
! .

BAYESIAN ANALYSIS AND MODEL SELECTION FOR
INTERVAL-CENSORED SURVIVAL DATA

by

Debajyoti Sinha, Ming-Hui Chen, and Sujit K. Ghosh

Institute of Statistics Mimeograph Series No. 2298

May 1997

NORTH CAROLINA STATE UNIVERSITY
Raleigh, North Carolina



The Library of the Departm~~, . , ;idtistica
Nann Carolina State U'"versi/y

Date

'esMimeo Serl.
No. 2298

9
97 and Model. May 1 . Analysis

I Bayes1an Interval-. for
S lect10n . 1 data

e d surV1va d Ghoshcensore Chen an
BY: Sinha,

I==:N=-ame~__,
I



Bayesian Analysis and Model Selection for

Interval-censored Survival Data

Debajyoti Sinha; Ming-Hui Chent and Sujit K.Ghosht ,

April 10, 1997

Abstract

Interval-censored data occur in survival analysis when the survival time of each patient is only known

to be within an interval and these censoring intervals differ from patient to patient. This kind of data

pose some challenges to the semiparametric analysis and model diagnostics. For such data, we present

some Bayesian discretized semiparametric models, incorporating the proportional and non-proportional

hazards structures, along with the associated statistical analyses and tools for model selection using

sampling based methods. The scope of these methodologies is illustrated through a re-analysis of the

historical data set from Finkelstein (1986).

Key Words: CPO, Gibbs sampler, Prior process.

1 Introduction

Many clinical trials and medical studies use periodic scheduled follow-ups of each patient to monitor

the time to an event of interest or disease (Le. survival time T of the patient) whose occurrence is

not apparent from outside. The occurrence of such event can be detected only through some invasive

procedure (such as testing blood or tissue samples etc.) performed during these clinic visits. Medical

researchers often come across interval censoring in such studies when the patients miss some of the

scheduled appointments for reasons not related to the survival times and the observed censoring intervals

containing their survival times frequently overlap with each other. Interval-censored survival data have
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recently received much attention in biostatistical and statistical literature due to diseases such as AIDS

and some forms of cancers. For recent reviews, see Satten (1996), and Frydman (1995). The data set

in Table 3 of Finkelstein and Wolfe (1985) is a historical data set of interval-censored data. In this

data set, 46 early breast cancer patients receiving only radiotherapy (covariate value z = 0) and 48

patients receiving radio-chemotherapy (z = 1) were monitored for cosmetic change during weekly clinic

visits. But, some patients missed some of their weekly visits. So, the data on survival time are typically

recorded as, for example, (7,18] (at the 7th week clinic-visit, patient had shown no change and then in

the next clinic visit at the 18th week the patient's tissue showed that the change had already occurred).

Since, the clinic visits of different patients occurred at different times, the censoring intervals in the

data set are found to be often overlapping.

We are interested to see the effect of the covariate z associated with the patient, on the survival

time T. A popular semiparametric approach to model survival time, in the presence of covariate

effects is proposed in the Co~'s (1972) proportional hazards model, given by, A(tlz) = Ao(t)e.8z . Here

A(tlz) = -It 10gP(T > tlz) is the hazard function of T given z, (3 is the time-independent regression

coefficient for the covariate z and AO(t) is the baseline hazard function. Finkelstein (1986) and Satten

(1996) analyzed interval-censored data under the assumption of Cox model. But, such an assumption

of time-independent regression coefficient may not always be valid. The major contribution of the

present paper is two fold. With the advancement of the sampling based computational tools, it is now

feasible to consider more general models which incorporates time-varying coefficients. Secondly, while

powerful computational tools enable us to fit remarkably complex models we should not loose sight of

the need to make suitably parsimonious choices. So, we develop some Bayesian tools for model selection

and model validation. So far, to our knowledge there is no formal statistical method to select among

the models we propose or to check any modeling assumption such as time-independent coefficient for

interval-censored data. In addition, Bayesian method enables us to obtain exact small sample inference

on the parameter of interest (i.e. the regression coefficient), from the moderate sized data set even with

a high-dimensional nuisance parameter (Le., the baseline hazard).

In Section 2, we propose a Bayesian version of discretized Cox model and a model with time-varying

coefficients. In Section 3, we describe model fitting using sampling based method. In Section 4, we

present some Bayesian model selection and model checking methods. In Section 5, we illustrate the

proposed methods by reanalyzing the breast cancer data of Finkelstein and Wolfe (1985). Section 6

concludes with some remarks.
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2 Models

(2) 131c+1 I 131, ... ,131e '" N (13Ie, w~) for k = 0, .. ·,9 - 1 and the

N(13o, w1J) and 13 is apriori(2) 13

We take the hazard to be a piecewise constant function with A(tlz) = A/c0k for t E l/c, where O/c = e131r.,

lie = (ale-1, ale] for k = 1,2, ... ,9,0 = ao < a1 < ... < ag = 00, and 9 is the total number of grid

intervals. The length of each grid can be taken to be sufficiently small to approximate any hazard

function for all practical purposes. Now, we present two Bayesian semiparametric discretized models,

viz. a discretized version of the Cox model (which we call M o) and a discretized hazard model with

time-dependent regression coefficient (which we call M 1). More precisely, these features are captured

through their prior specifications as follows:
indep (M o: (1) Ale '" Gamma Tile, ile) for k = 1, .. ·,9;

independent of A= (A1' .. " Ag ).

M 1 : (1) A has same prior as in M o;

13Ie's are apriori independent of A .

In above, we assume that the hyperparameters of these models, viz., Tile'S, ile'S, WIe'S and 130 are known

in advance.

M o is a discretized version of Cox model with a discretized version of the gamma process prior

(Kalbfleisch 1978) for the baseline hazard AOO where TlIe/ile is the prior mean and TlIe/i~ is the prior

variance of Ale. When the grid intervals are sufficiently small, this discretized version will be indistin

guishable from the actual time-continuous gamma process. The discretized autocorrelated prior process

for 13Ie's in M 1 allows the covariate effect to change over time, but also incorporates the prior informa

tion that the values of the coefficient 13 in adjacent intervals are expected to be somewhat close and the

dependence among the 13's decrease as the intervals become further apart. This assumption seems to

be in complete accordance with some studies where the covariate effect may change over time, but is

not expected to change too wildly over time. The parameters w/c 's· can be used as a tuning device to

determine our prior opinion about the possible change in the magnitude of 13 over time. For example,

apriori we expect the 131c+1 to be within approximately 1.96wIe from the 131e with 95% confidence. The

w/c's should depend on the lengths of the lie's allowing the coefficient to change more for bigger grid

intervals. It is possible to use an autocorrelated prior process for the baseline hazard also. For details

on the use and properties of an autocorrelated process, see Sinha and Dey (1997), and Sargent (1996).

Our major interest is to compare the Cox model (Mo) with the time varying coefficient model (Md.

For the example of breast cancer data, we consider following values of the hyperparameters.
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M o 0.2 0.4 0
M I 0.2 0.4 0

Wle Wo

2.0
1.0 2.0

In practice, these hyperparameters should be chosen to represent a carefully developed prior opinion

based on the results from previous studies related to the present experiment. Often in clinical trials

setting, scientists conduct multiple studies to investigate single important medical or biological issue.

One advantage of Bayesian method is that it allows us to incorporate the prior expertise into the 

experiment. For example, we can use data from previous studies to elicit the prior mean (11le/Ale) and

variance (11Ie/A~) of Ale. But in our case, we have chosen the hyperparameters to represent prior opinions

which are nearly non-informative (flat) in the subset ofthe parameter space supported by the likelihood.

For example, the common prior mean of Ale'S is taken as 0.5 and the common prior variance is taken as

1.25 (Ale> 0) which gives very non-informative prior opinion in the the range (0.1) and it is clear that

for this example we expect Ale'S to be less than 1. We have also made some minor simplifications, for

example, taking all the Ale'S to be identically distributed.

3 Model Fitting

Let us denote the observed interval-censored data from n patients, by Y = {(ali' a,.J; Zi: i = 1,2, ... , n},

where survival time Ti for the ith patient is known to be within (ali' a,.J and ali < a"i are two of the

grid points (aI, a2,.'.' ag ) but not necessarily consecutive ones. And, Zi is the covariate value for the

ith patient. Let X = {Ti' Zi: i = 1,2, ... , n} be the unobserved complete (augmented) data. For

notational simplicity, we denote the set of parameters (A'S and j3's) under any model bye, (however the

dimension of e depends on the model under consideration). The distribution of Ti given Zi is piecewise

exponential and thus the complete-augmented-data likelihood is

(3.1)

where Rle is the set of patients at risk at ale-I, f:1jle = min(Tj, ale) - ale-I, Die is the set of patients failing

in lle = (ale-I, ale], and dle is the number of patients in Die. The observed data likelihood is complicated

and the joint posterior distribution is analytically intractable even for Mo.

We employ sampling based methods, in particular, the Gibbs sampler, (see Tanner 1996 for a review)

to sample from the joint posterior of e given Y. Gibbs is an iterative algorithm which alternates between

(1) generating the augmented survival times (Ti's) from the conditional distribution of Ti's given the
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(3.2)

current values of the parameters (e) and observed censoring intervals (Y) and then (2) generating new

values of the parameters from the conditional distribution of e given the augmented data (the set of

T/s). We use the conventional notations [VIW] to denote the conditional distribution of V given W,

and A(a) to denote the set A after removing the element a from it. For M o and M 1 , [.Ale I e(AA;)' X]

is obtained by multiplying (3.1) with the joint prior distribution of e and then by collecting the terms

involving.Ale from that product. It might be noted that in order to sample (the parameters or augmented

data), we just need to know the complete conditional densities up to their normalizing constants. Thus,

we obtain the [.Ale I e(AA;) , X] as Gamma(17le + dle; fle + EiERA; ()~j D.ile). For M 1 , the conditional posterior

of (3le can be obtained by similar procedure but only up to the corresponding normalizing constants and

"" ((3 I (EjEDA; zi)w~wL1 + (31e-1 w~ + (3le+1 WL1. W~WL1 )
'f'1e 22 '22

W le +W Ie - 1 W le +W Ie _ 1

X exp (-.Ale .L ()~; aile) ,
3ERA;

for k = 1,2, ... , g, where (3g+1 = 0 and 4>(·IJLj (7
2) is the N(JLj (7

2) density function. For M o, all the ()Ie'S

will be equal to () = e~ and

[(31 e(~),X] ex (Ii exp{-.A1e L e~ZjD.jle}exp{(3 L Zi}) x 4>((31 (30jW~). (3.3)
1e=1 iERA; iEDA;

The conditional distribution of [Tile, Y] is truncated piecewise exponential with parameters ()1e.A1e

for Ii + 1 ~ k ~ Ti and support (ali' arJ So, the density of [Ti I e, Y] is

{

ri }
1 - exp - L .AlOti .6.l

l=li+1

(3.4)

for Ti E lie, Ii + 1 ~ k ~ Ti, and .6.l = al - al-1. Note that (3.4) is a product of multinomial and

truncated exponential densities. Conditional distribution of [Ti I e, Y] for M o is similar to (3.4).

For both M o and M 1 , .A's and Ti's ~an be sampled straightforwardly using standard statistical

subroutines, such as IMSL. However complete conditional distributions of (3's, mentioned above do not

correspond to standard statistical distributions, so we use the adaptive rejection algorithm of Gilks

and Wild (1992), an algorithm to sample from any univariate log-concave density, to simulate those

parameters as all of these conditional distributions are log-concave. Therefore, implementation of the
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iterative Gibbs algorithm to sample from the joint posterior [elY] becomes relatively easy although the

density of [elY] has a fairly complicated form. It is noted that, in addition to ease of implementation,

we no longer restrict our inference to a set of stringent regularity assumptions (as often needed to obtain

asymptotic optimality).

4 Bayesian Model Selection

In this section, we propose two different model selection approaches using a generalization of the

predictive loss of Laud and Ibrahim (1995) and the Conditional Predictive Ordinate (CPO) (Gelfand,

Dey, and Chang 1992) for the interval-censored survival data. Both approaches are appropriate for

model selection when the competing models are nested within each other (as M o is a special case of

Md and even when they are not.

Our first model selection criterion combines both the predictive variability of the model and perfor

mance of the model at observed data points. Let M denote a model, which can be one of M o or M 1. '

Following Gelfand and Ghosh (1995), we begin with a quadratic loss function

.eM (y,.ep, a, Yob.. ) = (y,.ep - a)T(y,.ep - a) + K.(Yob.. - a)T(Yob.. - a)

where Y,.ep is an unobservable replication with the same distribution of the vector of observed uncensored

log-survival times Yob.. and action a, which depends on the underlying model M, is a guess for y,.ep'

The motivation behind the consideration of such a loss function relies on the standard utility ideas as in,

e.g., Raiffa and Schlaifar (1961). The key idea is to replace the experiments (under standard decision

theoretic set-up) with models and then separately for each model, minimize the psterior expected loss

with respect to a to compute .eM and then select the model with minimum.eM value. The action

a can be viewed as a "compromise", which we like to be close to Yob.. (a goodness-of-fit property) as

well as to y,.ep (predictive property of a) under the model M. When the model is too restrictive, it is

difficult to keep a close to Yob.. and when the model is too general it is difficult to keep a close to y,.ep

which has higher variability for bigger model. Thus K. can be viewed as a predetermined constant to

decide how much emphasis should be given on goodness-of-fit of M compared to its predictive capacity.

The use of squared loss (on the log-scale) is kind of arbitrary. However it may be noted that, under

regularity condition as obtained in Gelfand and Ghosh (1995), squared loss appear as an approximation

to more general classes of loss functions. For more details, see Gelfand and Ghosh (1995). Our aim

is to minimize posterior expected loss E(.eMIY) w.r.t. a where Yob.. restricted to ti,ob.. E (ali' a,.J for

i = 1", ·,n.
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With basic calculations we can show that the minimum posterior expected loss for interval-censored

data can be expressed as

n

LM= L [Var (lnT"ep I Zi, Y, M) + l5(JLi - Vi,oba)2] ,
i=l

(4.5)

where JLi = E(lnT"ep I Zi, Y, M): expected log-survival time of a new patient similar to the ith patient

with covariate value Zi. More details on the derivations of LM can be found in section 2.5 of Gelfand

and Ghosh (1997). The expectation is taken under the predictive distribution ofY"ep given the observed

interval-censored data Y and model M. Also, Var(ln T"ep I Zi, Y, M) variance of the log-survival time

of the new patient under the same predictive distribution, Vi,oba is the point in (ali' a"J closest to JLi,

that is

{

JLi if In ali ~ JLi ~ In a"i
Vi,oba = In ali ~f JLi < In ali

In a"i if JLi > In a"i ,

and l5 = K.~l. A typical value of l5 is 1/2 which corresponds to K. =1 when we give equal importance to

the goodness-of-fit and the variability in prediction for model selection purpose. To compare between

models M o and M 1 we choose the model with lower LM (minimum posterior expected loss under

the model) value. Note that LMcan be also viewed as an extreme special case of the so-called LM

criterion of Laud and Ibrahim (1995), which is obtained by letting K. --t 00 (or equivalently l5 --t 1). One

attractive feature of this decision theoretic formulation of the model choice criteria (such as LM) is that

it extends the usual testing procedures (whish are based on 0-1 type loss functions) to a fairly general

class of loss functions. In fact, the LMas proposed above can be used as an analogue for standard LRT

statistic (if we replace the mle's in LRT by the corresponding posterior expected values with reasonably

flat priors). For more details, see Gelfand and Ghosh (1997). As a computational remark, it may be

noted that the LMcan be computed easily (as compared to LRT statistic for our models) from the

output of the Gibbs sampler and using the fact that [Y"epIYoba] = ![Y"eple].[eIYoba] de . This is one of

the reasons, we prefer to use L Mover LRT statistic to select the "best" model.

The scope of the Bayesian cross validation approach of CPO in model selection and model adequacy

study is explored in Gelfand et al. (1992): For our problem, the CPO value for the ith observation is

defined as CPOM(i) = P(Ti E (ali' a"J I Zi, Y(i)' M), where Y(i) is the interval-censored data with the

ith patient removed. CPOM (i) is the posterior predictive probability of the observed data from the ith

patient given the modified data Y(i) and under the assumption that the true model is M. The larger

the value of CPOM(i) is, the more the ith observation supports the model M. Gelfand et al. showed
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that the CPOM(i) can be computed as

CPOM(i) = (E [ 1 ])-1
P(Ti. E (ali' a,.J I e, Zi)

( E [exp{_2:;';,1 ";01 a;} ~ exp{ - 2:;~1";01a;}]) -1 (4.6)

where the expectation is taken with respect to the joint posterior of [elY] under model M. From (4.6),

CPOM(i) can be easily computed by using Gibbs samples from the [elY] under model M. In terms of

single summary measure based on the CPOM (i) 's, we define the Pseudo Marginal Likelihood (PML)

for model M on the natural log scale as In[PML(M)] = Ei=lln [CPOM(i)]. Therefore, based on the

above single measure In[PML(M)], to compare between models M o and M 1, we choose the model with

maximum In[PML(M)] value. Since we have the CPOMj(i)'S (j = 0,1 and i = 1," ·,n) for all the

patients and under both models, we will also plot In (§~g:~~~~) versus i to see how many data points

support model M o over M 1 •

5 An Illustrative Example: The Breast Cancer Data

In this section, we are reanalyzing the breast cancer data of Finkelstein and Wolfe (1985). We

implement the Gibbs samplers for the two proposed models under consideration. The convergence of

the Gibbs samplers are checked by using several diagnostic procedures as recommended by Cowles and

Carlin (1996) and after convergence, we generate 10,000 Gibbs iterates for calculating 95% highest

posterior density (HPD) intervals of parameters of interest, L'M criteria, the CPO's, and the PML's for

the two proposed models.

The marginal posterior of 13 for the Cox model (M o) has mean 0.559492 and the 95% HPD interval

of (3 is (0.036, 1.071). It shows that there is an evidence of slightly higher risk for the second group under

Cox model. Under this assumption, this finding is very comparable to the highly significant p-value

0.004 obtained by Finkelstein (1986) with her score test for H o : 13 = O. Also, the marginal distribution

of (3 is slightly skewed to the left. We also calculate 95% HPD intervals for all (3k's for M 1 and we

have plotted them versus k in Figure 1 along with two horizontal lines marking the 95% HPD interval

for (3 of Mo. From Figure 1, we observe that for M 1 , all 95% HPD intervals of the 13k's contain 0 and

the HPD interval for (3 is much narrower compared to the HPD intervals for (3k'S. It suggests that the

final conclusion may depend on the underlying modeling assumptions and the selection of model is very

crucial for correct inference in such a problem.
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To compare between models M o and M 1 , we compute the L"Nt values for 6 = 1,1/2 and the

In[PMLM] for both models. The results are given in Table 1. Based on the two L"Nt criteria and the

In[PMLM] criterion, M o is more preferable model than M 1 and there is no need to use more general

model M I instead of M o to make inference from this data.

Table 1: The LM. Values and In[PMLM ]

for Two Bayesian Models

Model 6 = 1/2
65.15
70.65

6=1
76.52
81.9

-157.61
-188.33

Next, we plot the In (g~g:~ ~~~) 's versus i in Figure 2. In Figure 2, we notice that 84% of log

CPO-ratios are positive. Therefore, we conclude that the most of the data points support M o over M 1,

which is consistent with our conclusion from the single summary measures in Table 1.

6 Concluding Remarks

In this article, we have presented a method of Bayesian modeling of interval censored data allowing

the regression coefficient of the covariate effect under Cox model to change over time. Cox model is

a special case of this class of models. Our models can be used with discretized version of different

types of prior processes for the baseline hazard, including gamma and other Levy processes and most

of the non-Levy processes (e.g. autocorrelated process). The choices for modeling the prior information

on the covariate effect are also very large. Bayesian analysis using MCMC is shown to be feasible for

such models. We also present, for the first time in literature, two model selection criteria which can

be applied even to other types of censoring (including case-1 censored data). We envision that these

model selection criteria can be utilized to diverse field of applications including variable selections and

comparing between two or more non-nested models, say, discretized Bayesian Cox model and discretized

Bayesian proportional odds model. Here we haven't explored the optimal properties of our criteria from

any theoretical aspect. However we feel comfortable to use these criteria, as they don't depend on their

large-sample properties.
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