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Abstract

Bayesian additive regression trees (BART) provides a flexible approach to

fitting a variety of regression models while avoiding strong parametric as-

sumptions. The sum-of-trees model is embedded in a Bayesian inferential

framework to support uncertainty quantification and provide a principled

approach to regularization through prior specification. This article presents

the basic approach and discusses further development of the original al-

gorithm that support a variety of data structures and assumptions. We de-

scribe augmentations of the prior specification to accommodate higher di-

mensional data and smoother functions. Recent theoretical developments

provide justifications for the performance observed in simulations and other

settings. Use of BART in causal inference provides an additional avenue for

extensions and applications. We discuss software options as well as chal-

lenges and future directions.
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1. INTRODUCTION

The conditional expectation, or regression, model is one of the most fundamental inferential

and predictive models in statistics. The regression of response Y on a vector of predictor vari-

ables, X, expressed formally as E[Y | X], allows us to understand how the mean of that response

variable varies with levels of the predictors. The most popular regression model is the linear re-

gression, which assumes a linear additive structure to relate the predictors to the response, as in

E[Y | X] = X⊤β as well as an additive error term such as Y = E[Y | X] + ǫ, with ǫ = N (0, σ 2 ).

This incarnation of the regression model is computationally straightforward but makes restrictive

parametric assumptions regarding linearity and additivity.

Bayesian additive regression trees (BART), an approach introduced by Chipman et al. (2007,

2010), provides an alternative to some of these stringent parametric assumptions. It combines

the flexibility of a machine learning algorithm with the formality of likelihood-based inference

to create a powerful inferential tool. This article motivates and describes the BART approach to

regression modeling and the computation required for posterior inference.We discuss extensions

to the original BART formulation to new models for a variety of data types and modifications

to the BART prior to accommodate high-dimensions and smooth regression functions. Recent

theoretical results about BART models are described next. Finally, we discuss at length the appli-

cation of BART-based methods to causal inference problems. We conclude with a description of

available software as well as some challenges and future directions.

2. BAYESIAN ADDITIVE REGRESSION TREES

This section motivates and describes the BART framework.

2.1. Model

For a p-dimensional vector of predictors xi and a responseYi (1 ≤ i ≤ n) the BARTmodel posits

Yi = f (xi ) + ǫi, ǫi
iid∼ N (0, σ 2 ), 1.

where f is represented as the sum of many regression trees. We first briefly describe regression

trees. Throughout, we use capital letters to refer to the random variables and lowercase letters to

refer to realizations of those variables.

2.1.1. Regression tree. The building block of BART is the regression tree. A regression tree

creates a partition of the covariate space into subgroups; the tree fit will be the same for each

observation in a given subgroup.Consider the example tree in Figure 1, which uses two predictors

to split the data into subgroups in the hth tree of an ensemble. Panel a displays a set of splitting

rules of the form xi j < C attached to interior decisions nodes (boxes) of the tree. Observations are

assigned to subgroups by dropping them down the tree, sending them left or right according to

the decision rule at each interior node. The bottom circles represent the leaves (also known as

terminal nodes) of the tree, one for each subgroup, and each with an associated parameter that is

the regression tree’s prediction. In traditional applications of regression trees this would simply

be the average of the observations in each subgroup, so we refer to these parameters loosely as

means.

Figure 1b displays the prediction function corresponding to the tree in the panel a—in general,

a tree and parameter pair (Th,Mh ) parameterizes a step function g that is constant over elements
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Figure 1

(a) An example binary tree, with internal nodes labeled by their splitting rules and leaf nodes labeled with the
corresponding parameters μht . (b) The corresponding partition of the sample space and the step function
g(x,Th,Mh ).

of the partition:

g(x,Th,Mh ) = μht if x ∈ Aht (for 1 ≤ t ≤ bh). 2.

Here Mh = (μh1,μh2, . . . μhbh )
′ denotes the collection of parameters for the bh leaves of the hth

tree, Th.

Traditional applications of regression trees grow the tree greedily to minimize some loss func-

tion. BART takes a different approach based on averaging the output of many small trees, similar

to boosting.

2.1.2. Sum-of-trees model. The original formulation of the BART sum-of-trees model by

Chipman et al. (2007, 2010) starts with an overall fit, f , defined as the sum of the fit of many

trees:

f (x) = g(x,T1,M1 ) + g(x,T2,M2 ) + · · · + g(x,Tm,Mm ).

Here each (Th,Mh ) corresponds to a single subtree model. Finally, the data are assumed to arise

from a model with additive Gaussian errors: Y = f (x) + ǫ where ǫ ∼ N (0, σ 2 ).

To avoid overfitting, the trees are encouraged to be small and the parameters are shrunk toward

zero, so that each tree-parameter pair constitutes a weak learner.Wemotivate the intuition behind

this approach by a thought experiment. Imagine fitting the first weak-learning tree, g(x;T1,M1),

in some reasonable fashion. Since T1 is constrained to be small, and the elements ofM1 are shrunk

toward zero, this first tree explains a small amount of the variation in y but leaves much unex-

plained. Next, imagine subtracting this fit from the observed response Y to form residuals and

fitting the next tree to these residuals. This next tree would explain more of the variation in Y.

This process could be performed a total of m times, and each time more of the variation would be

explained. We could then consider revisiting earlier trees and updating their fit using the partial

residuals based on later trees, iterating to a stable value of some loss function. In the end, we would

compose many simple functions like Figure 1 to obtain a very complicated regression function.

The challenge with this basic approach is avoiding overfitting. For BART, the solution to this

problem lies in the prior distribution (as described in the next subsection) and in posterior sam-

pling and averaging rather than loss minimization (as described in Section 2.3).
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2.2. Regularization Prior

Similar to boosting, BART allows the number of subtree models, m, to be large. Boosting algo-

rithms can avoid overfitting through tuning parameters. First, the researcher chooses a maximum

depth for each tree to constrain each to be a weak learner. Second, the fit from each tree is typi-

cally multiplied by small number to shrink the sum of the fit across trees toward zero. This tuning

parameter is generally chosen via cross-validation.

BART provides a related but alternative strategy to avoid overfitting that lets the data speak

more naturally. A regularization prior constrains the size and fit of each (Th,Mh ) tree so that each

tree contributes only a small part to the overall fit. First we factor the joint distribution of the

trees, the means in the leaves, and the residual standard deviation.

p((T1,M1 ), (T2,M2 ), . . . , (Tm,Mm ), σ )

= p(T1,T2, . . . ,Tm )p(M1,M2, . . . ,Mm | T1,T2, . . . ,Tm )p(σ )

Then these distributions are simplified by a series of independence assumptions.

p(T1,T2, . . . ,Tm )=�hp(Th ),

p(M1,M2, . . . ,Mm | T1,T2, . . . ,Tm )=�hp(Mh | Th ),

p(Mh | Th )=�t p(μht | Th ).

The prior on the trees strongly favors weak learners: trees that are small with leaf parameters

that are close to zero. Each tree is assigned an independent prior (as in Chipman et al. 1998). The

probability that a node at depth d splits (is not terminal) is given by

α(1 + d )−β , α ∈ (0, 1), β ∈ [0,∞). 3.

The default prior specification proposed by Chipman et al. (2007, 2010) is α = 0.95 and β = 2.

This specification strongly favors small trees; for example, it sets the probability of a tree with 1,

2, 3, 4, and over 5 terminal nodes at 0.05, 0.55, 0.28, 0.09, and 0.03, respectively.

In the default specification, the distribution on the splitting variable in each nonterminal node

is uniform over the available choices.Given a variable to use in the split rule, the prior distribution

on the location for the split is uniform over the range of the selected covariate (or a uniform over

a grid of quantiles). For binary or ordinal variables, the cut-points can be defined by the collection

of all possible values. Unordered categorical variables with q levels are generally expanded into q

binary indicators of these levels.

To further avoid overfitting, Chipman et al. (2007, 2010) carefully calibrate the priors over

the leaf parameters μht . They begin by scaling the response variable to lie between −0.5 and 0.5,

so that we can expect f (x) to lie within this range with high probability. Assume that the prior

distribution for each mean follows a normal distribution

μht
iid∼ N (0, σ 2

μ ) where σμ = 0.5/(k
√
m), 4.

(recall that m is the number of trees). Each tree will contribute one μht to the overall fit, so the

regression function f at any covariate value x is normally distributed with mean zero and standard

deviation equal to 0.5/k. Then k is the number of prior standard deviations between 0 and 0.5—

for instance, if we use the default prior parameterization of Chipman et al. (2007, 2010) of k = 2,

we assign a 95% prior probability that E[Y | x] lies between −0.5 and 0.5.
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The prior on σ 2 from Equation 1 is specified as an inverse-χ2 and is also calibrated to the

observed data. The choice of the degrees of freedom for this distribution can be motivated by

the intuition that if the true model for E[Y | x] is not linear and additive, a linear regression fit to

the data will likely overstate the estimate of the residual standard deviation. Therefore the degrees

of freedom for the prior can be specified to represent the probability that the BART residual

standard deviation,σ , is less than the estimated residual standard deviation from a linear regression

fit to the data, σ̂OLS. The default prior sets the degrees of freedom such that this probability,

Pr(σ < σ̂OLS ), equals 0.9. [Chipman et al. (2007, 2010) evaluated this choice in a cross-validation

exercise and found it to perform well in practice.]

2.3. Computation

Posterior inference in BART models is typically carried out via Markov chain Monte Carlo

(MCMC) by adapting tools developed for single-tree models and embedding them into

Metropolis-within-Gibbs samplers.

2.3.1. Markov chain Monte Carlo for single-tree models. Chipman et al. (1998), Denison

et al. (1998), and Wu et al. (2007) discuss posterior sampling for single-tree classification and

regression models. These samplers take a similar blocked Metropolis-Hastings approach to pos-

terior exploration.Roughly, the tree and its parameters are sampled by composition—first drawing

from the marginal posterior distribution of the tree T (marginalizing out the leaf parameters) and

then sampling the leaf parameters from their full conditional distribution.

We now describe the simplest version of the sampler. To update the current value of the tree,

first propose a new treeT ∗ by sampling from some proposal distribution q(T ∗; T ) (which depends

on the current tree T ). Compute the Metropolis ratio

a :=
L(T ∗ )p(T ∗ )

L(T )p(T )

q(T ; T ∗ )

q(T ∗; T )
, 5.

where L(T ) =
∫ ∏

i p(Yi | xi,T ,M ) p(M | T ) dM is the marginal likelihood of tree T . The pro-

posed tree is accepted—that is,T is set to T ∗—with probability min(a, 1). Otherwise T remains at

its current value. Finally, the parametersM are updated by sampling them from their full condi-

tional distribution p(M | T ,D) which is typically available in closed form; here,D = {(Yi, xi ) : i =
1, . . . , n} denotes the data.This blocked update avoids delicate issues related to dimension changes

inM and also increases the overall efficiency of the algorithm. This basic sampler is readily em-

bedded into larger Metropolis-within-Gibbs MCMC algorithms for more complicated models

with additional parameters (which may be conditioned upon above and subsequently updated via

additional Gibbs/Metropolis–Hastings steps).

Following Chipman et al. (2007, 2010), most BART implementations use proposal distribu-

tions that randomly perturb the current tree by splitting a current leaf into two new leaves (grow),

collapsing adjacent leaves back into a single leaf (prune), reassigning the decision rule attached to

an interior node (change), or swapping the decision rules assigned to two interior nodes (swap).

Pratola et al. (2014) noted that the grow and prune moves are particularly computationally effi-

cient and often yield acceptable MCMC mixing for estimates of the regression function. Addi-

tional proposal distributions for MCMC with trees are presented by Wu et al. (2007) and Pratola

(2016).

2.3.2. Bayesian backfitting andMarkov chain Monte Carlo for BARTmodels. Chipman &

McCulloch (2010) introduced an efficient MCMC algorithm for fitting the model in Equation 1.
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Each (Th,Mh ) pair is updated in turn, conditioning on σ and the remaining trees and their asso-

ciated parameters. Formally, their approach constitutes a proper partially collapsed Metropolis-

within-Gibbs MCMC sampler, but it is easier to understand as an instance of Bayesian backfitting

(Hastie & Tibshirani 2000), as it was originally presented by Chipman et al. (2007, 2010).

Each MCMC update of the pair (Th,Mh ) begins with a clever reparameterization of the

response. Simple algebraic manipulations reveal that the likelihood function only depends on

(Th,Mh ) through the partial residuals

Rhi = Yi −
m∑

l 
=h

g(xi,Tl ,Ml ), i = 1, . . . , n. 6.

Since the MCMC update for (Th,Mh ) conditions on all the remaining trees and associated param-

eters, the model can be (temporarily) reparameterized in terms of these partial residuals. Under

the model in Equation 1,

Rhi ∼ N (g(xi,Th,Mh ), σ
2 ). 7.

So, to update (Th,Mh ), we can immediately adopt any of the single-tree MCMC updates, treating

the partial residuals as the data.

The backfitting analogy breaks down in more complicated models, including many of those

in Section 3. However, we can still maintain the efficiency gains of block updates for (Th,Mh ) in

these models, provided we can compute the integrated likelihood function

L(Th;T(h),M(h), θ ) =
∫ (

n∏

i=1

p(Yi | Th,Mh,T(h),M(h), θ )

)
p(Mh | Th, θ )dMh,

where θ is a vector of other parameters (such as σ above).Here,T(h) ≡ {Tl : 1 ≤ l ≤ m, l 
= h} is the
set of all the trees except Th, andM(h) is defined similarly. Performing this integral in closed form

essentially requires that the prior distribution forMh be conditionally conjugate to the likelihood

function, but there is no need to derive some sort of partial residual with a convenient distribution

under the model. Algorithm 1 summarizes one MCMC update of (Th,Mh ) when this integral is

available; the MCMC sampler described by Chipman et al. (2007, 2010) is a special case.

Algorithm 1 (One step of a generalized Bayesian backfitting algorithm for updating

a single BART function parameterized by T = {Th} andM = {Mh} (1 ≤ h ≤ m)).

Input: Data D and current values for T ,M, and other parameters/latent variables (in θ )

Output: New values of T ,M

for 1 ≤ h ≤ m

1. Propose T ∗
h ∼ q(T ∗

h ; Th ).

2. Set a ← L(T ∗
h ; T(h) ,M(h) ,θ )p(T

∗
h )

L(Th; T(h) ,M(h) ,θ )p(Th )

q(Th;T ∗
h )

q(T ∗
h

;Th )
.

3. Set Th ← T ∗
h with probability min(1, a).

4. SampleMh ∼ p(Mh | Th,T(h),M(h), θ ,D).

end for

Most BART implementations are based on the (generalized) Bayesian backfitting sampler using

proposals similar to those described for single tree models.While this algorithm is often effective,
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it does not always mix well, and recent work suggests that it can be important to run many chains

(as many as 10 or 12) to encourage proper mixing (Carnegie 2019). To further improve mixing

we can take advantage of the small trees encouraged by the BART prior. With small trees it be-

comes feasible to propose entirely new trees rather than perturbing existing trees in the ensemble.

Lakshminarayanan et al. (2015) proposed a particle Gibbs sampler using sequential Monte Carlo

to generate a proposal. He et al. (2019) introduced a proposal distribution in which the candidate

tree is built recursively, stochastically choosing variables to split on and cut-points to split at using

integrated likelihoods at each step.This biases the sampler towardmore promising tree structures.

In both cases these proposal distributions exhibit better mixing when the regression function is

complex or the covariate dimension is large.

2.4. Early Empirical Evidence

Chipman et al. (2007) compared the performance of BART relative to several machine learning

competitors that were commonly used at that time in the context of 42 different real data sets

[these are a subset of those used by Kim et al. (2007), as explained by Chipman et al. (2007, 2010)].

Specifically they created 840 test/training splits in these data sets and compared the performance

of boosting, neural nets, and random forests relative to BARTwith the default parameterization of

the prior and BARTwith hyperparameters chosen by cross-validation.This exercise demonstrated

similar performance between BART and the other popular machine learning algorithms when

the default prior specification was used for BART (for the other methods, the tuning parameters

were chosen via cross-validation). However, BART performance was noticeably better than the

rest when cross-validation was used to choose the BART hyperparameters for the regularization

prior.We discuss additional evidence of performance below in the context of different inferential

goals or extensions of the original model.

3. DEVELOPMENTS IN BART MODELING

In addition to continuous data with Gaussian errors, Chipman et al. (2007, 2010) extended the

BART model in Equation 1 to binary classification by taking

Pr(Yi = 1 | xi ) = 	( f (xi )),

where 	 is the standard normal cumulative distribution function (suppressing an optional fixed

offset used to shrink probabilities to a value other than 0.5). Chipman et al. (2007, 2010) used the

data augmentation of Albert & Chib (1993) to adapt their Bayesian backfitting sampler:

Y ∗
i = f (xi ) + ǫi, ǫi

iid∼ N (0, 1),

Yi = 1(Y ∗
i > 0). 8.

The probit formulation for binary classification yields a simple MCMC algorithm: First, latent

normal response variables Y ∗
i are imputed from their truncated normal full conditional distri-

butions. Conditional on these imputed values, the Bayesian backfitting MCMC algorithm can

proceed as usual. Performance with this specification has sometimes been less impressive than

with continuous responses (Carnegie et al. 2015) but can be improved by using cross-validation

to choose hyperparameters rather than using the default prior specification (Dorie et al. 2019).
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More recent papers have applied BART prior distributions to functions in a wide variety of

different regression models for categorical, count, heteroskedastic, zero-inflated,multivariate, and

right-censored survival responses. The following subsections discuss these options.

3.1. Models with Gamma-Poisson Likelihoods

Using the generalized Bayesian backfitting algorithm, functions with BART priors can be em-

bedded in complicated non-Gaussian models. These models all have a common form (possibly

after augmenting with Gamma-distributed latent variables) that is amenable to computing the

integrated likelihood. Here, we describe the range of models that can be fit using this general

approach.

3.1.1. Binary and multinomial logistic regression. Murray (2017) introduced a multinomial

logistic model using BART. For a categorical response with 1 ≤ j ≤ c categories, suppose that the

probability of observing category j at a given covariate level xi is

π j (xi ) =
exp

[∑m
h=1 g(x,T

( j)
h ,M

( j)
h )

]

∑c
l=1 exp

[∑m
h=1 g(x,T

(l )
h ,M (l )

h )
] . 9.

Here, T ( j) and M ( j) are (potentially) distinct sets of trees and parameters for each outcome cat-

egory. This model immediately implies that each log-odds function has a BART prior with 2m

trees: The log-odds in favor of j′ over j are given by

log

(
π j′ (xi )

π j (xi )

)
=

[
m∑

h=1

g(x,T
( j′ )
h ,M

( j′ )
h )

]
−

[
m∑

h=1

g(x,T
( j)
h ,M

( j)
h )

]
10.

for any j 
= j′. This is useful for prior calibration (discussed in Section 3.1.5).

As written, this model is unidentified.However, proper priors for the trees and parameters yield

valid inference over identified quantities like probabilities in Equation 9 or log-odds functions

in Equation 10. Working in the unidentified space avoids asymmetries in the prior arising from

the arbitrary choice of the reference category; Murray (2017) provided further discussion in the

context of BART models.

3.1.2. Poisson and negative binomial regression, with or without covariate-dependent

zero inflation. Murray (2017) also described a range of count regression models in this class.

For count responses, we begin with Poisson or negative binomial models with mean function

E(Yi | xi ) = μ0i f (xi ). Here μ0i is a fixed offset such as an adjustment for unit-level exposure, or we

may take μi0 ≡ μ0 to center the prior for the regression function at μ0. We induce a log-linear

model for the mean function by assuming

log[ f (x)] =
m∑

h=1

g(x,Th,Mh ).

The Poisson model is completely specified by the mean function. The negative binomial regres-

sion model has an additional parameter κ, which controls the degree of overdispersion relative to
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the Poisson. Under the negative binomial model,

Var(Yi | xi ) = E(Yi | xi )
(
1 +

E(Yi | xi )
κ

)
.

As κ → ∞, the negative binomial model converges to the Poisson. The probability mass function

under the Poisson model is

pP(y | x, f ) =
exp[−μ0i f (x)][μ0i f (x)]y

y!
.

For the negative binomial model we have

pNB(y | x, f , κ ) =
Ŵ(κ + y)

Ŵ(κ )y!

(
κ

κ + μ0i f (xi )

)κ (
μ0i f (xi )

κ + μ0i f (xi )

)yi

.

Many data sets exhibit an excess of zero values. Zero-inflated variants of Poisson or nega-

tive binomial regression models accommodate the extra zeros by adding a point mass component

(Lambert 1992, Greene 1994):

Pr(Yi = y | xi ) =

{
(1 − ω(xi )) + ω(xi )p(y | xi, f , κ ) if y = 0

ω(xi )p(y | xi, f , κ ) if y > 0,

where p(y | xi, f , κ ) is the probability mass function of a Poisson or negative binomial with mean

μ0i f (x) and dispersion κ, and 1 − ω(xi ) is the probability that a zero is due to the point mass

component. In log-linear BART variants of zero-inflated models, f is assigned a log-linear prior

and ω(xi ) is assigned a logistic BART prior similar to Equation 9 (Murray 2017).

3.1.3. Heteroscedastic regression for continuous responses. We can allow both the mean

and variance functions to depend on covariates (maintaining Gaussian errors):

yi = f (xi ) + σ (xi )ǫi, ǫi
iid∼ N (0, σ 2

0 ), 11.

where σ 2(·) is given a log-linear BART prior,

log[σ 2(x)] =
m∑

h=1

g(x,T σ
h ,M

σ
h ).

This model is described in detail by Pratola et al. (2017) (see alsoMurray 2017, Linero et al. 2018).

Note that this model implies a BART prior on the precision and standard deviation functions

as well. Non-Gaussian but independent and identically distributed (iid) errors are considered in

George et al. (2018).

3.1.4. Gamma/inverse gamma regression. Linero et al. (2018) described Gamma regres-

sion models for strictly positive data. For example, consider a gamma response model Yi ∼
Gam(α,α f (Xi )) with density

p(y | x) =
αα f (x)α

Ŵ(α)
yα−1e−α f (x)y.
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In this case, themean isE(Yi | Xi = x) = f (x)−1, and log f (x) =
∑m

h=1 g(x,Th,Mh ) is given a BART

prior. Linero et al. (2018) also considered hurdle versions of these models, where the response

includes a spike at zero and a continuous component bounded away from zero, with the covariate-

dependent probability of an observed zero modeled via probit BART.

3.1.5. The common Gamma-Poisson likelihood and prior specification for non-Gaussian

models. All the models in this subsection share a common Gamma-Poisson likelihood form,

possibly after augmentation with latent variables. Considering the likelihood as a function of a

single regression function f at a time, we can write the density of Y = (Y1, . . . ,Yn ) as

p(y | x, θ ) =
n∏

i=1

wi f (xi )
ui exp[vi f (xi )], 12.

where θ collects additional model parameters (like the overdispersion parameter κ in negative bi-

nomial models, or the variance offset σ 2
0 in the heteroskedastic regression model), latent variables

from data augmentation (such as the Gamma latent variables introduced in the multinomial logis-

tic and zero-inflated/negative binomial regression models), and other regression functions (such

as the mean regression function in the heteroscedastic regression model, when we consider the

likelihood in terms of the variance function). Here wi, ui, and vi are some functions of θ and yi
that will vary depending on the model under consideration.

Many, but not all, models in the exponential family are amenable to this treatment. For ex-

ample, the logistic regression model described in Section 3.1.1 does not have a likelihood of this

form (even imposing identifying restrictions).Neither do the zero-inflated count regression mod-

els. However, Murray (2017) described simple data augmentation schemes based on untruncated

latent Gamma random variables that cause the augmented likelihood to factor into terms of the

form in Equation 12.

In order to analytically compute the necessary integrated likelihoods in the generalized

Bayesian backfitting Algorithm 1, the prior on (exponentiated) leaf parameters λht = exp(μht )

should be conjugate to a Gamma-Poisson likelihood of form similar to Equation 12 [see Murray

(2017) for a detailed derivation]. Gamma priors on λht are a natural choice but induce slightly

asymmetric priors on μht . Murray (2017) proposed an equal probability mixture of Gamma and

inverse Gamma distributions to maintain conjugacy and yield a symmetric prior distribution on

μht . When the number of trees m is large, the difference is likely immaterial.

Whatever the prior on leaf parameters, sensibly calibrating it is important for obtaining good

performance. A reasonable strategy is to choose parameters such that E(μht ) = 0 and Var(μht ) =
σ 2

μ/m, so that E(log[ f (x)]) = 0 (which can then be shifted using offsets) and Var(log[ f (x)]) =
σ 2

μ, so σμ can be calibrated using the data and/or prior expectations about the plausible range

of the regression function as in the original BART model. This can be accomplished by moment

matching; for the special case of Gamma priors,Murray (2017) showed that the correct parameters

are well-approximated by a shape parameter of m/σ 2
μ + 0.5 and rate parameter of m/σ 2

μ.

3.2. Shared Versus Distinct Trees and Multivariate Leaf Parameters

An interesting issue arises in themodels above that includemultiple BART functions.For example,

as described above, themultinomial regressionmodel includesm trees for each outcome category.1

When the number of categories is large or the outcomes are rare, pooling information across

categories by sharing their tree structure can be beneficial. A similar issue arises in heteroscedastic

1Murray (2017) suggested using either 200 total trees or 100 trees per category by default.
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regression models, where the variance function is just intrinsically more difficult to learn than the

mean function. Linero et al. (2018) demonstrate the benefit of using a common set of trees in

a hurdle and heteroscedastic regression model applied to data from the Medicare Expenditure

Panel Survey.

In general, of course, it is entirely possible that the mean and variance function involve distinct

sets of covariates or are structurally dissimilar. Murray (2017) gives an example where a substan-

tively important interaction is present in the excess zero probability of a zero-inflated negative

binomial regression model but absent in the mean function. A shared tree model may shrink away

this effect, or induce noise in the simpler regression function, or require more trees to accom-

modate this structure. While the correct answer about whether to share trees is probably data

set–specific, these trade-offs deserve further investigation.

We can construe shared tree models as regular BART priors with a vector of leaf parameters—

that is, replacing μht with a vector (μht1,μht2, . . . ,μht p), where the jth regression function is pa-

rameterized by μht j . Including dependence between the elements of this vector provides another

interesting avenue for shrinkage. A similar approach was taken by Starling et al. (2019), who re-

placed the scalar leaf parameters with functional parameters drawn from a Gaussian process prior.

3.3. Survival Models

The BART framework can also be applied to survival data for both semiparametric and nonpara-

metric models. Bonato et al. (2010) use a very general latent-variable strategy for constructing

BART models based on essentially any parametric model. For example, consider a generic hier-

archical model

Yi ∼ p(y | ωi ),

ωi ∼N( f (xi ), σ
2 ),

where, as above, f (x) is a sum of trees. Because the random effect ωi separates the response Yi
from f (xi ), regardless of the parametric form of p(y | ω), the Bayesian backfitting algorithm based

on the nonparametric regression model can be applied to the model ωi = N ( f (xi ), σ 2 ). Bonato

et al. (2010) consider a Weibull regression model

p(y | ω, τ ) = τyτ−1 exp
{
ω − exp(ω)yτ

}

and a log-normal model with log(Yi ) ∼ N (ωi, σ 2 ). The random effects ωi can then be sampled

from their full conditionals using a Metropolis–Hastings update. This approach model can also

be applied to the proportional hazards model

λ(y, x) = λ0(y) exp( f (x))

using a gamma process prior for the cumulative hazard function �0(y) =
∫ y

0 λ0(s) ds. This is es-

sentially a Bayesian version of Cox’s proportional hazards model (Cox 1972, Ibrahim et al. 2005)

in which the usual linear effect x⊤β is replaced with the sum of trees f (x).

A fully nonparametric survival model is given by Sparapani et al. (2016) by assuming a discrete-

time survival model in which the observed failure and censoring times t1, . . . , tn are assumed

to account for the entire support of the response. They then introduce a sequence of binary

indicators Zi j such that Zi j = 1 if Yi = t j , and Zi j = 0 otherwise. This essentially converts the
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survival problem into a series of binary regression problems: We model Yi j ∼
Bernoulli(	( f (t j , xi ))) and fit the model using the BART probit regression model (Equation 8).

4. DEVELOPMENTS IN THE BART PRIOR SPECIFICATION

The default Chipman et al. (2007, 2010) BART prior specification described in Section 2.2 has

been found to perform well across a wide variety of settings. In some circumstances, however, the

default prior specification either performs suboptimally or breaks down entirely. Fortunately, with

only modest modifications, we can recover the performance of BART.We describe two settings in

which modifications to the BART prior can be used to greatly improve the performance of BART.

The first is under the high-dimensional, ultrasparse, needles-in-a-haystack regime. The second is

the setting where the underlying regression function f (x) is, in reality, a highly smooth function.

4.1. BART in High Dimensions

When the number of covariates, p, is of modest size relative to the number of samples, BART

models are quite resilient to the inclusion of spurious predictors. When there are a large number

of potentially irrelevant predictors that we wish to control for, however, BART can break down.

To make the point, consider the needles-in-a-haystack regime in which X is of dimension p ≫ n.

Figure 2 illustrates this point using the Friedman test function

f (x) = 10 sin(πx1x2 ) + 20(x3 − 0.5)2 + 10x4 + 5x5,

which defines the mean structure even as the number of irrelevant predictors, p− 5, increases. In

each panel, a BART model is fit to a sample of N = 100 points from the model Yi = f (Xi ) + ǫi,

with Xis uniformly distributed on [0, 1] and ǫi ∼ N(0, 1), and performance is evaluated on a held-

out test set of 100 additional samples of Xi. The true values of f (Xi ) for the held-out points are

given on the x-axis, while the predictions from the model are given on the y-axis, with a credible

interval for the prediction given around each point. The predictions from a perfectly fit model

should lie on the 45◦ line.

If we fit the Chipman et al. (2007, 2010) BART model, we see that the bias increases substan-

tially as p increases; accordingly, the credible intervals widen as well.We can correct this undesir-

able behavior by making a simple modification to the prior. Recall that in Section 2.2 we stated

that, in sampling a tree from the prior, that the predictors were chosen uniformly at random from

the collection of possible predictors. We modify this assumption by introducing a vector of split-

ting proportions s = (s1, . . . , sp) such that the probability that predictor j is used to construct a

split is given by s j . Observe that if (say) s1 = 0 then we know that x1 will not appear in the model.

But we do not actually need s j = 0 to achieve this either; if, for example, s1 < 10−10, then x1 is still

extremely unlikely to appear in the model, even if the number of splits is large.

Motivated by this observation, Linero (2018) proposed a sparsity-inducing Dirichlet prior

s ∼ Dirichlet(ξ/p, . . . , ξ/p) to achieve a prior that encourages most components of s to be ex-

tremely small, effectively filtering out most of the variables in the model. The second row of

Figure 2, labeled DART (indicating Dirichlet additive regression trees), demonstrates this be-

havior. We see that, even for large values of p, the predictive performance of the model is quite

strong. A related approach is described by Rockova & van der Pas (2017). They propose a spike-

and-tree prior, which sets s j = δ j/
∑p

k=1 δk where (δ1, . . . , δp) is a vector of binary indicator vari-

ables. Equivalently, we select a group of D variables to be included in the model and set s j = D−1

if x j is included in the model. Liu et al. (2019) show that certain spike-and-tree priors have very
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Figure 2

Plot of the regression function f (x) = 10 sin(πx1x2 ) + 20(x3 − 0.5)2 + 10x4 + 5x5 against the predicted value from the model for 100
held-out observations, with 95% credible intervals around each prediction. BART denotes the Bayesian additive regression tree prior,
DART denotes the same model but using a Dirichlet prior on the splitting proportions, μ denotes the true value of f (x), μ̂ denotes the
predicted value of f (x), and P denotes the number of predictors in total. Error variance is σ 2 = 1. Figure adapted with permission from
Linero (2018).

attractive variable selection properties. A drawback of these models is that they are not easy to

implement in practice.

4.2. Soft BART Models

A problem with procedures such as classification and regression trees (CART) for growing de-

cision trees is that the resulting estimates of f (x) are step functions, which are not well suited

to approximating continuous or differentiable functions. The BART model obtains some level of

smoothing from the fact that the estimate f̂ (x) is obtained by averaging over the posterior dis-

tribution; depending on the prior used for the tree structures, the estimate of f̂ (x) may even be

continuous. Nevertheless, if the underlying f (x) is differentiable, then the performance of BART

will be poor relative to alternatives that can take advantage of this additional smoothness. This

point is illustrated in Figure 3. The BART estimates resemble continuous, nowhere differen-

tiable, functions. The right panels show estimates using a soft version of BART, described next.

A regression tree can be represented as g(x;T ,M ) =
∑

t φt (x)μt where φt (x) = 1 or 0 accord-

ing to whether x is associated to leaf t or not. We can express φt (x) in terms of the rules r of the
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Figure 3

Posterior means (solid lines) against underlying true regression function (dashed lines). The left panels display
the estimate of f (x) when BART is used to estimate (top) f (x) = 10x and (bottom) f (x) = 10 sin(2πx). Error
variance is σ 2 = 22. The right panels show estimates using a soft version of BART. Adapted with permission
from Linero & Yang (2018).

tree as

φt (x) =
∏

r∈A(t )

I(x j(r) ≤ Cr )
Lrt I(x j(r) > Cr )

1−Lrt , 13.

where A(t ) is the collection of nodes that are on the path from the root to leaf t, j(r) denotes

the predictor used to construct the split for the rule r, and Lrt = 1 if the path from the root to t

goes left at r (Lrt = 0 otherwise). One way to induce smoothness in decision trees is to regard the

decisions made at each node as random rather than deterministic. That is, rather than going left

if x j ≤ Cr and right otherwise, we instead go right with probability ψ (x j;Cr , τ ) where ψ (·;C, τ ) is
some cumulative distribution function. For example, we might set

ψ (x;C, τ ) = (1 + e−(x−C)/τ )−1,

so that values of x that are much smaller than C will have a high probability of going left, while

values of x that are much larger than C will have a high probability of going right. Note that the

original BARTmodel is recovered in the limit as τ → 0. Using this idea, we obtain a new formula
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Figure 4

(a) A tree with cut-points Cr = 0.5, 0.25, and 0.75 on the predictor x1. (b) The weights φt (x) defined in Equation 14 using
τ−1 ∈ {10, 40, 160, 2, 560}, such that we predict

∑
t μtφt (x). We see that, as τ → 0, the weight functions converge to step functions,

which corresponds to the usual decision tree. Adapted with permission from Linero & Yang (2018).

for leaf node weights:

φt (x) =
∏

r∈A(t )

[1 − ψ (x j(r);Cr , τ )]Lrt ψ (x j(r);Cr , τ )1−Lrt . 14.

For example, consider the tree in Figure 4, which for simplicity depends only on a univariate pre-

dictor x. The weight φ2(x) is obtained as the probability of going left at the root [1 − ψ (x; 0.5, τ )]
and then right [ψ (x; 0.25, τ )].

Linero & Yang (2018) refer to trees constructed using these randomized decisions as soft trees

and the BART variant using soft decision trees as SBART.Whereas Equation 13 is not a smooth

function of x, Equation 14 is. As illustrated in Figure 4, the parameter τ controls how sharp the

decisions in the tree are, with the limiting case τ → 0 corresponding to the usual BART model.

Although it is a seemingly minor modification, Linero & Yang (2018) showed that using soft

decision trees carries substantial theoretical and practical benefits. The primary drawback behind

this modification is the need to compute φt (x) for every leaf t, rather than just at a single leaf node

like BART; consequently, fitting SBART is somewhat slower than fitting BART.

5. DEVELOPMENTS IN BART THEORY

A recent stream of work has attempted to characterize the theoretical properties of using BART

ensembles. The ultimate goal is to identify the properties that explain the excellent practical per-

formance of BART. Several articles have made encouraging progress toward this goal.

Formally, we regard the sum of trees f as having a prior distribution f ∼ �, and we let �Dn (·)
denote the posterior distribution given data Dn. We suppose there is a true underlying f0 that

we wish to recover, although we do not assume that f0 is itself a sum-of-trees. For simplicity, we
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consider the nonparametric regression problem Yi ∼ N ( f0(Xi ), σ 2 ) with the covariate Xi ∈ [0, 1]p

assumed random.

We can quantify the theoretical performance of a Bayesian method through its posterior con-

centration rate. We say that the posterior concentration rate is (at least) ǫn if �Dn (‖ f − f0‖n >

Kǫn ) → 0 in probability, for some constantK > 0,where ‖ f − f0‖2n = n−1
∑n

i=1( f (Xi ) − f0(Xi ))2.

Different rates are possible depending on what assumptions one makes about f0. For exam-

ple, the optimal rate of convergence when f0 is a twice-differentiable function of p variables is

ǫn = n−2/(4+p). For a generic α-times continuously differentiable function f0 of p variables, the op-

timal rate of contraction is n−α/(2α+p). More precisely, this is the rate attainable for f0 ∈ Cα ([0, 1]p)

of α-Hölder smooth functions (see, for example, Van Der Vaart & Wellner 1996).

Rockova & van der Pas (2017) and Linero & Yang (2018) considered the properties of BART

priors in this framework and showed that certain BART priors are capable of attaining the rate

n−α/(2α+p)(log n)c for α ≤ 1, while the SBART procedure described in Section 4.2 attains this rate

for all α > 0. Up to the logarithmic term, BART and SBART attain the best rate possible without

prior knowledge of α. We note here the theoretical benefit of smoothness—if f0(x) is just twice

differentiable, then the convergence rate of BART can be improved via smoothing (Linero&Yang

2018).

BART attaining a near-optimal convergence rate for a generic p-dimensional function does

not explain the superior practical performance of BART when p is large. Note that, due to the

curse of dimensionality, the rate degrades exponentially in p. By imposing more structure on f0,

however, we can improve the rate of convergence. Using the sparsity-inducing priors described in

Section 4.1, certain BART priors are also capable of filtering out irrelevant predictors. In partic-

ular, if only D ≪ p of the predictors are relevant, we instead obtain the rate

n−α/(2α+D)(log n)c + (D log p/n)1/2.

For large p, this is substantially faster than the naive rate n−α/(2α+p) (Linero & Yang 2018).

Sparsity alone still falls short of explaining the benefits of BART. Intuitively, each shallow tree

in the sum
∑m

h=1 g(x,Th,Mh ) can be thought of as a low-order interaction.Hence,we expect BART

to perform particularly well when the true f0(x) also consists primarily of low-order interactions.

To formalize this, we assume that f0(x) is composed additively of V interactions

f0(x) =
V∑

v=1

f0v (x),

where f0v depends only onDv ≪ p of the predictors. For example, in a generalized additive model

(Hastie &Tibshirani 1987), we would haveDv = 1 for all v. Linero & Yang (2018) and Rockova &

van der Pas (2017) also study this setting and establish that BART and SBART attain close to the

optimal rate of convergence for additive functions. For example, Linero & Yang (2018) establishes

a rate of convergence of

ǫn =
V∑

v=1

n−αv/(2αv+Dv )(log n)c + (n−1Dv log p)
1/2

for SBART, without prior knowledge of the smoothness levels αv , number of terms V, or interac-

tion orders Dv . This is close to the optimal rate for this problem given by Yang & Tokdar (2015).

A gap remains between the particular conditions and priors (which we have omitted) needed to
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obtain these convergence rates and the form BART typically uses in practice.The most oppressive

condition, required by both Rockova & van der Pas (2017) and Linero & Yang (2018) to obtain

adaption to additive functions, is the use of a prior on the number of trees m. In practice, T is

often set to a default value of m = 200, or else is selected by cross-validation. It is likely that se-

lecting m by cross-validation also recovers these optimal convergence rates, but this has not been

established theoretically.

6. BART FOR CAUSAL INFERENCE

One of the most popular applications of BART has been in the field of causal inference. Causal

inference requires comparisons between an observed outcome and a counterfactual outcome that

would have manifested under a different treatment regime.2 Therefore estimating causal effects

requires making inferences about data (counterfactual outcomes) that the researcher does not

get to directly observe. In the absence of a randomized experiment, this requires both strong

assumptions about the ability of our covariates to capture information about these counterfactuals

andmodeling strategies that are reliable across a variety of assumptions about how those outcomes

relate to the covariates. BART can be useful for the latter goal.

6.1. Causal Inference Assumptions for Average Treatment Effects

We can formalize the idea of counterfactual outcomes though the potential outcome framework

(Rubin 1978). In particular we denote the potential outcome under treatment asY (Z = 1) ≡ Y (1)

and the potential outcome under control asY (Z = 0) ≡ Y (0), where Z denotes a binary treatment

assignment variable. Estimation of average treatment effects such as E(Y (1) −Y (0)) is straight-

forward given a pristine randomized experiment that yields data satisfying Y (0),Y (1) ⊥ Z. How-

ever most causal research questions are not afforded this luxury and rely instead on observational

data where the treatment groups are likely to have different distributions for their potential out-

comes. In other words, in observational studies, it is likely that observations exposed to treatment

or control differ with regard to pretreatment characteristics that also affect their outcomes (con-

founders). We can make progress if these differences are captured in observed covariates and the

distribution of these covariates is sufficiently similar across groups.

Expressed formally, identifying treatment effects requires two primary assumptions. The most

important assumption, which is also the most difficult to satisfy, is the ignorability assumption,

formalized as Y (0),Y (1) ⊥ Z | x. In essence, this assumption says that if we had two groups of

people with identical values on all observed covariates, x, and then we assume that they had these

groups had the same chance of receiving the treatment.Equivalently for this problem, these groups

have the same distribution of potential outcomes.

Typically researchers invoke an assumption even stronger than ignorability referred to as

strong ignorability. This combines the standard ignorability assumption with an assumption of

overlap or common support. Formally this requires that 0 < Pr(Z = 1 | x) < 1. If this fails to hold,

then we may have neighborhoods of the confounder space where there are treated units but no

control units or vice versa. That is, empirical counterfactuals (Hill & Su 2013) may not exist for all

observations. Since most causal inference methods rely on some sort of modeling of the response

surface, failure to satisfy this assumption forces stronger reliance on the parametric assumptions

of that model.

2While this is the dominant perspective among methodological researchers in causal inference we note that
dissenting opinions exist (for example Dawid 2000).
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Figure 5

(a) Simulated data (points) and true response surface curves for treated (red ) and control (blue) conditions. The red upper curve and
points that follow it correspond to the treatment condition; the blue lower curve and points that follow it correspond to the control
condition. BART inference for each treated observation is displayed as a 95% posterior interval for predicted Y (1) and Y (0). (b) Solid
curve represents the expected treatment effect as it varies with X . BART inference is displayed as 95% posterior intervals (vertical lines)
for the treatment effect for each treated unit. Abbreviation: BART, Bayesian additive regression trees.

6.2. BART and Parametric Assumptions

Consider estimation of a conditional average treatment effect (CATE), defined as

τ (x) ≡ E[Y (1) −Y (0) | x]. 15.

CATEs may be interesting in their own right, perhaps as estimates of individual treatment ef-

fects, or averaged against different distributions of x to estimate various population, sample, or

subgroup average treatment effects. Taken together, the assumptions in the previous subsection

imply that E[Y (z) | x] = E[Y | Z = z, x]. In this case we can express the CATE in terms of the

observed (rather than potential) outcomes: τ (x) = E[Y | Z = 1, x] − E[Y | Z = 0, x]. These con-

ditional expectations can be estimated using regression models—including BART—that model

E[Y | Z = z, x] ≡ f (x, z) directly.

Taking this response surface approach to causal modeling demands a flexible model for f .

Imagine trying to estimate an average treatment effect for all or some subset of the observations

in Figure 5a [this example is taken fromHill (2011)]. For this exercise we assume that ignorability

holds given a scalar pretest score, denoted by x. This Figure displays E[Y (0) | x] and E[Y (1) | x]
as well as observed data points for treated and control observations.

In Figure 5a, the upper red curve represents E[Y (1) | x] and the lower blue one E[Y (0) | x].
The red circles close to the upper curve are the treated and the blue squares close to the lower

curve are the untreated (ignore the circled points for now). Since there is only one confounding

covariate, pretest, the difference between the treatment and control curves in the response surface

at any level of pretest represents the treatment effect for observations with that value of the pretest.
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This figure reveals several important features of the data. First, the treatment and control sur-

faces are nonlinear and not parallel. As a consequence, the response surface may be tricky to esti-

mate well with run-of-the-mill statistical models, particularly if there are many covariates in the

set of confounders. Second, the overlap across the two groups with respect to the only confounder,

pretest, is not strong. That means that we do not have any data to inform Y (0) for observations

with high pretest scores or to inform Y (1) for observations with low pretest scores.

Here, the true sample average treatment effect for the treated (SATT) computed among the

n0 treated units is

1

n0

∑

i:Zi=1

Yi(1) −Yi(0) = 12.2.

A linear regression fit (without an interaction term) to the data yields a substantial underestimate,

7.1 (standard error .62), of the SATT. Even with an interaction included, this fit performs poorly

due to the nonlinearity.

In contrast, Figure 5a displays the BART fit to the response surface. Each vertical line seg-

ment corresponds to posterior uncertainty intervals for either E[Yi(0) | xi] or E[Yi(1) | xi] for each
treated observation. The fit is quite good until we try to predict E[Yi(0) | xi] beyond the support

of the data.

Figure 5b shows the results of using the BART fit to estimate τ (xi ) = E[Yi(1) −Yi(0) | xi] for
the treated units. The vertical lines display 95% posterior intervals of τ (xi ) for each treated ob-

servation. The curve is the true treatment effect τ (x) as it varies with levels of the pretest x. The

SATT can be estimated using the posterior distribution of 1
n0

∑
i:Zi=1 τ (xi ), readily computed from

MCMC output. The BART-based estimate of the SATT is 9.5 with 95% posterior interval (7.7,

11.8). We obtain a somewhat better estimate and wider uncertainty intervals than the linear re-

gression, but we still underestimate the true SATT because of the failure of overlap in this data

set. We return to this issue in Section 6.4.

In principle, any method that flexibly estimates f could be used to model these conditional

expectations, though the strong performance of BART in the absence of cross-validation is a useful

feature (Chipman et al. 2007, 2010). Hill (2011) was the first paper to describe the advantages of

using BART for causal inference estimation over common alternatives in the causal inference

literature. Hill et al. (2011), Green & Kern (2012), Kern et al. (2016), Hahn et al. (2017), and

Wendling et al. (2018) also support the usefulness of BART in this setting. The results from the

2016 Causal Inference Data Analysis Challenge (Dorie et al. 2019) provides further support.3

6.3. Reparameterizations and Regularization-Induced Confounding
in Causal Models

Hahn et al. (2017) proposed somemodifications to the BARTmodel to tailor it to causal modeling.

Hill (2011) originally used BART to estimate causal effects by appending the treatment indicator

z as a covariate and fitting the model

yi = f (xi, zi ) + ǫi. 16.

Substantial empirical evidence points to the effectiveness of this approach. However, it has some

limitations. This model does not allow for direct regularization of treatment effects, the prior

3The 2017, 2018, and 2019 incarnations of these challenges also provide support for the superior performance
of BART for causal inference. The 2017 results are available as a technical report (Hahn et al. 2019); the 2018
and 2019 results are currently unpublished but were announced at the Atlantic Causal Inference Conferences
with which they were associated.
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distribution on τ (x) is induced only indirectly, and it is impossible to adjust the prior distribu-

tion over heterogeneous treatment effects independently of the prognostic or direct effects of

covariates on the response. Furthermore, every covariate in the model is necessarily a potential

confounder and effect modifier. In practice, in an observational study, we may have a large set

of potential confounders to control for and a more limited set of variables that are substantively

interesting effect modifiers. Similarly, with data from a randomized controlled trial, we may want

to include many variables as controls to reduce residual variation while including a more limited

set of variables driving treatment effect heterogeneity.

Hahn et al. (2017) propose parameterizing the model directly in terms of the heterogeneous

treatment effects:

yi = μ(xi ) + τ (x̃i )zi + ǫi 17.

[i.e., setting f (xi, zi ) = μ(xi ) + τ (x̃i )zi in Equation 16], where x̃i could be the same as x or include

only a subset of the variables in x. This model is exactly as expressive as Equation 16 but includes

the treatment effect function τ (x̃i ) as a distinct parameter that can be regularized independently

of μ with an independent prior distribution. Hahn et al. (2017) model both μ and τ with BART,

tweaking the prior distribution on trees to apply stronger shrinkage to the treatment effect func-

tion τ by default. Zeldow et al. (2018) propose a model parameterized similarly to Equation 17,

replacing τ with a parametric (linear) function of the treatment and effect modifiers while the rest

of the confounders enter through the BART function μ(xi ).

Finally, as a general suggestion in settings with moderate to strong confounding, Hahn et al.

(2017) also suggest including an estimate of the propensity score among the covariates in μ (or

in f if using the original BART formulation, a modification they term propensity score BART).

They suggest this specifically as a solution to regularization-induced confounding, a phenomenon

where estimates of average treatment effects and CATEs estimated using response surface meth-

ods can exhibit substantial bias when regularization is applied during estimation—even when all

the confounders are measured and included.

6.4. Extensions for Overlap

One vulnerability of BART identified by Hill (2011) and captured in Figure 5 is that there is

nothing to prevent the model from extrapolating over areas of the covariate space where common

support does not exist. This problem is not unique to BART; it is shared by all causal modeling

strategies that do not first discard (or severely downweight) units in these areas. Such extrapola-

tions can lead to biased inferences because of the lack of information available to identify either

E[Y (0) | x] or E[Y (1) | x] in these regions. Hill & Su (2013) present a BART-based solution to

this problem that has advantages over propensity-score-based approaches.

To understand how it works, we return to Figure 5. Notice how the uncertainty bounds grow

much wider in the range where there is no overlap across treatment groups (pretest > 40). The

individual-specific treatment effect intervals nicely cover the true conditional treatment effects

until we start to leave this neighborhood. However, inference in this region is based on extrap-

olation. Hill & Su (2013) present two solutions that capitalize on the differential in posterior

standard deviations for the factual outcome [for example, Y (1) for a treated unit] relative to the

counterfactual outcome [Y (0) for that same treated unit]. Roughly speaking, if the latter is very

large relative to the former (as it is for many of the treated observations with pretest scores above

40 in the above plot), then the unit is considered to have insufficient overlap and is flagged for

discarding. The units flagged by the BART approach for discarding in the Figure 5a are circled;

the corresponding intervals in panel b are displayed with lines.
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This strategy has important advantages over propensity score matching approaches to iden-

tifying overlap. Propensity score strategies weight most strongly the variables most predictive of

the treatment variable. They ignore information about overlap embedded in the response vari-

able. However, it is only important to enforce overlap with respect to covariates that are asso-

ciated with both the treatment assignment and the outcome. Thus, propensity score strategies

may be too conservative and inappropriately discard or downweight observations (Hill & Su

2013).

In contrast, the BART approach naturally and coherently incorporates information in the out-

come. Hill & Su (2013) demonstrate this through an illustrative example as well as a simulation

study that compares the BART approaches to propensity-score based approaches across several

different assumptions about the data generating process.

6.5. Extensions for Violations of Ignorability

The primary motivation behind using BART (or propensity scores, etc.) for causal inference

is to avoid the bias incurred through misspecification of the response surface: E[Y (0) | x] and
E[Y (1) | x]. However, the more difficult assumption to relax (in the absence of a controlled ran-

domized or natural experiment) is the ignorability assumption, in large part because this assump-

tion is untestable.

One approach to dealing with the challenge is to evaluate the sensitivity of a study to potential

unmeasured confounding across a variety of assumptions about the potential strength of that con-

founding. This allows the researcher to understand what level of confounding would be needed

to alter their conclusions about the effect (magnitude, sign, or significance). Dorie et al. (2016)

propose a simulation-based, two-parameter sensitivity analysis strategy that uses BART to fit the

model for the response. This extends earlier work by Carnegie et al. (2016) that imposed a strict

parametric model. This extension results in an easily interpretable framework for evaluating the

impact of an unmeasured confounder that also limits the number of modeling assumptions. Dorie

et al. (2016) evaluated this approach in a large-scale simulation setting.

The usefulness of this sensitivity analysis approach was also demonstrated with high blood

pressure data taken from the third National Health and Nutrition Examination Survey. Figure 6

shows the results of the sensitivity analysis for the effect of taking beta blockers and diuretics on

systolic blood pressure. Each point on the plot represents a combination of sensitivity parame-

ters reflecting the strength of association between the unobserved confounder and the treatment

(x-axis) and the strength of the unobserved confounder and the outcome (y-axis). Contour lines

reflects the set of such points (combinations of sensitivity parameters) that would result in a par-

ticular (standardized) estimate of the treatment effect (displayed on the line).

While the linear sensitivity analysis and the semiparametric sensitivity analysis produce similar

naive treatment effect estimates (−0.16 and −0.15, respectively), the results of the latter are more

sensitive to unobserved confounding than the former. For instance, an unobserved confounder

with a coefficient in the treatment model of −0.5 and coefficient of 0.25 for the outcome model

(refer to the corresponding locations in Figure 6) would not change the statistical significance

of the results using the linear sensitivity analysis, while when using a semiparametric sensitivity

analysis, the naive treatment effect of −0.15 is already not statistically significant. A comparison

between the two panels in this Figure emphasizes that our inference about sensitivity of the treat-

ment effects to unmeasured confounding can substantively change in important ways, depending

on how the response surface is predicted. This method is currently available in the treatSens

package in R (Carnegie et al. 2015).
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Figure 6

Sensitivity analysis results for the effects of taking beta blocker and diuretics on systolic blood pressure using the data from the third
National Health and Nutrition Examination Survey. (a) The results of the linear sensitivity analysis in which the response surface is
fitted with the linear combination of covariates. (b) The results of the semiparametric sensitivity analysis. Gray contour lines each
correspond to a (standardized) estimates of the treatment effect corrected for bias indicated by the associated confounding levels shown
on the line. Abbreviation: U, unobserved confounder.

6.6. Summarizing Causal Models and Making Decisions

One of the benefits of using rich Bayesian models like BART for estimating causal effects is that

the posterior provides simultaneous inference on CATEs, sample average treatment effects, and

everything in between. Moreover, it provides a wealth of opportunities for summarizing the in-

formation in the posteriors.

A simple but useful summary is a waterfall plot of point estimates and uncertainty intervals from

posterior distributions for the CATE of every sample unit.Figure 5b displays a simple example of

this, with the x-axis ordered by the single covariate, pretest. In examples with multiple covariates,

this axis could be ordered instead by themagnitude of the treatment effect estimates (i.e., posterior

means) for each person.

Green & Kern (2012) present partial dependence plots (Friedman 2001), which are generated

by estimating and averaging counterfactual treatment effect functions, which in turn are gener-

ated by manipulating potential effect moderators (instead of counterfactual predictions as in typ-

ical partial dependence plots). This can help us understand how the CATEs vary with covariates,

although they are subject to similar limitations as partial dependence plots for predictive models

(see, for example, Goldstein et al. 2015, for extensive discussion of these).

Hahn et al. (2017) summarize the posterior distribution of τ (x) by fitting a CART tree to the

posterior mean of τ (x) and estimating the posterior distribution of subgroup average treatment
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Figure 7

Scatter plots of school-specific CATEs with respect to two potential modifiers (levels of fixed mind-set and achievement) instead reveals
unexpected effect modification by levels of urbanicity, as displayed by the different colors of the treatment effects. Abbreviations: ATE,
average treatment effect; CATE, conditional average treatment effect. Adapted with permission from Carnegie et al. (2019).

effects for each leaf, as well as the posterior distribution of the difference in subgroup average

treatment effects,which is oftenmore illuminating. Sivaganesan et al. (2017) present amore formal

decision-theoretic approach to subgroup finding that is in much the same spirit.

Carnegie et al. (2019) use a variety of graphical summaries to explore treatment effect mod-

ification in an education example. Figure 7 is reproduced from that paper and displays scatter

plots of school-specified CATEs plotted versus each of two key covariates—a measure of fixed

mind-set beliefs and a measure of school-level achievement—revealing a cluster of schools with

substantially different posterior treatment effects. A simple regression tree fit to these means with

the covariates as predictors revealed that the modifier creating this clustering was a measure of a

variable that the researchers were told reflects a characteristic referred to as “urbanicity” of the

schools. The observations in Figure 7 are colored according to the five levels of this variable.

Causal BARTmodels also yield full posterior distributions over the outcomes under treatment

and control. With these posterior distributions in hand, one can provide a formal decision theo-

retic treatment of optimal treatment selection for individuals by selecting the treatment rule that

maximizes individual posterior expected utility. Logan et al. (2017) use BART in this framework

to estimate individualized treatment rules.

6.7. Lessons Learned About BART from the 2016 Causal Inference
Data Analysis Challenge

In an attempt to better understand the landscape of causal inference methods currently avail-

able, a Kaggle-style causal inference data analysis challenge was launched in 2016 in conjunction

with that year’s Atlantic Causal Inference Conference. The competition was motivated by the fact

that although dozens of causal inference methods for observational studies are available to re-

searchers, typical methods papers compare the relative efficacy of just two or three methods at a

time. Moreover, these papers commonly are written by researchers who, however well meaning,
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are interested in showcasing their own method. Thus, it is unclear that such comparisons are en-

tirely fair to the alternative methods considered. The goal of the competition was to facilitate a

broader comparison of methods since each submissions was intended to show the method in its

best light. A detailed description of the challenge motivation, development, and results is provided

by Dorie et al. (2019).

In the primary competition track (black-box methods), 14 (distinct) black-box methods were

submitted and the performance of these was evaluated across 7,700 data sets that varied the level

of difficulty in estimating causal effects by altering features of the data such as overlap, balance,

nonlinearity of the assignment mechanism and response surface, level of treatment effect hetero-

geneity, and rank of the confounder space (relative to that of the full set of covariates). These

methods covered a wide variety of causal inference techniques, such as propensity score match-

ing, inverse probability weighting, and regression adjustment. The four winners of the black-box

competition were: (a) BART, (b) super learner with a targeted minimum loss-based estimation ad-

justment (TMLE) (Polley et al. 2016), (c) calCause (a proprietary IBM ensemble algorithm), and

(d ) h2O, an ensemble approach available in R (LeDell 2016). All of these flexibly fit the response

surface. All of the non-BART approaches relied on ensembles of methods.

While many of the automated algorithms submitted to this competition performed well with

regard to root mean squared error and bias, performance varied more widely with regard to in-

terval coverage and length. All of the submitted methods were somewhat disappointing in this

regard.

This poor performance, combined with curiosity about the potential effectiveness of combi-

nations of features of the top performing methods, led the organizers to create a suite of new

methods. Changes included adding a TMLE adjustment to BART, using symmetric (rather than

percentile) intervals to summarize BART posterior distributions, relying on cross-validation to

choose BART hyperparameters, including the propensity score as a an inverse probability of treat-

ment weight or as a covariate in the BART model for the response surface [as proposed by Hahn

et al. (2017)], and running multiple MCMC chains for BART. In addition, the super learner team

took advantage of a one-month extension to the submission period after initial results were re-

ported to resubmit their algorithm with BART included in the ensemble library. All of these aug-

mentations improved performance. These features have been included in the bartCause software

(discussed in the next section).

7. SOFTWARE

There are now a large number of R packages that make the application of BART models rou-

tine. Fast implementations of BART for regression and classification are given by the dbarts and

bartMachine packages.The dbarts is a drop-in extension of the original BayesTree package and

is being actively developed. Some dbarts features of note are that (a) it uses C++ with efficient

data structures and thus is much faster than BayesTree, (b) it is natively parallelized within and

across chains, (c) the sampler state can be updated/can embed in larger model, (d ) it incorporates

parallel cross-validation as an option, (e) weights can be included, ( f ) it can use model fit to predict

for another data set, and (g) the default prior has been adjusted for better fit with binary response

variables. Based on recent work by Carnegie (2019) demonstrating problems with mixing across

chains, the default number of chains is now ten. dbarts is available on the Comprehensive R

Archive Network (CRAN) (https://cran.r-project.org/).

Another option is the BART package, which (in addition to regression and classification) fits

the survival model of Sparapani et al. (2016) and allows for the use of sparsity-inducing Dirichlet

priors for high-dimensional problems described in Section 4.1. BART is also available on CRAN.
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The SBART model described in Section 4.2 can be fit with the SoftBart package, which is

currently available on GitHub (https://github.com/), and handles regression and classification

problems.

Several packages implement the causal inference methodology described above.The bcf pack-

age (available on CRAN) implements the causal forest methodology described in Section 6.3. The

treatSens package (available on CRAN) implements the sensitivity analysis strategy of Dorie

et al. (2016) to understand the possible influence of inferences to unmeasured confounding. Fi-

nally, the bartCause package (available onGitHub) implements the BARTcausalmodel described

by Hill (2011) and overlap checks described by Hill & Su (2013), as well as a range of augmenta-

tions described in Section 6.7 that were developed based on lessons learned from the 2016 Causal

Inference Challenge (doubly robust strategies, TMLE, multiple chains). bartCause now imple-

ments the causal forest methodology implemented in bcf as well.

8. CHALLENGES AND FUTURE DIRECTIONS

BART has been extended in a variety of directions since it was first introduced a little more than

a decade ago.We are aware of researchers pursuing avenues to make BART useful in a still wider

range of settings.These include extensions to accommodate multilevel data with covariates at each

levels, time-varying data, and multiple outcomes.

Posterior computation has improved since the initial implementation of BART, but room for

further improvement remains. Most BART implementations can handle hundreds of covariates

and tens of thousands of observations, although mixing of the MCMC algorithm tends to degrade

as either the sample size or dimension gets larger. Scaling to larger data sets (both in terms of

the number of observations and the number of predictors) would naturally be quite useful. In

all likelihood this will be more than an engineering exercise, and more efficient algorithms for

posterior inference will be necessary.

While recent theoretical developments have been encouraging, the theory surrounding BART

lags considerably behind related Bayesian nonparametric approaches such as Gaussian process

regression. Goals for BART in this direction include establishing conditions under which the

posterior credible intervals have frequentist validity and establishing semiparametric Bernstein–

von Mises theorems (Bickel & Kleijn 2012) for the regression function and the causal effects that

BART is often used to estimate.

9. CONCLUSION

BART capitalizes on the strengths of both machine learning and Bayesian inference. It uses the

nonparametric sum-of-trees model to allow for flexible fit of the mean structure of a regression.

But it also reaps the benefits of a Bayesian inferential framework with regard to uncertainty quan-

tification and regularization through data-calibrated priors.

While initially the usefulness of the algorithm was limited to continuous and binary outcomes,

the structure has been generalized since its introduction by Chipman et al. (2007, 2010) to accom-

modate a far wider variety of data structures. Advances in the prior specification provide further

generalization to support high dimensions and better approximate smoother (continuous or dif-

ferentiable) functions. Applications and extensions in the field of causal inference are promising

and currently constitute a vibrant research area.

Theoretical developments provide justification for the strong performance evidenced in a

growing body of simulation-based evaluations of its efficacy. A range of software options make

these tools available to a wide range of researchers.We anticipate a good deal more development

of theory, methods, and software in the decade to come.
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