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Abstract

We develop a Bayesian “sum-of-trees” model where each tree is constrained by a
regularization prior to be a weak learner, and fitting and inference are accomplished via
an iterative Bayesian backfitting MCMC algorithm that generates samples from a pos-
terior. Effectively, BART is a nonparametric Bayesian regression approach which uses
dynamic random basis elements that are dimensionally adaptive. BART is motivated
by ensemble methods in general, and boosting algorithms in particular. However,
BART is defined by a statistical model: a prior and a likelihood, while boosting is
defined by an algorithm. This model-based approach enables a full assessment of pre-
diction uncertainty while remaining highly competitive in terms of prediction accuracy.
The potential of BART is illustrated on examples where it compares favorably with
competing methods including gradient boosting, neural nets and random forests. It is
also seen that BART is remarkably effective at finding low dimensional structure in
high dimensional data.
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1 Introduction

We consider the fundamental problem of making inference about an unknown

function f that predicts an output Y using a p dimensional vector of inputs x

when

Y = f(x) + ε, ε ∼ N(0, σ2). (1)

To do this, we consider modelling or at least approximating f(x) = E(Y |x), the

mean of Y given x, by a sum of m regression trees f(x) ≈ g1(x) + g2(x) + . . . +

gm(x) where each gi denotes a binary regression tree. Replacing f in (1) by this

approximation, we obtain

Y = g1(x) + g2(x) + · · ·+ gm(x) + ε, ε ∼ N(0, σ2). (2)

The sum-of-trees model (2) is fundamentally an additive model with multivari-

ate components. It is vastly more flexible than a single tree model which does not

easily incorporate additive effects. For example, Hastie, Tibshirani & Friedman

(2001) (p.301) illustrate how a sum-of-trees model can realize half the prediction

error rate of a single tree model when the true underlying f is a thresholded sum

of quadratic terms. And because multivariate components can easily account for

high order interaction effects, a sum-of-trees model is also much more flexible

than typical additive models that use low dimensional smoothers as components.

Various methods which combine a set of tree models, so called ensemble meth-

ods, have attracted much attention for prediction. These include boosting (Fre-

und & Schapire (1997), Friedman (2001)), random forests (Breiman 2001) and

bagging (Breiman 1996), each of which use different techniques to fit a linear

combination of trees. Boosting fits a sequence of single trees, using each tree to

fit data variation not explained by earlier trees in the sequence. Bagging and

random forests use data randomization and stochastic search to create a large

number of independent trees, and then reduce prediction variance by averaging
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predictions across the trees. Yet another approach that results in a linear com-

bination of trees is Bayesian model averaging applied to the posterior arising

from a Bayesian single-tree model as in Chipman, George & McCulloch (1998)

(hereafter CGM98), Denison, Mallick & Smith (1998) and Wu, Tjelmeland &

West (2005). Such model averaging uses posterior probabilities as weights for

averaging the predictions from individual trees.

In this paper we propose a Bayesian approach called BART (Bayesian Ad-

ditive Regression Trees) which uses a sum-of-trees model to estimate and draw

inference about f(x) = E(Y |x). The essential idea is to enhance the sum-of-trees

model (2) by treating each of the tree components gi as random. We do this by

imposing a regularization prior which keeps the individual tree effects small. In

effect, the gi’s become a dimensionally adaptive random basis of “weak learners”,

to borrow a phrase from the boosting literature. In sharp contrast to previous

Bayesian single-tree methods, BART treats the sum of trees as the model itself,

rather than let it arise out of model-averaging over a set of single-tree models.

As opposed to ending up with a weighted sum of separate single tree attempts

to fit the entire function f , BART ends up with a sum of trees, each of which

explains a small and different portion of f .

To fit the sum-of-trees model, BART uses a tailored version of Bayesian back-

fitting MCMC (Hastie & Tibshirani (2000)) that iteratively constructs and fits

successive residuals. Although similar in spirit to the gradient boosting approach

of Friedman (2001), BART differs in both how it weakens the individual trees by

instead using a prior, and how it performs the iterative fitting by instead using

Bayesian backfitting on a fixed number of trees. Conceptually, BART can be

viewed as a Bayesian nonparametric approach that fits a parameter rich model

using a strongly influential prior distribution.

Another novel feature of BART is that it produces an MCMC sample from

the induced posterior over the sum-of-trees model space, a sample that can be
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readily used for enhanced inference. For example, a single posterior mean esti-

mate of f(x) = E(Y |x) at any input value x is simply obtained by averaging the

successive MCMC draws of f evaluated at x. Moreover, pointwise uncertainty

intervals for f(x) are easily obtained by the corresponding quantiles. As will be

seen, these uncertainty intervals behave sensibly, for example by widening for

predictions at test points far from the training set.

The remainder of the paper is organized as follows. In Section 2, the BART

model is outlined. This consists of the sum-of-trees model combined with a

regularization prior. In Section 3, the Bayesian backfitting MCMC algorithm for

fitting and inference is described. In Section 4, examples, both simulated and

real, are used to demonstrate the potential of BART. Section 5 concludes with a

discussion.

2 The BART Model

2.1 A Sum-of-Trees Model

To elaborate the form of a sum-of-trees model, we begin by establishing notation

for a single tree model. Let T denote a binary tree consisting of a set of interior

node decision rules and a set of terminal nodes, and let M = {µ1, µ2, . . . , µb}
denote a set of parameter values associated with each of the b terminal nodes of

T . The decision rules are binary splits of the predictor space of the form {x ∈ A}
vs {x /∈ A} where A is a subset of the range of x. Each x value is associated with

a single terminal node of T by the sequence of decision rules from top to bottom,

and is then assigned the µi value associated with this terminal node. For a given

T and M , we use g(x; T, M) to denote the function which assigns a µi ∈ M to

x. Thus,

Y = g(x; T, M) + ε, ε ∼ N(0, σ2) (3)
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is a single tree model of the form considered by CGM98. Note that here, the

terminal node mean given by g(x; T, M) is simply E(Y |x), the conditional mean

of Y given x.

Using this notation, the sum-of-trees model (2) can more explicitly be ex-

pressed as

Y = g(x; T1,M1) + g(x; T2,M2) + · · ·+ g(x; Tm,Mm) + ε, ε ∼ N(0, σ2). (4)

Unlike the single tree model (3), when m > 1 the terminal node parameter µi

given by g(x; Tj,Mj) is merely part of the conditional mean of Y given x. Such

terminal node parameters will represent interaction effects when their assignment

depends on more than one component of x (i.e., more than one variable). And

because (4) may be based on trees of varying sizes, the sum-of-trees model can

incorporate both main effects and interaction effects of varying orders. In the

special case where every terminal node assignment depends on just a single com-

ponent of x, the sum-of-trees model reduces to a simple additive function of the

individual components of x.

With a large number of trees, a sum-of-trees model gains increased repre-

sentation flexibility which, as we’ll see, endows BART with excellent predictive

capabilities. Indeed, in the examples in Section 4, we set m as large as 200. How-

ever, this representational flexibility is obtained at the cost of a rapidly increasing

number of parameters. Indeed, for fixed m, each sum-of-trees model (4) is de-

termined by (T1,M1), . . . , (Tm,Mm) and σ, which includes all the bottom node

parameters as well as the tree structures and decision rules. Further, the represen-

tational flexibility of each individual tree leads to substantial redundancy across

the tree components. Indeed, one can regard {g(x; T1,M1), . . . , g(x; Tm,Mm)} as

an “overcomplete basis” for the vector space of possible E(Y | x) values.

The downside of the rich structure of (4) is that single large trees can over-

whelm the model, thereby limiting the advantages of the additive representation

both in terms of function approximation and computation. To guard against this
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possibility, we complete the BART model specification by introducing a strong

regularization prior over (T1,M1), . . . , (Tm,Mm) and σ that keeps each of the

individual tress from being unduly influential, thereby restraining the overall fit.

2.2 A Regularization Prior

The BART model consists of two parts: a sum-of-trees model (4) and a regular-

ization prior on ((T1,M1), . . . , (Tm,Mm), σ) that we now proceed to describe. (As

discussed in Section 2.2.4 below, we treat m as a fixed constant). The complexity

of such prior specification is vastly simplified by restricting attention to priors

for which

p((T1, M1), . . . , (Tm,Mm), σ) =


∏

j

p(Tj,Mj)


 p(σ)

=


∏

j

p(Mj | Tj) p(Tj)


 p(σ) (5)

and

p(Mj |Tj) =
∏

i

p(µi,j | Tj), (6)

where µi,j is the ith component of Mj. Under such priors, the tree components

are independent of each other and of σ, and the bottom node parameters of every

tree are independent.

The independence restrictions above simplify the prior choice problem to the

specification of prior forms for just p(Tj), p(µi,j | Tj) and p(σ). As described in

the ensuing subsections, we use the same tree prior form proposed by CGM98

for all p(Tj), we use the same normal conjugate form for all p(µi,j | Tj) and we

use the inverse gamma conjugate form for p(σ). In addition to their valuable

computational benefits, these forms are controlled by just a few interpretable

hyperparameters which can be calibrated to yield effective default specifications.

6



2.2.1 The Tree Prior

For p(Tj), we follow CGM98 which is easy to specify and dovetails nicely with

calculations for the backfitting MCMC algorithm described in Section 3. This

prior form is specified by three aspects: (i) the probability that a node at depth

d is nonterminal, given by

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (7)

(ii) the distribution on the splitting variable assignments at each interior node,

and (iii) the distribution on the splitting rule assignment in each interior node,

conditional on splitting variable. For (ii) and (iii) we use the simple defaults

used by CGM98, namely the uniform prior on available variables for (ii) and the

uniform prior on the discrete set of available splitting values for (iii).

In a single tree model, (i.e. m = 1), a tree with many terminal nodes may

be needed to model complicated structure. However, for a sum-of-trees model,

especially with m large, we want the regularization prior to keep the individual

tree components small. In our examples in Section 4, we do so by using α = .95

and β = 2 in (7). With this choice, trees with 1, 2, 3, 4, and ≥ 5 terminal nodes

receive prior probability of 0.05, 0.55, 0.28, 0.09, and 0.03, respectively. Note

that even with this prior, trees with many terminal nodes can be grown if the

data demands it. For example, in one of our simulated examples with this prior,

we observed considerable posterior probability on trees of size 17 when we set

m = 1.

2.2.2 The µi,j Prior

In the sum-of-trees model (4), E(Y | x) is the sum of m µi,j’s. Given our in-

dependence assumptions (5) and (6), we need only specify the prior for a single

scalar µi,j. As mentioned previously, we prefer a conjugate prior, here the normal

distribution N(µµ, σ
2
µ). The essence of our strategy is then to choose the prior
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mean µµ and standard deviation σµ so that a sum of m independent realizations

gives a reasonable range for the conditional mean of Y .

For convenience we start by simply shifting and rescaling Y so that we be-

lieve the prior probability that E(Y | x) ∈ (−.5, .5) is very high. Unless reliable

information about the range of Y is available, we usually do this by using the

observed y values, shifting and rescaling so that the observed y values range from

-.5 to .5. Such informal empirical Bayes methods can be very useful to ensure

that prior specifications are at least in the right ballpark.

For the transformed Y , we then center the prior at zero µµ = 0 and choose the

standard deviation σµ so that the mean of Y falls in the interval (−.5, .5) with

“high” probability. Now the standard deviation of the sum of m independent

µi,j’s is
√

mσµ. Thus, we choose σµ so that k
√

mσµ = .5 for a suitable value of k.

For example, k = 2 would yield a 95% prior probability that the expected value

of Y is in the interval (−.5, .5). In summary, our prior for each µi,j is simply

µi,j ∼ N(0, σ2
µ) where σµ = .5/k

√
m. (8)

This prior has the effect of shrinking the tree parameters µi,j towards zero,

limiting the effect of the indiviual tree components of (4) by keeping them small.

Note that as k and/or the number of trees m is increased, this prior will become

tighter and apply greater shrinkage to the µi,j’s. Prior shrinkage on µi,j’s is the

counterpart of the shrinkage parameter in Friedman’s (2001) gradient boosting

algorithm. The prior variance σµ of µi,j here and the gradient boosting shrinkage

parameter there, both serve to “weaken” the individual trees so that each is

constrained to play a smaller role in the overall fit. For the choice of k, we have

found that values of k between 1 and 3 yield good results, and we recommend

k = 2 as an automatic default choice. Alternatively the value of k may be chosen

by cross-validation.

Although the calibration of this prior is based on a simple transformation of

Y , it should be noted that there is no need to transform the predictor variables.
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This is a consequence of the fact that the tree splitting rules are invariant to

monotone transformations of the x components. The utter simplicity of using

our prior for µi,j is an appealing feature of BART. In contrast, methods like

neural nets that use linear combinations of predictors require standardization

choices for each predictor.

2.2.3 The σ Prior

We again use a conjugate prior, here the inverse chi-square distribution σ2 ∼
ν λ/χ2

ν . For the hyperparameter choice of ν and λ, we proceed as follows. We

begin by obtaining a “rough overestimate” σ̂ of σ as described below. We then

pick a degrees of freedom value ν between 3 and 10. Finally, we pick a value of

q such as 0.75, 0.90 or 0.99, and set λ so that the qth quantile of the prior on σ

is located at σ̂, that is P (σ < σ̂) = q.

Figure 1 illustrates priors corresponding to three (ν, q) settings when the rough

overestimate is σ̂ = 2. We refer to these three settings, (ν, q) = (10, 0.75),

(3, 0.90), (3, 0.99), as conservative, default and aggressive, respectively. The

prior mode moves towards smaller σ values as q is increased. We recommend

against choosing ν < 3 because it seems to concentrate too much mass on very

small σ values, which leads to overfitting. In our examples, we have found these

three settings work very well and yield similar results. For automatic use, we

recommend the default setting (ν, q) = (3, 0.90) which tends to avoid extremes.

The key to an effective specification above is to come up with a reasonable

value of σ̂. In the absence of real prior information, this can be obtained by either

of the following informal empirical Bayes approaches: 1) the “naive” specification,

in which we take σ̂ to be the sample standard deviation of Y , or 2) the “linear

model” specification, in which we take σ̂ as the residual standard deviation from

a least squares linear regression of Y on the original X’s. The naive specification

represents the belief that BART can provide a much better estimate of E(Y | x)
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Figure 1: Three priors on σ when σ̂ = 2.

values than the sample mean of Y . The linear model specification represents the

belief that BART can fit better than a linear model.

2.2.4 Choosing the Number of Trees m

Our procedure fixes m, the number of trees. Although it appears that using

too many trees only slightly degrades predictive performance, it is still useful to

have some intuition about reasonable values of m. We have found it helpful to

first assess prior beliefs about how many variables are likely to be important.

One might then assume that five trees are needed for each important variable.

For example, if we believe 10 out of 200 variables are important, we might try

m = 50 trees. Using more than 50 trees may slow down computation with little

benefit, but if there is complicated structure it may help the fit. In applications

we have typically used a large number of trees, (m = 100 and m = 200 in our

examples), as we have found that predictive performance suffers more when too

few trees are selected rather than too many. Although we find it easier and faster

to simply consider and compare our results for various choices of m, it would be

straightforward to consider a fully Bayes approach that puts a prior on m.
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3 A Bayesian Backfitting MCMC Algorithm

Given the observed data y, our Bayesian setup induces a posterior distribution

p((T1,M1), . . . , (Tm, Mm), σ| y) (9)

on all the unknowns that determine a sum-of-trees model (4). Although the

sheer size of this parameter space precludes exhaustive calculation, the following

backfitting MCMC algorithm can be used to sample from this posterior.

At a general level, our algorithm is a Gibbs sampler. For notational conve-

nience, let T(j) be the set of all trees in the sum except Tj, and similarly define

M(j). Thus T(j) will be a set of m − 1 trees, and M(j) the associated terminal

node parameters. The Gibbs sampler here entails m successive draws of (Tj,Mj)

conditionally on (T(j),M(j), σ):

(T1,M1)|T(1),M(1), σ, y

(T2,M2)|T(2),M(2), σ, y (10)

...

(Tm,Mm)|T(m),M(m), σ, y,

followed by a draw of σ from the full conditional:

σ|T1, . . . Tm,M1, . . . , Mm, y. (11)

Hastie & Tibshirani (2000) considered a similar application of the Gibbs sampler

for posterior sampling for additive and generalized additive models with σ fixed,

and showed how it was a stochastic generalization of the backfitting algorithm

for such models. For this reason, we refer to our algorithm as backfitting MCMC.

The draw of σ in (11) is simply a draw from an inverse gamma distribution

and so can be easily obtained by routine methods. Much more challenging is how
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to implement the m draws of (Tj,Mj) in (10). This can be done by taking advan-

tage of the following reductions. First, observe that the conditional distribution

p(Tj,Mj|T(j),M(j), σ, y) depends on (T(j),M(j), y) only through

Rj ≡ y − ∑

k 6=j

g(x; Tk,Mk), (12)

the n−vector of partial residuals based on a fit that excludes the jth tree. Thus,

a draw of (Tj,Mj) given (T(j),M(j), σ, y) in (10) is equivalent to a draw from

(Tj,Mj)|Rj, σ. (13)

Now (13) is formally equivalent to the posterior of the single tree model Rj =

g(x; Tj,Mj) + ε where Rj plays the role of the data y. Because we have used a

conjugate prior for Mj,

p(Tj|Rj, σ) ∝ p(Tj)
∫

p(Rj|Mj, Tj, σ)p(Mj|Tj, σ)dMj (14)

can be obtained in closed form up to a norming constant. This allows us to carry

out the draw from (13), or equivalently (10), in two successive steps as

Tj|Rj, σ (15)

Mj|Tj, Rj, σ. (16)

The draw of Tj in (15), although somewhat elaborate, can be obtained using

the Metropolis-Hastings (MH) algorithm of CGM98. This algorithm proposes a

new tree based on the current tree using one of four moves. The moves and their

associated proposal probabilities are: growing a terminal node (0.25), pruning a

pair of terminal nodes (0.25), changing a non-terminal rule (0.40), and swapping

a rule between parent and child (0.10). Although the grow and prune moves

change the implicit dimensionality of the proposed tree in terms of the number

of terminal nodes, by integrating out Mj in (14), we avoid the complexities
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associated with reversible jumps between continuous spaces of varying dimensions

(Green 1995).

Finally, the draw of Mj in (16) is simply a set of independent draws of the

terminal node µi,j’s from a normal distribution. The draw of Mj enables the cal-

culation of the subsequent residual Rj+1 which is critical for the next draw of Tj.

Fortunately, there is again no need for a complex reversible jump implementation.

We initialize the chain with m single node trees, and then iterations are re-

peated until satisfactory convergence is obtained. At each iteration, each tree

may increase or decrease the number of terminal nodes by one, or change one

or two decision rules. Each µ will change (or cease to exist or be born), and σ

will change. It is not uncommon for a tree to grow large and then subsequently

collapse back down to a single node as the algorithm iterates. The sum-of-trees

model, with its abundance of unidentified parameters, allows for “fit” to be freely

reallocated from one tree to another. Because each move makes only small incre-

mental changes to the fit, we can imagine the algorithm as analogous to sculpting

a complex figure by adding and subtracting small dabs of clay.

Compared to the single tree model MCMC approach of CGM98, our backfit-

ting MCMC algorithm mixes dramatically better. When only single tree models

are considered, the MCMC algorithm tends to quickly gravitate towards a single

large tree and then gets stuck in a local neighborhood of that tree. In sharp

contrast, we have found that restarts of the backfitting MCMC algorithm give

remarkably similar results even in difficult problems. Consequently, we run one

long chain with BART rather than multiple starts. Although mixing does not

appear to be an issue, the recently proposed modifications of Wu et al. (2005)

might well provide additional benefits.

In some ways BART backfitting MCMC is a stochastic alternative to boosting

algorithms for fitting linear combinations of trees. It is distinguished by the

ability to sample from a posterior distribution. At each iteration, we get a new
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draw of

f ∗ = g(x; T1,M1) + g(x; T2,M2) + . . . + g(x; Tm,Mm) (17)

corresponding to the draw of Tj and Mj. These draws are a (dependent) sample

from the posterior distribution on the “true” f . Rather than pick the “best”

f ∗ from these draws, the set of multiple draws can be used to further enhance

inference. In particular, a less variable estimator of f or predictor of Y , namely

the posterior mean of f , is approximated by averaging the f ∗ over the multiple

draws. Further, we can gauge our uncertainty about the actual underlying f

by the variation across the draws. For example, we can use the 5% and 95%

quantiles of f ∗(x) to obtain 90% posterior intervals for f(x).

4 Examples

In this section we illustrate the potential of BART on two distinct types of data.

The first is simulated data where the mean is the five dimensional test function

used by Friedman (1991). The second is the well-known Boston Housing data

which has been used to compare a wide variety of competing methods in the

literature, and which is part of the machine learning benchmark package in R

(mlbench).

4.1 Friedman’s Five Dimensional Test Function

To illustrate the potential of multivariate adaptive regression splines (MARS),

Friedman (1991) constructed data by simulating values of x = (x1, x2, . . . , xp)

where

x1, x2, . . . , xp iid ∼ Uniform(0, 1), (18)

and y given x where

y = f(x) + ε = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + ε (19)
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where ε ∼ N(0, 1). Because y only depends on x1, . . . , x5, the predictors x6, . . . , xp

are irrelevant. These added variables together with the interactions and nonlin-

earities make it especially difficult to find f(x) by standard parametric methods.

Friedman (1991) simulated such data for the case p = 10.

We now proceed to illustrate the potential of BART with this simulation

setup. In Section 4.1.1, we begin with a simple application of BART. In Section

4.1.2, we elaborate this application to show BART’s effectiveness at detecting

low dimensional structure within high dimensional data. In Section 4.1.3, we

show that BART outperforms competing methods including gradient boosting

and neural nets. In Section 4.1.4, we illustrate BART’s robust performance with

respect to hyperparameter changes. We also see that the BART MCMC burns

in fast, and mixes well.

4.1.1 A Simple Application of BART

We begin by illustrating inference on a single simulated data set of the Friedman

function (18) and (19) with p = 10 x′s and n = 100 observations. For simplicity,

we applied BART with the default setting (ν, q, k) = (3, 0.90, 2) and m = 100

trees as described in Section 2.2. Using the backfitting MCMC algorithm, we

generated 5000 MCMC draws of f ∗ as in (17) from the posterior after skipping

1000 burn-in iterations. For each value of x, we obtained posterior mean estimates

f̂(x) of f(x) by averaging the 5000 f ∗(x) values. Endpoints of 90% posterior

intervals for each f(x) were obtained as the 5% and 95% quantiles of the f ∗

values.

Figure 2(a) plots the posterior mean estimates f̂(x) against the true f(x) for

the n = 100 in-sample values of x from (18) which were used to generate the

y values using (19). Vertical lines indicate the 90% posterior intervals for the

f(x)’s. Figure 2(b) is the analogous plot at 100 randomly selected out-of-sample

x values. We see that the means f̂(x) correlate very well with the true f(x)
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(c)

Figure 2: Inference about Friedman’s function in p = 10 dimensions.

values and the intervals tend to cover the true values. The wider out-of-sample

intervals intuitively indicate greater uncertainty about f(x) at new x values.

Although we do not expect the 90% posterior intervals to exhibit 90% frequen-

tist coverage, it may be of interest to note that 89% and 96% of the intervals in

Figures 2(a) and (b) covered the true f(x) value, respectively. In fact, in over

200 independent replicates of this example we found average coverage rates of

87% (in-sample) and 93% (out-of-sample). Thus, these posterior intervals may

be roughly interpreted in a frequentist sense. However, it should be noted that

for extreme x values, the prior may exert more shrinkage towards 0 leading to

lower coverage frequencies.

The lower sequence in Figure 2(c) is the sequence of σ draws over the entire

1000 burn-in plus 5000 iterations (plotted with *). The horizontal line is drawn at

the true value σ = 1. The Markov chain here appears to reach equilibrium quickly,

and although there is autocorrelation, the draws of σ nicely wander around the

true value σ = 1 suggesting that we have fit but not overfit. To further highlight

the deficiencies of a single tree model, the upper sequence (plotted with ·) in

Figure 2(c) is a sequence of σ draws when m = 1 is used. The sequence seems to

take longer to reach equilibrium and remains substantially above the true value

σ = 1, suggesting that a single tree may be inadequate to fit this data.
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4.1.2 Finding Low Dimensional Structure in High Dimensional Data

Of the p variables x1, . . . , xp from (18), f in (19) is a function of only five

x1, . . . , x5. Thus the problem we have been considering is one of drawing in-

ference about a five dimensional signal embedded in p dimensional space. In

the previous subsection we saw that when p = 10, the setup used by Friedman

(1991), BART could easily detect and draw inference about this five dimensional

signal with just n = 100 observations. We now consider the same problem with

substantially larger values of p to illustrate the extent to which BART can find

low dimensional structure in high dimensional data. For this purpose, we re-

peated the analysis displayed in Figure 2 with p = 20, 100 and 1000 but again

with only n = 100 observations. We used BART with the same default setting

of (ν, q, k) = (3, 0.90, 2) and m = 100 with one exception; we used the naive es-

timate σ̂ (the sample standard deviation of Y ) rather the least squares estimate

to anchor the qth prior quantile to allow for data with p ≥ n. Note that because

the naive σ̂ is very likely to be larger than the least squares estimate, it would

also have been reasonable to use the more aggressive prior setting for (ν, q).

Figure 3 displays the in-sample and out-of-sample BART inferences for the

larger values p = 20, 100 and 1000. The in-sample estimates and 90% posterior

intervals for f(x) are remarkably good for every p. As would be expected, the

out-of-sample plots show that extrapolation outside the data becomes less reliable

as p increases. Indeed the estimates stray further from the truth especially at

the boundaries, and the posterior intervals widen (as they should). Where there

is less information, it makes sense that BART pulls towards the center because

the prior takes over and the µ’s are shrunk towards the center of the y values.

Nonetheless it remarkable that the BART inferences are at all reliable, at least in

the middle of the data, when the dimension p is so large compared to the sample

size n = 100.

In the third column of Figure 3, it is interesting to note what happens to the
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Figure 3: Inference about Friedman’s function in p dimensions.
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MCMC sequence of σ draws. In each of these plots, the solid line at σ = 1 is the

true value and the dashed line at σ̂ = 4.87 is the naive estimate used to anchor

the prior. In each case, the σ sequence repeatedly crosses σ = 1. However as p

gets larger, it increasingly tends to stray back towards larger values, a reflection

of increasing uncertainty. Lastly, note that the sequence of σ draws in Figure 3

are systematically higher than the σ draws in Figure 2(c). This is mainly due

to the fact that the regression σ̂ rather than the naive σ̂ was used to anchor the

prior in Figure 2. Indeed if the naive σ̂ was instead used for Figure 2, the σ

draws would similarly rise.

A further attractive feature of BART is that it appears to avoid being misled

by pure noise. To gauge this, we simulated n = 100 observations from (18) with

f ≡ 0 for p = 10, 100, 1000 and ran BART with the same settings as above. With

p = 10 and p = 100 all intervals for f at both in-sample and out- of-sample x

values covered or were close to 0 clearly indicating the absence of a relationship.

At p = 1000 the data becomes so uninformative that our prior, which suggests

that there is some fit, takes over and some in-sample intervals are far from 0.

However, the out-of-sample intervals still tend to cover 0 and are very large so

that BART still indicates no evidence of a relationship between y and x.

4.1.3 Out-of-Sample Comparisons with Competing Methods

We next proceeded to compare BART with competing methods using the Fried-

man simulation scenario above with p = 10. As plausible competitors to BART

in this setting, we considered boosting (Freund & Schapire (1997), Friedman

(2001)), implemented as gbm by Ridgeway (2004), random forests (Breiman

2001), MARS (Friedman 1991) (implemented as polymars by Kooperberg, Bose

& Stone (1997), and neural networks, implemented as nnet by Venables & Rip-

ley (2002). Least squares linear regression was also included as a reference point.

All implementations are part of the R statistical software (R Development Core
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Method Parameter Values considered

Boosting # boosting iterations n.trees= 1, 2, . . . , 2000
Shrinkage (multiplier of each tree added) shrinkage= 0.01, 0.05, 0.10, 0.25
Max depth permitted for each tree interaction.depth= 1,2,3,4

Neural # hidden units size= 10, 15, 20, 25, 30
Nets Decay (penalty coef on sum-squared weights) decay= 0.50, 1, 1.5, 2, 2.5

(Max # optimizer iterations, # restarts) fixed at maxit= 1000 and 5

Random # of trees ntree= 200, 500, 1000
Forests # variables sampled to grow each node mtry= 3, 5, 7, 10

MARS GCV penalty coefficient gcv= 1, 2, ..., 8

BART Sigma prior: (ν, q) combinations (3,0.90), (3,0.99), (10,0.75)
-cv µ Prior: k value for σµ 1, 1.5, 2, 2.5, 3

(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)

BART Sigma prior: (ν, q) combinations fixed at (3,0.90)
-default µ Prior: k value for σµ fixed at 2

(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)

Table 1: Operational parameters for the various competing models. Names in last column
indicate parameter names in R.

Team 2004). These competitors were chosen because, like BART, they are black

box predictors. Trees, Bayesian CART (CGM98), and Bayesian treed regression

(Chipman, George & McCulloch 2002) models were not considered, since they

tend to sacrifice predictive performance for interpretability.

With the exception of linear regression, all the methods above are controlled

by the operational parameters listed in Table 1. In the simulation experiment

described below, we used 10-fold cross-validation for each of these methods to

choose the best parameter values from the range of values also listed in Table 1.

To be as fair as possible in our comparisons, we were careful to make this range

broad enough so that the most frequently chosen values were not at the minimum

or maximum of the ranges listed. Table 1 also indicates that some parameters

were simply set to fixed values.

We considered two versions of BART in the simulation experiment. In one
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version, called BART-cv, the hyperparameters (ν, q, k) of the priors were treated

as operational parameters to be tuned. For the σ prior hyperparameters (ν, q),

the three settings (3,0.90) (default), (3,0.99)(aggressive) and (10,0.75)(conserva-

tive) as shown in Figure 1 were considered. For the µ prior hyperparameter k,

five values between 1 (little shrinkage) and 3 (heavy shrinkage) were considered.

Thus, 3*5 = 15 potential values of (ν, q, k) were considered. In the second ver-

sion of BART, called BART-default, the operational parameters (ν, q, k) were

simply fixed at the default (3, 0.90, 2). For both BART-cv and BART-default, all

specifications of the quantile q were made relative to the least squares regression

estimate σ̂. Although tuning m in BART-cv might have yielded some moderate

improvement, we opted for the simpler choice of a large number of trees.

In additional to its specification simplicity, BART-default offers huge compu-

tational savings over BART-cv. Selecting among the 15 possible hyperparameter

values with 10 fold cross-validation, followed by fitting the best model, requires

15*10 + 1 = 151 applications of BART. This is vastly more computationally

intensive than BART-default which requires but a single fit.

The models were compared with 50 replications of the following experiment.

For each replication, we set p = 10 and simulated 100 independent values of (x, y)

from (18) and (19). Each method was then trained on these 100 in-sample values

to estimate f(x). Where relevant, this entailed using 10-fold cross-validation to

select from the operational parameter values listed in Table 1. We next simu-

lated 1000 out-of-sample x values from (18). The predictive performance of each

method was then evaluated by the root mean squared error

RMSE =

√√√√ 1

n

n∑

i=1

(f̂(xi)− f(xi))2 (20)

over the n = 1000 out-of-sample values.

Average RMSEs over 50 replicates and standard errors of averages are given

in Table 2. All the methods explained substantial variation, since the average
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Method average RMSE se(RMSE)
Random Forests 2.655 0.025
Linear Regression 2.618 0.016
Neural Nets 2.156 0.025
Boosting 2.013 0.024
MARS 2.003 0.060
BART-cv 1.787 0.021
BART-default 1.759 0.019

Table 2: Out-of-sample performance on 50 replicates of the Friedman data.

RMSE for the constant model (ŷ ≡ ȳ) is 4.87. Both BART-cv and BART-

default substantially outperformed all the other methods by a significant amount.

The strong performance of BART-default is noteworthy, and suggests that rea-

sonably informed choices of prior hyperparameters may render cross-validation

unnecessary. BART-default’s simplicity and speed make it an ideal tool for auto-

matic exploratory investigation. Finally, we note that BART-cv chose the default

(ν, q, k) = (3, 0.90, 2.0) most frequently (20% of the replicates).

4.1.4 The Robustness of BART to Hyperparameter Choices

Yet another very appealing feature of BART is that it appears to be relatively

insensitive to small changes in the prior and to the choice of m, the number of

trees. Returning to the single simulated data set from Section 4.1.1, we illustrate

this insensitivity by gauging the robustness of BART’s performance to changes

in ν, q, k and m.

Figures 4(a) and (b) display the in-sample and out-of-sample RMSE (20)

obtained by BART as (ν, q, k, m) are varied. These are based on posterior mean

estimates of f(x) from 5000 BART MCMC draws (after skipping 1000 burn-in

iterations). In each plot of RMSE versus m, the plotted text indicates the values

of (ν, q, k): k = 1, 2 or 3 and (ν, q) = d, a or c (default/agressive/conservative).

Three striking features of the plot are apparent: (i) a very small number of trees
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Figure 4: BART’s robust RMSE performance as (ν, q, k,m) is varied: (a) in-sample RMSE

comparisons and (b) out-of-sample RMSE comparisions.

(m very small) gives poor results, (ii) as long as k > 1, very similar results are

obtained from different prior settings, and (iii) increasing the number of trees well

beyond the number needed to capture the fit, results in only a slight degradation

of the performance.

As Figure 4 suggests, the BART fitted values are remarkably stable as the set-

tings are varied. Indeed, in this example, the correlations between out-of-sample

fits turn out to be very high, almost always greater than .99. For example, the

correlation between the fits from the (ν, q, k, m)=(3,.9,2,100) setting (a reason-

able default choice) and the (10,.75,3,100) setting (a very conservative choice)

is .9948. Replicate runs with different seeds are also stable: The correlation

between fits from two runs with the (3,.9,2,200) setting is .9994. Such stability

enables the use of one long MCMC run. In contrast, some models such as neural

networks require multiple starts to ensure a good optimum has been found.
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4.2 Boston Housing Data

We now proceed to illustrate the potential of BART on the Boston Housing

data. This data originally appeared in Harrison & Rubinfeld (1978), and have

since been used as a standard benchmark for comparing regression methods. The

original study modelled the relationship between median house price for a census

tract and 13 other tract characteristics, such as crime rate, transportation access,

pollution, etc. The data consist of 506 census tracts in the Boston area. Following

other studies, we take log median house price as the response.

4.2.1 Out-of-Sample Predictive Comparisons

We begin by comparing the performance of BART with various competitors on

the Boston Housing data in a manner similar to Section 4.1.3. Because this is

real rather than simulated data, a true underlying mean is unavailable, and so

here we assess performance with a train/test experiment. For this purpose, we

replicated 50 random 75%/25% train/test splits of the 506 observations. For

each split, each method was trained on the 75% portion, and performance was

assessed on the 25% portion by the RMSE between the predicted and observed

y values.

As in Section 4.1.3, all the methods in Table 1 were considered, with the ex-

ception of MARS because of its poor performance on this data (see, for example,

Chipman et al. (2002)). All ranges and settings for the operational parameters

in Table 1 were used with the exception of neural networks for which we instead

considered size = 3, 5, 10 and decay = 0.05, 0.10, 0.20, 0.50. Operational

parameters were again selected by cross-validation. Both BART-cv and BART-

default were considered, again with all specifications of the quantile q relative to

the least squares regression estimate σ̂.

Table 3 summarizes RMSE values for the 50 train/test splits, with small-

est values being best. As in Table 2, both BART-cv and BART-default sig-
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Method average RMSE se(RMSE)
Linear Regression 0.1980 0.0021
Neural Nets 0.1657 0.0030
Boosting 0.1549 0.0020
Random Forests 0.1511 0.0024
BART-default 0.1475 0.0018
BART-cv 0.1470 0.0019

Table 3: Test set performance over 50 random train/test splits of the Boston Housing data.

nificantly outperform all other methods. Furthermore, BART-default, which

is trivial to specify and does not require cross-validation, performed essentially

as well as BART-cv. Indeed, except for the difference between BART-cv and

BART-default, all the differences in Table 3 are statistically significant (by paired

t-tests that pair on the splits, at significance level α = .05). The most com-

monly chosen hyperparameter combinations by BART-cv in this example were

(ν, q, k) = (3, 0.99, 2.5) in 20% of the splits, followed by the default choice

(3,0.90,2) in 14% of the splits.

4.2.2 Further Inference on the Full Data Set

For further illustration, we applied BART to all 506 observations of the Boston

Housing data using the default setting (ν, q, k) = (3, 0.90, 2), m = 200, and the

regression estimate σ̂ to anchor q. This problem turned out to be somewhat

challenging with respect to burn-in and mixing behavior: 100 iterations of the

algorithm were needed before σ draws stabilized, and the σ draws had autocor-

relations of 0.63, 0.54, 0.41 and 0.20 at lags 1, 2, 10, and 100, respectively. Thus,

we used 10000 MCMC draws after a burn-in of 500 iterations.

At each of the 506 predictor values x, we used 5% and 95% quantiles of the

MCMC draws to obtain 90% posterior intervals for f(x). Not knowing the true

mean f(x) here of course makes it difficult to assess their coverage frequency. An
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appealing feature of these posterior intervals is that they widen when there is less

information about f(x). To roughly illustrate this, we calculated Cook’s distance

diagnostic Dx for each x (Cook 1977) based on a linear least squares regression

of y on x. Larger Dx indicate more uncertainty about predicting y with a linear

regression at x. To see how the width of the 90% posterior intervals corresponded

to Dx, we plotted them together in Figure 5(a). Although the linear model may

not be strictly appropriate, the plot is suggestive: all points with large Dx values

have wider uncertainty bounds.

A very useful tool for gauging the actual effect of predictors using BART is

the partial dependence plot developed by Friedman (2001). Suppose the vector

of predictors x can be subdivided into two subgroups: the predictors of interest,

xs, and the complement xc = x \ xs. A prediction f(x) can then be written as

f(xs, xc). To estimate the effect of xs on the prediction, Friedman suggests the

partial dependence function

fs(xs) =
1

n

n∑

i=1

f(xs, xic), (21)

where xic is the ith observation of xc in the data. Note that (xs, xic) will generally

not be one of the observed data points. Using BART it is straightforward to then

estimate and even obtain uncertainty bounds for fs(xs). A draw of f ∗s (xs) from

the induced BART posterior on fs(xs) is obtained by simply computing f ∗s (xs)

as a byproduct of each MCMC draw f ∗. The average of these MCMC f ∗s (xs)

draws then yields an estimate of fs(xs), and the 5% and 95% quantiles can be

used to obtain 90% posterior intervals for fs(xs).

We illustrate this by using BART to estimate the partial dependence of log

median house value at 10 values of the single variable crime. At each distinct

crime value xs, fs(xs) in (21) is defined using all n = 506 values of the other

12 predictors xc in the Boston Housing data. To draw values f ∗s (xs) from the

induced BART posterior on fs(xs) at each crime value, we simply applied the

calculation in (21) using every tenth MCMC BART draw of f ∗ above. With these
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Figure 5: Plots from a single run of BART on the full Boston dataset. (a) Comparison of

uncertainty bound widths with Cook’s distance measure. (b) Partial dependence plot for

the effect of crime on the response (log median property value).

1000 draws, we obtained the partial dependence plot in Figure 5(b) which shows

the average estimates and 90% posterior intervals for fs(xs) at each of 10 values

of xs. Note that the vast majority of data values occur for crime < 5, causing the

intervals to widen as crime increases and the data become more sparse. At the

small crime values, the plot suggests that the variable does have the anticipated

affect on housing values.

Finally, we conclude with some remarks about the complexity of the fitted

functions that BART generated to describe this data. For the last iteration, we

recorded the distribution of tree sizes across the 200 trees. 7.5%, 61.5%, 26.5%

and 4.5% of the trees had 1, 2, 3 and ≥ 4 terminal nodes respectively. A two-

node tree indicates a main effect, since there is only a split on a single predictor.

Three-node trees involving two variables indicate two-way interactions, etc. The

prevalence of trees with three or fewer terminal nodes indicates that main effects

and low-level interactions dominate here.
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5 Discussion

The essential components of BART are the sum-of-trees model, the regularization

prior and the backfitting MCMC algorithm. Although each of these components

shares some common features of the Bayesian single tree approaches of CGM98

and Denison et al. (1998), their development for this framework requires sub-

stantially more than trivial extension. For example, in a sum-of-trees model,

each tree only accounts for part of the overall fit. Thus to limit the creation

of overly dominant terms, the regularization prior is calibrated to “weaken” the

component trees by shrinking heavily towards a simple fit. This shrinkage is both

in terms of the tree size (small trees are weaker learners), and in terms of the

fitted values at the terminal nodes. For this purpose, we have chosen a prior that

adapts the amount of shrinkage so that as the number of trees m in the model

increases, the fitted values of each tree will be shrunk more. This choice helps

prevent overfitting when m is large. In simulation and real-data experiments

(Section 4), we have demonstrated that excellent predictive performance can still

be obtained even using a very large number of trees.

To facilitate prior specification, the prior parameters themselves are expressed

in terms of understandable quantities, enabling sensible selection of their values

for particular data sets. Prior information about the amount of residual variation,

the level of interaction involved within trees, and the anticipated number of im-

portant variables can be used to choose prior parameters. We have also indicated

how these numbers could, in turn, be ballparked from simple summaries of the

data such as the sample variance of Y , or of the residuals from a linear regression

model. Even if these parameters are viewed from a non-Bayesian perspective as

tuning parameters to be selected by cross-validation, these recommendations can

provide sensible starting values and ranges for the search.

To sample from the complex and high dimensional posterior on the space of

sum-of-trees models, our backfitting MCMC algorithm iteratively samples the
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trees, the associated terminal node parameters, and residual variance σ2, making

use of several analytic simplifications of the posterior. We find that the algorithm

converges quickly to a good solution, meaning that a point estimate competitive

with other ensemble methods is almost immediately available. For full inference,

additional iterations are necessary.

CGM98 and Chipman et al. (2002) (CGM02) developed Bayesian methods for

tree based models. BART dominates this previous work in several key dimen-

sions. To begin with, BART gives better out-of-sample predictions. For example,

Bayesian treed regression models predicted well but not as well as neural nets

on the Boston Housing data, see CGM02. In contrast, BART significantly out-

performed all competitors on the same data, and in simulations. Factors that

may contribute to BART’s predictive success include: the sum-of-tree model

shrinks towards additive models but adaptively fits interactions of various levels,

an effective MCMC stochastic search, model averaged posterior estimates, and

regularization of the fit via prior hyperparameter choice. BART’s backfitting

MCMC exhibits faster burn-in, vastly better mixing and is easy to use. The

CGM98 and CGM02 MCMC implementations require a number of restarts of

the chain and various associated ad hoc choices. In contrast, one long run of

BART MCMC works very well as evidenced by the stability of repeated runs

with different seeds and different settings. Thus, the BART posterior sample can

be used more reliably for estimation by the posterior mean or for construction of

posterior intervals. In addition, the results seem to be remarkably robust to the

prior specification. In particular, the BART default setting allows for excellent

performance with an automatic specification.

Although we have framed BART as a stand alone procedure, it can also be

incorporated into larger statistical models, for example, by adding other com-

ponents such as linear terms or linear random effects. One can also extend the
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sum-of-trees model to a multivariate framework such as

Yi = fi(xi) + εi, (ε1, ε2, . . . , εp) ∼ N(0, Σ), (22)

where each fi is a sum of trees and Σ is a p dimensional covariance matrix. If all

the xi are the same, we have a generalization of multivariate regression. If the

xi are different we have a generalization of Zellner’s SUR model (Zellner 1962).

The modularity of the BART MCMC algorithm in Section 3 easily allows for

such incorporations and extensions. Implementation of linear terms or random

effects in a BART model would only require a simple additional MCMC step to

draw the associated parameters. The multivariate version of BART (22) is easily

fit by drawing each f ∗i given {f ∗j }j 6=i and Σ, and then drawing Σ given all the f ∗i .

Finally, to facilitate its use, we have provided free open-source software im-

plementing BART as a stand-alone package or with an interface to R, along with

full documentation and examples. It is available at http://gsbwww.uchicago.

edu/fac/robert.mcculloch/research. The R library is available at http:

//cran.r-project.org/.
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