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Comment: Graphical Models, Causality

and Intervention

Judea Pearl

I am grateful for the opportunity to respond to these
two excellent papers. Although graphical models are
intuitively compelling for conceptualizing statistical
associations, the scientific community generally views
such models with hesitancy and suspicion. The two
papers before us demonstrate the use of graphs—spe-
cifically, directed acyclic graphs (DAGs)—as a mathe-
matical tool of great versatility and thus promise to
make graphical languages more common in statistical
analysis. In fact, I find my own views in such close
agreement with those of the authors that any attempt
on my part to comment directly on their work would
amount to sheer repetition. Instead, as the editor sug-
gested, I would like to provide a personal perspective
on current and future developments in the areas of
graphical and causal modeling. A complementary ac-
count of the evolution of belief networks is given in
Pearl (1993a).

I will focus on the connection between graphical
models and the notion of causality in statistical analy-
sis. This connection has been treated very cautiously
in the papers before us. In Lauritzen and Spiegelhalter
(1988), the graphs were called “causal networks,” for
which the authors were criticized; they have agreed to
refrain from using the word “causal.” In the current
paper, Spiegelhalter et al. deemphasize the causal inter-
pretation of the arcs in favor of the “irrelevance” inter-
pretation. I think this retreat is regrettable for two
reasons: first, causal associations are the primary
source of judgments about irrelevance, and, second,
rejecting the causal interpretation of arcs prevents us
from using graphical models for making legitimate
predictions about the effect of actions. Such predictions
are indispensable in applications such as treatment
management and policy analysis. I would like to sup-

" plement the discussion with an account of how causal
models and graphical models are related.

It is generally accepted that, because they provide
information about the dynamics of the system under
study, causal models, regardless of how they are dis-
covered or tested, are more useful than associational
models. In other words, whereas the joint distribution
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tells us how probable events are and how probabilities
would change with subsequent observations, the causal
model also tells us how these probabilities would
change as a result of external interventions in the
system. For this reason, causal models (or “structural
models” as they are often called) have been the target
of relentless scientific pursuit and, at the same time,
the center of much controversy and speculation. What
I would like to discuss in this commentary is how
complex information about external interventions can
be organized and represented graphically and, con-
versely, how the graphical representation can be used
to facilitate quantitative predictions of the effects of
interventions.

The basic idea goes back to Simon (1977) and is
stated succinctly in his foreword to Glymour et al.
(1987): “The advantage of representing the system by
structural equations that describe the direct causal
mechanisms is that if we obtain some knowledge that
one or more of these mechanisms has been altered,
we can use the remaining equations to predict the
consequences —the new equilibrium.” Here, by “mecha-
nism” Simon means any stable relationship between
two or more variables that remains invariant to exter-
nal influences until it falls directly under such influ-
ences.

This mechanism-based model was adapted in Pearl
and Verma (1991) for defining probabilistic causal theo-
ries; each child-parent family in a DAG T represents a
deterministic function X; = fi(pa; &), where pa; are the
parents of variable X; in I', and ¢;, 0 <i <n, are mutu-
ally independent, arbitrarily distributed random distur-
bances. Characterizing each child-parent relationship
as a deterministic function, instead of the usual condi-
tional probability P(x; | pa;), imposes equivalent inde-
pendence constraints on the resulting distributions and
leads to the same recursive decomposition

(1) P(xy,...,x,) =HP(xi|pai)

that appears in Eq. (1) of Spiegelhalter et al.’s article.
However, the functional characterization also specifies
how the resulting distribution would change in re-
sponse to external interventions, since, by convention,
each function is presumed to remain constant unless
specifically altered. This formulation is merely a nonlin-
ear generalization of the usual structural equation mod-
els, where function constancy (or stability) is implicitly

W2

Statistical Science. RIKOIS ®

WWW.jstor.org



LINEAR DEPENDENCIES / BAYESIAN ANALYSIS IN EXPERT SYSTEMS 267

assumed. Moreover, the nonlinear character of f; per-
mits us to treat changes in the function f; itself as a
variable, F;, by writing-

(2) X; = fi(pa;, Fi, &)
where
fia, b,c) = fia,c) whenever b = f;.

Thus, any external intervention F; that alters f; can be
represented graphically as an added parent node of X;,
and the effect of such an intervention can be analyzed
by Bayesian conditionalization, that is, by simply setting
this added parent variable to the appropriate value f;.

The simplest type of external intervention is one in
which a single variable, say X;, is forced to take on
some fixed value x}. Such intervention, which we call
atomic, amounts to replacing the old functional mecha-
nism X; = f{pa;, &) with a new mechanism X; = x{ gov-
erned by some external force F; that sets the value x.
If we imagine that each variable X; potentially could
be subject to the influence of such an external force
F;, then we can view the causal network I as an efficient
code for predicting the effects of atomic interventions
and of various combinations of such interventions.

The effect of an atomic intervention set(X; = x/) is
encoded by adding to I' a link F; — X; (Figure 1), where
F; is a new variable taking values in {set(x}), idle}, x!
ranges over the domain of X;, and idle represents no
intervention. Thus, the new parent set of X; in the
augmented network is pa’; = pa;U{F3}, and it is related
to X; by the conditional probability

~
P(xi | pai), ifF; = idle,
0; if F; = set(x})
(8) P(x:|pal)= s and x; # x},
1, if F; = set(x!)
andx,- = x{

-

The effect of the intervention set(x! is to transform
the original probability function P(x,...,x,) into a
new function P(x1, . .., x,), given by

(4) Py(x1,...,%:) =P (x1,...,%, | F; = set(x})),

where P’ is the directed Markov field dictated by the
augmented network I'" = TU{F; = X} and (3), with an
arbitrary prior distribution on F;. In general, by adding
a hypothetical intervention link F; = X; to each node in
I', we can construct an augmented probability function
Plxi,..., x5 F1,...,F,) that contains information
about richer types of interventions. Multiple interven-
tions would be represented by conditioning P’ on a
subset of the Fjs (taking values in their respective
set(x})), while the preintervention probability function
P would be viewed as the posterior distribution induced
by conditioning each F; in P’ on the value idle.

This representation yields a simple and direct trans-
formation between the preintervention and the postin-
tervention distributions:

P(x1,...,x,)
P(x; | pa;)
0, if x; # x.

, ifx,- = x{,

(5) Pxf(x1)° -9xn)=

This transformation reflects the removal of the term
P(x;|pa;) from the product decomposition of (1), since
pa; no longer influence X;. Transformations involving
conjunctive and disjunctive actions can be obtained
by straightforward applications of (4) (Goldszmidt and
Pearl, 1992; Pearl, 1993b; Spirtes, Glymour and Scheines
1993). The transformation exhibits the following prop-
erties:

1. Anintervention set(x{) can affect only the descen-
dants of X; in T
2. For any set S of variables, we have

(6) P4S | pa;) = P(S | x}, pa;).

In other words, given X; = x} and pa;, it is super-
fluous to find out whether X; = x! was established
by external intervention or not. This can be seen
directly from the augmented network I" (Figure
1), since {X;}Upa; d-separates F; from the rest of
the network, thus legitimizing the conditional
independence S || F; | (X, pa).

Fic. 1. Representing external intervention, F;, by an augmented network I’ = TU{F; = Xi}.
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3. A necessary and sufficient condition for an exter-
nal intervention set(X; = x{) to have the same
effect on X; as the passive observation X; = x/ is
that X; d-separates pa; from Xj, that is,

(7) ng(xj) = P(x, | x{) iff .X] A pa; | Xi.

Equation (4) explains why randomized experiments
are sufficient for estimating the effect of interventions
even when the causal network is not given: because
the intervening variable F; enters the networks as a
root node (i.e., independent of all other ancestors of X))
it is equivalent to a treatment-selection policy gov-
erned by a random device.

The immediate implication of (5) is that, given the
structure of the causal network I', one can infer postin-
tervention distributions from preintervention distribu-
tions; hence, we can reliably estimate the effects of
interventions from passive (i.e., nonexperimental) ob-
servations. Of course, (5) does not imply that we can
always substitute observational studies for experimen-
tal studies, as this would require an estimation of
P(x; | pa;). The mere identification of pa; (i.e., the direct
causal factors of X;) requires substantive causal knowl-
edge of the domain which is often unavailable. More-
over, even when we have sufficient substantive
knowledge to structure I', some members of pa; may
be unobservable, or latent. Fortunately, there are con-
ditions for which an unbiased estimate of P,(x; can
be obtained even when the pa; variables are latent and,
moreover, a simple graphical criterion can tell us when
these conditions are satisfied.

Assume we are given a causal network I' together
with nonexperimental data on a subset X, of observed
variables in I and we wish to estimate what effect the
intervention set(X; = x!) would have on some response
variable X|. In other words, we seek to estimate P,(x;)
from a sample estimate of P(X,). Applying (4), we can
write

P, (x;) = P'(x; | F: = set(x}))
) =2 Plx;| S, X; =}, F; = set(x}))
S

X P (S| F: = set(x})),
Wherel S is any set of variables. Clearly, if S satisfies
9) S 1l F;and X; Il F;| (X;,S),
then (8) can be reduced to

Py (x;) = D, P(x;|S,x!)P(S)
(10) j %I i |

= Es[P(x; | S,x!)].
Thus, if we find a set S < X, of observables satisfying
(9), we can estimate P,,(x;) by taking the expectation
(over S) of Plx;|S,x!), and the latter can easily be

estimated from nonexperimental data. It is also easy
to verify that (9) is satisfied by any set S that meets
the following back-door criterion:

1. No node in S is a descendant of X;, and
2. S d-separates X; from X; along every path con-
taining an arrow into X;.

The name “back-door” echos condition 2, which re-
quires that only indirect paths from X; to X; be d-sepa-
rated; these paths can be viewed as entering X; through
the back door.

In Figure 2, for example, the sets S; = {X;, X4} and
S; = {X4, X5} would qualify under the back-door crite-
rion, but S; = {X4} would not because X, does not
d-separate X; from X; along the path (X; X3, X1, X4,
X3, X5, X;). Thus, we have obtained a simple graphical
criterion for finding a set of observables for estimating
(by conditioning) the effect of interventions from purely
nonexperimental data.

It is interesting that the conditions formulated in
(9) are equivalent to those known as strongly ignorable
treatment assignment (SITA) conditions in Rubin’s
model for causal effect (Pearl, 1993c; Rosenbaum and
Rubin, 1983). [The graphical translation of Rubin’s
model invokes the mechanism X; > X; < r, where X;
represents the treatment-assignment, X; the observed
response, and r represents the causal-effect variable.
Indeed, following the counterfactual interpretation of
r, X; is a deterministic function of X; and r, and r plays
the role of f; in (2) (Pearl, 1993c)]. Reducing the SITA
conditions to the graphical back-door criterion facili-
tates the search for an optimal conditioning set S
and significantly simplifies the judgments required for
ratifying the validity of such conditions in practical
situations.

Equation (4) was derived under the assumption that
the preintervention probability P is given by the prod-
uct of (1), which represents a joint distribution prior
to making any observations. To predict the effect of
action F; after observing C, we must also invoke as-
sumptions about persistence, so as to distinguish prop-

X1 X,
X3
Xa
@ / \ X4
X’i\.\‘\o

Fic. 2. A DAG representing the back-door criterion, adjusting
for variables { X3, X4} (or {X4, X5}) yields an unbiased estimate of

Plx; | set(x}).
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erties that will terminate as a result of F; from those
that will persist despite of acting F;. Such a model of
persistence was invoked in (Pearl, 1993b); there, it was
assumed that only those properties should persist that
are not under any causal influence to terminate. This
assumption yields formulas for the effect of conditional
interventions (conditioned on the observation C) which,
again, given I', can be estimated from nonexperimental
data.

A more ambitious task has been explored by Spirtes,
Glymour and Scheines, (1993) —estimation of the effect
of intervention when the structure of I is not available
and must also be inferred from the data. Recent devel-
opments in graphical models (Pearl and Verma, 1991;
Spirtes, Glymour and Scheines, 1993) have produced
methods that, under certain conditions, permit us to
infer plausible causal structures from nonexperimental
data, albeit with a weaker set of guarantees than those
obtained through controlled randomized experiments.
These guarantees fall into two categories: minimality
and stability (Pearl and Verma, 1991). Minimality guar-
antees that any other structure compatible with the
data is necessarily more redundant, and hence less
trustworthy, than the one(s) inferred. Stability ensures

Comment

Michael E. Sobel

It is a pleasure to discuss these excellent papers.
Spiegelhalter, Dawid, Lauritzen and Cowell nicely put
together a number of themes, demonstrating, in a Bayes-
ian context, the utility of graphical modelling in the
construction of probabilistic expert systems. The au-
thors show how graphs can be used heuristically to
solicit expert opinion, and in Section 6, how the theory
of conditional independence graphs can be used to
make tractable (while maintaining reasonable substan-
tive assumptions) the calculation of probabilistic fea-
tures of the system (monitors). For example, the authors
want to apply to the directed independence graph of
their Figure 2 the decomposability theorem for undi-
rected conditional independence graphs, which permits
a full factorization of the probability distribution. To
do so, they associate the graph of Figure 2 with its
moral graph (an undirected conditional independence
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that any alternative structure compatible with the data
must be less stable than the one(s) inferred; namely,
slight fluctuations in the distributions of the distur-
bances ¢; (2) will render that structure no longer com-
patible with the data.

When the structure of I' is to be inferred under
these guarantees, the formulas governing the effects
of interventions and the conditions required for esti-
mating these effects become rather complex (Spirtes,
Glymour and Scheines, 1993). Alternatively, one can
produce bounds on the effect of interventions by taking
representative samples of inferred structures and esti-
mating P,x;) according to (10) for each such sample.

In summary, I hope my comments convince the
reader that DAGs can be used not only for specifying
assumptions of conditional independence but also as a
formal language for organizing claims about external
interventions and their interactions. I hope to have
demonstrated as well that DAGs can serve as an ana-
lytical tool for predicting, from nonexperimental data,
the effect of actions (given substantive causal knowl-
edge), for specifying and testing conditions under
which randomized experiments are not necessary and
for aiding experimental design and model selection.

graph) and use the fact that the separation properties
of the moral graph apply to the directed independence
graph. They then embed the moral graph into a triangu-
lated graph, enabling use of the desired theorem; fur-
ther simplications come from organizing the cliques of
the triangulated graph into junction trees.

- My vantage point is that of a social statistician: as
such, there is more for me to say about the paper by
Cox and Wermuth. In particular, I want to expand on
and further tie several themes in this paper to research
in the social and behavioral sciences. Thus, discussion
focuses primarily on this paper; I shall often freely
borrow notation from there.

TYPES OF INDEPENDENCE GRAPHS

Cox and Wermuth nicely characterize various types
of dependencies among random variables. Prior work
has focused attention on two types of independence
graphs. If no ordering is imposed on the variables,
undirected graphs are used; here, the absence of an
edge between two vertices denotes conditional indepen-
dence of the variables associated with the vertices,



