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Abstract

Background: Although null hypothesis significance testing (NHST) is the agreed gold standard in medical decision
making and the most widespread inferential framework used in medical research, it has several drawbacks. Bayesian
methods can complement or even replace frequentist NHST, but these methods have been underutilised mainly due
to a lack of easy-to-use software. JASP is an open-source software for common operating systems, which has recently
been developed to make Bayesian inference more accessible to researchers, including the most common tests, an
intuitive graphical user interface and publication-ready output plots. This article provides a non-technical introduction
to Bayesian hypothesis testing in JASP by comparing traditional tests and statistical methods with their Bayesian
counterparts.

Results: The comparison shows the strengths and limitations of JASP for frequentist NHST and Bayesian inference.
Specifically, Bayesian hypothesis testing via Bayes factors can complement and even replace NHST in most situations
in JASP. While p-values can only reject the null hypothesis, the Bayes factor can state evidence for both the null and
the alternative hypothesis, making confirmation of hypotheses possible. Also, effect sizes can be precisely estimated in
the Bayesian paradigm via JASP.

Conclusions: Bayesian inference has not been widely used by now due to the dearth of accessible software. Medical
decision making can be complemented by Bayesian hypothesis testing in JASP, providing richer information than
single p-values and thus strengthening the credibility of an analysis. Through an easy point-and-click interface
researchers used to other graphical statistical packages like SPSS can seemlessly transition to JASP and benefit from
the listed advantages with only few limitations.
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Background
Null hypothesis significance testing (NHST) remains

the dominating inferential approach in medical research

[1–4]. The results of medical research therefore stand

on the shoulders of the frequentist statistical philoso-

phy, which roots back to the early days of Fisher [5] and

Neyman-Pearson [6]. The centerpiece of frequentist infer-

ence is a test statistic T, which can be computed from

the raw data, and which is known to have a specific dis-

tribution F under the null hypothesis H0. If the observed

value of the test statistic passes a given threshold, which

is located in the tails of F, then the null hypothesis H0 is

rejected, because observing such a value would be quite

unplausible ifH0 were true. The well known p-value states

exactly the probability of observing a result as extreme

as the one observed or even more extreme when the null

hypothesis H0 were true.

While the agreed standard in medical decision making,

in the last few years more and more problems inherent in

NHST have been revealed [7–9]. The misuse and abuse

of p-values in particular in medical research have been

criticised in countless venues, and the official American

Statistical Association (ASA) statement in 2016 and 2019

by Wasserstein and Lazar [10] and Wasserstein et al. [11]

show that most problems of NHST have not been solved

by now. The ongoing use of NHST also indicates that the

p-value as a measure of significance is still widely accepted

despite its drawbacks and stays resilient to the repeated

criticism [12]. As the limitations of p-values have been dis-

cussed widely, only three important problems are listed

here, which are especially harmful in medical decision

making and research: (1) it is known that p-values are

prone to overestimating effects [13]; (2) they inevitably

state effects if none exist with a fixed probability [14]; (3)

they are prone to false interpretation by researchers [15].

This problem is in particular problematic in clinical decision

makingwithpossibly devastating consequences for patients

and the progress of medical science, see Ioannidis [9, 16].

Especially point (2) is crucial, asnotonly formedical science

but in much more generality, McElreath and Smaldino

[17] stress that “the most important factors in improving

the reliability of research are the rate of false positives”.

To solve the above problems inherent to NHST,

researchers from the University of Amsterdam have devel-

oped the open-source statistical software JASP [18],

which is an acronym for Jeffreys Awesome Statistics Pack-

age, referring to the pioneer of Bayesian statistics who

invented the Bayes factor, Sir Harold Jeffreys [19]. JASP is

available for all common operating systems and provides

both frequentist NHST as well as Bayesian tests andmeth-

ods. Installation is straightforward and there is rich doc-

umentation in form of tutorials and videos on the project

website. A strength of JASP is its spreadsheet design sim-

ilar to SPSS, making it possible to conduct state of the art

analyses with a single click instead of programming com-

plicated routines in statistical programming languages like

R [20]. Also, to foster reproducible medical research, JASP

offers seamless integration with the Open Science Frame-

work [21] as well as shareable JASP-files which include

all data and analyses, to promote collaboration and trans-

parency. Next to this, JASP also benefits from rich anno-

tations and information to enhance understanding of the

applied procedures. To understand how JASP tackles the

problems of NHST it is important to understand the dif-

ferences of the proposed Bayesian methods, which are

reviewed therefore briefly in the following.

NHST with its p-values is located in the frequentist

school of statistics and was created to control the type I

error rate in the long run, that is to limit the number of

false positives in a large succession of repeatable experi-

ments or studies. The Bayesian school of thought was not

designed with type I error control in mind and proceeds

via allocating relative evidence to a hypothesisH given the

data x [22]. In the Bayesian paradigm, available prior infor-

mation is combined with the model likelihood to obtain

the posterior distribution of the parameters of interest

[23]. Bayesian hypothesis testing is then often done via the

Bayes factor BF10, the predictive updating factor which

measures the change in relative beliefs about hypothesis

H1 relative to hypothesis H0 given the data x:

p (x|H1)

p (x|H0)
︸ ︷︷ ︸

BF10(x)

=
P (H1|x)
P (H0|x)
︸ ︷︷ ︸

Posterior odds

·
P (H0)

P (H1)
︸ ︷︷ ︸

Prior odds

(1)

The Bayes factor BF10 therefore quantifies the evidence

by indicating how much more likely the observed data are

under the rival models. Note that the Bayes factor criti-

cally depends on the prior distributions assigned to the

parameters in each of the models, as the parameter values

determine themodels’ predictions. It can also be rewritten

as the ratio of posterior and prior odds. Bayesian param-

eter estimation for an unknown parameter θ in general is

achieved by considering the posterior distribution p(θ |x)
of the parameter after observing the data x:

p (θ |x) =
p (x|θ) · p (θ)

p(x)
(2)

where p (x|θ) is the likelihood function, p(θ) the prior,

and in most realistic settings, the marginal likelihood

p(x) in the denumerator cannot be calculated in closed

form or is prohibitively effortful to compute. Therefore,

Markov-Chain-Monte-Carlo (MCMC) algorithms have

been developed in the last decades, alleviating the require-

ment of computing p(x) from practitioners, because most

MCMC algorithms only need a function proportional to

the posterior to work, so that

p(θ |x) ∝ p(x|θ) · p(θ) (3)
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suffices. Equation (2) also implies, that specifying the

prior p(θ) and likelihood p(x|θ) allows researchers to

numerically obtain the posterior via MCMC.

In both the hypothesis testing as well as parameter esti-

mation perspective in Bayesian inference, the role of the

prior is crucial. The prior distribution quantifies the prior

information about any parameters in the model before

the data x are acutally observed. In contrast, the classical

frequentist philosophy proceeds without any prior infor-

mation, obtaining the same results no matter if there is

much evidence in form of a large number of previous

studies which all yielded identical results, or no evidence

due to no available prior studies at all. While this may

bring a subjective flavour with it, selecting an appropri-

ate prior is a topic of huge relevance in Bayesian literature,

as extreme priors can shrink the posterior estimates of

a parameter or the obtained Bayes factor into a desired

direction specified by the prior’s shape. Luckily, there is

an unspoken agreement to use uninformative pri ors in

most cases [22, 24], especially when no prior nforma-

tion is available (for example in form of results of pilot

studies). This makes it easy to use a suitable prior in

most standard tests and methods. For example, in medi-

cal research most often the effect size d of Cohen [25] is

important. The effect size is used to quantify the effect of

a treatment, or the effect between a treatment and con-

trol group, and a priori it is reasonable to assume that

very large effects |d| > 1 are less probable than small

effects |d| ≤ 1, as often in biomedical research small

to medium effect sizes (0.2 ≤ |d| < 0.5) are observed.

Common choices of prior distributions for the effect

size are the normal distribution [26], t-distribution and

the Cauchy distribution [27]. A common approach also

includes to use uniform priors or priors with extremely

large scale parameters like N (0, 500) if no information

is available for the parameter of interest [24]. It should

be noted that this approach is problematic and should

be avoided, as it can be shown that the a priori assump-

tion then often degenerates to statements which believe

much more probability mass in the tails as in the center

of the distribution, essentially making the prior distribu-

tional assumption questionable. For example, aN (0, 500)

prior will tend to put much more probability mass on

unreasonable parameter values than reasonable ones. To

be more specific, this prior implies that one believes a pri-

ori that P(|θ | < 250) < P(|θ | > 250), which is easily

shown by calculating P(−250 < θ < 250) ≈ 0.38. Even

worse, pioneers of Bayesian inference like Jeffreys [27]

already noticed that such unrealistic overdispersed priors

can lead to situations in which the Bayes factor always sig-

nals evidence for the null hypothesis H0, even if the data

x are indeed generated by the alternative H1. To prevent

such problems, often slightly informative or weakly infor-

mative priors are used, which span a realistic range of

values of the parameter a priori, but are not completely

flat [28].

If a reasonable weakly informative prior is selected, typ-

ically Bayes factors between 1/100 and 100 are observed

in medical research, and the reporting guidelines for JASP

are therefore built on this scale [29]. While there are

multiple scales for translating a Bayes factor into a qual-

itative statement about the evidence it resembles [27, 29,

30], these proposals do not differ drastically. One bene-

fit is that by reporting the actual Bayes factor instead of

“moderate evidence” or “strong evidence” researchers can

quantify the evidence based on the reported Bayes factor

themselves if desired. The oldest classification or label-

ing scheme goes back to Jeffreys [27], and the reporting

guidelines of JASP are an adoption of the original Jeffreys

scale. The JASP guidelines seperate between “anecdotal”,

“moderate”, “strong”, “very strong” and “extreme” relative

evidence for a hypothesis based on the size of the Bayes

factor obtained.

Figure 1 shows the classification scheme proposed for

reporting results obtained in JASP. While the scale cho-

sen is arbitrary, the scheme offers a good starting point for

judging the relative evidence for the alternative hypothesis

compared to the null hypothesis in light of the observed

data x. Note that not all circumstances and research con-

texts require the same scaling: The obtained Bayes factor

depends on the prior selected, so that heavily unrealis-

tic hypothesis should require much larger Bayes factors

to confirm the a priori unprobable statement in contrast

to highly likely hypotheses, which have been confirmed in

multiple previous studies already. A research hypothesis

with low prior probability will therefore require a con-

vincing Bayes factor such that the evidence overcomes the

initial skepticism and the model attains considerable pos-

terior credibility. Therefore, it is important to consider

the prior odds carefully when performing such analyses

instead of using isolated Bayes factors only. Nevertheless,

the scheme provides a consensus which researchers can

use for orientation when reporting results. In particular, it

is a good starting point when a weakly informative prior

is used. Such priors are prebuilt into JASP and can be

selected there.

A more severe problem than their dependence on the

prior with Bayes factors is that no matter what scale is

used, they only state relative evidence instead of abso-

lute evidence. This means that even a BF10 = 100 which

states extreme evidence for the alternative over the null

hypothesis only indicates that a change in beliefs about the

hypotheses under consideration is necessitated strongly.

But even then both hypotheses can be bad descriptions

of the real underlying situation. Therefore, it is recom-

mended always to report the labels with the prefix rel-

ative, that is in the above case one can state extreme

evidence for H1 relative to H0, but not for H1 relative
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Fig. 1 JASP classification scheme for the Bayes factor BF10

to any other set of or even possibly the set of all other

hypotheses.

When the prior modelling is considered and it is kept

in mind that the BF only states relative evidence for a

hypothesis, the BF can safely be used to gauge the relative

evidence for a hypothesis.

Implementation
JASP is written in C++, using the Qt toolkit [18]. The

analyses themselves are written in either R or C++ to

improve the speed of especially simulation based meth-

ods. The display layer where the data in form of tables

are rendered is written in javascript, and is built on top of

jQuery UI and webkit.

Regarding the future, JASP is currently supported by

some long-term grants that fund the JASP team of

software developers, academics and students. The team

includes four main software developers as well as several

core members which have tenured positions. Of particu-

lar importance is the psychological methods group at the

University of Amsterdam, which is dedicated to long-term

support for JASP [31].

Documentation andmanual
Documentation of the implemented methods can be

found at the official JASP site. There are both written tuto-

rials as well as video tutorials which show how to conduct

a given method. Also, the JASP reporting guidelines [29]

offer an overview about some of the most important tests

and methods available and how to report the results of an

analysis. The official JASP site offers both a textbook for

students [32] and additionally there is a textbook for learn-

ing statistics with JASP [33]. Both of these are free. Also,

there are additional teaching materials and a user forum

to support exchange and development of new features.

A particular nice feature of JASP is also given by the fact

that it comes with an included data library, consisting of

over 50 data sets to illustrate a variety of analyses.

In summary, documentation is rich and provides easy

access and a flat learning curve.

Flexibility and ease-of-use
JASP includes both frequentist and Bayesian methods,

and this is a particular strength, as few competitors

include that broad a palette of Bayesian methods. Next to

this flexibility, ease-of-use is supported through an inter-

active live view where analyses are done in real time and

added to the results page. The interface of JASP is intu-

itive and consists of a data page displaying the loaded data

set, an analysis page, displaying the analyses which are car-

ried out on this data set, and a results page which includes

all results and plots of conducted analyses. In summary

therefore, JASP can be judged as flexible and easy to use.

Results
To study the behaviour of Bayesianmethods in JASP, three

typical questions arising in medical research are used as a

scaffold: (1) Domultiple groups (treatment one, treatment

two, control) differ on an observed metric variable, and if

so, how large is the effect size? (2) Do two groups (treat-

ment, control) differ on an observed metric variable, and

if so, how large is the effect size between both groups? (3)

How strong is the relationship between two observed vari-

ables? Usually NHST in form of (1) an analysis of variance
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(ANOVA) (2) a two-sample t-test and (3) linear regression

is used to reject a null hypothesis via the use of p-values.

In the following, it will be shown that Bayesian versions

of these statistical procedures can complement NHST and

provide even richer information for medical research. A

compelling feature here is, that both traditional as well

as the Bayesian methods can be run in JASP seamlessly

[31, 34], so that methodological flexibility is guaranteed.

The aim of this paper therefore is to demonstrate JASPs

ability to conduct Bayesian hypothesis testing and param-

eter estimation as well as NHST via p-values. However,

it is argued that richer information is provided when

shifting to the Bayesian paradigm, which allows for bet-

ter medical decision making as currently often done in

form of frequentist rejection of null hypotheses. Also, the

results show that the transition can be achieved almost

effortlessly, as JASP offers an intuitive graphical inter-

face and covers a wide range of Bayesian counterparts

for commonly used tests in medical research with rich

annotations for correct interpretation and reporting.

Three datasets from medical research were used to

compare NHST and Bayesian tests in JASP. The first

dataset is fromMoore and colleagues [35], and consists of

800 patients which had to exercise for six minutes. After

the six minutes, heart rates of male and female patients

were recorded. All patients were additionally classified as

runners or sedentary patients, depending on averaging

more than 15 miles per week or not, so that in total two

treatment and two control groups of size 200 each sum up

to 800 participants.

Question (1) – analysis of variance (ANOVA)

A typical question in medical research would be to find

out any differences between gender as well as both groups,

leading to the setting of a 2× 2 between subjects ANOVA

for the variables group and gender.More specifically, a test

for the hypothesis of differing average heart rates between

gender and control and treatment groups is desired. The

results of the frequentist ANOVA conducted in JASP are

shown in Table 1. The output shows that both gender and

group are significant variables as well as the interaction

term for gender and group. All quantities of the ANOVA

calculations, sum of squares, degrees of freedom, mean

square, F-statistic, η2 and the p-value are given. Also, the

Vovk-SellkeMaximumRatio (VS-MPR*) is given based on

the p-value, which is the maximum possible odds in favor

of H1 over H0.

One nice feature of JASP is that it offers the option to

include assumption checks for the tests conducted: For

the ANOVA, homogeneity of variance is required, and

the included assumption check in form of Levene’s test

is given in Table 2, showing that the assumption is vio-

lated. Still, investigating the provided Q-Q-plot in JASP

(see Fig. 2a) shows that due to the balanced design of 200

participants in each sample and a high power due to 800

participants in total, the ANOVA will be relatively robust

to the violations. Conducting a Bayesian ANOVA on the

same data in JASP yields the results given in Table 3.

There are five distinct models for each of which the prior

probability P(M), the posterior probability P(M|data),
the change from prior odds to posterior odds BFM for

each model, and the Bayes factor BF10 for the relative

evidence of the alternative hypothesis H1 compared to

the null hypothesis H0 as well as the error in percent is

given. This is necessary, because for some analyses the

results are based on numerical algoritms such as Markov

chain Monte Carlo (MCMC), which yields an error per-

centage (for more details on the computation see [29]).

The error percentage thus is an estimate of the numerical

error in the computation of the Bayes factor via Gaussian

quadrature in the BayesFactor R package [36] JASP

uses internally, and values below 20% are deemed accept-

able [37]. If the error percentage is deemed too high, the

number of samples can be increased to reduce the error

percentage at the cost of longer computation time. Also,

the BFM column shows the change from prior odds to

posterior odds for each model. For example, for the full

model including both main effects as well as their inter-

action effect, the prior odds are 0.2/(1 − 0.2) = 0.25,

while the posterior odds are 0.790/(1−0.790) = 3.761905,

leading to a ratio of 3.761905/0.25 = 15.04762, as shown

in the BFM column. All models are compared to the null

model here, where the null model includes no predictor

variables at all, and the full model includes both variables

gender and group as well as their interaction term. It is

clear that the BF10 of 3.463e + 125 is largest for this last

most complex model, indicating extreme evidence for this

model according to Fig. 1 and the reporting guidelines for

Table 1 ANOVA - Heart Rate

Cases Sum of Squares df Mean Square F p VS-MPR* η2

Gender 45030.005 1.000 45030.005 185.980 < .001 1.296e+35 0.110

Group 168432.080 1.000 168432.080 695.647 < .001 1.264e+107 0.413

Gender * Group 1794.005 1.000 1794.005 7.409 0.007 11.062 0.004

Residual 192729.830 796.000 242.123

Type III Sum of Squares
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JASP [29]. Also, the BF10 column contains the Bayes fac-

tor that quantifies evidence for this model relative to the

null model with no variables included, therefore it is 1 for

the null model row.While the BFM column thus states that

the most complex model is the most probable a posteriori

(because the prior odds were identical for all models, so

that BFM is largest iff P(M|data) is largest), the BF10 col-
umn also shows that the most complex model predicts the

data best. Therefore, the Bayes factor indicates extreme

evidence for the full model. It may be of interest to obtain

a Bayes factor BF10(Mmain effects vs. full) for comparison of

the full model including the interaction effect, and the

model with both main effects. This is straightforward, as

due to the transitivity of the Bayes factor, it is clear that

BF10 (Mmain effects)

BF10 (Mfull)
=

p
(

x|HMmain effects
1

)

p
(

x|HMnull
0

)

p
(

x|HMfull
1

)

p
(

x|HMnull
0

)

=
p

(

x|HMmain effects
1

)

p
(

x|HMfull
1

) = BF10 (Mmain effects vs. full)

because the denumerators p
(

x|HMnull
0

)

cancel each other

out, so that dividing the main effects model Bayes fac-

tor BF10 (Mmain effects) = 9.207e + 124 by the full models

Bayes factor BF10 (Mfull) = 3.463e + 125 yields a Bayes

factor BF10 (Mmain effects vs. full) ≈ 0.2658677 for compar-

ing the main effects model to the full model, which also

indicates that the full model is to be preferred. This Bayes

factor can also be calculated in JASP by selecting compare

to best model instead of compare to null model in the user

interface. Figure 2b shows a Q-Q-plot for the residuals of

the Bayesian ANOVA, showing that it is quite robust to

the deviations from normality.

A compelling feature of the Bayesian statistical philoso-

phy now is that posterior credible intervals on all variables

of interest are easily obtained. While often frequentist

Table 2 Test for Equality of Variances (Levene’s)

F df1 df2 p VS-MPR*

5.562 3.000 796.000 < .001 59.104

confidence intervals are interpreted as containing the true

parameter θ with 95% probability, this is actually the cor-

rect interpretation of a Bayesian credible interval, after

observing the data x. Table 4 shows the model averaged

posterior summaries of the full model for both variables

and the interaction term.

From the table, one can easily see that females have a

posterior mean of 7.448, that is an increased heart rate of

7.448 beats per minute, while males have a posterior mean

of −7.448, indicating a decreased heart rate of the same

magnitude compared to the global mean. Thus, the heart

rate seems to be differing between males and females.

Specifically, for females with 95% probability after observ-

ing the data x the average heart beat lies in the range of

values [ 6.339, 8.553], so that with 95% we can be sure that

females have an increased heart rate of at least 6.339 ≈ 6

beats per minute after exercising 6 minutes compared to

the global mean. The 95% credible intervals of males and

females do not overlap, so we can be quite confident that

there is a true difference.

Other inferences are obtained in identical manner from

Table 4. Note that the frequentist MLE estimates and con-

fidence intervals cannot offer this flexibility. The values in

Table 4 can also be obtained as plots in JASP, showing the

posterior densities, see Fig. 3a-c.

Question (2) – paired samples t-test

Another common situation in medical research is the

paired samples t-test which compares the means µ1

and µ2 of the same population at two different time-

points (pre-treatment vs. after treatment). The dataset

used is again from Moore and colleagues [35], and pro-

vides the number of disruptive behaviours by dementia

Fig. 2 Q-Q-plots for the traditional and Bayesian ANOVA for the heart rate dataset of Moore and colleagues produced by JASP
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Table 3 Model comparison

Models P(M) P(M|data) BFM BF10 error %

Null model 0.200 2.281e-126 9.124e-126 1.000

Gender + Group + Gender * Group 0.200 0.790 15.047 3.463e+125 2.485

Gender + Group 0.200 0.210 1.063 9.207e+124 1.068

Group 0.200 6.651e-36 2.661e-35 2.916e+90 2.683e-95

Gender 0.200 1.797e-107 7.186e-107 7.876e+18 2.699e-23

Table 4 Model averaged posterior summary

95% Credible Interval

Variable Level Mean SD Lower Upper

Intercept 124.490 0.551 123.168 125.426

Gender Female 7.448 0.559 6.339 8.553

Male -7.448 0.559 -8.586 -6.373

Group Control 14.474 0.557 13.334 15.551

Runners -14.474 0.557 -15.584 -13.367

Gender * Group Female & Control 1.465 0.547 0.378 2.577

Female & Runners -1.465 0.547 -2.586 -0.387

Male & Control -1.465 0.547 -2.586 -0.387

Male & Runners 1.465 0.547 0.378 2.577

Fig. 3 Posterior plots for all variables and interaction terms for the heart rate data of Moore and colleagues produced by JASP
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patients during two different phases of the lunar cycle.

The hypothesis tested is H0: “Average number of dis-

ruptive behaviours in patients with dementia does not

differ between full moon and other days” against the alter-

native H1 of a differing average numbers of disruptive

behaviours. Table 5 shows the results of the frequen-

tist paired-samples t-test, indicating with p < .001 that

H0 can be rejected. The paired samples t-test there-

fore suggests that the data (or more extreme data) are

unlikely to be observed if the average number of disruptive

behaviours was identical during full moon days and other

days in patients with dementia. Note that this is not what

researchers actually want to know: The desired answer

is which hypothesis is more probable after observing the

data, which is exactly quantified by the posterior odds

P(H1|x)/P(H0|x), of which the BF10 is a key ingredient

(remember that the posterior odds are the product of the

Bayes factor and the prior odds). A large BF10 therefore

necessitates a change in beliefs towards H1. Assumption

checks include a Shapiro-Wilk test on normality, which is

not significant with p = .148. Now, the Bayesian paired-

samples t-test shown in Table 6 yields BF10 = 1521.058,

indicating extreme evidence for H1. JASP produces also a

plot of the prior and posterior distribution of the effect

size δ according to Cohen [25], which is of interest in most

medical research settings [29].

Figure 4a shows this prior and posterior plot of the effect

size δ as well as the produced BF10. A large advantage of

the Bayesian paradigm reveals itself here: The posterior

of the effect size δ precisely estimates which effect size is

most probable after observing the data x. The frequentist

paired-samples t-test did not yield any information about

the effect size. Although the test was significant, it did not

state anything about whether the observed effect is small,

medium or large. The prior-posterior plot shows how the

prior probability mass is reallocated to the posterior via

observing the data and shows that with 95% probability,

the true effect size δ is in [ 0.818, 2.345] and the posterior

median is 1.527, indicating a large effect. Another benefit

is given by the robustness check plot given in Fig. 4b: Dif-

ferent prior distribution widths are used for the effect size

δ and the Bayes factor BF10 is computed. Specifically, the

prior width of the Cauchy priorC (0, γ ) on the effect size δ

is increased gradually, showing how the prior shape influ-

ences the resulting BF10. Figure 4b shows that even when

changing the prior from the user prior, which equals a

medium C(0,
√
2/2) prior, to a wide C(0, 1) or even ultra-

wide C(0,
√
2) prior, the Bayes factor for H1 stays above

1000. Thus, the influence of the prior is negligible here, so

Table 5 Paired samples T-Test

t df p Mean Difference

Moon - Other 6.452 14 < .001 2.433

that only an inconsequential amount of subjectivity goes

into the analysis.

Question (3) – linear regression

One of the most widespread methods in biomedical

research and clinical trials is linear regression [4]. The

dataset used here is from Mestek, Plaisance and Grand-

jean [38] published in the Journal of American College

Health. The study provided 100 participants’ Body Mass

Index (BMI) and average daily number of steps, investigat-

ing this relationship with linear regression models.

A traditional linear regression with the BMI as depen-

dent variable and the average number of daily steps (in

thousands) of participants as explanatory variable yields

the results given in Table 7. The table shows that physical

activity (PA) is a significant predictor of the BMI of par-

ticipants, as p < .001. While JASP also offers to provide

confidence intervals, these are counterintuitive to inter-

pret, and therefore the Bayesian linear regression given

in Table 8 is preferred. Again, the change from prior to

posterior odds for the model BFM and the Bayes factor

for the alternative BF10 are given, as well as the models

prior probability P(M) and the posterior model probabil-

ity P(M|data) after observing the data. One can conclude

from the results, that the BFM = 284.327 of the physi-

cal activity model shows extreme evidence for the model

including the variable. Also, the identical BF10 for the

alternative H1 relative to H0, where H1 states that the

regression coefficient for the PA variable differs from zero,

shows that the coefficient for the variable is most prob-

able non-zero. The null hypothesis H0 of a regression

coefficient of size zero for the PA variable can thus be

rejected based on this result, and even better, the alter-

native H1 can be regarded as confirmed, which would

not be allowed when using p-values because accepting

hypotheses is generally not allowed in frequentist NHST

when interpreted in the sense of Ronald Fisher’s sig-

nificance testing. Note that when interpreted from the

Neyman-Pearson theory of hypothesis testing, accepting

a hypothesis is allowed, but as the Neyman-Pearson the-

ory is only concerned with long-term type I error control,

nothing can be said about the hypothesis tested in the

performed study or experiment. As Neyman and Pear-

son (see [39], p. 291) state explicitly, their theory “tells

us nothing as to whether in a particular case H is true”.

Also, the PA model explains 15% of the variance observed

in the data as can be seen from Table 8. Again in this

situation, Table 9 shows the posterior summary of coef-

ficients for the Bayesian linear regression, yielding 95%

Table 6 Bayesian Paired Samples T-Test

BF10 error %

Moon - Other 1521.058 5.014e-7
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Fig. 4 Prior and posterior plot and robustness check for the heart dementia data of Moore and colleagues produced by JASP

credible intervals so that inference about the most prob-

able range of coefficient values given the data x can be

made. Figure 5a shows a plot of the posterior coefficients

obtained from the Bayesian linear regression for the BMI

data produced by JASP. The Mean and 95% credible inter-

vals are shown, indicating that the PA coefficient is with

95% probability smaller than −0.326, compare Table 9.

Figure 5b shows a residual plot to check the assump-

tion of normally distributed residuals, which seems fine

for the Bayesian linear regression model. Note that JASP

internally uses the BAS package for R [40] for the

computations.

Discussion
The comparison of NHST and Bayesian methods con-

ducted reveals that the Bayesian approach complements

the traditional frequentist tests and provides even richer

information for hypothesis testing and parameter estima-

tion. Also, both of these benefits can be achieved with

JASP easily.

Not only can Bayes factors be used to quantify the rela-

tive evidence for the alternative hypothesis H1 compared

to H0 in JASP, but additional parameter estimation with

easy to interpret credible intervals makes inference more

seamless compared to traditional methods. Also, model

comparisons and robustness checks can be included into

the main analysis to assess the degree to which the

conclusions change with background assumptions like

the chosen priors, no matter if a t-test, an analysis of

Table 7 Frequentist linear regression for the BMI data set

Unstandardized Std. Error t p

(Intercept) 29.578 1.412 20.948 < .001

PA -0.655 0.158 -4.135 < .001

variance or a linear regression model is the method

of choice.

Also, detailed plots and visualisations of results are

obtained quickly, allowing easier interpretation and

communication of analysis results. What is more, a

complete analysis in JASP can be saved in a single

JASP-file, making it possible to send a conducted

analysis to a colleague or even share it publicly. This

fosters reproducibility and makes checking results easier

for colleagues and reviewers of journals. In contrast,

SPSS, Stata or R are less transparent as they often

depend on the used libraries and version or require

detailed programming knowledge, making reanalysing

an original dataset much more complicated and

time-consuming.

Bayesian inference in JASP also profits from credible

intervals and posterior estimates which are more inter-

pretable than traditional MLE estimates with confidence

intervals, and allows for a unified judgement of evidence

for a model or hypothesis in form of the Bayes fac-

tor. Note that there is a large palette of more options

for each method (like prior specification, descriptive

statistics, providing BF01 instead of BF10, inclusion prob-

ability for coefficients, and so on) not described here

due to space reasons. Thus, JASP provides many desir-

able features for the methods implemented, making it a

full-grown alternative to statistics packages like SPSS or

Stata while also providing an equally intuitive user inter-

face. A definite advantage of JASP is its ability to conduct

Table 8 Bayesian linear regression for the BMI data set

Models P(M) P(M|data) BFM BF10 R2

Null model 0.500 0.004 0.004 1.00 0.00

PA 0.500 0.996 284.327 284.33 0.15
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Table 9 Posterior summaries of coefficients

95% Credible Interval

Coefficient Mean SD P(incl) P(incl|data) BFinclusion Lower Upper

Intercept 23.939 0.366 1.000 1.000 1.000 23.244 24.615

PA -0.609 0.157 0.500 0.996 284.327 -0.908 -0.326

a multitude of Bayesian tests in comparison to SPSS or

Stata, as well as being free for everyone.

Still, although a good spectrum of statistical tests

and methods is available in JASP, there are also limi-

tations. Especially for medical research there are some

important methods missing. For example, JASP offers

no options for survival analysis, which is essential in

clinical trials [41, 42]. Also, more complex general-

ized linear models are missing, for example there is

no Bayesian logistic regression available, a method of

large importance for medical research [43]. On the

other hand, recently, machine learning algorithms like

clustering, penalized regression models, linear discrim-

inant analysis and classification and regression trees

have been added in form of a machine learning

module.

Conclusion
To review JASP, three worked out examples of common

situations in biomedical research were provided in this

paper, consisting of an ANOVA, a paired t-test and a

linear regression model. Conducting and interpreting an

analysis in JASP is straigthforward and guided by an intu-

itive interface with lots of buttons for explanations, while

assumptions of a wide variety of tests can be included

into the main analysis via a single mouse click. This is a

large benefit to competitors like SPSS or Stata, as these

do not offer such a wide range of Bayesian methods and

are more complicated, having a steeper learning curve and

long manuals.

The program interface, documentation and manu-

als are intuitive and allow the user to quickly accom-

modate to JASP. The flexibility gained by includ-

ing NHST and Bayesian methods is a key advantage

of JASP compared to other software, and the per-

formance is flawless as shown by the worked out

examples.

In summary, the results show that JASP provides easy

access to advanced (Bayesian) statistical methods, and

NHST is easily complemented by Bayesianmethods. Also,

the effect size, often of large relevance inmedical research,

can be easily estimated in JASP via Bayesian methods

for a variety of tests, and this offers another advantage

compared to frequentist methods.

In summary, in its current state JASP offers a wide

range of suitable tests routinely used in medical research

and allows seamless transition from NHST to Bayesian

inference. This shift towards Bayesian alternatives for

null hypothesis significance testing could substantially

improve the reproducibility and validity of biomedical

research in science.
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