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Abstract
The selection of a scoring matrix and gap penalty para-
meters continues to be an important problem in sequence
alignment. We describe here an algorithm, the ‘Bayes block
aligner, which bypasses this requirement. Instead of requir-
ing a fixed set of parameter settings, this algorithm returns
the Bayesian posterior probability for the number of gaps
and for the scoring matrices in any series of interest.
Furthermore, instead of returning the single best alignment
for the chosen parameter settings, this algorithm returns the
posterior distribution of all alignments considering the full
range of gapping and scoring matrices selected, weighing
each in proportion to its probability based on the data. We
compared the Bayes aligner with the popular Smith–
Waterman algorithm with parameter settings from the
literature which had been optimized for the identification of
structural neighbors, and found that the Bayes aligner
correctly identified more structural neighbors. In a detailed
examination of the alignment of a pair of kinase and a pair
of GTPase sequences, we illustrate the algorithm’s potential
to identify subsequences that are conserved to different
degrees. In addition, this example shows that the Bayes
aligner returns an alignment-free assessment of the distance
between a pair of sequences.
Availability: Software is available at http://www.
wadsworth.org/res&res/bioinfo/
Contact: junzhu, lawrence@wadsworth.org, jliu@stat.
stanford.edu

1. Introduction

Biopolymer sequence alignment is playing an increasingly
important role in biomedical research. For example, the
alignment of the product of a putative human colon cancer
gene with a yeast mismatch repair gene played a valuable
role in its identification and characterization (Bronner et al.,
1994; Papadopoulos et al., 1994). Numerous exact algo-
rithms for the alignment of pairs of sequences have been de-
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veloped. As the name implies, global alignment algorithms
find the best alignment of the entire lengths of a pair of se-
quences (Needleman and Wunsch, 1970). However, it is
often the case that the two biopolymers share only a common
substructure. Thus, the development of local alignment algo-
rithms which identify and align the best common subse-
quence, and thereby exclude unrelated termini, was an im-
portant advance (Smith and Waterman, 1981; Goad and
Kanehisa, 1982; Sellers, 1984; Lipman and Pearson, 1985;
Pearson and Lipman, 1988; Altschul et al., 1990). Further
progress along these lines is warranted since, in distantly re-
lated sequences, internal segments in one protein may have
no conserved counterparts in the others.

The need for specification of gap penalty parameters and
scoring matrices is a serious limitation of most current align-
ment algorithms. These input parameter settings can strongly
influence the alignment. Several authors have addressed the
issue of using multiple scoring matrices (Schwartz and Day-
hoff, 1977; Collins et al., 1988). Altschul developed an in-
formation theoretic approach to the selection of scoring ma-
trices (Altschul, 1991), and an alignment scoring system
sensitive at all evolutionary distances (Altschul, 1993).
Methods for improving DNA alignment using application-
specific scoring matrices have been described (States et al.,
1993). A Bayesian model for measuring evolutionary dis-
tance using optimal ungapped DNA alignments has been
presented by Agarwal and States (1996). Several studies
have addressed the choice of gap penalty parameters (Water-
man et al., 1992; Pearson, 1995). For DNA sequence com-
parisons, systematic search procedures for finding the best
gap penalty parameters have been developed (Waterman et
al., 1992; Waterman, 1994). Statistics-based iterative algo-
rithms which find at least locally optimal gap and mismatch
penalties for DNA alignments have also been developed
(Thorne et al., 1991, 1992; Allison et al., 1992). However,
the large size of the scoring matrices makes these approaches
difficult for protein sequence alignment. Among the ap-
proaches taken to address gaps, the algorithm of Sankoff
(1972) is of particular interest. This algorithm bypasses the
need to specify gap penalties through the use of constrained
optimization. Specifically, this algorithm finds the optimal
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alignment subject to the constraint that there are no more than
k aligned blocks (or, equivalently, k + 1 total gaps). It has the
additional feature that those portions of the sequences that
are not included in the aligned blocks are completely ig-
nored, thereby extending the concept of local alignment.
However, it does so at the price of an even more vexing prob-
lem: the requirement for specification of the number of gaps.
Furthermore, like other alignment algorithms, it requires the
specification of a scoring matrix. Practical methods that sim-
ultaneously address gapping and the selection of scoring ma-
trices for protein sequences require further investigation.

Bayesian inference methods provide the means to over-
come the requirement of setting parameters and for making
inferences on all unknown variables. A preliminary report
describing this approach has been presented by Zhu et al.
(1997). Here we present a far more complete description
which includes new algorithms, a comparison with existing
methods, new inferences, and a delineation of distinctive fea-
tures of these Bayesian alignments. Bayesian statistics rests
on the premise that all the variables (observed data and the
unknowns) in an inference problem are random variables. A
statistical model which seeks to approximate reality is then
specified in the form of the joint distribution of all of the
variables. The standard procedure is to specify this distribu-
tion as the product of the likelihood function, the probability
of the data given the unknowns, and a prior distribution for
the unknowns as follows:

joint = likelihood * prior
P(data,unknown) = P(data|unknown) P(unknown)

Since our interest is focused on the unknowns, it is useful
to rewrite the joint distribution another way:

P(unknown|data) P(data) = P(data,unknown).

Now inferences about the unknowns after considering the
data are described by the conditional distribution of the un-
knowns given the data, obtained by using Bayes rule:

P(unknown|data) = P(data,unknown) P(unknown)
P(data)

where P(data) = �P(data|unknowns) P(unknowns) d(un-
knowns). When there are several unknowns, we integrate the
posterior distribution further to obtain:

P(one unknown|data).

The more interesting and less rigorous aspect of this prob-
lem is in the specification of likelihood and prior functions.
This modeling aspect requires the selection of functions which
we believe will reasonably approximate the underlying reality.
While both the likelihood and the priors must be modeled in
this way, the specification of the priors is often more contro-
versial. Several measures are available to address the uncer-
tainties in this modeling process. Priors which incorporate

little, if any, modeling preferences can be employed. Such
priors are often referred to as uninformed priors. More than
one model can be specified to describe reality. The selection
of one of these models from among several alternatives is
achieved by embedding the alternatives into one unified
model and finding the posterior distribution for these alterna-
tives (Box, 1980; Gelman et al., 1995; Lawrence, 1997).

While it is often easy to write down expressions for the
desired posterior distributions, the computation of the high
dimensional integrations or summations (for discrete vari-
ables) to make inferences is often difficult or impossible. The
major technical difficulty arises from the computational
complexity of this task. Often approximations are required.
In fact, exact solutions or good approximations were so rare
until recently that Bayesian statistics was a field of interest
only to specialists. Bayesian statistics has become much
more popular in the last decade with the advance of sampling
methods, such as the Gibbs sampler, which can often yield
good approximations efficiently. On the rare occasions when
the needed summation or integrations can be completed
without employing approximations, as with the present case,
the resulting posterior distributions are said to be exact.
These exact solutions are, of course, exact solutions to ap-
proximate models, just as dynamic programming methods
yield a guaranteed optimum for approximate models.

Here we show how pairwise alignment can be formulated
as a Bayesian inference problem. By employing a modifica-
tion of the optimal alignment algorithm of Sankoff (1972),
we show how to complete the large summation over all poss-
ible alignments with a time complexity of O(N2). Using this
sum, we show how Bayesian statistics can be used to over-
come the need to set gap penalty parameters or to choose a
scoring matrix. Furthermore, the ‘evidence’ against the null
hypothesis, the Bayesian analog of the classical P value, is
computed exactly. We compare this method with a popular
Smith–Waterman-based local alignment procedure,
SSEARCH (Pearson, 1991), and illustrate the distinctive fea-
tures of our method with two applications.

2. Methods

2.1. Likelihood

Consider a pair of sequences R(1) = {R1
(1) … RI

(1)} and R(2)

= {R1
(2) … RJ

(2)}, their alignment can be characterized by a
matrix of indicator variables Ai,j. If Ri

(1) is aligned with Rj
(2),

Ai,j = 1, otherwise Ai,j = 0. As each residue in one sequence
can relate to at most one residue in the other sequence, we

require �
i

Ai,j≤ 1 and �
j

Ai,j≤ 1. The logarithm of the likeli-

hood for the joint distribution realization of the pair of se-
quences is:

log P(R(1)
1

, R(2)
j |�,�, A) � �

R1
i
� �

R2
j
� Ai,j�R(1)

i
,
,R(2)

j
(1)
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where �
R(1)

i
,R(2)

j
 is a matrix of the logarithm of residue

interactions, i.e., an alignment score matrix, such as PAM
(Dayhoff et al., 1972) or BLOSUM (Henikoff and Henikoff,
1992); �Rj

 is the log marginal probability of observing resi-

due type Rj associated with the selected score matrices. These
marginal terms are usually ignored in alignment algorithms
since they are constants with respect to the alignment.

Two simplifying assumptions are generally made by align-
ment algorithms: (i) the parameters θ and ψ are known and
fixed; (ii) transpositions are not allowed. The second assump-
tion adds the condition of colinearity which requires that if Ai,j
= 1, then:

Ai  + ∆, j  – δ = Ai  – ∆, j  + δ = 0 (2)

where for all ∆, δ > 0.
An alignment is composed of aligned segments, called

blocks, in both sequences interspersed with unrelated
subsequences from one or both sequences, called gaps. Since
a gap may span an unrelated subsequence from not only either
sequences, but both sequences, its meaning is somewhat
broader than is common in this field. A block of length m is
determined by three indices i, j and m, satisfying the condition:

Ai, j = 0, Ai  + m + 1, j  + m +1 = 0
Ai  + l, j  + l = 1 for l = 1, 2, …, m (3)

If no additional constraints are given, alignments based on this
likelihood yield biologically unrealistic solutions which contain
many short alignment segments with far too many gaps. The
most popular alignment algorithms (Needleman and Wunsch,
1970; Smith and Waterman, 1981) address this difficulty by
adding a gap penalty term to the model given in equation (1).
Here we take the alternative path first described by Sankoff
(1972) and seek alignments with at most (k – 1) internal gaps.

2.2. Joint probabilities and priors

The joint distribution, which as described above is central to
a Bayesian approach, is specified as follows:

Joint = likelihood * priors
P(R(1),R(2),A,k,ψ) = P(R(1),R(2) | A,k,ψ)P(A | k)P(k)P(ψ)

where k is the number of alignment blocks and we assume
that ψ is independent of k or A a priori.

As described above, the priors can be used to aid in model-
ing through the incorporation of previous experience or bio-
logical information. The use of such informed priors would
be analogous to setting the parameters of an optimal align-
ment algorithm based on general experience or experience
specifically tuned to the problem at hand. Although there
have been a number of papers reporting results of investiga-
tions to identify ‘good’ parameter values, we have little guide
for choosing such an informed prior specification because of
the novelty of the Bayesian approach.

Lacking a priori information, we employ uninformed
priors. Specifically, we assume all possible score matrices

are equally likely, i.e. P(ψ) = 1
N�

 where Nψ is the number of

scoring matrices in the series. We further assume, except
when calculating Bayesian evidence as described below, that
all possible numbers of matching blocks are equally likely,

P(K = k) = 1
�� 1

, k = 0, 1, … κ, where κ is the maximum

number of blocks. As there are only a limited number of
common motifs in distantly related sequences, by default we
set:

� � min {
Ls

10
, 20}

where Ls is the length of the shorter sequence. Finally, we
assume that all alignments with blocks are equally likely, i.e.

P(A | k) = 1
Nk

, where Nk is the number of alignments with k

blocks.

2.3. Posteriors

As described above, inferences on the number of gaps and on
the scoring matrices are made by examining the conditional
posterior distributions:

P(k|R(1), R(2))�

�
�

�
A

P(R(1), R(2)|A, k,�)P(A|k)P(k)P(�)

�
k

�
�

�
A

P(R(1),R(2)|A, k,�)P(A|k)P(k)P(�)

(4)

and

P(�|R(1), R(2))�

�
k

�
A

P(R(1), R(2)|A, k,�)P(A|k)P(k)P(�)

�
k

�
�

�
A

P(R(1),R(2)|A, k,�)P(A|k)P(k)P(�)

(5)

Here, ψ takes values on a finite set of scoring matrices, e.g.
the PAM or BLOSUM series.

2.4. Bayesian evidence

In Bayesian statistics, the ‘evidence’ for the null hypotheses
is obtained by examining the posterior probabilities of all
alternative models. If there are no blocks, k = 0, then Ai, j =
0 for i = 1, 2, … I; j = 1, 2, …, J. This result indicates that the
two sequences have no pairs of residues in common and thus
are unrelated to one another. The alternative is the set of all
alignments which have at least one block of related residues.
However, in a ‘hypothesis testing setting’, one is not inter-
ested in the evidence for the null compared with a specific
prior specification for the alternative (even an uninformed
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specification for the prior as above), but rather against a dif-
fuse alternative. Thus, Bayesian statisticians commonly de-
fine the Bayesian evidence considering all possible priors,
over alternative models. In accordance with this convention,
the Bayesian evidence that the two sequences are not related
is:

1 – supP(K) {P(K > 0 | R(1), R(2))} (6)

where the supremum is taken over all prior distributions on
K such that P(K = 0) = 1 – P(K) > 0) = π0. Typically, if an
investigator is aligning two specific sequences of interest,
then he or she probably expects that there is at least a 50%
chance they are related, accordingly a value of π0 = 0.5 is
conservative. When employed in a database search frame-
work 1 – π0 is set to reflect the a priori chance that the query
sequence is similar to a sequence taken at random from the
database. It is well known that Bayesian evidence tends to be
conservative compared to the classical P value for some
classes of univariate distributions (Berger and Sellke, 1987).
Zhu et al. (1997) show that when applied to randomly
shuffled sequences, Bayesian evidence is very conservative
compared with classical P values.

3. Algorithms

Here we present an algorithm for completing the sums in
equations (4) and (5) and an algorithm for counting the
number of alignments. Also, we present algorithms for direct
sampling from the joint posterior alignment distribution and
an algorithm which finds the exact marginal posterior align-
ment distribution. We also give an algorithm for identifying
all alignment within δ of the optimal alignment.

3.1. Completing the sums

To obtain the posterior distributions shown in equations (4)
and (5), we need to sum out variables k, ψ and A. Sums over
the small number of blocks, k, and the small number of scor-
ing matrices in a series, ψ, can be completed by direct enu-
meration. A recursive algorithm for completing sums over
the large number of alignments is given below. To complete
these sums, this algorithm recursively builds a series of par-
tial sums considering one residue or matched pair of residues
at a time. At each iteration of this recursion, the partial sum,
up to residue i in sequence 1 and residue j in sequence 2 with
t blocks, contains three components. These components
correspond to the following last steps: (i) a match of residue
Ri

(1), Rj
(2), denoted by� as the last step, yields the partial

sum PC(t)
i,j ; (ii) an insertion in sequence 1 (deletion in se-

quence 2), denoted by ↓ as the last step, yields the partial sum
PD(t)

i,j; and (iii) an insertion in sequence 2 (deletion in se-
quence 1) denoted by → as the last step, yields the partial sum
PC(t)

i,j . In order to count each distinct assignment of the vari-

ables in the alignment matrix A only once, we impose the rule
that a deletion in sequence 1, a → move, cannot be followed
by an insertion in sequence 1, a ↓ move. We complete the
desired sums recursively as follows:
(i) If the last step is a match (Ai, j = 1), then PC(t)

i,j  is de-
pendent only on the partial sums with indices (i – 1, j – 1).
It extends the matching block without introducing any new
matching blocks if the previous step is �. If the previous step
is → or ↓, the last move introduces a new matching block.
Accordingly,

PC(t)
i,j � [PC (t)

i�1,j�1
� PD(t�1)

i�1,j�1
� PR(t�1)

i�1,j�1
] * exp(�

R(1)
i

,R(2)
j

)

(ii) The partial sums with indices (i – 1, j) are required for
a ↓ move as the last move. The counting rule requires no →
move can be followed by a ↓ move. Furthermore, the last
move does not introduce any new matching block, and Ai, j
= 0, so:

PD(t)
i,j � PC(t)

i�1,j
� PD(t)

i�1,j

(iii) The partial sums with indices (i – 1, j) are required for
a → move, and the last move does not introduce any match-
ing block, and Ai, j = 0, so:

PR(t)
i,j � PC(t)

i,j�1
� PD(t)

i,j�1
� PR(t)

i,j�1

The boundary values are set as following PC(0)
i,j � 0,

PD(0)
i,j � 0 PR(0)

i,j � 1, for j ≠ 0; PC(0)
i,0
� 0, PD(0)

i,0
� 1 and

PR(0)
i,0
� 0 for all i; PC(t)

i,0
� 0, PD(t)

i,0
� 0, PR(t)

i,0
� 0,

PC(t)
0,j
� 0, PD(t)

0,j
� 0 and PR(t)

0,j
� 0 for t ≠ 0. The time com-

plexity for completing these sums is O(IJ).

3.2. Counting alignments

The total number of alignments N(k)
I,J may also be obtained

recursively. Let NC(t)
i,j be the number of alignments from pair

(1,1) to pair (i,j) with t matching blocks and � as the last
step, ND(t)

i,j  be the number alignments with ↓ as the last step,

NR(t)
i,j  be the number of alignments with → as the last step.

Using argument analogous to those in Section 3.1, the fol-
lowing recursive relationships hold:

NC(t)
i,j � NC(t)

i�1,j�1
� ND(t�1)

i�1,j�1
� NR(t�1)

i�1,j�1

ND(t)
i,j � NC(t)

i�1,j
� ND(t)

i�1,j

NR(t)
i,j � NC(t)

i,j�1
� ND(t)

i,j�1
� NR(t)

i,j�1

The boundary conditions are the same as those in Section
3.1. The conditional probabilities described in Section 2 can
now be calculated using the algorithms of Sections 3.1 and
3.2. These, in turn, yield the inferences on k, the number of
blocks, ψ, the selection of scoring matrices, and the quantity
from equation (6), the Bayesian evidence for the pair to be
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related, as described in Section 2.4. However, to examine
alignments themselves, a backward recursion is required.

3.3. Posterior alignment distribution

Many traditional methods focus only on the single best align-
ment and do not address alignment uncertainty. The Baye-
sian posterior alignment distribution characterizes the com-
plete alignment space and thus explicitly quantifies align-
ment uncertainty. In Section 3.3.1, we give the formula to
calculate the posterior probability for any given alignment,
but this procedure does not specify how to obtain probable
alignments constructively. Because of the constraints on
alignment described in Section 2.1, the alignment variables
Ai,j are not independent of one another. In Section 3.3.2, we
describe an algorithm to sample alignments from the exact
posterior joint alignment distribution. While insight can be
gained by examining the joint distribution of the alignment
based on these samples, it is difficult to visualize the high
dimensional space. Thus, the marginal posterior alignment
distribution, P(Ai,j = 1 | R(1),R(2)), which is represented by a
matrix, is desirable. We show in Section 3.3.2 how to obtain
an estimate of this distribution from the sample alignments
and in Section 3.3.3 how to obtain this distribution exactly.

3.3.1. Probability of an alignment. When the sequences are
subtly related, their alignment will be uncertain. The pos-
terior probability of any given alignment, say A*, is:

P(A * |R(1), R(2)) �

�
�

P(R(1), R(2), A *,�)

�
k

�
�

�
A

p(R(1), R(2), A, k,�)
(7)

Note that in the above equation a given alignment A* spec-
ifies both A and k in the numerator, where the sums are ob-
tained as shown in Section 3.1.

3.3.2. Samples from the exact joint posterior alignment
distribution. The full characterization of an alignment de-
scribes the simultaneous assignment of all the variables of
the matrix A. The colinearity constraint and the constraint
which requires that each residue align at most with one other
residue induce dependence on the alignment variables. The
joint alignment distribution specifies the probability of the
joint occurrence of a full set of variables from the matrix A.
In this section, we describe how to sample alignments in pro-
portion to their joint posterior probability.

A backward recursion, which is similar to those used in
dynamic programming algorithms (Needleman and
Wunsch, 1970; Smith and Waterman, 1981), is described
here for obtaining a sample alignment. First, we draw a scor-
ing matrix from ψ from P(ψ | R(1),R(2)), equation (4). Then
conditional on ψ, we sample the number of blocks, k, from
P(k | R(1),R(2),ψ), similar to equation (5). Finally, conditional

on both ψ and k, the alignment is drawn recursively as fol-
lows: starting from (I,J), there are three choices of moves �,
↑ and ←, which relate to forward step choices �, ↓ and →,
respectively. We draw a sample of these steps according to

the following posterior probabilities 
PC(k)

I,J

PC(k)
I,J
� PD(k)

I,J
� PR(k)

I,J

,

PD(k)
I,J

PC(k)
I,J
� PD(k)

I,J
� PR(k)

I,J

 and 
PR(k)

I,J

PC(k)
I,J
� PD(k)

I,J
� PR(k)

I,J

,

respectively. If ↑ is chosen, we move to position (I – 1,J); if
� is chosen, we move to (I – 1,J – 1); if ← is chosen, then
we move to position (I,J – 1). For any position (i,j), with at
most t matching blocks we proceed as follows until i and j are
both equal to 1: (i) if the last step is �, there are three choices
for this move, �, ↑, or ←, the probability of each choice is

PC(t)
i,j

PC(t)
i,j
� PD(t�1)

i,j
� PR(t�1)

i,j

, 
PD(t�1)

i,j

PC(t)
i,j
� PD(t�1)

i,j
� PR(t�1)

i,j

 and

PR(t�1)
i,j

PC(t)
i,j
� PD(t�1)

i,j
� Pr(t�1)

i,j

; (ii) if the last sampled move was ↑,

we again permit just two moves, �, or ↑. The moves � or

↑ have probabilities 
PC(t)

i,j

PC(t)
i,j
� PD(t)

i,j

 and 
PD(t)

i,j

PC(t)
i,j
� PD(t)

i,j

,

respectively; (iii) if the last move is ←, there are three
choices for this move, �, ↑ or ←, the probability of each

choice is 
PC(t)

i,j

PC(t)
i,j
� PD(t)

i,j
� PR(t)

i,j

, 
PD(t)

i,j

PC(t)
i,j
� PD(t)

i,j
� PR(t)

i,j

 and

PR(t)
i,j

PC(t)
i,j
� PD(t)

i,j
� PR(t)

i,j

. This back-sampling step has a time

complexity O(max(I,J)).
Each of the sampled alignments fully respects the con-

straints described above. Samples from Markov Chain
Monte Carlo (MCMC) methods, like the Gibbs sampler, can-
not be guaranteed to be from the full joint posterior distribu-
tion. Here the guarantee holds and the samples are said to be
exact. A careful examination of these may reveal interesting
correlated patterns in the alignment variables, such as those
that occur when there are internal repeats in one of the se-
quences. There is no easy way to view the high dimensional
space from which these samples are drawn. However, we can
view the marginal distribution of all alignments. This mar-
ginal distribution gives the probability that each pair of resi-
dues will align, i.e. P(Ai, j = 1 | R). The marginal distribution
takes into account all the other alignment variables, but pro-
vides no information on the simultaneous, joint, realization
of the variables.

The marginal alignment distribution can be obtained empi-
rically from the samples, and displayed by a two-dimen-

sional histogram AS

NS
, where As are the sampled observations
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from the posterior distribution of the alignment, P(A |
R(1),R(2)). The ratio AS

NS
 will approach marginal posterior

alignment distribution as Ns increases.
While the marginal posterior alignment distribution de-

scribes the alignment of the two sequences, a more tradi-
tional view of the alignment of two sequences is represented
by the ‘average’ alignment. To represent an ‘average’ align-
ment with k blocks based on the marginal posterior align-
ment distribution, saved as a matrix {MPi, j}, we first find the
highest peak of MP, and extend the aligned block to the posi-
tions whose marginal posterior probability is just above 1/4
of the height of highest peak. This yields an aligned block
(R(1)

i1
��� R(1)

i2
, R(2)

j1
��� R(2)

j2
). We assign zeros to those parts of the

alignment matrix implied by the constraints, so that:

MPi, j = 0 for 1≤ i≤ i2 and j ≥ j1;
MPi, j = 0 for i ≥ i1 and 1≤ j≤ j2

Then we repeat the process with the next highest peak in
{MPi, j}, continuing until we have obtained k blocks. If the
current aligned block is the extension of an existing block,
we concatenate them.

3.3.3. Exact marginal posterior alignment distribution.
The marginal posterior alignment distribution of a specific
pair of aligned residues can be calculated exactly without
sampling as:

P(Ai,j � 1|R(1), R(2)) �

�
k

�
�

�
Ai,j�1

P(R(1), R(2)|A, k,�)P(A|k)P(k)P(�)

�
k

�
�

�
A

P(R(1), R(2)|A, k,�)P(A|k)P(k)P(�)

  (8)

Using the direct implication of colinearity Ai,j =1 as stated
in equation (2), the numerator of equation (8) can be re-
written as:

�
�

�
k

�
0�t�k

P(R(1)
1

���R(1)
i–1

, R(2)
1

���R(2)
j–1

|t,�) * P(R(1)
i�1

���R(1)
I

, R(2)
j�1

���R(2)
j

|k–t,�) *

exp(�
R(1),

i
R(2)

j

)P(A|k)P(k)P(�)

  (9)

The first two terms in this expression can be obtained by
summing over all alignments from (1,1) to (i – 1, j – 1) and
from (i + 1, j + 1) to (I,J), respectively, i.e. summing in upper
left and lower right regions of the alignment matrix. The sum
of alignments from (1,1) to (i – 1, j – 1) is obtained in the
forward step of Section 3.1. In this symmetric alignment pro-
cedure, the sum of all alignments starting from one end is
equivalent to the sum of all alignments starting from the other
end. By summing ‘backward’, we can complete the sums
required for the second term. Let BPC(t)

i,j  be the partial sum of
alignments from pair (I,J) to pair (i,j) with at most t matching

blocks and � as the last step, BPU(t)
i,j  the partial sum with ↑

as the last step, BPL(t)
i,j  be the partial sum with as ← the last

step. With the boundary conditions and arguments analogous
to those in Section 3.1, except that the rule now is ← cannot
be followed by ↑, the following recursive relationships hold:

BPC(t)
i,j
� [BPC(t)

i�1,j�1
� BPU(t–1)

i�1,j�1
� BPL(t–1)

i�1,j�1
* exp(�

R(1)
i

,R(2)
j

)

BPU(t)
i,j
� BPC(t)

i�1,j
� BPU(t)

i�1,j
� BPL(t)

i�1,j

BPL(t)
i,j
� BPC(t)

i,j�1
� BPL(t)

i,j�1

Then, the sum of all alignments with a pair of residues
aligned can be expressed using the forward partial sum and
the backward partial sum:

�
Ai,j�1

P(R(1), R(2), A|�, k) � �
0�t�k

PC(t)
i.j

* (BPC(k–t�1)
i�1,j�1

� BPU(k–t)
i�1,j

� BPL(k–t)
i,j�1

   (10)

And the exact posterior probability can be calculated by sum-
ming over possible matrices and number of matching blocks.
The backward sum will take O(N2) extra time to compute and
take extra O(N2) space to store, it is much slower than the
sampling method described in Section 3.3.2. In practice, we
always use the backward sampling method to calculate the
marginal posterior alignment distribution.

3.4. Optimal alignment

Optimal scores with less than or equal to k blocks for subma-
trices of the first i = 1, 2, …, I rows and the first j = 1, 2, …,
J columns are returned by Sankoff’s algorithm and saved as
matrix with elements

W(k)
i,j (�) � MaxA (log2(P(R(1), R(2)|A,�)))

To obtain a maximum for the joint probability

P(R(1), R(2), A, k, �) � P(R(1), R(2)|A, �) * P(A|k) * P(k) * P(�)

� P(R(1), R(2)|A,�) * ( 1
Nk

i,j

) * ( 1
kmax

) * ( 1
N�

)

we must find the optimum for exactly k blocks. However, the
alignment returned by the Sankoff algorithm may have less
than k blocks. If the optimal alignment corresponding to
W(k)

I,J(�) contains v blocks and v < k, then W(k)
I,J(�) = W(v)

I,J(�).

Since N(k)
i,j  increases monotonically in k, 

W(k)
I,J

(�)

N(k)
I,J

	
w(v)

I,J
(�)

N(v)
N,J

.

Accordingly, the maximum over k for 
W(k)

I,J
(�)

N(k)
I,J

, and thus for

the joint, can occur only for values of k such that k = v, and

log2(pbest) � Maxk,A,�{ log2(P(R(1), R(2), A, k,�, ))}

� Maxk,�{W(k)
I,J(�)– log2(N

(k)
I,J * kmax * N�)}
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3.5. Near-optimal alignments

Here we describe an algorithm which identifies a near opti-
mum, i.e. all alignments such that P(R(1),R(2),A,ψ) ≥ Pbest –
δ = Pcutoff (R(1),R(2),A, ψ). We obtain this set by finding all
the alignments for each value of k and ψ which exceed this
cutoff value. Because P(A | k) varies with k, we re-normalize
the cutoff for exactly k blocks as follows:

Pcutoff(R(1),R(2),A,k,ψ) �
Pcutoff(R(1), R(2), A,�)

P(A|k)P(k)P(�)
 

with corresponding cutoff score, 
Scutoff(k,ψ) = log2 (Pcutoff(R(1),R(2),A,k,ψ)).

For each value of k and ψ, we employ a branch and bound
algorithm with the bound fixed at Scutoff(k,ψ) to identify the
near-optimal solutions with exactly k blocks. Our basic strat-
egy is to employ a depth-first trace-back procedure using
W(k)

i,j  to prune a large number of branches, and then remove
any additional branches which do not have exactly k blocks.

All possible solutions may be seen as leaves of a tree rooted
at the terminal, (I,J). Each node of this tree is characterized
by the following items:
(i) St(i,j), an alignment score from the ends of the sequences
to the current position (i,j), where t is the number of matching
blocks used from the ends (I,J) to the current position (i,j);
(ii) an indicator of the last step (�, ↑, ←).
This trace-back algorithm uses the same three backward steps
�, ↑ and ←, including back steps restriction, described above
for the sampling algorithm. The root of the tree has as the last
step, (I,J) as the current position, t = 0, and a score of zero.
Iteratively, we build the trace-back tree from position (i,j) as
follows:
(i) If the last step of the node is ←, there are three alterna-
tives with the next step as �, ↑, ←. With � as the next step,
the score becomes St + 1(i – 1,j – 1) = St(i,j) + �

R(1)
i

,R(2)
j

. With

↑ as the next step, St(i – 1,j) = St(i,j) and no new blocks are
started. With ← as the next step, St(i,j – 1) = St(i,j) and no new
blocks are started.
(ii) If the last step is ↑, there are two alternatives ↑ and �
as the next step, and nodes are updated as above (recall ← is not
permitted to avoid double counting).
(iii) If the last step of the node is �, there are three alterna-
tives ←, ↑, � as the next step. For ← or ↑ as the next step, the
score is updated as above. For � as the next step, there are no
next blocks, and the score is updated as St(i – 1,j – 1) =
St(i,j) + �

R(1)
i

,R(2)
j

.

A search path is terminated if either of the following two
conditions are met. (i) The score drops below the cutoff, i.e.
if � is the last step and St(i,j) + W(k�t�1)

i,j  < Scutoff or if ← and

↑ is the last step and St(i,j) + W(k�t�1)
i,j  < Scutoff. (ii) Any of

following three boundaries is encountered: i = 0; j = 0; or the
last step is ← or ↑ and t = k.

If a leaf meets the following conditions, (i) St(i,j) ≥ Scutoff;
(ii) has exactly k blocks, i.e. t = k and the last step is ← or W(k)

I,J

or (added to avoid double counting), then it corresponds to
an alignment in the near-optimal set. While in principle this
branch and bound algorithm must be applied for each com-
bination of k and ψ, in practice we find that W(k)

I,J < Scutoff for
many values of k and ψ, and thus a search for these values is
not required.

4. Results

In this section, we compare the performance of our algorithm
with that of the popular Smith–Waterman algorithm in the
identification of structurally similar proteins. We also illus-
trate distinctive features of the Bayes block alignment
method using the alignment of two specific pairs of proteins:
a pair of distantly related kinases, guanylate kinase and
adenylate kinase; a pair of GTPases, elongation factor Tu
(IET) and G (EF-G).

4.1. Database search of structural related proteins 

The two most extensive comparisons of sequence alignment
and database searching methods have been reported by
Brenner et al. (1997) and Pearson (1995). Using a standard,
SCOP (Murzin et al., 1995), which is largely based on pro-
tein structure, Brenner et al. (1997) compared BLAST (Alts-
chul et al., 1990), FASTA (Pearson and Lipman, 1988) and
Smith–Waterman’s procedure (Smith and Waterman, 1981)
implemented as SSEARCH. Pearson (1995) made a similar
comparison based on superfamilies in PIR. Both reported
that SSEARCH uniformly outperformed the other pro-
cedures. For our purpose, the approach of Brenner et al.,
which relies extensively on a structural standard, is of more
interest. The approach we take here is similar to that of
Brenner et al., but uses VAST (Madej et al., 1995; Gibrat et
al., 1996), which uses only structural data, as standard.

Three databases of proteins whose pairwise identities were
less than 25, 35 and 45% (pdb select 25, pdb select 35 and
pdb select 45) were obtained from EMBL (Hobohm et al.,
1992). There are 553, 842 and 972 sequences in pdb25, 35
and 45, respectively. The structural neighbors of each of the
proteins in the three databases were obtained using VAST
(Madej et al., 1995; Gibrat et al., 1996). There are 2737,
4726 and 6101 pairs of similar structures among each data-
base for pdb select:25, 35 and 45, respectively, indicating
that each of the PDB select sequences has about six structure
neighbors. In this analysis, all structural neighbors reported
by VAST (P < 0.1) are taken as the exhaustive set of true
positives. For each entry in pdb25, 35 and 45 which has
structural neighbors in the same data set, we randomly
sample 30 controls from the proteins not reported by VAST
to be structural neighbors.
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Table 1. Database search result comparison between Bayes aligner and
SSEARCH with recommended parameter settings.

(a) Results for database pdb25 at 1% false-positive rate

Methods Tuned parameters (criterion) Coverage (%)

Bayes aligner N/A 14.4

SSEARCH 3.0 BLOSUM45 –12/–1 (raw score) 13.7

SSEARCH 3.0 BLOSUM45 –12/–1 (P value) 13.7

SSEARCH 3.0 BLOSUM50 –12/–2 (raw score) 13.3

SSEARCH 3.0 BLOSUM50 –12/–2 (P value) 12.9

SSEARCH 3.0 BLOSUM55 –14/–1 (raw score) 13.9

SSEARCH 3.0 BLOSUM55 –14/–1 (P value) 13.2

SSEARCH 3.0 BLOSUM62 –8/–2 (raw score) 13.5

SSEARCH 3.0 BLOSUM62 –8/–2 (P value) 12.7

(b) Results for database pdb35 at 1% false positive rate

Methods Tuned parameters (criterion) Coverage (%)

Bayes aligner N/A 20.2

SSEARCH 3.0 BLOSUM45 –12/–1 (raw score) 18.9

SSEARCH 3.0 BLOSUM45 –12/–1 (P value) 19.2

SSEARCH 3.0 BLOSUM50 –12/–2 (raw score) 19.3

SSEARCH 3.0 BLOSUM50 –12/–2 (P value) 18.2

SSEARCH 3.0 BLOSUM55 –14/–1 (raw score) 19.0

SSEARCH 3.0 BLOSUM55 –14/–1 (P value) 18.6

SSEARCH 3.0 BLOSUM62 –8/–2 (raw score) 18.9

SSEARCH 3.0 BLOSUM62 –8/–2 (P value) 17.8

(c) Resuts for database pdb45 at 1% false positive rate

Methods Tuned parameters (criterion) Coverage (%)

Bayes aligner N/A 25.7

SSEARCH 3.0 BLOSUM45 –12/–1 (raw score) 24.3

SSEARCH 3.0 BLOSUM45 –12/–1 (P value) 25.3

SSEARCH 3.0 BLOSUM50 –12/–2 (raw score) 24.9

SSEARCH 3.0 BLOSUM50 –12/–2 (P value) 24.3

SSEARCH 3.0 BLOSUM55 –14/–1 (raw score) 24.7

SSEARCH 3.0 BLOSUM55 –14/–1 (P value) 24.6

SSEARCH 3.0 BLOSUM62 –8/–2 (raw score) 23.6

SSEARCH 3.0 BLOSUM62 –8/–2 (P value) 23.6

For the SW algorithm, we chose four parameter settings
reported in the literature to be optimal: BLOSUM55 with
–14/–1 gap penalty as the best setting for the identification
of structural neighbors found by Brenner (1997), BLO-
SUM45 with –12/–1 gap penalty which was used by Brenner
et al. (1997), BLOSUM50 with –12/–2 gap penalty as the
best for database search values reported by Pearson (1995),
and BLOSUM62 with –8/–2 gap penalty recommended by
Pearson (1995) for the most popular scoring matrix. Results
for SSEARCH using both raw scores and P values as a cutoff
criterion were examined.

For pdb25, VAST identified 2737 pairs of related se-
quences, and 9900 pairs (30 for each sequence which has
structural neighbors) of unrelated sequences were randomly
sampled. There were 4728 pairs of related sequences, 15 180
pairs of unrelated sequences sampled for pdb35. For pdb45,
their were 6101 pairs of related sequences, 17 910 pairs of
unrelated sequences were sampled. Table 1 reports the cover-
age, i.e. the percentage of the VAST structural neighbors cor-
rectly identified when the score cutoff is set to yield 1% false
positives. As shown, the Bayes aligner obtains higher cover-
age than SSEARCH with any of the parameter settings for all
of the data sets. Furthermore, we found that for all three data-
bases, the Bayes aligner uniformly achieved greater coverage
over a wide range of cutoff values. The receiver operation
characteristic (ROC) curve is given in Figure 1, to illustrate
this effect for pdb35.

4.2. Specific applications 

In this section, we illustrate distinctive features of the Bayes
aligner by examining the alignment of two specific pairs of
sequences.

4.2.1. Alignment of a pair of kinases. Guanylate kinase and
adenylate kinase catalyze similar reactions: X-triphosphate

+ Y-monophosphate 
� X-diphosphate + Y-diphosphate,
where X and Y are either adenine or guanine. Guanylate ki-
nase from yeast (1GKY in PDB) and adenylate kinase from
beef heart mitochondrial matrix (2AK3 chain A in PDB) are
a pair of sequences in pdb35, which are VAST structural
neighbors. We report this pair of alignments because it illus-
trates well some distinctive characteristics of a Bayes block
alignment.

A distinctive characteristic of the Bayes block aligner
stems from the fact that all alignments for a given number of
blocks are equally likely. As a result, there is nothing equival-
ent to a gap extension penalty. It thus has advantages for
alignment of sequences with unusual length gaps. The align-
ment of 1GKY and 2AK3 illustrates this feature. The simi-
larity of these kinase sequences is not detected by SSEARCH
with any parameter settings. For example, using BLO-
SUM50 with –12/–2 gap penalty the SSEARCH alignment
score is 50, which is well below the cutoff value of 71 for 1%
false positives. This low score stems from the fact that
SSEARCH misaligns segments after a large insertion in
2AK3-A. The absence of a gap penalty in the Bayes aligner
allows it to avoid this misalignment and thus correctly ident-
ify this VAST structural neighbor. The last peak in Figure 2
follows this large insertion.

The ability of these methods to characterize the uncertainty
in all of the unknowns is their most important distinctive
characteristic. The characterization has two features: (i) the
marginal characterization of the uncertainty of each un-
known; (ii) the characterization of the effect of the uncer-
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Fig. 1. Database search results for pdb35 using Bayes aligner, SSEARCH with two recomended parameter settings at different false-positive error rates.

Fig. 2. Marginal posterior alignment distribution for 1GKY and
2AK3-A.

tainty in one unknown on another. The first of these is well
illustrated in the alignment of 1GKY and 2AK3, while the
latter is illustrated in the GTPase example described below.
As shown in Table 2, the posterior distribution ψ for the
BLOSUM series is quite flat with four matrices, BLO-
SUM45 to BLOSUM80, for which P(ψ | R(1),R(2)) > 0.10.
The mode of this distribution is at BLOSUM62. As shown
in Table 3, the posterior distribution ψ for the PAM series is

not only flat, but also multimodal with modes at PAM 110,
140 and 200. These flat distributions indicate that no single
matrix characterizes well the conservation between these
two sequences, and suggests that there may be considerable
variability in the degree of conservation over the lengths of
the two sequences. We explore this suggestion more thor-
oughly in the next example. As shown in Table 4, the pos-
terior distribution of the number of gaps is also flat. This
characteristic is shared by the majority of the pairs of struc-
tural neighbors identified in the previous section. These flat
distributions suggest that a gap opening model with a set
value for the penalty parameter may not characterize align-
ments of this type well.

Table 2. Posterior probability distribution of BLOSUM score matrices for
alignment of 1GKY and 2AK3-A

BLOSUM matrix index Posterior probability

30 0.0257247

35 0.0449377

40 0.0825217

45 0.111502

50 0.175465

62 0.286682

80 0.234981

100 0.0381859
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Table 3. Posterior probability distribution of PAM score matrices for
alignment of 1GKY and 2AK3-A

PAM matrix index Posterior distribution

40 0.000364128

50 0.000744213

60 0.00294976

70 0.028715

80 0.0205859

90 0.0129509

100 0.0495863

110 0.121702

120 0.0454115

130 0.0726501

140 0.163735

150 0.0215645

160 0.0357004

170 0.0656963

180 0.0209931

190 0.0630343

200 0.130371

210 0.0322463

220 0.0226838

230 0.0274658

240 0.0137122

250 0.0132439

260 0.0116769

270 0.0114211

280 0.00397427

290 0.00328901

300 0.00353304

Another important feature of this method is that it char-
acterizes the space of all alignments rather than focusing on
the single best alignment and/or near-optimal alignments.
Using equation (7) and methods given in Sections 3.4 and
3.5, we can compare these two approaches. Applying equa-
tion (7) to the optimal alignment provides a measure of the
value or quality of the optimal alignment. The probability of
optimal alignment for these kinase sequences is 2.94 × 10–5.
Because this low value indicates that the optimal alignment
does not cover much of the posterior alignment space, it
suggests that it is not a good representation of the alignment
of these sequences. Using the algorithm for the identification
of near-optimal alignments described in Section 3.5 and
equation (7), we find that the probability of all alignments
whose probability is >1.0 × 10–5 is 1.0 × 10–3. This suggests

that even the set of near-optimal alignments does not repre-
sent well the alignment of these sequences.

To select a specific number of blocks to include in an aver-
aged alignment, our experience, as guided by agreement with
structural alignments, indicates that it is important not to select
too many blocks, but also to be confident that the minimum
number selected covers the major features of the alignment dis-
tribution. We meet these ends by requiring that there is at least
a 90% chance of k blocks or more, i.e. P(K ≥ k | R(1),R(2)) > 0.9.
These alignments correspond reasonably with sequence align-
ments based on VAST. Figure 3 shows this correspondence for
the kinase pair. Structures of 1GKY and 2AK3-A are superim-
posed according to this alignment, and shown as Figure 4 (seg-
ment I: red; II: cyan; III: orange; IV: green). Segments I, III and
IV are involved in triphosphate binding. They correspond well
to each other in the structures. As neither of the structures is
co-crystallized with triphosphate, we chose a protein (2AKY)
closely related to 2AK3-A to demonstrate triphosphate binding,
shown as Figure 4C. Segment II is remote from mono- and
triphosphate binding sites in both structures. While these seg-
ments share some similarities in secondary structure, they do not
superimpose. Errors of this type, which have local structure
similarity and are not near a ligand, are the most common struc-
ture prediction errors of the Bayes block aligner.

4.2.2. Alignment of GTPases. Perhaps the most interesting
feature of the Bayes aligner is the fact that the posterior dis-
tribution of each of the unknowns reflects the uncertainty in
the others. For example, as shown in equation (5), the pos-
terior distribution of ψ is obtained by averaging over all
alignments in proportion to their posterior probability. One
of the examples previously presented by Zhu et al. (1997)
briefly described the alignment of several GTPases, but does
not describe important characteristics of this method. Spe-
cifically, the posterior PAM distribution for the pair, elonga-
tion factor Tu (IETU) and elongation factor G (EF-G), is
shown to be bimodal with peaks at PAM 80 and PAM 140,
but only a brief explanation of this important effect is given.

The multimodal nature of this posterior PAM distribution
reflects variation in the alignment stemming from variation in
conservation over the lengths of the two sequences. This effect
can be seen by examining the posterior alignment distribution.
The marginal posterior alignment distribution, P(A | R(1),R(2)),
of the two sequences, illustrated in Figure 5a, contains six con-
served segments, which correspond to five well-known
GTPase motifs G1, G2, G3, G4, G5 (Bourne et al., 1991), and
a motif specific to elongation factors (EF). The EF motif is a
helix–loop–sheet structure. Figure 5b shows the posterior dis-
tribution of the alignment for PAM 80, P(A | R1,R2, ψ = 80),
and Figure 5c for PAM 140 P(A | R1,R2, ψ = 140). As these
two figures illustrate, the bimodality of the PAM distribution
stems from variation in the conservation of these six motifs
and in the intervening residues. There are several aspects of
this feature. Motifs G2, G3 and EF are well conserved be-



Bayesian adaptive sequence alignment algorithms

35

tween these two sequences, but the intervening sequences are
not so well conserved, as is reflected by the three distinct
peaks associated with these three motifs at PAM 80 (see Fig-
ure 5b). As shown in Figure 5c, at a lower level of conserva-
tion (PAM 140) these three motifs and the interval sequences
can be reasonably represented as a single conserved block.
Furthermore, motif G4 is less well conserved than the other
motifs. Accordingly, it contributes little to the alignment at
PAM 80, but becomes an important component at PAM 140.
Thus, even though each alignment use only one scoring ma-
trix, the posterior alignment distribution illustrates well the
variations in the degree of conservation.

5. Discussion

Dispensing with the need to set gap penalty and score matrix
parameters is one of the chief advantages of the Bayesian
block aligner. The other is the new products it produces. These
products stem from the fact that the marginal distribution is
obtained for all unknowns. As a result, the uncertainty of all
unknowns is fully accounted for in these posterior distribu-
tions. For example, the posterior distribution of the distance
between a pair of sequences in PAM units is obtained. This
distance distribution is not dependent on any specific align-

ment, and the uncertainty in the distribution of alignment is
fully accounted for in this distribution. The flat and multimo-
dal nature of this distribution in the kinase example is typical
of many we have examined. These distributions should be of
interest in studies of molecular evolution because they provide
a means in conjunction with distance-based methods for con-
structing an evolutionary tree without the requirement of ob-
taining a good alignment. It thus offers promise of extending
the range over which the distant model may be applied. It so
provides the means to incorporate alignment uncertainty in
tree construction. The algorithm achieves these ends with a
time complexity of O(N2), comparable to other pairwise
alignment algorithms, but with a large constant.

Our applications illustrate another important feature of the
algorithm. The algorithm will align only those subsequences
of the two biopolymers which the data indicate are con-
served. Not surprisingly, these subsequences often corre-
spond to motifs that form ligand binding pockets. This fea-
ture has two facets. First, it improves the alignment by per-
mitting the algorithm to ignore and thus not be confused by
unrelated portions of the sequences. This characteristic can
be seen as an extension of the concept of local alignment.
Second, it points to the conserved subsequences which are
likely to play important functional roles.

Table 4. Posterior probability distribution of number of blocks for alignment of 1GKY and 2AK3-A using BLOSUM matrices

Number of blocks Posterior probability distribution Cumulative posterior probability
P(k | R(1),R(2)) P(K ≥ k | R(1),R(2))

0 0.0621149 1.0

1 0.00285821 0.937885

2 0.00653246 0.935027

3 0.0137866 0.928494

4 0.0227437 0.914708

5 0.0326225 0.891964

6 0.0430195 0.859342

7 0.0527596 0.816322

8 0.0606999 0.763563

9 0.0664768 0.702863

10 0.0702314 0.636386

11 0.0723108 0.566154

12 0.0731055 0.493844

13 0.0729739 0.420738

14 0.0722126 0.347764

15 0.0710524 0.275552

16 0.0696648 0.204499

17 0.0681728 0.134834

18 0.0666615 0.0666615

The Bayesian evidence that two sequences are related = 0.955.
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Fig. 3. Comparison of alignments of 1GKY and 2AK3-A obtained by
Bayes aligner, SSEARCH and structural alignment VAST. (A) The
alignment of 1GKY and 2AK3-A obtained by Bayes aligner using
BLOSUM matrices. The dots indicate the confidence of the importance
of the aligned pairs. (B) The alignment produced by SSEARCH with
the BLOSUM50 score matrix and –12/–2 gap penalty. (c) The
alignment based on structure alignment produced by VAST.

There are specific proteins for which the Smith–Waterman
algorithm correctly finds more structural neighbors than the
Bayes aligner, and vice versa, but our results indicate that the
Bayes aligner finds more structural neighbors on average
than the Smith–Waterman algorithm. While relaxing the re-
quirement for the specification of parameters greatly in-
creased the flexibility of the alignment, it does so at the price
of a substantial increase in the number of free parameters,
and a corresponding potential increase in Type I error, i.e.,
more false positives. Thus, we were somewhat surprised to
find that the Bayes aligner with uninformed priors obtained
better coverage than the Smith–Waterman algorithm which
uses a parameter setting that had been pre-tuned by previous
authors based on structural comparison. With the caveat that
the algorithms differ in other ways, the fact that the improved
flexibility outweighed the adverse effects of more free para-
meters indicates the importance of accounting for the uncer-
tainties in pairwise sequence alignment.

The two methods compared are at the extremes of the spec-
ification of parameter settings: completely free/completely
fixed. These extremes are not the only alternatives. Informed
priors provide a means to combine these extremes and thus
potentially improve performance. Incorporation of informed
priors is straightforward and our preliminary analysis shows
this step to be promising.

We have compared the Bayesian alignment algorithm with
only one optimal alignment procedure, and only in the li-
mited context of a set of recommended parameter values.
Expert selection of parameter settings may improve align-
ment performance. Also, a method which somehow selects
the best scoring matrix and the best gap penalties for each
alignment may perform better. On the other hand, one could
argue that since the database used by Brenner et al. (1997)
to find good parameter settings is likely to overlap substan-
tially the database we examined, our comparison was already
biased in favor of the optimal alignment procedure—
SSEARCH. Nevertheless, the comparison presented here
may not have given full credit to traditional alignment
methods because of our selection of the optimal alignment
algorithm, our use of less than optimal parameter settings, or
our use of existing methods which require the pre-selection
of parameter settings.

Our approach is most similar to that presented by Thorne
et al. (1991, 1992) and Allison et al. (1992) in that these
methods simultaneously address gapping and mismatch
scoring while summing over all possible alignments. Besides
the obvious difference that we employ Bayesian rather than
classical statistics, our approach differs from theirs in a
number of other ways. While in principle their approaches
for DNA alignments can be extended to proteins, such exten-
sions appear difficult because of the large number of extra
parameters associated with the large scoring matrices.
Another noteworthy point is that their methods find point
estimates of penalty parameters by using an EM-type algo-
rithm, which only guarantees local optimality. The approach
described here gives the complete posterior distribution, in-
cluding its global mode. Perhaps the largest difference comes
from the fact that their use of point estimates means that un-
certainties associated with these parameters are not incorpo-
rated into the resulting alignment distribution. As we have
seen, posterior distributions for penalty parameters are often
flat and sometimes multimodal. Thus, this uncertainty ap-
pears to be a very important factor. Lastly, their algorithms
are gap penalty-based methods, and thus they do not yield the
extended local alignments that appear to be important for dis-
tantly related protein sequences.

The methods for the selection of scoring matrices by Alts-
chul (1993) and Agarwal and States (1996) also bear similar-
ity to our method, but they do not simultaneously address
gapping parameters and scoring matrices. Furthermore,
since both of these procedures consider only an optimal
alignment, they fail to incorporate alignment uncertainty,
which becomes increasingly important as the distance be-
tween the sequences increases.

Some extensions to this algorithm are worth mentioning.
First, while the applications shown here are for protein se-
quences, the extension to nucleotide sequence alignment is
straightforward and has been incorporated into our software.
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Fig. 4. Structural correspondence of aligned blocks identified by Bayes aligner. Segement I: red; II: cyan; III: orange; IV: green. (A) 1GKY. (B)
2AK3-A. (C) 2AKY, which is very similar to 2AK3-A, but with the ATP analogue co-crystallized (Stohle and Schulz, 1992).

We can further relax our alignment model to reflect different
degrees of conservation at different sites such that each align-
ment pair has its own score matrix. This can be accomplished
by increasing one order of computational complexity. As we
showed in Section 4.2.2, we can achieve a similar goal with-
out increasing computational complexity by examining the
marginal posterior alignment distribution at various dis-
tances. Here we describe a Bayesian alignment algorithm

which employs a recursion based on the algorithm of San-
koff. As shown by Liu and Lawrence (1998), there is a gen-
eral framework for the conversion of a broad spectrum of
dynamic programming algorithms used in bioinformatics to
Baysian inference algorithms. Included in this framework
are all popular alignment algorithms. Furthermore, this
method can be extended to multiple sequence alignment
through Gibbs sampling, using the approach described by
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Fig. 5. Marginal posterior alignment distribution for 1ETU and
EF-G using different scoring matrices. The peaks marked G1–G5
correspond to conserved segments G1–G5 in the GTPase superfami-
ly. The segment corresponding to peak EF is conserved only in some
elongation factors. (a) PAM40-300 matrices with a step interval of
10; (b) PAM80; (c) PAM140.

a

b

c

Liu and Lawrence (1995). Since the required summations
cannot be practically completed for multiple sequence align-
ment problems, exact Bayesian inferences for these prob-
lems are not available. However, approximations involving
presumed optimal solutions have shown their utility in these
settings (Neuwald et al., 1997).

Statistical algorithms have become increasingly popular in
computational molecular biology. For example, in the last
few years, HMMs (Baldi et al., 1994; Krogh et al., 1994),
EM algorithms (Lawrence and Reilly, 1990; Bailey and
Elkan, 1994) and Gibbs sampling algorithms (Lawrence et
al., 1993) have become important methods for multiple se-
quence alignment and other purposes. While the algorithms
have received much attention, the associated statistical infer-
ences which concern the description of unobserved popula-
tion parameters and the making of predictions about vari-
ables that are yet to be observed have received far less. The
results presented here suggest that Bayesian inference statis-
tics promises to become an important tool for computational
molecular biology.
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