
Brazilian Journal of Probability and Statistics
2012, Vol. 26, No. 4, 327–343
DOI: 10.1214/11-BJPS142
© Brazilian Statistical Association, 2012

Bayesian analysis based on the Jeffreys prior for the
hyperbolic distribution

Thaís C. O. Fonsecaa, Helio S. Migona and Marco A. R. Ferreirab

aUniversidade Federal do Rio de Janeiro
bUniversity of Missouri

Abstract. In this work, we develop Bayesian analysis based on the Jeffreys
prior for the hyperbolic family of distributions. It is usually difficult to esti-
mate the four parameters in this class: to be reliable the maximum likelihood
estimator typically requires large sample sizes of the order of thousands of
observations. Moreover, improper prior distributions may lead to improper
posterior distributions, whereas proper prior distributions may dominate the
analysis. Here, we show through a simulation study that Bayesian methods
based on Jeffreys prior provide reliable point and interval estimators. More-
over, this simulation study shows that for the absolute loss function Bayesian
estimators compare favorably to maximum likelihood estimators. Finally, we
illustrate with an application to real data that our methodology allows for pa-
rameter estimation with remarkable good properties even for a small sample
size.

1 Introduction

The hyperbolic is a flexible distribution for data that may have heavy tails and
skewness. The hyperbolic distribution heavy tails result from the fact that its
log-density is a hyperbola Barndorff-Nielsen (1977). Since its introduction by
Barndorff-Nielsen (1977), the hyperbolic distribution has been used with success
in many areas of application such as turbulence (Barndorff-Nielsen, 1979), biol-
ogy (Blæsild, 1981) and finance (Eberlein et al., 1998; Prause, 1999; Bauer, 2000;
Bingham and Kiesel, 2001). Even though the hyperbolic distribution allows for
both skewness and heavy tails through easily interpretable parameters, the task of
parameter estimation is not trivial. To be reliable, maximum likelihood estimation
typically requires large sample sizes of the order of thousands of observations. In
addition, improper prior distributions may lead to improper posterior distributions,
whereas proper prior distributions may dominate the analysis. As a solution to the
estimation problem, we derive here the Jeffreys prior for the hyperbolic distribu-
tion. In addition, we show through a simulation study that Bayesian methods based
on this Jeffreys prior provide reliable point and interval estimators even for small
datasets.
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In the context of robustness, Barndorff-Nielsen (1977) pointed out that the hy-
perbolic distribution can be represented as a normal-mean mixture with a gen-
eralized inverse Gaussian (GIG) as mixing distribution. More specifically, let
Y |μ,β,σ 2 ∼ N(μ+βσ 2, σ 2) and σ 2 ∼ GIG(1, α2 −β2, δ2), where GIG(λ,φ, γ )

has density given by

f (x;λ,φ, γ ) = (φ/γ )λ/2

2Kλ(
√

φγ )
xλ−1 exp

{
−1

2
(γ x−1 + φx)

}
, (1.1)

where φ,γ ≥ 0, λ ∈ � and Kλ is the modified Bessel function of third-order and
index λ. For additional information on the GIG distribution, see Jørgensen (1982),
Silva et al. (2006) and references therein. Integrating σ 2 out, we obtain that Y has
a hyperbolic distribution with density given by

fhyp(y;α,β,μ, δ) =
√

α2 − β2

2αδK1(δ

√
α2 − β2)

(1.2)
× exp

{−α

√
δ2 + (y − μ)2 + β(y − μ)

}
,

where, y ∈ � and α, β , μ e δ are parameters, satisfying |β| < α, μ ∈ � and δ > 0.
The parameters α and β determine the shape, where β is responsible for skew-
ness; δ and μ are scale and location parameters, respectively. Figure 1 presents
the density function (1.2) for α = 2.5, β ∈ {−2,0,2}, δ = 1 and μ = 0. When β

is negative, we obtain positive asymmetry, when β is positive we obtain negative
asymmetry and β = 0 implies a symmetric density function. We use the nota-
tion Hyp(α,β,μ, δ) to denote the hyperbolic distribution with parameters α, β , μ

and δ.

Figure 1 Density function as presented in (1.2) for α = 2.5, β ∈ {−2,0,2}, δ = 1 and μ = 0.
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All the moments of the Hyp(α,β,μ, δ) have explicit expressions and, in partic-
ular, the mean and the variance are

E(Y ) = μ + βδ2

ρ

K2(ρ)

K1(ρ)
, (1.3)

Var(Y ) = δ2
(

K2(ρ)

ρK1(ρ)
+ β2δ2

ρ2

[
K3(ρ)

K1(ρ)
−

(
K2(ρ)

K1(ρ)

)2])
, (1.4)

where ρ = δ

√
α2 − β2. Note that when β = 0 the mean is simply μ. The math-

ematical properties of these univariate distributions are well-known (see Blæsild,
1981). Blæsild and Sørensen (1992) provide maximum likelihood methods to es-
timate parameters of this model. The HyperbolicDist package, within the R sta-
tistical environment (R Development Core Team, 2010), implements maximum
likelihood estimation based on a number of numerical maximization methods.

Despite the nice properties of the hyperbolic distribution, difficulties arise in the
estimation of its parameters. More specifically, for some samples the likelihood
function is maximized when a combination of the parameters goes to infinity. As
a consequence, the MLE may not exist with positive probability. This probability
of nonexistence of the MLE is higher for smaller samples. In addition, for any
finite sample size the likelihood function does not vanish in the tails. As a result,
Bayesian analysis based on improper priors may lead to useless improper posterior
distributions.

The problem of the likelihood function not vanishing in the tails also occurs for
many other classes of distributions. For example, this problem occurs for the skew-
normal distribution (Azzalini, 1985, 2005) and the Student-t distribution (Zellner,
1976). In the context of Bayesian inference for these distributions, these problems
have been solved through the use of noninformative priors. For the skew-normal
distribution, Liseo and Loperfido (2006) have proposed a default Bayesian solu-
tion based on the reference prior for the parameters. For the Student-t distribution,
Fonseca et al. (2008) have proposed a default Bayesian solution based on the Jef-
freys prior. The proposals of Liseo and Loperfido (2006) and Fonseca et al. (2008)
lead to valid proper posterior distributions. Here, we obtain a default Bayesian so-
lution based on the Jeffreys prior for the hyperbolic distribution. As we show in
Section 4, our Bayesian proposal yields estimation procedures with good frequen-
tist properties.

The remainder of this paper is organized as follows. In Section 2, we discuss
the MLE difficulties associated with the hyperbolic model. In Section 3, we de-
rive the Jeffreys prior for the parameters of the hyperbolic distribution. Section 4
presents the frequentist properties for the Bayesian and maximum likelihood esti-
mators. Section 5 presents an application to real data that shows that our Bayesian
methodology allows for reliable parameter estimation even for small datasets. Fi-
nal discussions and some extensions are given in Section 6.
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2 The hyperbolic model and MLE difficulties

Consider a random sample y = (y1, . . . , yn) from the hyperbolic distribution with
density function given by equation (1.2). Then the likelihood function is given by

L(α,β,μ, δ;y) =
{ √

α2 − β2

2αδK1(δ

√
α2 − β2)

}n

(2.1)

× exp

{
−α

n∑
i=1

√
δ2 + (yi − μ)2 + β

n∑
i=1

(yi − μ)

}
.

We denote the model parameters by θ = (α,β,μ, δ)′.
Maximum likelihood estimation for the hyperbolic distribution is problematic

since several models are limiting or particular cases. For example, the normal dis-
tribution N(μ,σ 2) is a limiting case when β = 0, α → ∞ and δ/α → σ 2. In
addition, the Laplace distribution is a limiting case when β = 0 and δ → 0.

Proposition 2.1. The likelihood function given in equation (2.1) satisfies,

L(α,β,μ, δ;y) = O(1), as δ → ∞,
δ

α
→ σ 2, β = 0, (2.2)

with L(α,β,μ, δ;y) → ∏n
i=1 φ(yi;μ,σ 2), where φ(·;μ,σ 2) is the normal den-

sity with mean μ and variance σ 2.

Proof. When β → 0 we have that f (yi) → 1
2δK1(δα)

exp{−α
√

δ2 + (yi − μ)2}.
Moreover, for x large K1(x) →

√
π
2x

exp{−x} (Abramowitz and Stegun, 1972,

p. 378, equation (9.7.2)). Thus for δ → ∞ and δ
α

→ σ 2 we find f (yi) →
1√

2πσ 2
exp{αδ − α

√
δ2 + (yi − μ)2}. In addition, αδ − α

√
δ2 + (yi − μ)2 =

−α2(yi−μ)2

(αδ+α
√

δ2+(yi−μ)2)
which converges to −(yi−μ)2

2σ 2 as δ → ∞ and δ/α → σ 2. �

Proposition 2.2. The likelihood function given in equation (2.1) satisfies,

L(α,β,μ, δ;y) = O(1), as δ → 0, β = 0, (2.3)

with L(α,β,μ, δ;y) → ∏n
i=1 g(yi;α,μ), where g(·;α,μ) is the Laplace density

with parameters α and μ.

Proof. When β → 0 we have that f (yi) → 1
2δK1(δα)

exp{−α
√

δ2 + (yi − μ)2}.
Moreover, for x → 0, K1(x) → x−1 (Abramowitz and Stegun, 1972, p. 375,
equation (9.6.9)). Thus, for δ → 0 and α finite constant we find f (yi) →
α
2 exp{−α|yi − μ|}. �
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(a) Likelihood function. (b) Posterior density.

Figure 2 Contour plots of the (a) likelihood function and (b) posterior density for (α, δ), holding
β and μ at their true values, for a dataset of size n = 100 simulated from model (1.2) with α = 2,
β = 0, δ = 1 and μ = 2.

To illustrate the consequences of Proposition 2.1 in terms of estimation, we have
simulated a dataset from the hyperbolic distribution with parameters α = 2, β = 0,
μ = 2 and δ = 1, and with sample size n = 100. Figure 2(a) shows a contour plot
of the likelihood function for α and δ holding β and μ at their true values. Unfortu-
nately, the maximum of this likelihood function is located far from the true values
of α and δ. We have used the function hyperbFit(·) of the R-package Hyperbol-
icDist to compute the MLE of the parameters using three optimization methods:
Newton, quasi-Newton, and Nelder–Mead. Table 1 shows the results, that are far
from the true values of the parameters. The problem is not with the optimization
methods, but with the bad behavior of the likelihood function. Other authors, for
example, Barndorff-Nielsen and Blæsild (1981) and Eberlein and Keller (1995)
have also noticed this problematic behavior of the likelihood function. In the ex-
treme case, the likelihood may be maximized when a combination of the parame-
ters goes to infinity and then the MLE may not exist.

To shed light on how the likelihood function problematic behavior depends on
sample size, we have computed the probability of nonexistence of the MLE of α for
the symmetric (β = 0) and asymmetric (β = 0.1α) cases. For both cases, we con-
sider sample sizes n ∈ {30,50,100,200,2,000}, and parameter values δ = α, μ =
0, and α ∈ {0.5,1,2,3,5}. Tables 2 and 3 present the results for the symmetric and

Table 1 Maximum likelihood estimates for θ = (α,β,μ, δ)

obtained using 100 observations simulated from the
Hyp(α,β,μ, δ) with α = 2, β = 0, μ = 2 and δ = 1

θ Newton Q-Newton Nelder–Mead

α = 2 27.4663 21.1749 27.4605
β = 0 −0.4910 −13.4426 0.1944
μ = 2 2.4747 9.5139 1.8321
δ = 1 25.6837 9.0368 25.6855
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Table 2 Probability of nonexistence of the maximum likeli-
hood estimator of α. The sample with size n was generated
from Hyp(α,β,μ, δ) with β = 0, μ = 0 and δ = α

α

0.5 1 2 3 5

n 30 0.214 0.347 0.524 0.585 0.647
50 0.085 0.168 0.416 0.527 0.601

100 0.022 0.061 0.290 0.417 0.547
200 0.000 0.006 0.159 0.301 0.463

2,000 0.000 0.000 0.000 0.015 0.182

asymmetric cases, respectively. Both cases lead to similar behavior with respect to
the probability of nonexistence of the MLE of α. More specifically, this probability
increases as α increases and decreases as the sample size n increases. Therefore,
it seems safe to use maximum likelihood estimation for datasets of size n = 2,000
or larger, but for smaller sample sizes the MLE does not seem to be adequate.

In a Bayesian context, the bad behavior of the likelihood function is also an
issue and, as a consequence, the choice of the prior distribution for the parameters
is extremely important. As a solution for the inference problems, we propose the
use of the Jeffreys prior as a calibration for the likelihood function. Figure 2(b)
shows, for the same simulated dataset of Figure 2(a), the resulting posterior density
for (α, δ) using the Jeffreys prior that we derive in the next section. The Jeffreys
prior corrects the bad behavior of the likelihood function and leads to a posterior
density located close to the true parameters values.

3 Jeffreys prior

In this section, we derive the Jeffreys prior for the parameters of the hyperbolic
distribution. As shown in Firth (1993), the Jeffreys prior works as a calibration tool

Table 3 Probability of nonexistence of the maximum likeli-
hood estimator of α. The sample with size n was generated
from Hyp(α,β,μ, δ) with β = 0.1α, μ = 0 and δ = α

α

0.5 1 2 3 5

n 30 0.199 0.306 0.517 0.558 0.597
50 0.091 0.169 0.409 0.505 0.535

100 0.016 0.057 0.269 0.423 0.524
200 0.001 0.010 0.144 0.309 0.472

2,000 0.000 0.000 0.001 0.016 0.237
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for the information provided by the likelihood function. In particular, inference for
small samples is possible using this approach as the Jeffreys prior compensates
for the fact that the likelihood function in (2.1) does not vanish in the tails. As
we shall see, this implies very different inferences obtained using the frequentist
and default Bayesian estimation approaches for the parameters in this model, with
results being in favor of the Bayesian approach.

Theorem 3.1. The Jeffreys prior associated with model (2.1) is

P J (θ) ∝ |I (θ)|1/2, (3.1)

where the elements of the the Fisher expected information matrix I (θ) are given
by

I11(θ) = α2δ4S1 − ρδ2R1

ρ2 − 1

α2 ,

I12(θ) = −αβδ4S1

ρ2 ,

I13(θ) = −β

α
,

I14(θ) = αδS1 + ρR1

αδ
− 2αδR1

ρ
− 2

αδ
,

I22(θ) = ρδ2R1 + β2δ4S1

ρ2 ,

I23(θ) = 1,

I24(θ) = 2βδR1

ρ
− βδS1,

I33(θ) = α4(ϕ2 − 2μϕ1 + μ2ϕ0),

I34(θ) = α4(μδϕ0 − δϕ1) + βρR1 − 2β

δ
,

I44(θ) = δ2α4ϕ0 − ρ2R2
1

δ2 + 4ρR1 − 4

δ2 ,

where θ = (α,β,μ, δ), R1 = R1(ρ) = K2(ρ)
K1(ρ)

, S1 = S1(ρ) = K3(ρ)
K1(ρ)

− R2
1(ρ) and

ϕk(α,β,μ, δ) = ∫ ∞
−∞

yk

α2δ2+α2(y−μ)2 f (y|θ) dy.

Proof. Define ϑ = α

√
δ2 + (y − μ)2.



334 T. C. O Fonseca, H. S. Migon and M. A. R. Ferreira

Using the property that E[ ∂
∂θi

logL(θ;y)] = 0, i = 1,2,3,4, the first derivatives
of the log likelihood are given by

(a) ∂
∂α

logL(θ;y) = − 1
α
{ϑ − E[ϑ]},

(b) ∂
∂β

logL(θ;y) = y − E[y],
(c) ∂

∂δ
logL(θ;y) = −α2δ{ 1

ϑ
− E[ 1

ϑ
]},

(d) ∂
∂μ

logL(θ;y) = α2δ{y−μ
ϑ

− E[ (y−μ)
ϑ

]}.
The Fisher information matrix is given by

Iij = E

{(
∂

∂θi

logL(θ;y)

)(
∂

∂θj

logL(θ;y)

)}
for i, j = 1, . . . ,4.

Thus, I11 = E[( ∂
∂α

logL(θ;y))2] = 1
α2 Var(ϑ), which is obtained from the re-

sult E[(y − μ)2] = δ2R1
ρ

+ β2δ4S1
ρ2 from (1.3) and (1.4).

I33 = E[( ∂
∂μ

logL(θ;y))2] = α4(ϕ2 − 2μϕ1 + μ2ϕ0).

I44 = E[( ∂
∂δ

logL(θ;y))2] = α4δ2 Var( 1
ϑ
) = α4δ2{ϕ0 − E2[ 1

ϑ
]}, which follows

from the expectation of (c).
I13 = E[( ∂

∂α
logL(θ;y))( ∂

∂μ
logL(θ;y))] = −α Cov(ϑ,

y−μ
ϑ

), which follows
from the expectation of y − μ in (1.3), (a) and (d).

I14 = E[( ∂
∂α

logL(θ;y))( ∂
∂δ

logL(θ;y))] = αδ Cov(ϑ, 1
ϑ
), which follows from

the expectation of (a) and (c).

I34 = E

[(
∂

∂μ
logL(θ;y)

)(
∂

∂δ
logL(θ;y)

)]
= −α4δ Cov

(
1

ϑ
,
y − μ

ϑ

)

= −α4δ

{
ϕ1 − μϕ0 − E

[
1

ϑ

]
E

[
y − μ

ϑ

]}
,

which follows from the expectation of (c) and (d).

As they do not depend on y, the terms I12, I22, I23, and I24 are computed di-
rectly using Iij = E[− ∂2

∂θi∂θj
logL(θ;y)]. �

4 Frequentist properties

This section presents frequentist properties of the maximum likelihood estima-
tor (MLE) and of the posterior median (Bayesian estimator) of θ based on the
Jeffreys prior proposed here. We focus on the bias, the frequentist mean squared
error (MSE) and the frequentist coverage of 95% credible intervals for two differ-
ent sample sizes, n = 50 and n = 100. We have computed the bias, the MSE and
the frequentist coverage via Monte Carlo simulation. More specifically, for each
true value of α ∈ {0.5,1,3}, β ∈ {0,0.1α} and δ ∈ {0.5,3} and each sample size
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n ∈ {50,100} we have simulated 1,000 samples, computed the two estimates and
the credibility interval for each sample and then estimated the bias, the MSE of
each estimator and the frequentist coverage. The results obtained when β = 0.1α

are very similar to the results when β = 0 and are not presented here. In all simu-
lations, we have assumed μ = 2. The MLE was obtained using the Nelder–Mead
method in the R-package HyperbolicDist.

We have implemented a Metropolis–Hastings algorithm for the computation
of the posterior median and the credible intervals. We sample in blocks (β,μ)

and (α, δ) to ameliorate the problems caused by the high posterior correlation of
the parameters and to speed up the convergence of the algorithm. In addition, the
proposal distributions are μ(prop) ∼ N(μ(k), d2

1 ), β(prop) ∼ TN(−α(k),α(k))(β
(k), d2

2 ),
α(prop) ∼ TN(|β(k+1)|,∞)(α

(k), d2
3 ) and log(δ(prop)) ∼ N(log(δ(k)), d2

4 ), where
TNA(μ,σ 2) denotes the Gaussian distribution with location μ and scale σ 2 trun-
cated to the region A. We have tuned the variances d2

1 , . . . , d2
4 to obtain an accep-

tance rate around 30%.
Figure 3 shows, for the four parameters in the model, the square root of the

MSE for each combination of (α, δ, n). As expected, the MSE decreases as the

(a)
√

MSE(α̂), δ = 0.5. (b)
√

MSE(α̂), δ = 3.

(c)
√

MSE(β̂), δ = 0.5. (d)
√

MSE(β̂), δ = 3.

Figure 3 Square root of the mean squared error for the maximum likelihood (MLE) and Bayesian
(OB) estimators of α, β , δ and μ when β = 0.



336 T. C. O Fonseca, H. S. Migon and M. A. R. Ferreira

(e)
√

MSE(δ̂), δ = 0.5. (f)
√

MSE(δ̂), δ = 3.

(g)
√

MSE(μ̂), δ = 0.5. (h)
√

MSE(μ̂), δ = 3.

Figure 3 (Continued).

sample size increases. Moreover, the MLEs of α and β have MSEs two orders of
magnitude larger than those of the competing Bayesian estimators. In addition, the
MLEs of δ and μ have much larger MSEs than the competing Bayesian estima-
tors. Figure 4 shows the absolute value of the bias of the maximum likelihood and

(a) |Bias(α̂)|, δ = 0.5. (b) |Bias(α̂)|, δ = 3.

Figure 4 Absolute value of the bias for the maximum likelihood (MLE) and Bayesian estimators
(OB) of α, β , δ and μ when β = 0.
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(c) |Bias(β̂)|, δ = 0.5. (d) |Bias(β̂)|, δ = 3.

(e) |Bias(δ̂)|, δ = 0.5. (f) |Bias(δ̂)|, δ = 3.

(g) |Bias(μ̂)|, δ = 0.5. (h) |Bias(μ̂)|, δ = 3.

Figure 4 (Continued).

Bayesian estimators. The MLE of μ has smaller bias, but the MLEs of α, β and δ

have much larger bias than the corresponding Bayesian estimators. It is important
to note that the comparison of bias is not as important as the comparison of MSE.
Specifically, the MSE already accounts for bias and variance of the estimator. As
we mention above, when compared with the MLEs, the MSE of the Bayesian esti-
mators is smaller for all parameters. Hence, even when the Bayesian estimator has
a larger bias as in the case of μ, it has a much smaller variance than the MLE which
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leads to a smaller MSE. Figure 5 shows the frequentist coverage, as a function of
the true value of α, of 95% credible intervals for α, β , δ and μ. The performance
of the credible intervals decreases for larger δ. Finally, the frequentist coverage
becomes closer to the nominal level as the sample size increases.

(a) Coverage(α̂), δ = 0.5. (b) Coverage(α̂), δ = 3.

(c) Coverage(β̂), δ = 0.5. (d) Coverage(β̂), δ = 3.

(e) Coverage(δ̂), δ = 0.5. (f) Coverage(δ̂), δ = 3.

Figure 5 Frequentist coverage, as a function of the true value of α, of 95% credible intervals for
α, β , δ and μ when β = 0.
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(g) Coverage(μ̂), δ = 0.5. (h) Coverage(μ̂), δ = 3.

Figure 5 (Continued).

The use of the Jeffreys prior amends the bad behavior of the likelihood function,
and as a result the Bayesian estimator has much better frequentist properties than
the MLE for small sample sizes.

5 Illustrative example

The dataset used in this example corresponds to the size of gravels collected from
a sandbar in the Mamquam River, British Columbia, Canada. This dataset is avail-
able with the HyperbolicDist package. Gravel sizes are determined by passing
clasts through templates of particular sizes. This gives a range in which the size
of each clast lies. Sizes (in mm) are then converted into psi units by taking the
base 2 logarithm of the size. The midpoints specified are the midpoints of the psi
unit ranges, and the counts give the number of observations in each size range.
The classes are of length 0.5 psi units. There are 3,574 observations as described
in Rice and Church (1996). Table 4 shows the maximum likelihood estimates of
the model parameters obtained using the following methods implemented in The
HyperbolicDist Package: Quasi-Newton, Nelder and Mead and Newton Raphson.
Below, we use these MLE estimates based on the large sample of 3,574 observa-
tions as benchmark.

Table 4 Maximum likelihood estimates in the model
Hyp(α,β, δ,μ) using the complete Mamquam river dataset
with n = 3,574 observations

θ Newton Q-Newton Nelder–Mead

α 5.619 5.402 5.618
β −3.908 −3.706 −3.907
δ 2.340 2.325 2.340
μ 7.754 7.682 7.754
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(a) Complete dataset. (b) Subsample of 200 observations.

Figure 6 Size of small stones at Mamquam river.

It is worth pointing out that the estimates obtained via the three alternative op-
timization methods are very similar, mainly due to the fact that the dataset is very
large. A relevant question is: what would have happened if these methods were
applied to a small dataset? To answer this question, we next present some results
using a subset of the original data. Figure 6 shows a histogram of a subsample of
size n = 200 taken from the original dataset. The sampling was done by dividing
the domain of the original data in subintervals and by sampling observations in
each subinterval with probability equal to the relative frequency observed in each
subinterval.

Table 5 presents summaries of the posterior distribution and maximum likeli-
hood estimates for the model Hyp(α,β, δ,μ), based on the subsample. Note that,
using the Jeffreys prior, point and interval estimates are reasonably similar to the
benchmark estimates obtained using the complete dataset. Whereas using max-
imum likelihood approach the estimates obtained for α and β have very large
absolute values. In addition, the Bayesian 95% credible intervals contain all the
benchmark estimates. This can be seen in Figure 7, that shows histograms of sam-
ples from the marginal posterior distributions for the parameters of interest. On
the other hand, Table 5 shows that maximum likelihood estimation breaks down
when we use only the subsampled 200 observations. This example illustrates the
superiority of the proposed Bayesian approach in the estimation of parameters of
the hyperbolic distribution when the sample size is small.

Table 5 Standard deviation (SD[θ |y]), median (MD[θ |y]) and quantiles of 2.5% (q0.025) and
97.5% (q0.975) of the posterior distribution and maximum likelihood estimates for the model
Hyp(α,β, δ,μ), using a subsample of 200 observations from the Mamquam river dataset

θ SD[θ |y] MD[θ |y] q0.025 q0.975 Newton Q-Newton Nelder–Mead

α 1.3364 3.7802 1.9358 6.7346 31446.898 44.691 63.980
β 1.126 −2.4233 −5.0103 −1.0207 −31445.088 −42.916 −62.186
δ 0.8305 1.7831 0.8251 3.8229 0.048 1.201 1.032
μ 0.5989 7.1576 6.2404 8.5026 10.071 9.694 9.827
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(a) Marginal posterior of α. (b) Marginal posterior of β.

(c) Marginal posterior of δ. (d) Marginal posterior of μ.

Figure 7 Histograms of the marginal posterior distribution for the parameters in the model ob-
tained using a subsample of size 200. The vertical lines represent the estimates obtained for the
complete dataset using the Quasi-Newton, Nelder–Mead and Newton methods.

6 Discussion

In this paper, we have developed Bayesian analysis for the hyperbolic family of
distributions using the noninformative Jeffreys prior. We have shown that our pro-
posed methodology solves the estimation problems associated with the bad be-
havior of the likelihood function. Moreover, a simulation study has shown that,
when compared to the maximum likelihood estimator, our Bayesian estimator is
superior.

Barndorff-Nielsen and Blæsild (1981) raised three relevant questions that we
answer in our paper. Their first question was “For what sample size is it reason-
able to consider a 4 parameter distribution?” For the hyperbolic distribution, the
answer depends on which estimation method is used. Whereas the MLE needs a
sample size of the order of thousands to be reliable, our Bayesian approach based
on the Jeffreys prior provides reliable results with sample size as small as 50. Their
second question was “Which parametrization of the distribution gives the most
tractable form of the loglikelihood?” The second question suggests reparametriza-
tion in order to achieve tractability of the likelihood function. This is not an issue
in our proposed Bayesian analysis because the Jeffreys prior is invariant under
reparametrization. Their third question was “Which numerical procedure is opti-
mal?” In the case of small samples, no numerical procedure will save the MLE; the
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problem is not the numerical optimization procedure but the bad behavior of the
likelihood function. Conversely, for the Bayesian analysis we propose, the MCMC
algorithm which we briefly describe in Section 4 works well even for small sam-
ples.
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