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Abstract

Standard models of algorithmic trading neglect the presence of a
daily cycle. We construct a model in which the trader uses infor-
mation from observations of price evolution during the day to con-
tinuously update his estimate of other traders’ target sizes and
directions. He uses this information to determine an optimal trade
schedule to minimize total expected cost of trading, subject to sign
constraints (never buy as part of a sell program). We argue that al-
though these strategies are determined using very simple dynamic
reasoning—at each moment they assume that current conditions
will last until the end of trading—they are in fact the globally opti-
mal strategies as would be determined by dynamic programming.
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1 Introduction

This paper presents a model for price dynamics and optimal trading that
explicitly includes the daily trading cycle and the trader’s attempt to
learn the targets of other market participants. This is in contrast to
most current models of optimal trading strategies, that view time as an
undifferentiated continuum, and that view other traders as a collection
of random noise sources. This paper has two primary motivations.

The first set of motivations is academic articles by Brunnermeier and
Pedersen (2005) and Carlin, Lobo, and Viswanathan (2005). In these ar-
ticles, institutional trading has an explicit daily cycle, based on the as-
sumption that at the beginning of each day, each informed market par-
ticipant, or institutional investor, is exogeneously given a trade target.
These participants know the targets of the other informed traders, and
they must decide whether to cooperate with their peers so as not to lose
value to uninformed traders, or whether to compete and take value from
their peers. The novel feature of our model is that the participants do
not know each others’ targets, but must guess them by observing price
dynamics throughout the day. We take for granted that informed partic-
ipants will use all available information to compete with each other.

The second set of motivations is the popularity of execution algo-
rithms that adapt to changes in price of the asset being traded, either
by accelerating execution when the price moves in the trader’s favor,
or conversely. Although these optimal trade models may be derived by
introducing various forms of risk aversion (Kissell and Malamut 2006;
Almgren and Lorenz 2006), the most common justification for them is a
belief in mean reversion or momentum of the asset price.

Our model may be interpreted as one plausible way to model price
momentum. There is an underlying drift factor, caused by the net posi-
tions being executed by other institutional investors. This factor is ap-
proximately constant throughout the day because other traders execute
across the entire day. Thus price increases in the early part of the day
suggest that this factor is positive, which suggests that prices will con-
tinue to increase throughout the day. This is different from a short-term
momentum model in which the price change across one short period
of time is correlated with the price change across a preceding period;
most empirical evidence shows that such correlation is weak if it exists
at all. Our strategies will exploit this momentum to minimize the ex-
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pected value of trading costs, somewhat in the spirit of Bertsimas and
Lo (1998), except that because we focus on long-term momentum, our
results can obtain higher gains.

The daily cycle is an essential feature of this model. Large institutional
participants make investment decisions overnight and implement them
through the following trading day. Within each day, the morning is dif-
ferent from the afternoon, since an intelligent trader will spend the early
trading hours collecting information about the targets of other traders,
and will use this information to trade in the rest of the day.

By contrast, in the market view that is implicitly assumed by most
models, trade decisions are made at random times and trade programs
have random durations, with no regard to the daily cycle. Thus, if one
observes buy pressure from the market as a whole, one has no reason
to believe that this pressure will last more than a short time. From the
point of view of optimal trading, price motions are purely random.

In addition, we incorporate the very important feature of constraints
on trade direction: the trader must never sell as part of a buy program,
even if this would yield lower expected costs (or give an expected profit)
because of anticipated negative drift in the price. This is for two reasons:
First, we take the point of view of an broker/dealer executing an agency
trade for a client. Second, we neglect the bid/offer spread and other
fixed costs, which may greatly reduce the profitability of such reversing
strategies. Our adaptive strategies simply shift buying or selling from
one time period to another. This constraint is often binding, and globally
affects the structure of optimal solutions. In many cases, it leads to the
determination of an optimal end time for trading, and sometimes directs
the strategy to stop trading completely for a finite time period in the
middle of execution.

In Section 2 below, we present our model of Brownian motion with
a drift whose distribution is continuously updated using Bayesian infer-
ence. In Section 3 we present optimal trading strategies which, surpris-
ingly, can be determined by computing a “static” optimal trajectory at
each moment, assuming that the best parameter estimates at that time
will persist until the end of the day.
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2 Price Model including Bayesian Update

We consider trading in a single asset whose price is S(t), obeying an
arithmetic random walk

S(t) = S0 +αt + σB(t) for t ≥ 0, (1)

where B(t) is a standard Brownian motion, σ an absolute volatility and
α a drift. In the presence of intraday seasonality, we interpret t as a
volume time relative to a historical profile.

Our interpretation is that volatility comes from the activity of the “un-
informed” traders, whose average behavior can be predicted reasonably
well. Mathematically, we assume that the value of σ is known precisely
(for a Brownian process, σ can be estimated arbitrarily precisely from an
arbitrarily short observation of the process).

We interpret the drift as coming from the activity of other institu-
tional traders, who have made trade decisions before the market opens,
and who expect to execute these trades throughout the day. If these deci-
sions are in the aggregate weighted to buys, then this will cause positive
price pressure and an upwards drift; conversely for overall net selling.
We do not know the net direction of these trades but we can infer it
by observing prices. We implicitly assume that these traders are using
VWAP-like strategies rather than arrival price, so that their trading is
not “front-loaded.” This assumption is questionable; if the strategies are
front-loaded then the drift coefficient would vary through the day.

Thus we assume that the drift α is constant throughout the day, but
we do not know its value. At the beginning of the day, we have a prior
belief

α ∼ N
(
ᾱ, ν2 ) prior belief,

which will be updated using price observations during the day. There are
thus two sources of randomness in the problem: the continuous Brow-
nian motion representing the uninformed traders, and the single drift
coefficient representing the constant trading of the large traders.

2.1 Bayesian inference

Intuitively, as the trader observes prices from the beginning of the day
onwards, he or she starts to get a feeling for the day’s overall flow.
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Mathematically, at time t we know the stock price trajectory S(τ) for
0 ≤ τ ≤ t. In fact, all of our information about the drift comes from the
final value S(t). Conditional on the value of α, the distribution of S(t) is

S(t)− S0 ∼ N (αt, σ 2t ) conditional on α.

and after some calculation we find the unconditional distribution

S(t)− S0 ∼ N
(
ᾱt, (σ 2 + ν2t)t

)
unconditional.

We then use Bayes’ rule

Prob
(
α | S(t)

)
= Prob

(
S(t) |α

)
· Prob(α)

Prob
(
S(t)

)
to obtain the posterior conditional distribution

α ∼ N
(
ᾱσ 2 + ν2

(
S(t)− S0

)
σ 2 + ν2t

,
σ 2

σ 2 + ν2t
ν2

)
conditional on S(t).

(2)
This represents our best estimate of the true drift α, as well as our un-
certainty in this estimate, based on combination of our prior belief with
price information observed to time t.

This formulation accomodates a wide variety of belief structures. If
we believe our initial information is perfect, then we set ν = 0 and our
updated belief is always just the prior α = ᾱ with no updating. If we
believe we have no reliable prior information, then we take ν2 → ∞ and
our estimate is α ∼ N

(
(S(t) − S0)/t, σ 2/t

)
, coming entirely from the

intraday observations. For t = 0, we will have S(0) = S0, and our belief
is just our prior. As t →∞, our estimate becomes α ∼N

(
(S − S0)/t,0

)
:

we have accumulated so much information that our prior belief becomes
irrelevant.

2.2 Trading and price impact

The trader has an order of X shares, which begins at time t = 0 and must
be completed by time t = T < ∞. For concretness, we shall suppose
X > 0 and interpret this as a buy order.

A trading trajectory is a function x(t) with x(0) = X and x(T) =
0, representing the number of shares remaining to buy at time t. The
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corresponding trading rate is v(t) = −dx/dt. We shall require that
v(t) ≥ 0 for all t, so that the program never sells as part of a buy order.
Together with the endpoint constraints, this requires 0 ≤ x(t) ≤ X, but
it may also be binding in the interior of this region.

We use a linear market impact function for simplicity, although empir-
ical work (Almgren, Thum, Hauptmann, and Li 2005) suggests a concave
function. Thus the actual execution price is

S̃(t) = S(t) + ηv(t)

where η > 0 is the coefficient of temporary market impact.
The implementation shortfall C is the total cost of executing the buy

program relative to the initial value,

C =
∫ T

0
S̃(t)v(t)dt − X S0

= σ
∫ T

0
x(t)dB(t)+ η

∫ T
0
v(t)2dt +α

∫ T
0
x(t)dt. (3)

Here α is the true drift, that determines our cost whether or not we know
its value. C is a random variable, both because the price S(t) is random,
and because the trading strategy v(t) may be adapted to S.

3 Optimal Trading Strategies

We now address the question of what trading strategies are optimal, given
the above model for price evolution and market impact. In “classic” ar-
rival price (Almgren and Chriss 2000), trajectories are determined as a
tradeoff between market impact and aversion to risk caused by volatility.
The trader wants to complete the trade quickly to eliminate exposure to
price volatility; he or she wants to trade slowly to minimize the costs of
market impact. The optimal trajectory is determined as a balance be-
tween these two effects, parameterized by a coefficient of risk aversion.

Risk-averse trading strategies can behave strangely in time (Almgren
and Lorenz 2006) even in the classic framework, depending on the pre-
cise formulation of the mean-variance tradeoff. In this case, the problem
is complicated by the need to account for the variance in the estimation
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of α. We have obtained partial solutions for the risk-averse problem but
their complexity obscures the underlying structure.

To focus on the drift, which is the most important new aspect of
this problem, here we neglect risk aversion; we seek to minimize only
the expectation of trading cost. That is, we assume that the pressure to
complete the trade rapidly comes primarily from a desire to capture the
price motion expressed by the drift α, and it is this effect that must be
balanced against the desire to reduce impact costs by trading slowly.

To support this description, we shall generally suppose that the origi-
nal buy decision was made because the trader’s belief has ᾱ > 0. We then
expect α > 0 in (3), and the term

∫
αx(t)dt is a positive cost. It may

be that the true value has α < 0, or that intermediate price movements
cause us to form a negative estimate. Because our point of view is that of
a broker/dealer executing an agency trade, we shall always require that
the trade be completed by t = T , unless the instructions are modified.

For any deterministic trajectoryx(t) specified at t = 0, C is a Gaussian
variable. Conditional on the true value of α, it has expected value

E(C) = η
∫ T

0
v(t)2dt +α

∫ T
0
x(t)dt conditional on α. (4)

From (2), our best estimate at time t for the value of α is

α∗(t, S) =
ᾱσ 2 + ν2

(
S − S0

)
σ 2 + ν2t

(5)

where S = S(t). Because the expectation (4) is linear in α, we may simply
substitute the expected value α∗ to see that, conditional on the infor-
mation available at time t, the expected cost of the remaining program
is

E
(
t, x(t), S, {x(τ)}

)
= η

∫ T
t
v(τ)2dτ +α∗(t, S)

∫ T
t
x(τ)dτ.

On the left, t is current time, x(t) is the number of shares currently re-
maining to buy, S is the current price, and {x(τ)} denotes the liquidation
strategy that will be used on the remaining time t ≤ τ ≤ T .

Our trading goal is to choose the remaining strategy to minimize this
expected cost: determine x(τ) for t ≤ τ ≤ T so that

min
{x(τ)}

E
(
t, x(t), S, {x(τ)}

)
. (6)
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In computing this solution, we shall assume that the drift estimateα∗(t, S)
does not change during the interval t ≤ τ ≤ T . In fact, it will change as
new price information is observed. Our actual strategy will use only the
initial instantaneous trade rate of this trajectory, continuously respond-
ing to price information. This is equivalent to following the strategy only
for a very small time interval ∆t, then recomputing. Thus our strategy is
highly dynamic.

We shall argue that this strategy determined is the true optimum strat-
egy that would be computed by a full dynamic optimization. Loosely
speaking, this will be because the expected value of future updates is
zero, and thus they do not change the strategy of a risk-neutral trader.

3.1 Trajectories by calculus of variations

We consider a small perturbation of the path x(τ) , x(τ) + δx(τ) for
t ≤ τ ≤ T . Since x(τ) is fixed at τ = t and τ = T , this perturbation
must have δx(t) = δx(T) = 0. The associated trade rate perturbation is
δv(τ) = −δx′(τ), and the perturbation in cost (assuming that x(τ) and
δx(τ) are twice differentiable) is

δE = η
∫ T
t

2v(τ)δv(τ)dτ + α∗
∫ T
t
δx(τ)dτ

=
∫ T
t

(
−2ηx′′(τ) + α∗

)
δx(τ)dτ. (7)

Here α∗ = α∗
(
t, S(t)

)
is the best available drift estimate using informa-

tion at time t, which we assume constant for t ≤ τ ≤ T . If x(τ) is an
optimal solution, then there must not exist any admissible δx(τ) that
gives δE < 0.

Unconstrained trajectories We temporarily neglect the sign constraint
on x′(τ). Then δx(τ) may have either positive or negative values inde-
pendently for each τ , and any optimizing x(τ)must satisfy the ordinary
differential equation (ODE)

x′′(τ) = α∗
2η
, t ≤ τ ≤ T . (8)
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The solution to this equation that satisfies the boundary conditions is

x(τ) = T − τ
T − t x(t) −

α∗
4η

(
τ − t

)(
T − τ

)
, t ≤ τ ≤ T , (9)

and the corresponding instantaneous trade rate is

v(t, x) = −x′(τ)
∣∣
τ=t =

x(t)
T − t +

α∗
4η
(
T − t

)
(10)

as a function of time and shares remaining. This solution may violate the
constraints: if α∗ is large then the quadratic term in (9) may cause x(τ)
to dip below zero, which would cause v(t) in (10) to become negative.

This unconstrained solution is the sum of two pieces. The first piece
is proportional to x(t) and represents the linear (VWAP) liquidation of
the current position; it is the optimal strategy to reduce expected impact
costs with no risk aversion. The second piece is independent of x(t) and
would therefore exist even if the trader had no initial position. Just as in
the solutions of Bertsimas and Lo (1998), this second piece is effectively a
proprietary trading strategy superimposed on the liquidation. The mag-
nitude of this strategy, and hence the possible gains, are determined by
the ratio between the expected drift and the liquidity coefficient. Impo-
sition of the constraint will couple these pieces together.

Constrained trajectories If the constraint becomes binding, then it is
no longer obvious that the integration by parts procedure used to derive
(7) is valid. For example, if a trajectory that crosses the axis x = 0 is
simply clipped to satisfy x ≥ 0, then the derivative will be discontinu-
ous. A more refined use of the calculus of variations gives the additional
condition

v(τ) must be continuous (though not necessarily differentiable).

Thus when solutions meet the constraint, they must do so smoothly. So-
lutions are obtained by combining the ODE (8) in regions of smoothness,
with this “smooth pasting” condition at the boundary points.

The result may be summarized as follows. There is a critical drift
value αc such that

• If |α∗| ≤ αc, then the constraint is not binding. The solution is the
one given in (9) and (10).
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t T
0

x(t)

α=−α
c

α=α
c

α=0

t
∗

T
∗

α=−2α
c

α=2α
c

x(τ)

τ

Figure 1: Constrained solutions x(τ), starting at time t with shares x(t)
and drift estimate α. For α > 0, the trajectories go below the linear
profile to reduce expected purchase cost. For |α| ≤ αc, the constraint
is not binding (shaded region). At α = αc the solutions become tangent
to the line x = 0 at τ = T , and for larger values they hit x = 0 with
zero slope at τ = T∗ < T . For α < −αc, trading does not begin until
τ = t∗ > t.

• If α∗ > αc, then the solution is the one of (9,10), with a shortened
end time T∗ < T determined by

T∗ − t =
√

4ηx(t)
α∗

.

This value is determined so that x′(T∗) = x(T∗) = 0. The thresh-
hold value αc is the value of α∗ for which T∗ = T :

αc
(
x(t), T − t

)
= 4ηx(t)
(T − t)2 .
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• If α∗ < −αc, then the solution is the one of (9,10), except that
trading does not begin until a starting time t∗ > t determined by

T − t∗ =
√

4ηx(t)
−α∗

.

This value is determined so that x′(t∗) = 0 and x(t∗) = x(t). The
threshhold value αc is the value of −α∗ for which t∗ = t.

Figure 1 illustrates these solutions.
Then the overall trade rate formula may be summarized as

v(t, x, S) =



0, α∗ < −αc

x
T − t +

α∗
4η

(
T − t

)
, |α∗| < αc

x
T∗ − t

+ α∗
4η

(
T∗ − t

)
=
√
α∗x
η
, α∗ > αc

(11)

where α∗ = α∗
(
t, S(t)

)
by (5). This is our Bayesian adaptive strategy:

it is a specific formula for the instantaneous trade rate as a function of
price, time, and shares remaning.

Since dx = −v dt, this gives an ordinary differential equation for the
trajectory x(t), with a stochastic element due to the presence of S(t).
(It is not a stochastic differential equation since dB appears only in dS,
not in dx. Thus x(t) will have a first time derivative, but not a second
derivative.)

3.2 Examples

Figures 2 and 3 show examples of the strategies computed by this method.
To produce these pictures, we began with a prior belief forα having mean
ᾱ = 0.7 and standard deviation ν = 1. For each trajectory, we generated a
random value ofα from this distribution, and then generated a price path
S(t) for 0 ≤ t ≤ 1 with volatility σ = 1.5. For example, on a stock whose
price is $100 per share, these would correspond to 1.5% daily volatility,
and an initial drift estimate of +70 basis points with a substantial degree
of uncertainty.
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0 T
0

X

0 T

S(t)

Figure 2: Adaptive trajectories. The inset shows price processes, and the
main figure shows trade trajectories x(t). The dashed line is the static
trajectory using the prior belief for the drift value. In this example, we
have selected realizations with very high drift to highlight the solution
behavior, including temporary interruption of trading when the drift es-
timate becomes more negative than the critical value (bold line).

We set the impact coefficient η = 0.07 and the initial shares X = 1,
meaning that liquidating the holdings using VWAP across one day will
incur realized price impact of 7 basis points.

Then for each sample path, we evaluate the share holdings x(t) using
the Bayesian update strategy (11) and plot the trajectories. For compar-
ison, we also show the optimal static trajectory using only the initial
estimate of the drift.

In Figure 2, to illustrate the features of the solution, we show a rather
extreme collection of paths, having very high realized drifts. In Figure 3
we show a completely representative selection.
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0 T
0

X

0 T

S(t)

Figure 3: Same layout as Figure 2, but with more realistic sample paths.
In both, the price initially trends downward (more strongly for the light
path), causing the trader to estimate a drift that is smaller than his prior
belief and to slow down his trading relative to the static solution.

3.3 Optimality of the Bayesian adaptive strategy

The Bayes adaptive strategy (11) is “locally” optimal in the sense that
at any intermediate time we use all the new information available and
recompute the trajectory for the remainder as though we would use the
same estimate until the end of trading. Since we do expect to update our
estimate, it is not obvious that this is the true optimal strategy.

Using the methods of stochastic optimal control we can formulate a
Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) for the
value function of the corresponding dynamic program (see Appendix A).

For the unconstrained case, we can solve this PDE analytically. The
corresponding optimal strategy is computed by differentiating the value
function, and this agrees precisely with (10). This computation verifies
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that the local solution is the dynamic optimal solution, for the uncon-
strained case.

Furthermore, we may explicitly determine the gains due to adaptivity.
The value function for the dynamic strategy, at t = 0 with initial shares
X, may be written

Edyn = Estat − ∆

where

Estat =
X2η
T

+ XᾱT
2

− T
3ᾱ2

48η
is the expected cost of the non-adaptive strategy determined at t = 0
using the prior expected drift ᾱ. The additional term,

∆ = σ 2T 2

48η

∫ 1

0

(1− δ)3
(δ+ ρ)2 dδ, ρ = σ 2

ν2T
, δ = t

T
,

is the reduction in expected cost obtained by using the Bayesian adaptive
strategy (note that ∆ > 0).

The gain ∆ is independent of initial portfolio size X and thus, as dis-
cussed above, it represents the gains from a proprietary trading strategy
superimposed on the risk-neutral liquidation profile. It can be seen that
∆ ∼ O(T 4) when T is small and O(T 2) when T is large, so the adaptivity
adds very little value if applied to short-term correlation. This accounts
for the small gains obtained by Bertsimas and Lo (1998), as discussed by
Almgren and Chriss (2000).

For the constrained case, the HJB equation has complicated bound-
ary conditions, and we are unable to determine an explicit analytic solu-
tion. However, we do not believe that imposition of the constraint should
change the relation between the static and the dynamic solutions. Thus
we believe that our Bayesian dynamic solution is the dynamic optimal
solution in the constrained case as well.

4 Conclusion

We have presented a simple model for momentum in price motion based
on daily trading cycles, and derived optimal risk-neutral adaptive trad-
ing strategies. The momentum is understood to arise from the correlated
trade targets being executed by large institutional investors. The trader
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begins with a belief about the direction of this imbalance, and expresses
a level of confidence in this belief that may range anywhere from perfect
knowledge to no knowledge. This belief is then updated using obser-
vations of the price process during trading. Under the assumptions of
the model, our solutions deliver better performance than non-adaptive
strategies.

It is natural to ask whether this model can be justified by empirical
data, but we would like to highlight some of the difficulties of doing
such a study. In our model, the random daily drift is superimposed on
the price volatility caused by small random traders. In theory, these two
sources of randomness can be disentangled by measuring volatility on an
intraday time scale and comparing it to daily volatility. If daily volatility
is higher than intraday, then the difference can be attributed to serial
correlation of the type considered here.

In practice, because real price processes are far from Gaussian, it is
difficult to do this comparison with any degree of reliability, even if one
restricts attention to days when there is large institutional flow.

We therefore justify our model not by empirical study, but by the
practical observation that some fraction of traders do express interest in
using strategies similar to the ones described here. Our model provides
a conceptual framework for designing optimal strategies that capture
this preference; without any such framework it is impossible to design
algorithms except by completely ad hoc methods.

A Stochastic Optimal Control

Now we support our claim that the trade velocity (10) of the Bayesian
adaptive strategy is in fact the optimal strategy for (6). For that, we will
formulate the problem in a full dynamic programming framework.

The control, the state variables, and the stochastic differential equa-
tions of problem (6) are given by

v = rate of buying

x = shares remaining to buy dx = −v dt
y = dollars spent so far dy = (s + ηv)v dt
s = stock price ds = αdt + σ dB
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where α ∼ N(ᾱ, ν2), chosen randomly at t = 0. We begin at t = 0 with
shares x(0) = X, cash y(0) = 0, and initial stock price s(0) = S. The
strategy v(t) must be adapted to the filtration of B, and must satisfiy
x(T) = 0. We focus on the unconstrained case and don’t require 0 ≤
x(t) ≤ X.

We want to find a control function v(t) to minimize the final amount
of dollars spent,

min
v(τ) s.t. x(T)=0

E[y(T)].

This is a common problem in stochastic optimal control, and solved
by dynamic programming. Standard techniques lead to the Hamilton-
Jacobi-Bellman (HJB) partial differential equation

0 = ut +
1
2
σ 2uss + α∗us + min

v

((
s uy − ux

)
v + ηuy v2

)
for the value function

u(t,x,y, s) = min
v(τ), t≤τ≤T , s.t.x(T)=0

E[y(T)].

α∗ = α∗(t, s) denotes the estimate of α at time t as computed in (2). The
optimal trade velocity is found as

v∗(t, x,y, s) =
ux − s uy

2ηuy
(12)

and we have the final HJB partial differential equation

0 = ut +
1
2
σ 2uss + α∗us −

(
s uy −ux

)2

4ηuy
(13)

for u(t,x,y, s) together with the boundary condition

u(T ,0, y, s) = y for all y, s. (14)

It is straightforward to check that

u(t,x,y, s) = y + xs + x2η
T − t +

xα∗(t, s) (T − t)
2

− (T − t)3α∗(t, s)2
48η

−
∫ T
t

σ 2ν4(T − τ)3
48η(τν2 + σ 2)2

dτ (15)
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satisfies the PDE (13) and the boundary conditions (14). Moreover, the
corresponding optimal trade velocity (12) reads

v∗(t, x,y, s) =
x(t,x,y, s)
T − t + α∗(t, s) · (T − t)

4η

which is exactly the trade velocity (10). That is, the Bayesian adaptive
strategy is in fact the optimal strategy for the optimization problem (6).

For the constrained case, the optimal velocity (12) becomes

v∗(t, x,y, s) = max

{
ux − s uy

2ηuy
, 0

}
.

This makes the corresponding PDE even more highly nonlinear, and we
do not know how to derive explicit solutions.
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