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SUMMARY

Classification tree models are flexible analysis tools which have the ability to evaluate interactions
among predictors as well as generate predictions for responses of interest. We describe Bayesian analysis
of a specific class of tree models in which binary response data arise from a retrospective case-control
design. We are also particularly interested in problems with potentially very many candidate predictors.
This scenario is common in studies concerning gene expression data, which is a key motivating example
context. Innovations here include the introduction of tree models that explicitly address and incorporate
the retrospective design, and the use of nonparametric Bayesian models involving Dirichlet process priors
on the distributions of predictor variables. The model specification influences the generation of trees
through Bayes’ factor based tests of association that determine significant binary partitions of nodes
during a process of forward generation of trees. We describe this constructive process and discuss
questions of generating and combining multiple trees via Bayesian model averaging for prediction.
Additional discussion of parameter selection and sensitivity is given in the context of an example
which concerns prediction of breast tumour status utilizing high-dimensional gene expression data; the
example demonstrates the exploratory/explanatory uses of such models as well as their primary utility in
prediction. Shortcomings of the approach and comparison with alternative tree modelling algorithms are
also discussed, as are issues of modelling and computational extensions.
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1. INTRODUCTION

We discuss the generation and exploration of classification tree models, with particular interest in
problems involving many predictors. One key motivating application is molecular phenotyping using
gene expression and other forms of molecular data as predictors of a clinical or physiological state.
We address the specific context of a binary response Z and many predictors x;, and in which the data
arise via a retrospective case-control design, i.e. observations are sampled retrospectively from a study
where the numbers of 0/1 values in the response data are fixed by design. This is a very common context
and has become particularly interesting in studies aiming to relate large-scale gene expression data to
binary outcomes, such as a risk group or disease state (West et al., 2001). Breiman (2001b) gives a useful
discussion of recent developments in tree modelling and also an interesting gene expression example. Our
focus here is on Bayesian analysis of this retrospective binary context.

Our analysis addresses and incorporates the retrospective case-control design issues in the assessment
of association between predictors and outcome with nodes of a tree. With categorical or continuous
covariates, this is based on an underlying non-parametric model for the conditional distribution of
predictor values given outcomes, consistent with the retrospective case-control design. We use sequences
of Bayes’ factor based tests of association to rank and select predictors that define significant splits
of nodes, and that provide an approach to forward generation of trees that is generally conservative
in producing trees that are effectively self-pruning. We implement a tree-spawning method to generate
multiple trees with the aim of finding classes of trees with high marginal likelihood, and prediction is
based on model averaging, i.e. weighting predictions of trees by their implied posterior probabilities.
Posterior and predictive distributions are evaluated at each node of each tree, and feed into both the
evaluation and interpretation tree by tree, and the averaging of predictions across trees for future cases to
be predicted.

Existing Bayesian approaches to tree modelling utilizing stochastic search methods have proven to be
effective in real data examples (Chipman ez al., 1998; Denison et al., 1998). These current approaches
utilize ideas from MCMC though define effective stochastic search algorithms for plausible models rather
than provably convergent MCMC methods for posterior sampling. Indeed, development of MCMC for
full posterior sampling in tree models remains an open and very challenging problem even in contexts
with very small numbers of candidate predictor variables. These existing methods scale very poorly, and
so are ill-suited to problems of high-dimensional predictor spaces. In microarray applications it is not
unusual to have thousands of potential predictors and the implementation of a simulation-based approach
in such a context requires research advances in statistical computation. Our approach, in contrast, utilizes
deterministic search that aims to efficiently generate many candidate tree models, and models of high
likelihood. Related to classical approaches to tree model generation (Breiman et al., 1984, Clark and
Pregibon, 1992), such methods have previously been employed for gene expression analysis (Hastie et
al., 2001; Segal et al., 2003; Boulesteix et al., 2003) as both exploratory and predictive tools. Beyond the
development of Bayesian analysis, with its direct focus on prediction and particularly on the evaluation
of uncertainties in prediction via model averaging (Raftery et al., 1997) over multiple trees, we present
an approach and non-parametric model class that is specifically tailored to the retrospective sampling
paradigm. We also highlight the exploratory uses of tree modelling in evaluation and exploration of
predictors appearing across multiple, plausible models.

Following discussion and model development, we give an example concerning gene expression
profiling using DNA microarray data as predictors of a clinical state in breast cancer. The example of
estrogen receptor (ER) status prediction given here demonstrates not only predictive value but also the
utility of the tree modelling framework in aiding exploratory analysis that identifies multiple, related
aspects of gene expression patterns related to a binary outcome, with some interesting interpretation and
insights. This example also illustrates the use of what we term metagene factors—multiple, aggregate
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measures of complex gene expression patterns—in a predictive modelling context (West et al., 2001;
Huang et al., 2003). We compare our results to those provided by random forests (Breiman, 2001a), as
implemented in the widely available statistical software package R (Breiman ez al., 2004; R Development
Core Team, 2003). Software implementing our tree modelling approach is available for download at
(http://wuw.cagp.duke.edu/").

2. MODEL CONTEXT AND METHODOLOGY

Data {Z;, x;}, (i =1,...,n) have been sampled retrospectively on a binary response variable Z and
a p-dimensional covariate vector x. The 0/1 response totals are fixed by design. Each predictor variable
x; could be binary, discrete or continuous.

2.1 Bayes’ factor measures of association

At the heart of a classification tree is the assessment of association between each predictor and the response
in subsamples, and we first consider this at a general level in the full sample. For any chosen single
predictor x, a specified threshold t on the levels of x organizes the data into the 2 x 2 table

Z=0|7Z=1
x< T | ng nor | No
X>T nio ni N; -
My M

With column totals fixed by design, the categorized data are properly viewed as two Bernoulli
sequences within the two columns, hence sampling densities

p(noz, nizIlMz, 0; 1) GZOTZ(I — 0, )"

for each column z = 0, 1. Here, of course, 8y ; = Pr(x < 7|Z =0)and 61 =Pr(x < t|Z =1). A
test of association of the thresholded predictor with the response will be based on assessing the difference
between these Bernoulli probabilities.

The natural Bayesian approach is via the Bayes’ factor B, comparing the null hypothesis 6y =
01,¢ to the full alternative 6y # 6 .. The Bayes’ factor is defined as the posterior odds of either the
null or the alternative hypothesis when the prior probabilities of the two hypotheses are equal (Kass and
Raftery, 1995). It can be viewed as a measure of the evidence provided for or against either hypothesis.
In calculating the Bayes’ factor we adopt the standard conjugate beta prior model and require that the
null hypothesis be nested within the alternative. Thus, assuming 6y # 61.r, we take 6y . and 6 ; to
be independent with common prior Be(a;, b;) with mean m; = a;/(a; + b.). On the null hypothesis
6o,r = 61,7, the common value has the same beta prior. The resulting Bayes’ factor in favour of the
alternative over the null hypothesis is then

_ Bnoo + ar, nio + be)B(no1 + ar, niy + br)
B(No + ar, N1 + by)B(az, by)

As a Bayes’ factor, this is calibrated to a likelihood ratio scale. In contrast to more traditional significance
tests and also likelihood ratio approaches, the Bayes’ factor will tend to provide more conservative
assessments of significance, consistent with the general conservative properties of proper Bayesian tests
of null hypotheses (Selke et al., 2001).

In the context of comparing predictors, the Bayes’ factor B; may be evaluated for all predictors and,
for each predictor, for any specified range of thresholds. As the threshold varies for a given predictor

B,
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taking a range of (discrete or continuous) values, the Bayes’ factor maps out a function of t and high
values identify ranges of interest for thresholding that predictor. For a binary predictor, of course, the only
relevant threshold to consider is 7 = 0.

2.2 Model consistency with respect to varying thresholds

A key question arises as to the consistency of this analysis as we vary the thresholds. In the following
we consider predictors which can be ordered. By construction, each probability 6, ; is a non-decreasing
function of t and the key point is that the beta prior specification must formally reflect this constraint. To
see how this is achieved, note first that 6, . is in fact the cumulative distribution function of the predictor
values x, conditional on Z = z, (z = 0, 1), evaluated at the point x = t. Typically we select the
threshold values for a given predictor to be quantiles of the observed data values for the predictor. Hence
the sequence of beta priors, Be(a;, b;) as T varies, represents a set of marginal prior distributions for the
corresponding set of values of the cdfs. It is immediate that the natural embedding is in a non-parametric
Dirichlet process model for the complete cdf. Thus the threshold-specific beta priors are consistent, and
the resulting sets of Bayes’ factors are comparable as 7 varies, under a Dirichlet process prior with the
betas as marginals. The required constraint is that the prior mean values m, are themselves values of a
cumulative distribution function on the range of x, one that defines the prior mean of each 6 as a function.
Thus, we simply rewrite the beta parameters (a;, b;) as a; = am, and by = «a(1 — my) for a specified
prior mean value m, where « is the prior precision (or ‘total mass’) of the underlying Dirichlet process
model. Note that this specializes to a Dirichlet distribution when x is discrete on a finite set of values,
including special cases of ordered categories (such as arise if x is truncated to a predefined set of bins),
and also the extreme case of binary x when the Dirichlet is a simple beta distribution.

2.3 Generating a tree

The above development leads to a formal Bayes’ factor measure of association that may be used in
the generation of trees in a forward-selection process as implemented in traditional classification tree
approaches. The tree models that we consider each represent a recursive binary partition of the feature
space into a set of rectangles (Hastie et al., 2001). Initially the space is split into two regions, represented
by nodes of the tree, where the variable and split-point (or threshold) are chosen to achieve the best fit.
This splitting process is continued recursively on the tree nodes, resulting in a partition of the space into
smaller subspaces represented by the leaves or terminal nodes of the tree.

Consider a single tree and data in a node that are a candidate for a binary split. Given the data in
this node, construct a binary split based on a chosen (predictor, threshold) pair (x, t) by (a) finding the
(predictor, threshold) combination that maximizes the Bayes’ factor for a split, and (b) splitting if the
resulting Bayes’ factor is sufficiently large. By reference to a posterior probability scale with respect to a
notional 50:50 prior, Bayes’ factors of 2.2, 2.9, 3.7 and 5.3 correspond, approximately, to probabilities of
0.9, 0.95, 0.99 and 0.995, respectively. This guides the choice of threshold, which may be specified as a
single value for each level of the tree. We have utilized Bayes’ factor thresholds of around 3 in a range of
analyses, as exemplified below. Higher thresholds limit the growth of trees by ensuring a more stringent
test for splits.

The Bayes’ factor measure will always generate less extreme values than corresponding generalized
likelihood ratio tests or significance testing (p-value) based approaches, and this can be especially marked
when the sample sizes My and M are low. Thus the propensity to split nodes is always generally lower
than with traditional testing methods, especially with lower sample sizes, and the approach tends to be
more conservative in extending existing trees. Post-generation pruning is therefore generally much less of
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an issue, and can in fact generally be ignored. Unless samples are very large (thousands) typical trees will
rarely extend to more than three or four levels.

Having generated a ‘current’ tree, we run through each of the existing terminal nodes one at a time,
and assess whether or not to create a further split at that node, stopping based on the above Bayes’ factor
criterion. Due to the stepwise nature of the model search it is possible that good models could be missed,
i.e. since the algorithm stops splitting a node as soon as the Bayes’ factor criterion is not met it may
overlook subsequent splits that may lead to promising trees. In problems with a very large number of
predictors it may be possible to vary the Bayes’ factor criterion across levels or increase the number of
trees to aid in the search for high likelihood models.

2.4 Inference and prediction with a single tree

Index the root node of any tree by zero, and consider the full data set of n observations, representing M,
outcomes with Z = z in 0, 1. Label successive nodes sequentially: splitting the root node, the left branch
terminates at node 1, the right branch at node 2; splitting node 1, the consequent left branch terminates at
node 3, the right branch at node 4, and so forth. Any node in the tree is labelled numerically according to its
‘parent’ node; that is, a node j splits into two children, namely the (left, right) children (2j+1, 2 +2). At
level m of the tree (im = 0, 1, .. .) the candidates nodes are, from left to right, 2" — 1,2™, ..., om+l _ o

Suppose we have generated a tree with m levels; the tree has some number of terminal nodes up
to the maximum possible of L = 2"+! — 2. Inference and prediction involve computations for branch
probabilities and the predictive probabilities for new cases that these underlie. We detail this for a specific
path down the tree, i.e. a sequence of nodes from the root node to a specified terminal node.

First, consider a node j that is split based on a (predictor, threshold) pair labelled (x;, z;) (note that
we use the node index to label the chosen predictor, for clarity). Extend the notation of Section 2.1 to
include the subscript j indexing this node. Then the data at this node involve My; cases with Z = 0
and M ; cases with Z = 1, and based on the chosen (predictor, threshold) pair (x;, 7;), these samples
split into cases ngo;, no1j, 710, 711;. The implied conditional probabilities 8, ; ; = Pr(x; < 7;|Z = z),
for z = 0, 1, are the branch probabilities defined by such a split (note that these are also conditional on
the tree and data subsample in this node, though the notation does not explicitly reflect this for clarity).
These are uncertain parameters and, following the development of Section 2.1, have specified beta priors,
now also indexed by parent node j, i.e. Be(ay,j, b, ;). These beta priors are indexed by the parent node
because their values depend on the split variable and threshold at that node (not on the particular level
or location of the node). Assuming the node is split, the two-sample Bernoulli setup implies conditional
posterior distributions for these branch probability parameters: they are independent with posterior beta
distributions

0o,z,j ~ Be(ar,j +nooj, be,j +n10j) and 6y ¢ ~ Be(aej +noij, be,j +n11j).

These distributions allow inference on branch probabilities, and feed into the predictive inference
computations as follows.

The use of independent priors is an approximation as we would expect dependence among predictors
in certain scenarios, e.g. some genes may be known to perform similar functions or participate in
similar biological pathways. As our interests lean toward a more automatic approach and for the sake of
computational efficiency we have chosen to adopt independent priors and shift the subjective component
of the method to the choice of predictors and the predictor space.

Consider predicting the response Z* of a new case based on the observed set of predictor values x*.
The specified tree defines a unique path from the root to the terminal node for this new case. To predict
requires that we compute the posterior predictive probability for Z* = 0/1, which we do by following
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x* down the tree to the implied terminal node, and sequentially building up the relevant likelihood ratio
defined by successive (predictor, threshold) pairs.

For example, suppose that the predictor profile of this new case is such that the implied path traverses
nodes 0, 1, 4, and 9, terminating at node 9. This path is based on a (predictor, threshold) pair (xg, 7o) that
defines the split of the root node, (x1, t1) that defines the split of node 1, and (x4, 74) that defines the
split of node 4. The new case follows this path as a result of its predictor values, in sequence: (x; < o),
(x] > 71) and (x; < 74). The implied likelihood ratio for Z* = 1 relative to Z* = 0 is then the product
of the ratio of branch probabilities to this terminal node, namely

O (1 —=0171) o 01,74,4

M= .
00,70 (1 —007,1) 60544

Hence, for any specified prior probability Pr(Z* = 1), this single tree model implies that, as a function of
the branch probabilities, the updated probability 7 * is, on the odds scale, given by
m* o Pr(Zz*=1)
(1—m*) Pr(Z* =0)’

The retrospective case-control design provides no information about Pr(Z* = 1) so it is up to the user to
specify this or examine a range of values; one useful summary is obtained by taking a 50:50 prior odds as
benchmark, whereupon the posterior probability is

7% = A%/ (1 + A%).

In a case-control context if a new case were selected at random from the population, a useful estimate of
Pr(Z* = 1) could be determined from the prevalence of the disease (obtained from disease registries, for
example). The prior odds may then be other than 50:50 and the expression for 7* would be obtained by
replacing A* with A*Pr(Z* = 1)/Pr(Z* = 0). However, in a cross-validation context similar to that of our
example, the 50:50 choice seems reasonable.

Prediction follows by estimating 7 * based on the sequence of conditionally independent posterior
distributions for the branch probabilities that define it. For example, simply ‘plugging-in’ the conditional
posterior means of each 6. will lead to a plug-in estimate of A* and hence 7*. The full posterior for 7*
is defined implicitly as it is a function of the 6.. Since the branch probabilities follow beta posteriors, it is
trivial to draw Monte Carlo samples of the 6. and then simply compute the corresponding values of A* and
hence 7 * to generate a posterior sample for summarization. This way, we can evaluate simulation-based
posterior means and uncertainty intervals for 7* that represent predictions of the binary outcome for the
new case.

2.5 Generating and weighting multiple trees

In considering potential (predictor, threshold) candidates at any node, there may be a number with high
Bayes’ factors, so that multiple possible trees with different splits at this node are suggested. With
continuous predictor variables, small variations in an ‘interesting’ threshold will generally lead to small
changes in the Bayes’ factor—moving the threshold so that a single observation moves from one side
of the threshold to the other, for example. This relates naturally to the need to consider thresholds as
parameters to be inferred; for a given predictor x, multiple candidate splits with various different threshold
values 7 reflect the inherent uncertainty about 7, and indicate the need to generate multiple trees to
adequately represent that uncertainty. Hence, in such a situation, the tree generation can spawn multiple
copies of the ‘current’ tree, and then each will split the current node based on a different threshold for this

220z ¥snBny 0z uo 1sanb Aq 002G .2/28S/b/S/RI0IME/SONSIIEISOIG/W0D dNODjWapeo.//:SAY WOlj papeojumod



Bayesian prediction tree models 593

predictor. Similarly, multiple trees may be spawned this way with the modification that they may involve
different predictors.

In problems with many predictors, this naturally leads to the generation of many trees, often with
small changes from one to the next, and the consequent need for careful development of tree-managing
software to represent the multiple trees. In our approach the maximum number of significant splits at each
node that are carried through to children is limited by computational considerations, although this limit
is high enough to allow for the construction of thousands of trees. In addition, there is then a need to
develop inference and prediction in the context of multiple trees generated this way. The use of ‘forests of
trees’ has recently been urged by Breiman (2001b), and in references there, and our perspective endorses
this. The rationale here is quite simple: node splits are based on specific choices of what we regard as
parameters of the overall predictive tree model, the (predictor, threshold) pairs. Inference based on any
single tree chooses specific values for these parameters, whereas statistical learning about relevant trees
requires that we explore aspects of the posterior distribution for the parameters (together with the resulting
branch probabilities).

Within the current framework, the forward generation process allows easily for the computation of the
resulting relative likelihood values for trees, and hence to relevant weighting of trees in prediction. For a
given tree, identify the subset of nodes that are split to create branches. The overall marginal likelihood
function for the tree is the product of component marginal likelihoods, one component from each of
these split nodes. Continue with the notation of Section 2.1 but, again, indexed by any chosen node j.
Conditional on splitting the node at the defined (predictor, threshold) pair (x;, 7;), the marginal likelihood
component is

1 1
m; Z/O /0 1—[ p(n()zjvnlzj|sz’ez,t_,-,j)P(ez,tj,j)daz,tj,j
z=0,1

where p(6;,¢;,j) is the Be(ay, j, b, j) prior for each z = 0, 1. This clearly reduces to

m: = l‘[ B(nozj + ac j, nizj + by j)
'/ - .
z=0,1 IB(aT»jv br,j)

The overall marginal likelihood value is the product of these terms over all nodes j that define branches
in the tree. This provides the relative likelihood values for all trees within the set of trees generated. Trees
with more nodes will have lower marginal likelihood values unless the splits generating the additional
nodes lead to a substantially improved model, providing an implicit penalty against many nodes. As
a first reference analysis, we may simply normalize the likelihood values to provide relative posterior
probabilities over trees based on an assumed uniform prior. This provides a reference weighting that can
be used to both assess trees and as posterior probabilities with which to weight and average predictions
for future cases.

3. EXAMPLE: METAGENE EXPRESSION PROFILING

Our example illustrates not only predictive utility but also exploratory use of the tree analysis
framework in examining data structure. The context is primary breast cancer and the prediction of estrogen
receptor (ER) status of breast tumours using gene expression data. West et al. (2001) presented an analysis
of this data which involved binary regression, utilizing Bayesian generalized shrinkage approaches to
factor regression (West, 2003); the model was a probit linear regression linking principal components of
selected subsets of genes to the binary (ER positive/negative) outcomes.

We explore the same set of n = 49 samples here, using predictors based on metagene summaries of
the expression levels of many genes. The evaluation and summarization of large-scale gene expression
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data in terms of lower dimensional factors of some form is being increasingly utilized for two main
purposes: first, to reduce dimension from typically several thousand, or tens of thousands of genes; second,
to identify multiple underlying ‘patterns’ of variation across samples that small subsets of genes share,
and that characterize the diversity of patterns evidenced in the full sample. Discussion of various factor
model approaches appears in West (2003). In several recent studies we have used empirical metagenes,
defined simply as principal components of clusters of genes (Huang et al., 2003; Seo et al., 2003); this is
detailed in the Appendix, as it is of interest here only as it defines the predictor variables x we utilize in
the tree model example. It is, however, of much broader interest in gene expression profiling and related
applications.

The data were sampled retrospectively and comprise 40 training samples and nine validation cases.
The training set was selected within a case-control framework to contain 20 ER positive samples and
20 ER negative samples. Among the validation cases, three were initial training samples that presented
conflicting laboratory tests of the ER protein levels, so casting into question their actual ER status; these
were therefore placed in the validation sample to be predicted, along with an initial six validation cases
selected at random. These three cases are numbers 14, 31 and 33. If the model demonstrates the ability to
predict the status of the six randomly selected samples then perhaps the model predictions for the three
questionable cases can help eulcidate their true ER status. The colour coding in the graphs is based on the
first laboratory test (immunohistochemistry). Additional samples of interest are cases 7, 8 and 11, cases for
which the DNA microarray hybridizations were of poor quality, with the resulting data exhibiting major
patterns of differences relative to the rest. For comparison we modelled the data using the random forest
package available in R (Breiman et al., 2004; R Development Core Team, 2003) where the parameters
(e.g. number of trees, minimum leaf size) were chosen to best match those in the Bayesian tree approach.

The metagene predictor has dimension p = 491. We generated trees based on a Bayes’ factor
threshold of 3 on the log scale, allowing up to 10 splits of the root node and then up to 4 at each of nodes 1
and 2. In other words, at the root node the algorithm will search through all candidate predictor/threshold
combinations and create trees based on the most significant splits until 10 trees have been created or all
combinations have been searched. This same process will be repeated at node 1 of each resulting tree,
yielding up to four different splits of this node for each tree (a total of up to forty trees). Starting with
these trees, the same process is again repeated at node 2, yielding up to four different splits of this node
for each tree (a total of up to 160 trees). With no prior information concerning each x;, the prior mean on
the cdf of any x;, conditional on Z = z, across given thresholds is specified to take values from a uniform
cdf on the range of x; and the parameter of the Dirichlet process prior is set at « = 1/2, corresponding
to a Jeffrey’s prior on the complete cdf of each x; (Box and Tiao, 1992). The analysis was developed
repeatedly, exploring aspects of model fit and prediction of the validation sample as we varied a number
of control parameters. The particular parameters of key interest are the Bayes’ factor thresholds that define
splits, and controls on the number of such splits that may be made at any one node. By varying the Bayes’
factor threshold between 1.0 and 4.0 and the number of splits from 1 to 50 at the root node and 1 to 5 at
nodes 1 and 2 we find, in this example, that there is a good degree of robustness, and exemplify results
based on values that, in this and a range of other examples, are representative.

Many of the trees identified had one or two of the predictors in common, and represent variation in the
threshold values for those predictors. Figures 1 and 2 display 3D and pairwise 2D scatterplots of three of
the key metagenes, all clearly strongly related to the ER status and also correlated. There are in fact five
or six metagenes that quite strongly associate with ER status and it is evident that they reflect multiple
aspects of this major biological pathway in breast tumours. In our study reported in West et al. (2001), we
utilized Bayesian probit regression models with singular factor predictors, and identified a single major
factor predictive of ER. That analysis identified ER negative tumours 16, 40 and 43 as difficult to predict
based on the gene expression factor model; the predictive probabilities of ER positive versus negative for
these cases were near or above 0.5, with very high uncertainties reflecting real ambiguity.
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Fig.1. Three ER related metagenes in 49 primary breast tumours. Samples are denoted by open symbols (ER
negative) and closed symbols (ER positive), with training data represented by circles and plus signs and validation
data by open squares and crosses.

What is very interesting in the current tree analysis, and particularly in relation to our prior regression
analysis, is the identification of several metagene patterns that together combine to define an ER profile
of tumours. When displayed as in Figures 1 and 2 these metagenes isolate these three cases as consistent
with their designated ER negative status in some aspects, but conflicting and more consistent with the
ER positive patterns on others. Metagene 347 is the dominant ER signature as seen in the summary of
the trees involved in the prediction of the validation cases (Figure 4); the genes involved in defining this
metagene include two representations of the ER gene, and several other genes that are coregulated with,
or regulated by, the ER gene. Many of these genes appeared in the dominant factor in the regression
prediction and this metagene was also selected as the dominant predictor in the random forest trees. The
random forest trees were run with parameter settings which allowed a comparable number of trees and
minimum node size as the Bayesian tree implementation; the number of variables considered at each node
was varied and the results were insensitive to values above 200. Metagene 347 is a strong discriminator of
ER status, so it is no surprise that it shows up as defining root node splits in many high-likelihood trees.
Metagene 347 also defines these three cases—16, 40 and 43—as appropriately ER negative. However, a
second ER associated metagene, number 352, which appears in trees from the cross-validation runs but
not in the trees for the validation cases, defines a significant discrimination in which the three cases in
question are much more consistent with ER positives. A number of genes, including the ER regulated PS2
protein and androgen receptors, play roles in this metagene, as they did in the factor regression; it is this
second genomic pattern that, when combined together with the first as is implicit in the factor regression
model, breeds conflicting information and results in ambivalent predictions with high uncertainty. The
random forest trees does not identify metagene 352 (or any variable highly correlated with metagene 352)
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Fig.2. Three ER related metagenes in 49 primary breast tumours. All samples are represented by index number in
1-49. Training data are denoted by circles (ER negative) and plus signs (ER positive), and validation data by squares
(ER negative) and crosses (ER positive).

as a significant model predictor; instead they identified metagenes 283 and 402 that positively correlate
with metagene 347. Note also that for the validation cases all of the trees received similar weights and
hence made similar contributions to the model predictions. In this scenario it is important that our method
properly account for model uncertainty, in the Bayesian framework. Although the random forest approach
does provide a measure of variable importance it cannot account properly for model uncertainty within
this framework.

The tree model analysis here identifies multiple interacting patterns and allows easy access to displays
such as these figures that provide insights into the interactions, and hence to interpretation of individual
cases. In the full tree analysis, predictions based on averaging multiple trees are dominated by the root
level splits on metagene 347, with all trees generated extending to two levels where additional metagenes
define subsidiary branches. Due to the dominance of metagene 347, the three interesting cases noted
above are perfectly in accord with ER negative status, and so are well predicted, even though they exhibit
additional, subsidiary patterns of ER associated behaviour identified in the figures. Figure 3 displays
summary predictions in terms of point predictions of ER positive status with accompanying, approximate
90% intervals from the average of multiple tree models. The nine validation cases are predicted based on
the analysis of the full set of 40 training cases. The training cases are each predicted in an honest, cross-
validation sense: each tumour is removed from the data set, the tree model is then refitted completely
to the remaining 39 training cases only, and the hold-out case is predicted, i.e. treated as a validation
sample. For the random forests the training data predictions were based on the bootstrap samples while
the validation cases were predicted based on the bootstrap trees based on all of the training cases. We
note excellent predictive performance for the Bayesian trees on both sets of samples. One ER negative,
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Fig. 3. Honest Bayesian tree predictions of ER status of breast tumours. Predictive probabilities are indicated, for each
tumour, by the index number on the vertical probability scale, together with an approximate 90% uncertainty interval
about the estimated probability. All probabilities are referenced to a notional initial probability (incidence rate) of 0.5
for comparison. Training data are denoted by light text and validation data by bold boxed text; ER negative samples
have dotted uncertainty lines and ER positive samples have solid uncertainty lines.

sample 31, is firmly predicted as having metagene expression patterns consistent with ER positive status;
this is in fact one of the three cases for which the two laboratory tests conflicted. The other two such
cases are number 33 and number 14, for which the predictions agree with the initial ER negative and
ER positive test results, respectively. The random forest results were similar to those of our Bayesian
approach, on average, although uncertainty intervals for the predictions were not provided. Case 8 is quite
idiosyncratic, and the lack of conformity of expression patterns to ER status is almost surely due to major
distortions in the DNA microarray data due to hybridization problems; the same issues arise with case 11,
though case 7 is also a hybridization problem.

The validation predictions are encouraging evidence that our method does not overfit the data. As
further support of this, an experiment was conducted in which the rows and columns of the metagene
expression matrix were randomly permuted. The tree models were fit to the permuted training samples
and predictions were made for the validation cases. This process was repeated 100 times and the average
prediction accuracy across runs was 55.56% (with 5% and 95% accuracy bounds of 22.22% and 77.78%,
respectively). This result further demonstrates that with respect to out-of-sample prediction our method
does not tend towards overfitting in this example.

4. DISCUSSION

We have presented a Bayesian approach to classification tree analysis in the specific context of a binary
response Z when the data arise via retrospective sampling. The sampling design is incorporated into the
tree models by directly modelling the conditional distributions of predictor variables given the response,
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Fig. 4. Predictor variables in Bayesian genomic tree models for validation predictions of ER status of breast tumours.
A summary of the level of the tree in which each variable appears and defines a node split. The numbers on the left
simply index trees, and the probabilities in parentheses on the left indicate the relative weights of trees based on fit
to the data. The probabilities associated with the predictor variables in parentheses on the horizontal scale are sums
of the probabilities of trees in which each occurs, and so define overall weights indicating the relative importance of
each variable to the overall model fit and consequent predictions.

and defining a cascade of such distributions throughout successive nodes of any tree. In addition, we utilize
nonparametric Dirichlet process priors for these conditional distributions; this leads to a flexible model for
the distributions, while also ensuring consistency of model-based tests of association between outcomes
and predictors that are thresholded. The resulting analysis provides a constructive Bayesian approach to
predictive tree modelling.

The sensitivity of the Bayes’ factor to (predictor, threshold) node split pair selection, i.e. to specific
predictor choices and small changes in threshold values, is addressed by viewing splitting predictors
and thresholds as parameters of a tree and capturing the variability in these parameters through tree-
spawning and subsequent model averaging for inference and prediction. These methods are of particular
importance in analyses involving many predictors, as is the case in studies involving gene expression
data. We use the usual approach to tree generation that selects variables in a forward-selection process,
growing trees from a null node. It is then natural to spawn multiple trees at a given node based on either
the use of multiple candidate thresholds for a selected predictor variable or multiple candidate predictors.
The resulting weighting and averaging over multiple trees then formally deals with these aspects of
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model uncertainty, albeit conditional on trees generated. We note that, though some progress has been
made in developing stochastic simulation methods for Bayesian approaches to classification trees, the
topic remains a very challenging research area, both conceptually and computationally, particularly in the
context of more than a few predictors. Our interest lies in problems such as the molecular phenotyping
example, where the numbers of predictors is very large. In such contexts, approaches based on the typical
Bayesian MCMC format are simply infeasible and, we believe, will require a quite novel conceptual
foundation before making them practicable. We are currently exploring the development of such ideas,
and related approaches to stochastic search over tree space.

The issue of ‘dilution’ of the prior for a predictor with many splits is relevant to any tree approach.
Since we do not place a prior weight on each predictor our method does not suffer from ‘dilution’ in this
sense; actually, the issue is the reverse as predictors with more thresholds have a higher probability of
being selected to define a tree split. In our example we selected the predictor thresholds as quantiles of the
observed predictor values so each predictor has the same number of thresholds, hence avoiding this issue.
However, it is a general issue for tree methods and an interesting area for future research.

It is possible that a particularly strong predictor with many candidate thresholds could dominate the
tree search. We partially aleviate this by using the same number of thresholds for each predictor but if
a particular predictor is dominant it may be useful to select subsets of predictors for modelling, as in
random forests. This could lead to the involvement of more predictors in the model process but may
obscure interactions between predictors and disallow the possibility of properly accounting for model
uncertainty across predictors.

The example highlights a number of methodological and substantive points, and demonstrates useful
application in a retrospective (case-control) example in the ‘large p, small n’ paradigm. The tree models
demonstrated strong predictive ability in both out-of-sample and one-at-a-time cross-validation contexts.
This was achieved despite conflicting metagene information in the expression analysis example. The
interaction of metagenes is useful not only for prediction but also for exploratory/explanatory purposes,
e.g. suggesting possible reasons for ambiguous or uncertain predictions. Although the random forest
implementation did provide reasonable predictions it could not properly account for model uncertainty
nor match the utility of the Bayesian trees as an exploratory/explanatory tool. The utility of the approach
described here is further demonstrated in two recent applications of these methods: clinical problems in
breast cancer (Huang et al., 2003), and to gene discovery via molecular phenotyping in a cardiovascular
disease context (Seo et al., 2003).
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APPENDIX
Computing metagene expression profiles

Metagenes are simple, summary measures of gene expression profiles derived as singular factors (principal
components) of clusters of genes defined by standard clustering approaches. Assume a sample of n profiles
of p genes. The specific construction used in the ER example here is detailed. The original data were
developed on the early Affymetrix arrays with 7129 sequences, of which 7070 were used (following
removal of Affymetrix controls from the data. The expression estimates used were log2 values of the
signal intensity measures computed using the dChip software for post-processing Affymetrix output data;
see Li and Wong (2001), and the software site http: //www.biostat.harvard.edu/complab/dchip/.
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We first screen genes to reduce the number by eliminating genes that show limited variation across
samples or that are evidently expressed at low levels that are not detectable at the resolution of the
gene expression technology used to measure levels. This removes noise and reduces the dimension
of the predictor variable. Then, we used the k-means, correlated-based clustering as implemented in
the xcluster software created by Gavin Sherlock (http://genome-www.stanford.edu/"sherlock/
cluster.html). We target a large number of clusters so as to capture multiple, correlated patterns of
variation across samples, and generally small numbers of genes within clusters.

Following clustering, we extract the dominant singular factor (principal component) from each of the
resulting clusters. Again, any standard statistical or numerical software package may be used for this; our
analysis uses the efficient, reduced singular value decomposition function (svd) in the Matlab software
environment (http://www.mathworks.com/products/matlab). In this example, with a target of 500
cluster, the xcluster software implementing the correlation-based k-means clustering produced p = 491
clusters. The corresponding p metagenes were then evaluated as the dominant singular factors of each of
these cluster.
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