Since ground truth is difficult to obtain for
this experiment, we perform the following simple test. We
queried 250, 000 points uniformly at random from the param-
eter space to form a test set. We then run EV, MCMC-R and
RAND for up to 12, 000 queries to collect points and estimate
the posterior. Performance is evaluated by the mean squared
reconstruction error of the exponentiated log joint probabili-
ties (joint probabilities). Figure 6b shows the results. The er-
ror for RAND and MCMC-R stay the same throughout since
the problem is difficult and they did not have sufficient num-
ber of high likelihood points throughout the space.

6 Conclusions

We proposed a framework for query efficient posterior esti-
mation for expensive blackbox likelihood evaluations. Our
methods use GPs and are based on popular ideas in Bayesian
active learning. We demonstrate that our methods outperform
natural alternatives in practice.

Note that in Machine Learning it is uncommon to treat pos-
terior estimation in a regression setting. This is probably
since the estimate will depend on the intricacies of the regres-
sion algorithm. So if likelihood evaluations are inexpensive,
MCMC seems a natural choice due to its theoretical guaran-
tees in the large sample regime. However, our work demon-
strates that when likelihood evaluations are expensive, such
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Figure 5: (a): Comparison of NED/EV against MCMC-DE, ABC, Emcee, MCMC-R and RAND. For all regression methods we show results
for up to 1600 queries and up to 4 times as many for MCMC and ABC. For evaluation, KL was approximated via numeric integration on a
(100)3 grid. Note that MCMC and ABC require several queries before a nontrivial KL with the truth is obtained. All curves were obtained
by averaging over 30 runs. (b): Projections of the points selected by EV (bottom row) and the marginal distributions (top row).
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Figure 6: (a): The projections of the first 6000 points selected by MCMC, RAND and EV on to the first 2 dimensions in cyan. The points
shown in red are queries at high likelihood (logP > −50) points. (b): Comparison of EV against MCMC-R and RAND. We use up to
12000 queries for all methods. The y-axis is the mean squared reconstruction error. The curves were obtained by averaging over 16 runs. (c):
The value of the log likelihood (y-axis) obtained at each query (x-axis) for the 3 methods. Observe that in EV, initially the high likelihood
evaluations are sparse–indicating exploration, and then there are several high likelihood evaluations–indicating exploitation.
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as in scientific simulations, treating posterior estimation in
an active regression framework enables us to be significantly
query efficient.
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