ABSTRACT

RAVINDRAN, PALANIKUMAR. Bayesian Analysis of Circular Data Using Wrapped Dis-
tributions. (Under the direction of Associate Professor Sujit K. Ghosh).

Circular data arise in a number of different areas such as geological, meteorolog-
ical, biological and industrial sciences. We cannot use standard statistical techniques to
model circular data, due to the circular geometry of the sample space. One of the com-
mon methods used to analyze such data is the wrapping approach. Using the wrapping
approach, we assume that, by wrapping a probability distribution from the real line onto
the circle, we obtain the probability distribution for circular data. This approach creates
a vast class of probability distributions that are flexible to account for different features of
circular data. However, the likelihood-based inference for such distributions can be very
complicated and computationally intensive. The EM algorithm used to compute the MLE is
feasible, but is computationally unsatisfactory. Instead, we use Markov Chain Monte Carlo
(MCMC) methods with a data augmentation step, to overcome such computational difficul-
ties. Given a probability distribution on the circle, we assume that the original distribution
was distributed on the real line, and then wrapped onto the circle. If we can unwrap the
distribution off the circle and obtain a distribution on the real line, then the standard sta-
tistical techniques for data on the real line can be used. Our proposed methods are flexible
and computationally efficient to fit a wide class of wrapped distributions. Furthermore, we
can easily compute the usual summary statistics. We present extensive simulation studies
to validate the performance of our method. We apply our method to several real data sets

and compare our results to parameter estimates available in the literature. We find that



the Wrapped Double Exponential family produces robust parameter estimates with good
frequentist coverage probability. We extend our method to the regression model. As an
example, we analyze the association between ozone data and wind direction. A major con-
tribution of this dissertation is to illustrate a technique to interpret the circular regression
coefficients in terms of the linear regression model setup. Regression diagnostics can be
developed after augmenting wrapping numbers to the circular data (refer Section 3.5). We
extend our method to fit time-correlated data. We can compute other statistics such as cir-
cular autocorrelation functions and their standard errors very easily. We use the Wrapped
Normal model to analyze the hourly wind directions, which is an example of the time series

circular data.
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Chapter 1

Introduction to Circular Data

Circular data arise from a number of sources in our daily lives, where we consider
the circle to be the sample space. Some common examples are the migration paths of birds
and animals, wind directions, ocean current directions and patients’ arrival times in an
emergency ward of a hospital. Many examples of circular data are found in various scientific
fields such as earth sciences, meteorology, biology, physics, psychology and medicine. To
motivate the use of circular data, we present a brief description of some examples from

these fields.

1.1 Some real life applications of circular data

The study of earth sciences yields two good examples of circular data - The orien-
tation of cross-bedding structures and the orientation of the long axis of unbroken sediment
particles. Orientation of the cross-bedding structures gives us information about the prop-

erties of the rock structure for mineral and petroleum exploration. Orientation of pebbles



has proved to be useful in the study of glacial deposits and direction of ice movement.
Pincus (1953) presents several such examples.

In meteorology, wind directions and ocean current directions give rise to circular
data. Johnson and Wehrly (1977) did some analysis of wind directions. Seasonal weather
changes such as the propensity for rainfall during the monsoon season is another example
of circular data.

In the field of physics, before the discovery of isotopes, Von Mises (1918) proposed
testing the hypothesis that atomic weights are integers subject to error. He converted the
fractional parts of the atomic weights to angles. He regarded these angles as a random
sample from a circular distribution with mean zero and tested for uniformity. He also
introduced Von Mises distribution, a popular distribution on the circle. In another study,
Rayleigh (1919) worked with a representation of sound waves. He was interested in the
resultant of unit vectors and its distribution. He considered the unit vectors as points on
the circle.

In psychology, circular data arises from experiments to study the behavior of the
human mind. Consider the simulated tests of zero gravity. Scuba divers were required to
turn somersault and reorient themselves to the vertical under various circumstances (for
example, blindfolded or looking through a translucent faceplate, see Ross et al., 1969).
The angles from the vertical were measured and analyzed. Circular data also occur in the
studies of mental maps, which are used to represent surroundings. Individual subjects were
led past a series of sites. They were asked at each site to point to the direction, and guess

the direction of every other site from that site (Gordon, Jupp and Byrne, 1989).



In medicine, circular data arises as the time of onset of a particular disease at
various times of the year (Lee, 1962). Another example is circadian rhythms, which is the
time of adverse event occurrences throughout the day. Circadian rhythms are analyzed
because it has been found that adverse events (for example, deaths, myocardial infarctions)
do not occur randomly throughout the day but cluster at certain points in the day (Proschan
and Follmann, 1997).

A very good source of circular data is the field of biology. Migration path of birds
and animals has been the subject of many studies. The objective of these studies is to
ascertain whether the direction of migration is uniform. An example of the migration of
turtles is given in Figure 1.1. In the figure, we present the circular histogram plot of the
data collected by Dr. E. Gould from John Hopkins University School of Hygiene and first
cited by Stephens (1969). The data represents the directions taken by the sea turtles after
laying their eggs. The predominant direction is 64°, which is the direction the turtles took
to return to the sea (Fraser, 1979).

Standard statistical techniques cannot be used to analyze circular data. This is due
to the circular geometry of the sample space. For example, the sample mean of a data set
on the circle is not the usual sample mean. Let y1,¥s,...,y, be independent observations
on the unit circle, such that 0 < y; < 27, j = 1,2,...,n. The mean direction ¥ is not
given by the usual definition, % Z?Zl y;. This is illustrated in Figure 1.1, where the dashed
arrow is the direction represented by %Z?Zl y; and the solid arrow represents the mean

obtained by vector addition. To find the circular mean, we use vector addition techniques.



Figure 1.1: Circular histogram plot of the turtle data. Solid line indicates the circular mean
and dashed line indicates the linear mean.

We consider C' = 1 > j—y cosy; and S =157 siny; and define,
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where arctan takes values in [—7, §]. In general, the p'" theoretical moment of a circular
distribution is defined as E(e®?Y) = a, + i8,, for p = 1,2,.... The mean direction is
given by u = arctan(3;/a;) and the mean resultant is defined as p = \/a? + 37, so that
E(e’) = pe'*. In most applications it is of interest to estimate the location parameter y and
the scale parameter p. Nonparametric methods are suitable for this purpose. However, for
the prediction problem, it would be of interest to develop parametric models. In addition,
we exemplify that the class of parametric models that we develop is robust against erroneous
models.

In Section 1.2, we discuss several statistical approaches to model circular data with



an emphasis on the wrapping approach. In this dissertation, we use the wrapping method
to generate a flexible class of circular distributions. In chapter 2, we discuss classical and
Bayesian methods to obtain estimates of the parameters of wrapped circular distributions.
As the Bayesian methods have the advantage of obtaining a finite sample estimate of the
variability (for example, s.e. of the estimates), we propose a data augmentation method for
parameter estimation. In Section 2.2, we present the data augmentation method to obtain
the posterior distribution of the parameters of several wrapped distributions. In Section 2.3,
we describe the possible methods for model selection. In Section 2.4, we present extensive
simulation studies to validate the frequentist performance of our method. In Section 2.6,
we discuss the Wrapped Extreme Value and bimodal distributions. In Section 2.7.1, we
apply our method to a real data set on the movement of ants. In chapter 3, we develop
some models for regression where the response variable can be circular or linear. In Section
3.3, we present the extension of the data augmentation method proposed in Section 2.2 for
regression to obtain the posterior distribution of the regression coefficients based on several
wrapped distributions. In Section 3.4, we present extensive simulation studies to validate
the performance of our method for regression. In Section 3.6, we fit a linear regression
model to explore the relation between ozone concentration and wind direction. In Section
4.3, we illustrate how the data augmentation method used for regression in Section 3.3 can
be easily extended for time series. Simulation studies with the Wrapped Normal density
for the time series model is given in Section 4.4. In Section 4.5, we analyze hourly wind
directions, which is an example of time series data. We use the Wrapped Normal model for

this study.



1.2 Statistical Approaches to model circular data

Many methods and statistical techniques have been developed to analyze and
understand circular data (see Mardia and Jupp, 1999). The popular approaches have been
the embedding approach, intrinsic approach and wrapping approach. A brief description of

each of the approaches is given below.

1.2.1 The Embedding Approach

In the embedding approach, the sample space (for example, the unit circle) is
considered as a part of a larger space (for example, 2-dimensional plane). A common
example is the representation of the points of the unit circle by unit complex numbers.
There are many advantages of the embedding approach. Considering the points on the unit
circle, as a vector = (cosy,siny)? in the plane enables the use of the traditional definition
of expectations that is used for data in the Euclidean space. For instance, definition of the

mean u of a random variable y, defined on the unit circle is given by
| El(cosy,siny)”] |~ El(cosy, siny)”] = (cos p,sin ).

Several bivariate distributions on the Euclidean space can be embedded to produce
distribution on the circle. For instance, the Projected Normal distribution is an example
of the embedding approach. In the embedding approach, we start with the larger sample
space (for example, 2-dimensional plane) and obtain the projection of this space into a
smaller sample space. For example, if X has the Bivariate Normal distribution Na(u,X),
then | X ||7! X is said to have the Projected Normal distribution, PNa(u, ). This is

used in meteorology, where the wind velocity is modeled by the Bivariate Normal distri-



bution and the resulting marginal distribution for wind direction is the Projected Normal
distribution. The density of PNa(u,Y) has been derived by Mardia (1972). The Projected
Normal distribution can be extended to p-dimensions, where the distributions on R? are
projected onto SP~!, the unit sphere in RP. The density of the Projected Normal distribu-
tion, PN, (1, X) has been derived by Bingham (Watson, 1983, pp. 226-231) and a simpler
form was derived by Pukkila & Rao (1988). However, in general, the densities obtained by
embedding a generic distribution on $#P onto SP~!, can turn out to be very complicated and
hence obtaining the likelihood-based inference can be extremely challenging. Therefore,
most of the literature is focused on developing statistical methods for the Projected Normal
distributions only, which is a significant limitation of the embedding approach.

There are some techniques for parameter estimation in the embedding approach.
Spherically projected multivariate linear (SPML) model using PNa(u, ) distribution was
suggested by Presnell, Morrison and Littel (1998). They considered circular data as data
sampled from a plane and projected onto the circle. They assumed that the distance
from the center for each data point, |y;| was missing and used EM algorithm to estimate
it. Embedding technique is also very useful to perform analysis of variance (ANOVA) for
circular data. ANOVA for circular data was proposed by Harrison, Kanji and Gadsen (1986)
and Harrison and Kanji (1988). We do not pursue any analysis based on the embedding
approach in this research work, as the analysis becomes analytically and computationally

intractable for most distributions other than PNy(u,X).



1.2.2 Intrinsic Approach

In the intrinsic approach for circular data, circle is used as the sample space. The
directions (angles) are represented as points on the circle. In intrinsic approach, probability
distributions are defined on the circle directly (for example, Von Mises and Cardioid dis-
tributions). Von Mises distribution is one of the most popular distributions that come out
of this approach. The probability density function of the Von Mises distribution is given

by fvm(y) = 27&) ) e cos(V=1) where Iy denotes the modified Bessel function of the first

kind and order 0. Iy is defined by Iy(k) = % f027r e"sW)dy. Von Mises distribution has
been studied extensively. Mardia and Jupp (1999) give references for the genesis of the
Von Mises distribution on the circle, which is analogous to the Normal distribution on the
real line. Let y= {y1,y2,¥3,---,Yn},0 < y; < 2m,i=1...n be a random sample from Von
Mises distribution with location parameter p and scale parameter x. Define C, S and R
as C = > I jcosy;, S =31 siny; and R> = C?* 4+ S% C = Rcosjy and S = Rsiny,
where g is the mean as defined earlier (in Section 1.1). Mardia and Jupp (1999) provide
the joint distribution of § and R. They give the marginal densities of R, C' and S using the
results given by Greenwood and Durand (1955). Mardia (1972) showed that the conditional
distribution of § given R is Von Mises distribution with location parameter ;1 and scale pa-
rameter kR. Mardia and Jupp (1999) give results and references on several extensions of
these results to multi-sample Von Mises populations. The asymptotic distributions of these
statistics, as the sample size goes to infinity, are also available.

From a Bayesian perspective, the conjugate prior for the Von Mises distribution

has been obtained by Guttorp and Lockhart (1988). Damien and Walker (1999) presents



full Bayesian analysis involving Von Mises distribution, where both the parameters are
assumed to be unknown, and used its conjugate prior proposed by Guttorp and Lockhart.
They proposed MCMC methods to simulate samples from the posterior distribution.

Mardia and Jupp (1999) describe the maximum likelihood estimates for the Von
Mises distribution and give references and results for their large-sample asymptotic prop-
erties. They also provide a good overview of the various single-sample, two-sample and
multi-sample hypothesis tests for the Von Mises distribution.

One of the main drawbacks of the intrinsic approach is that there are not many
distributions available other than the Von Mises distribution and mixture of Von Mises
distributions. Again, due to this limitation, we do not pursue any analysis using this
approach. We use wrapping approach (see next section) and illustrate how a flexible class

of models can be obtained.

1.2.3 Wrapping Approach

In the wrapping approach, given a known distribution on the real line, we wrap
it around the circumference of the circle with unit radius. Technically this implies that if
U is a random variable on the real line, then the corresponding random variable Y on the
circle is given by Y = U(mod 27). Equivalently, the wrapped version of U is obtained by
defining Y = U — 27 [%], where [u] = largest integer < u. Let the distribution function of
U on the real line be denoted by F. The distribution function of Y denoted by F,, can be
obtained as,

oo

Fu(y) =Pr(Y <y)= Y [F(y+2rk)— F(2rk)].

k=—o00



10

This implies that if the density f of U exists, then the wrapped density f,, is given by

foy) = Y fly+27k),0 <y < 2.

k=—00
An excellent overview of the properties of the wrapped distributions can be found
in Mardia and Jupp (1999). One of the properties of the wrapped distributions is that the
characteristic function (c.f.) of U is same as the c.f. of the Y. Thus, from the information
about U, we can obtain the information about Y. More importantly, if the c.f. of U is
integrable, then it can been shown that the density of Y, f,,(y) can be represented as,
)
fuly) = 5= [1+2) (apcospy + Bysinpy) |
p=1
where E(e?Y) = E(e®?V) = a, + i3, This result on the unit circle is analogous to the
inversion theorem for continuous random variables on the real line. However, in most cases
the above series cannot be written in closed form except in a few cases such as the Cauchy
distribution. One of the most popular wrapped distributions is the Wrapped Cauchy dis-
tribution, introduced by Lévy (1939). This is because the density of the Wrapped Cauchy
distribution has a closed form representation. The density of the Wrapped Cauchy dis-
tribution is given by Y50 [1 + (W)T _17 where p is the location parameter
and o is the scale parameter. Using the inversion theorem, this can be represented as

= {1+23°0° (pP cosp(y — )}, where p = e7?. Considering this density as the real part

. 2
of the geometric series Y 1° pPe~®PW=1) simplifies it to % T Lp

107 2pcos(y—n) " Kent and Tyler

(1988) and Mardia (1972) have shown the relation between the Wrapped Cauchy distribu-
tion and the Projected Normal distribution. Mardia and Jupp (1999) describe the wrapped

stable family, with density given by % {14237 (0" cosp(y — p)) }, where 0 < o < 2.
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This is a larger family of distributions containing the Wrapped Cauchy distribution (o = 1)
and the Wrapped Normal distribution (o = 2).

It follows that a rich class of distributions on the circle can be obtained using the
wrapping technique because we can wrap any known distribution on the real line onto the
circle. Also, by wrapping a symmetric unimodal density, it is possible to obtain a bimodal
density on the circle. An example is the Wrapped Beta distribution. We discuss this in
Section 2.6. The main difficulty in working with the wrapping approach has been that, in
most cases, the form of the densities and distribution functions are large sums, and cannot be
simplified as closed forms. Due to this complexity, maximum likelihood techniques for point
estimation and hypothesis testing cannot be easily implemented. The main contribution of
this dissertation is to present a general approach to obtain parameter estimates of a wide
class of wrapped distributions. The next paragraph outlines our approach.

For a given probability distribution on the circle, we make assumptions that the
original circular distribution was distributed on a line and was wrapped onto the circle.
Therefore if we can unwrap the distribution on the circle and obtain a distribution on the
real line, we can use all the standard statistical techniques for data on the real line. We
propose to perform this using the data augmentation approach. We use Bayesian methods,
so that we can easily obtain parameter uncertainty estimates based on the finite sample.
In many practical problems (as discussed in Section 1.1), the sample sizes are usually small

because it is expensive to obtain such samples.
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Chapter 2

Parameter Estimation for Wrapped

Distributions

In this chapter, we consider parameter estimation for several wrapped distribu-

tions. We concentrate on symmetric unimodal and bimodal densities.

2.1 Previous Work

It was shown by Kent and Tyler (1988) that the maximum likelihood estimate for
the Wrapped Cauchy distribution exists and is unique for samples of size greater than two.
They also gave a simple iterative algorithm, which would always converge to the maximum
likelihood estimate (MLE). Calculating the MLE for the Wrapped Cauchy distribution
is possible because the density has a closed form representation. In general, wrapped
distributions do not have closed form densities and consequently, computing the MLE is

complicated.
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A different approach for fitting wrapped distributions was given by Fisher and
Lee (1994) who used the Expectation Maximization (EM) algorithm techniques to obtain
parameter estimates from the Wrapped Normal distribution. However, the E-step involves
ratio of large infinite sums, which needs to be approximated at each step. This makes the
algorithm computationally inefficient. In addition, the standard errors of the MLEs have to
be evaluated based on large-sample theory. We propose an alternative method that is more
computationally efficient and flexible to entertain a large class of wrapped distributions.
Also, as a by-product, we acquire finite sample interval estimates of the parameters of the
wrapped distributions. This is done using the data augmentation approach described in the

following section.

2.2 The Data Augmentation Approach

The data augmentation approach was originally proposed by Tanner and Wong
(1987). Some references for this technique can also be found in the work of Damien, Wake-
field and Walker (1999), Higdon (1998) and van Dyk and Meng (2001) and references
therein. In the context of circular data, Damien and Walker (1999) used it to study Von
Mises distribution. Coles (1998) used it to study the Wrapped Bivariate Normal distribu-
tion and wrapped autoregressive process. We present a generic approach that can be used
for a broader class of wrapped distributions.

The main idea behind the data augmentation approach is to augment the original
data with some ”additional data” that would simplify the original likelihood to a form that

is much easier to handle. In case of circular data, as Y = U(mod 27), the random variable
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U on the real line, can be represented as U = Y + 27K, where Y is the observed data on
the circle, and K is the number of times U was wrapped to obtain Y. Therefore, in this
case if we were able to "add” the information on K, and thus unwrap Y, then we could
observe U. However, given Y, as the value of K is not unique, we obtain the conditional
probability distribution of K given Y. To illustrate the unwrapping method, let us consider
a location scale family % f(*=£) on the real line. Then the corresponding wrapped density

is obtained as,

fw(y) = Z %f(%)

k=—00
o 1, y+2rk—p

. S fC——F—) 2 (k+1)—p 2mk—p

= = | F( = ) — F(=+5)|. (2.1)
kzgng<2(kﬁ?) L) g2t

In the above equations, we follow the convention that the location parameter y = pg(mod 27),
where pg is the location parameter on the real line. In order to specify the full probability
model, we consider several prior distributions for (u,0). In most cases the mean resultant,
p (defined in Section 1.1) can be expressed as a function of o. In general, we will write
p = h(o). For example, for the Wrapped Normal family, p = e=7°/2. Notice that by

definition, 0 < p < 1. A class of non-informative prior for (u, p) can be specified as,
[, p] o< 1(0,2m)p™ (1= p)»~", a, >0, (2.2)
and hence the joint density of (u, o) is given by
[,0] oc 1,(0,2m)h(0)% (1 - h(o))% LR (o)), a, > 0.

Viewing the wrapped number K to be a random variable, from (2.1), we see that
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the conditional density of Y given K = k and the parameters pu, p is given by

Juw(ylk, p, o) = F(zrr(/gﬂ)—u .

1,(0,27), (2.3)

)Pt
which is a truncated density of a location-scale family. It also follows from (2.1) that the

marginal density of K given the parameters (u, o) can be obtained as

Pr(K = klp,0) = F(EED0y_ p2rhouy gz

e e

Thus, we obtain a Bayesian hierarchical model by specifying the distribution of y
given k, u, 0, then the conditional distribution of k given u, o and finally the prior distribu-
tion for (u, o).

Given a random sample on the circle, y= {y1,¥2,y3,...,yn},0 < y; < 27m,j =
1...n, we unwrap the data by obtaining samples from the conditional distribution of k
given p, o and the observed data y, where k = {ki, ko, ks3,...,k,}. This is referred to
as the data augmentation step. Then, conditional on the augmented data y, k, we obtain
samples from the joint posterior distribution of (u,0), to complete the Gibbs cycle of the
MCMC method. From these samples, we obtain the marginal posterior distribution of p
and o given the observed data y, using the Ergodic Theorem of Markov Chain.

We provide a generic method to implement the MCMC method for a general
class of location scale family, whose density function is invertible. A function y = f(z) is
invertible if f can be analytically or numerically inverted, or if f can be factorized into
functions, which can be analytically or numerically inverted. That is, we assume that
flz) = H?:l fe(x) and {f;7'(y) : j = 1...T} are explicitly known functions or functions

that can be computed using numerical methods. For example, f(z) = e %e~¢ " does not
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T €

have an explicitly known inverse, but e™® and e~¢ * have explicitly known inverses. It is

also possible to compute the inverse of e *e~¢ " using numerical methods such as bisection
method. It is assumed that p = h(o) is a monotone decreasing function of o and can
be inverted. This is a reasonable assumption because in general, as ¢ | 0, p T 1 and as
o T oo, p | 0. These assumptions are satisfied for most wrapped distributions including
Wrapped Normal (WN), Wrapped Cauchy (WC) and Wrapped Double Exponential (WDE)
distributions. The general method will work even if p = k(o) is not a monotone decreasing
function of 0. These wrapped distributions are all symmetric and unimodal. However, our
method is not restricted only to these distributions.

In order to specify the required conditional distributions, we use the notation
[01,602,...,0,] to represent the joint density of 01,609, ...,6, and 01|02, ...,0,] to represent
the conditional density of 61 given 6, ..., 0,. By the term full conditional density of 61, we
mean the conditional density of 01, given the rest of the parameters. We use the notation
a\/ b to represent max(a, b) and a /\ b to represent min(a,b). The notation DU p, ¢] stands
for the Discrete Uniform distribution on [p,¢|,p € Z, g € Z, p < q. Thatis, if U ~ DU|p, ¢,

then the p.d.f. of U is given by

T u=Dpp+lg

fu(u) =

0 otherwise.
The general method is as follows. As mentioned above, the joint density of (u, o)

is given by
0] o 1,(0,2m)h(a) (1 — k(o)) W (0)], a, > 0, p = h(0).

For each observed direction y;, we augment a random wrapping number k;. The joint



17
density of y, k, u and o is given by

[y, k,p,0] o [ylk,n,0%] [Kklp,0%] [, 07]

%
=

(27222 ) h(o) o™ (1 = h(o))* I (o) 1, (0, 2)

g

1

<.
Il

o b [ [ TR (o) % 7 (1 = h(0)) % (0) (0, 27),
j=1

where |h/(c)| can be factorized as —5h(0)™hy(0). It is assumed that hy(o) is invertible.

In our examples, |1/ (c)| factorizes as —t5h(o)™ with no extra k(o) term. In general, this

is not true. This general technique assumes that there is an hj(o) term. Also, in general,
h(o)%~! and (1 — h(c))%~1 cannot be factorized. However, we see that for the Wrapped

Double Exponential distribution, (1 —h(c))% ! can be factorized as a function of h(c) and

.

The full conditional densities of k,  and ¢ are nonstandard densities. Therefore,
we introduce auxiliary variables z and v. Let z = {z0, 21, 22, 23} and v = {v1,v9,v3,..., 0},
such that

[yak7,u70-] X /[yvkalhz’v?(ﬂ dzdv.

The joint density of y, k, u, z, v and o is given by

n
[y, k,,u,z,v,a] X Izo (0, g"+no) HIUJ‘ (O,f(@)) I, (O,h(o.)ap—l-i-nl) IM(O,QT&')
j=1

{1, (0.1 = h(0))*" ™) I{a, # 1) + I(a, = 1)} Ly (0, 1 (0)).

This data augmentation method, where we introduce auxiliary variables, is called
slice sampling. The advantage of slice sampling method over the Metropolis-Hastings
method is that we don’t have to choose a proposal density. Furthermore, it has been

shown that slice sampling method increases mixing.
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We now show that all full conditional densities are standard distributions, which
can be easily sampled using subroutines available in SAS, Splus and other standard software
applications. In general, let f be a multimodal density, which is invertible. Then, given v;,
we get {(gmy(v;), gM;(vj)), l =1...q, ¢ € Z} such that,

q
{0<u; < ek = | J{gmi(ey) < (U2) < gMy(oy))
=1

is a union of disjoint sets because gmi(v;) < gMi(vj) < gma(vj) < gMa(v;) < ... <
gmq(vj) < gMqy(v;).
If f is not easily invertible, then it can be factorized into functions, which are ana-
lytically or numerically invertible. That is, f(z) = Hthl fe(x)and {7 (y):j=1...T} can
be computed. In this case, instead of [[_, I, (0, f(@)), use Hthl [Ti= Lu, (O, ft(@))
in the expression for joint density of y, k, u, z,v and o. Use a similar procedure as above
forall {vy;: t=1...T, j=1...n}.

The full conditional densities of k, v, z and p are given by

Uj|y7k7,u,2,’v_j,o' ~ U[O,f(m)]

g

q
k‘j|y,k_j,u,z,v,0' ~ DU U { ’V% (/’L —Yj +O-gml(vj))—| ’ L% (/J —Yj +Jng(U]))J} )
=1

where DU stands for Discrete Uniform.

Without loss of generality, let I, € {1,2,...,q} be such that,

(55 (1 —yj + ogmu,(v;))] < kj < |55 (10— y5 + ogMiy(v)))]

ZO|y7ka,u7Z—07U70 ~ U[O ;}

) 0.7L+n0

2y, k21,00~ U [0,h(o)% 1+m]
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p
U0,(1~ b)), ap £ 1
Z2|y7 ka n,z—2,0,0 ~~

29 is not needed, a, =1

U0,hi(0)], hi(o) #1
23|y,k:,,u,z_3,'v,a ~

23 is not needed, hi(o) =1

\

u’y’k7z7vaa ~ U[ml“MN]’
where m,, = m?ilx lyj + 2mkj — og M, (vy)] \/ 0
]:

M, = minly; + 27k; — ogmy,(vj)] /\(27r).
7j=1

Since h(c) is a monotone decreasing function of o and is invertible, h~! is also a
monotone function. This enables us invert the relationship between 21, zo and o and obtain
some parts of the distribution for o.

Also, since hq (o) is invertible, given z3, we get {(gm](23), gM;(23)), l=1...q, q €
Z} such that, {0 < z3 < hi(0)} = Uj_,{gm; (23) < 0 < gM;*(23)} is a union of disjoint sets
because gmi(z3) < gM7 (23) < gm3(23) < gM3(23) < ... < gmy(z3) < gM;(z3). If hi(0) is
not invertible, but can be factorized into invertible functions, then this method can also be

easily extended in a manner similar to the extension given for f.

J|yakuu7zvv ~ U (mUvMU)ﬂU{gm?(z?))ang*(z?))}]7

=1

1

n Yj—pA2mk; Y —pA2mk; —1(q _ a1
max;—; hm( gmyy(vi) 0 gM(vj) \/h (1 29 )7 ap > 1

where m, =

yj—pu+2rk;  y;—pt+2mk;
max"” <1
axj_ hm( Ty ) g (o) ) > % S
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yj —p+2mk; yj—u+27rkj> 1 h,l ap—1+ny
z

gmlo(vj) ) gl\dlo(uj) /\ 1 /\ ( 1 )
Zgl+no

where (a, > 1)|J((a, < 1) N (22 < 1))

M, = 1
on yj—p+2nk;  y;—pt2rk; 1 1/ _ap—14n
minf_y by (U M) A AR G )

n+no
20

N
minj_q has (

Ah~1(1 - 11 )| » where ((a, <1)N (22 > 1)),

l—a
P
%2

i—pu+2rk;  y;—pt+2wk; y;i—p+2rk;  y;j—p+2nk;
her Yizh L2 2 ) an L L 2 L) ar fin follows.
where h,, @) 0 g (oy) ) @ d hys g ) 0 i (o) ) ATe defined as follows

(

Yyj—pt2mk; _
(o) 7 90(05) 20
yj—p+2nk;  y;—pt+2rk; _ v —p2mk;
hm( gy () gM () ) T Sgmn o) 9Mip(vj) <0
y; —pt2mk; yj—p+2mk; ) )
[ o) Vil (o) 90 (05) <0 < gMip (1)
Y —pA2mk;

gmy, (vj) >0

gmyg (vj)

i—p2mk;  yj—pt2nk; o k.
h (yJ I i Y J — y;—p+27k; )
M\ Zgmig(0) 7 gMiy(v;) Sy ()0 9Mie(v) <0

har is not needed, gmy,(vj) <0 < gMj,(vj).

For symmetric unimodal densities,

h (yj—u+27rkj yj—u+2rrk:j) _ lyi—pt2nk;|
M\ gmyy(vi) 0 gMyy(vy) gMi, (v5)

and hjs is not needed.

We illustrate the above technique for several popular distributions such as Wrapped
Normal, Wrapped Cauchy and Wrapped Double Exponential distributions. In Appendix
A, we provide more details on the exact form of the above full conditional distributions for
these three families of wrapped distributions. We study the performance of the proposed

method by several simulation experiments.
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2.3 Model selection

We now have a large class of parametric models that can be fitted to the cir-
cular data. In order to select the best fitting model, good model selection techniques
are required. A few methods for model selection are Deviance, Akaike Information Criteria
(AIC), Bayesian Information Criteria (BIC) and Gelfand and Ghosh (1998) Criteria (GGC).

Deviance (McCullagh and Nelder, 1989) is defined as twice the negative of the log-
likelihood. For example, for any wrapped location-scale density, f,,() the deviance (Dev)

is,

Dev = —QZOQ(H Jw(yi))

=1

= Y leg( ) )
1=1

k=—o00

n L
23 log( Y Ly(utizten)

1=1 k=-—L

Q

where L is a very large positive number. For Wrapped Normal and Wrapped Double
Exponential densities, L. = 50 and L = 100 respectively, works well. We could not use
this approximation technique for the Wrapped Cauchy density as Cauchy is a flat density.
For the Wrapped Cauchy density, we used L = 1000 and approximated the tail with the
integral. We could have also used the closed form for the Wrapped Cauchy density.

AIC (Akaike, 1973) and BIC (Schwartz, 1978) can be calculated by adding an
appropriate penalty term to the posterior mean of the deviance. This penalty term is a
function of the dimension of the parameters and sample size, which are same for all the

wrapped densities that we have considered. That is,

AIC = Dev+2m,
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BIC = Dev+mlog(n),

where m = 2 is the number of parameters (u and o (or p)) and n is the sample size.
Therefore comparing AIC or BIC is the same as comparing the deviances. Therefore, we
just use the Dev to select the best fitting model.

Gelfand and Ghosh Criteria (GGC) is based on posterior predictive distribution.

Define y°** = (y1, ..., ¥n) as the observed data and yP"*? = (y’lmd, -y as the predictive

data obtained from the following posterior predictive distribution,

plyPredfyts) = / / p(y" |, p)p (12, ply™)dpe dp,

where p(yP"*?|p, p) denotes the sampling distribution of the data, which is the wrapped

obs)

density evaluated yP"*? given u and p. p(u, p|y°®®) denotes the posterior distribution of the

parameters (u,p) given the observed data y°%*. Let the loss function be the Square Predicted

Errors (SPE) function defined as,

n

SPE — Z (yfred _y¢)2.

=1

GGC is defined as,

GGC E[SPE|y°]

= G+P

2
where G =", (yz - E(yfTEd\y°b5)> and P =", Var <y§red|y"b5). G is the goodness-
of-fit term and P is the penalty term. The expectation is taken with respect to the posterior

predictive distribution defined above. As models become more complex, the G term usually

decreases and the P term increases to account for model complexity. Thus, this criteria
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selects a model that compromises between G and P. We use the criteria to choose a model

that minimizes GGC.

2.4 Simulation studies

For our simulation studies, we generate samples of size n = 50 from Wrapped
Normal (WN), Wrapped Cauchy (WC) and Wrapped Double Exponential (WDE) distri-
butions with parameters set at u = 7/2 = 1.5708 and p = 0.5. In order to study the
sensitivity of priors, we fit each of the three distributions with priors given in equation
(2.2) with a, = 0.5,1 and 2. We compute the posterior mean, standard deviation, 2.5
percentile, median and 97.5 percentile for p and p for each simulation. The percentiles are
computed with 0 radians as the reference point on the circle. Usually, the reference point
on the circle is chosen diametrically opposite the sample mean, or where the samples are
sparsely distributed. Note that, changing the reference point does not affect the circular
mean. Bayesian highest posterior density (HPD) can be used instead of percentiles. HPD
is unaffected by the change in the reference point. This is described in more detail in
Section 2.7.1. The simulation standard errors for each of these summary values are also
computed. We also compute the nominal coverage probability for the 95% posterior interval
given by the 2.5 and 97.5 percentile of the posterior distribution. In each simulation, we
choose the burn-in period to be 2000 samples (i.e. throw away first 2000 samples from the
MCMC chain) and then keep 5000 samples after burn-in, to obtain posterior summary val-
ues. The sample size was decided after some preliminary studies using Geweke diagnostics,

Gelman-Rubin diagnostics, Raftery-Lewis method, autocorrelations, cross-correlations and
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Table 2.1: Fitting WN to WN distribution using different priors

a, = 0.5 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
W 1.58 0.20 1.18 1.58 1.98 0.96
s.e. 0.20 0.09 0.22 0.19 0.29 0.01
0.48 0.08 0.31 0.48 0.61 0.94
s.e. 0.08 0.01 0.10 0.08 0.06 0.01

ap, =1 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
W 1.59 0.20 1.20 1.59 1.98 0.96
s.e. 0.19 0.04 0.21 0.19 0.21 0.01
p 0.48 0.07 0.32 | 0.49 0.61 0.92
s.e. 0.08 0.01 0.09 0.08 0.06 0.01

a, =2 | mean | stddev | 2.5% | 50 % | 97.5 % | cov prob
o 1.57 0.19 1.18 1.57 1.95 0.94
s.e. 0.20 0.04 0.22 0.20 0.21 0.01
P 0.49 0.07 0.33 0.49 0.61 0.94
s.e. 0.07 0.01 0.08 | 0.07 0.06 0.01

trace plots. This was done using the CODA program. Tables 2.1 through 2.7 contain all
summary values based on these final 5000 samples. We repeat the entire procedure 500
times to see the frequentist performance of the proposed Bayes method. In SAS, on a sparc
20 machine, on an average it took about 50 minutes to perform the entire simulation for a
given wrapped distribution.

Bayesian highest posterior density (HPD) can also be used instead of percentiles.
For example, in Figure 2.7, we plot the posterior density of p while fitting WC to Ant data.
Since the posterior density has most its mass close to 3.24 radians (185°), we computed the
percentiles with 0 radians as the reference point. The percentiles will change if we change
the reference point, but the change will be minimal for the Jander’s ant data set, if the
reference point is away from 3.24 radians. However, HPD is not affected by the change in

the reference point.



Table 2.2: Fitting WC to WC distribution using different priors

a, = 0.5 | mean | std dev | 2.6 % | 50 % | 97.5 % | cov prob
W 1.57 0.17 1.23 1.57 1.92 0.95
s.e. 0.18 0.14 0.20 0.17 0.34 0.01
p 0.49 0.07 0.34 | 0.49 0.61 0.90
s.e. 0.09 0.02 0.10 0.09 0.08 0.01

a, =1 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
W 1.56 0.17 1.23 1.56 1.90 0.93
s.e. 0.17 0.05 0.20 0.17 0.19 0.01
P 0.48 0.07 0.33 0.49 0.61 0.94
s.e. 0.07 0.01 0.09 0.07 0.06 0.01

a, =2 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
W 1.57 0.17 1.25 1.57 1.91 0.95
s.e. 0.17 0.13 0.20 0.16 0.34 0.01
P 0.49 0.07 0.35 0.49 0.62 0.92
s.e. 0.08 0.01 0.09 0.08 0.07 0.01

Table 2.3: Fitting WDE to WDE distribution using different priors

a, = 0.5 | mean | std dev | 2.6 % | 50 % | 97.5 % | cov prob
W 1.56 0.18 1.21 1.56 1.92 0.96
s.e. 0.17 0.07 0.20 0.17 0.23 0.01
p 0.48 0.08 0.31 0.48 0.63 0.91
s.e. 0.09 0.01 0.10 0.09 0.08 0.01

a, =1 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
o 1.58 0.17 1.24 1.58 1.92 0.97
s.e. 0.17 0.06 0.20 0.17 0.24 0.01
P 0.49 0.08 0.33 0.49 0.63 0.90
s.e. 0.09 0.01 0.10 | 0.09 0.08 0.01

a, =2 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
o 1.58 0.18 1.23 1.58 1.92 0.93
s.e. 0.17 0.05 0.19 0.17 0.21 0.01
P 0.49 0.08 0.33 0.49 0.63 0.92
s.e. 0.08 0.01 0.09 0.08 0.07 0.01

25
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From Table 2.1, Table 2.2 and Table 2.3, we see that the proposed method performs
very well in terms of maintaining the nominal coverage probability when the underlying
distribution is true. In addition, the posterior mean and median can serve as good point
estimates of the parameters. Although we do not see that the posterior distribution is
sensitive to the choice of the hyper parameter a,, in general, we would recommend a, = 0.5
for all the wrapped distributions. Therefore, we use this value for a, for our application
and other simulations.

In order to study the sensitivity of the sampling distribution, we generated data
from Normal, Cauchy and Double Exponential distributions on the real line and wrapped
them onto the circle (0,27). For our simulations, we fixed = 7/2 and p = 0.5. We gener-
ated n = 50 observations from the WN(r/2,0.5), WC(x/2,0.5) and WDE(w/2,0.5). We
then fitted Wrapped Normal, Wrapped Cauchy and Wrapped Double Exponential distribu-
tions to each of the three datasets. We repeated the method 500 times to see the frequentist
performance of the Bayes method for erroneous models. For model fitting we used a, = 0.5
for all priors. In our study (as shown previously in Table 2.1, Table 2.2 and Table 2.3) we
did not find the posterior summary to be very sensitive to the choice of a,. Therefore, we
did not report the posterior summary values for other choices of a,. As before, we report
the posterior mean, standard deviation, and two equal tail percentiles along with the Monte
Carlo standard error. Table 2.4, Table 2.5 and Table 2.6 contain the summary statistics.

Comparing the results in Table 2.4, Table 2.5 and Table 2.6, we see that the
model selection criteria GGC and deviance work well and select the right distribution. A

brief description of GGC and Dev is given in Section 2.3. While fitting the WN, WC and



Table 2.4: Fitting WN, WC and WDE to WN distribution with p ~ Beta(0.5,0.5)

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.56 0.20 1.17 1.56 1.95 0.95
s.e. 0.19 0.05 0.21 0.19 0.22 0.01
p 0.48 0.08 0.32 0.49 0.61 0.94
s.e. 0.08 0.01 0.10 0.08 0.06 0.01
GGC | 228.88 47.90 146.15 | 225.20 | 332.62
s.e. 48.48 6.41 36.13 48.99 58.81
Dev 156.45 2.14 154.36 | 155.79 | 162.28
s.e. 8.77 0.32 8.71 8.75 9.04
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
I 1.56 0.23 1.12 1.56 2.03 0.90
s.e. 0.24 0.13 0.27 0.24 0.47 0.01
p 0.42 0.07 0.27 0.42 0.56 0.81
s.e. 0.08 0.02 0.09 0.08 0.07 0.02
GGC | 241.26 47.78 155.66 | 238.58 | 342.14
s.e. 41.53 5.43 31.98 41.71 50.77
Dev 160.30 2.07 158.18 | 159.69 | 165.75
s.e. 8.08 0.52 7.93 8.10 8.31
WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.56 0.21 1.16 1.56 1.97 0.91
s.e. 0.23 0.07 0.26 0.23 0.29 0.01
p 0.47 0.08 0.30 0.47 0.62 0.94
s.e. 0.08 0.01 0.09 0.09 0.07 0.01
GGC | 230.78 | 47.36 147.43 | 227.66 | 331.92
s.e. 45.39 5.78 35.03 | 45.76 54.49
Dev 158.93 2.05 156.82 | 158.32 | 164.37
s.e. 8.75 0.43 8.68 8.77 8.82
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Table 2.5: Fitting WN, WC and WDE to WC distribution with p ~ Beta(0.5,0.5)

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.57 0.23 1.11 1.56 2.04 0.94
s.e. 0.22 0.10 0.25 0.22 0.36 0.01
p 0.45 0.08 0.29 0.46 0.59 0.87
s.e. 0.09 0.01 0.10 0.09 0.07 0.02
GGC | 232.80 48.21 148.73 | 229.32 | 336.40
s.e. 47.06 5.97 35.22 47.64 56.38
Dev 158.93 2.10 156.84 | 158.29 | 164.62
s.e. 9.51 0.32 9.46 9.51 9.65
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
I 1.57 0.17 1.23 1.57 1.92 0.95
s.e. 0.17 0.11 0.21 0.16 0.34 0.01
p 0.48 0.07 0.33 0.49 0.62 0.89
s.e. 0.09 0.02 0.10 0.09 0.07 0.01
GGC | 222.66 | 43.76 144.79 | 220.00 | 315.54
s.e. 40.01 5.06 30.97 | 40.15 48.86
Dev 154.76 2.07 152.66 | 154.14 | 160.27
s.e. 10.71 0.44 10.60 10.72 10.91
WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.57 0.18 1.23 1.57 1.92 0.95
s.e. 0.17 0.11 0.20 0.16 0.34 0.01
p 0.49 0.08 0.33 0.50 0.64 0.92
s.e. 0.09 0.01 0.10 0.09 0.08 0.01
GGC | 221.19 44.46 142.90 | 218.25 | 316.11
s.e. 42.38 4.95 32.96 | 42.76 50.35
Dev 154.95 2.05 152.87 | 154.34 | 160.46
s.e. 10.46 0.42 10.40 10.45 10.57
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Table 2.6: Fitting WN, WC and WDE to WDE distribution with p ~ Beta(0.5,0.5)

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.58 0.22 1.14 1.58 2.02 0.96
s.e. 0.21 0.09 0.24 0.21 0.31 0.01
p 0.46 0.08 0.29 0.46 0.59 0.89
s.e. 0.09 0.01 0.10 0.09 0.07 0.01
GGC | 229.32 | 47.88 146.09 | 225.76 | 332.56
s.e. 45.60 6.24 33.76 46.08 59.58
Dev 158.08 2.13 155.99 | 157.43 | 163.88
s.e. 9.45 0.34 9.40 9.43 9.70
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
I 1.56 0.18 1.22 1.56 1.92 0.96
s.e. 0.17 0.05 0.21 0.17 0.19 0.01
p 0.47 0.07 0.32 0.47 0.60 0.92
s.e. 0.08 0.01 0.09 0.08 0.07 0.01
GGC | 22545 44.73 145.81 | 222.74 | 320.27
s.e. 37.60 5.07 28.91 37.68 46.19
Dev 156.09 2.09 153.97 | 155.45 | 161.63
s.e. 9.32 0.44 9.25 9.30 9.55
WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.57 0.17 1.22 1.57 1.91 0.96
s.e. 0.16 0.05 0.20 0.17 0.19 0.01
p 0.49 0.08 0.32 0.49 0.64 0.92
s.e. 0.08 0.01 0.10 0.08 0.07 0.01
GGC | 221.53 4491 142.45 | 218.56 | 317.35
s.e. 40.95 5.16 31.56 41.31 49.06
Dev 155.61 2.09 153.50 | 154.98 | 161.21
s.e. 9.62 0.47 9.54 9.60 9.79
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WDE distributions, the model generated from the true distribution has the lowest GGC
and Dev value. Also, both u and p have been well estimated, as we have fitted the correct
distribution.

From Table 2.4, Table 2.5 and Table 2.6, we see that in general, the location
parameter is estimated well, even when the models are erroneous. For WN model, coverage
probability of p is less than the nominal level. This indicates that WN is not robust in
estimating the mean resultant length when the distribution is not specified correctly. In the
case of fitting WC model to WN data, we see that the mean resultant is not well estimated.
However, WC model performs considerably better while fitting WDE data. This is expected
as WC is closer to WDE than WN. Finally, we see that for WDE model, the parameters p
and p have been well estimated, even when the distribution is incorrect. Therefore, WDE
model is robust in estimating p and p.

We generate data from Von Mises (VM) distribution on the circle(0,27). To gen-
erate the data from Von Mises distribution, we use the algorithm given by Best and Fisher
(1978). As before we set the p = n/2 and p = 0.5. We fit Wrapped Normal, Wrapped
Cauchy and Wrapped Double Exponential distributions to Von Mises data and repeat the
procedure 500 times to study frequentist performance.

In Table 2.7, we see that WN is robust in estimating p and p when they come
from a Von Mises distribution. This is expected as WN closely approximates the Von Mises
distribution. WC model does not perform well in estimating the mean resultant length. The
lower than nominal coverage probability of p indicates that WC is not robust in estimating

the mean resultant length of the distribution. However, the location parameter is estimated



Table 2.7: Fitting WN, WC and WDE to VM data with p ~ Beta(0.5,0.5)

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.57 0.22 1.15 1.57 2.00 0.95
s.e. 0.20 0.10 0.23 0.20 0.35 0.01
p 0.47 0.08 0.31 0.47 0.60 0.91
s.e. 0.08 0.01 0.10 0.08 0.07 0.01
GGC | 228.56 47.84 145.67 | 224.93 | 331.84
s.e. 47.59 6.21 35.56 48.14 57.36
Dev 157.36 2.10 155.29 | 156.72 | 163.06
s.e. 9.32 0.33 9.25 9.29 9.54
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
I 1.57 0.20 1.18 1.57 1.97 0.94
s.e. 0.20 0.06 0.23 0.20 0.24 0.01
p 0.44 0.07 0.29 0.45 0.58 0.87
s.e. 0.07 0.01 0.09 0.07 0.07 0.02
GGC | 232.33 46.21 149.83 | 229.60 | 330.11
s.e. 38.81 5.13 30.09 38.91 47.82
Dev | 158.30 2.07 156.21 | 157.67 | 163.79
s.e. 8.69 0.42 8.63 8.68 8.88
WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
" 1.58 0.20 1.19 1.57 1.97 0.92
s.e. 0.21 0.11 0.22 0.20 0.34 0.01
p 0.48 0.08 0.31 0.48 0.63 0.93
s.e. 0.08 0.01 0.10 0.08 0.07 0.01
GGC | 220.16 40.54 146.23 | 218.27 | 304.63
s.e. 26.06 2.07 22.78 26.29 28.54
Dev 157.43 2.09 155.30 | 156.81 | 163.03
s.e. 9.23 0.46 9.17 9.23 9.30
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very well. For the WDE model, the parameters p and p have been well estimated. Therefore,
we see again that the WDE model is robust in estimating ¢ and p when the distribution is
erroneous. Using GGC, we find that the WDE model fits the best to VM. However, Dev

indicates that WDE model and WN model fit well to VM.

2.5 Validation approach for MCMC

In this section, we implement the method suggested by Monahan and Boos (1992)
for validation based on coverage probabilities. Consider any nonnegative integrable likeli-
hood, L(y|t). Let the underlying distribution for parameter 6 be any absolutely continuous
prior p(t) and let f(y|t) be the correct model for the data. R, is defined as the posterior
coverage set function of level « for a prior p and likelihood L if, and only if, for every y,
P[0 € Ry(y)] = o under conditional measure on 6.

Define H to be the random integral,

0
"= / p.(t]Y) dt,

where p,(t|y) o< p(t)L(y|t) is the posterior. If the posterior p,(t|y) is valid by coverage, then
H is U(0,1) under p(t)f(y[t) on (Y, 0). Posterior p.(t|y) is defined to be valid by coverage
for a model f(y|t) if, and only if, for every posterior coverage set function R, (y) for that
prior p and likelihood L, P[f € R, (y)] = o under the joint measure p(t)f(y|t) on (Y, 6).
Using this result, the procedure is as follows. We generate a sample {0,k =

1,...,m independently from the prior, p(t). Then, for each 6, generate data Y *) from
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f(y|6), and compute Hj, for sample Y *) given by

0 B
H, :/ p(t|Y®)) dt = 5 Z ) < 0y),

—00 I=b+1
where {HI(CZ)J = 1,...,B} is the MCMC chain generated for 6, b is the burn-in (initial
samples rejected) and B is the total length of the chain. This sample {Hy,k = 1,...,m}
can be tested for goodness of fit to the U(0,1).

If the distribution of Hj, fails to follow the Uniform distribution for any prior, then
the likelihood L cannot be a coverage proper Bayesian likelihood. A likelihood L is defined
to be a coverage proper Bayesian likelihood if, and only if, for every absolutely continuous
prior p(t), the posterior p.(t|y) o< p(t)L(y|t) is valid by coverage. If L cannot be a coverage
proper Bayesian likelihood, then L cannot be a proper Bayesian likelihood and will not give

valid posterior inference.

Linifoemn Probaiility phot
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Figure 2.1: Probability plot of {Hy} for u parameter of WN model

We use the above method to validate WN, WC and WDE models. For each model,
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using Kolmogorov-Smirnoff test, we test if the samples {Hy,k = 1,...,m} are from U(0,1)
distribution. Though this was done for both parameters u and p in WN, WC and WDE
models, we present the results only for p parameter of WN model in Figure 2.1. The
Kolmogorov-Smirnov distance is 0.0354 and the p-value was greater than 0.25. Therefore,
we conclude that the sample {Hy, k = 1,...,500} is from U(0, 1) distribution, which is

expected. We obtained similar results for all the other goodness of fit tests.

2.6 Wrapped Extreme Value and Bimodal distributions

In this section, we introduce two new wrapped distributions - Wrapped Extreme
Value distribution (WEV) and bimodal or Wrapped Beta distribution (WB). When we
wrap a Beta distribution from the real line onto the circle, we obtain a bimodal distribution
for low values of p. The general theory is the same as that given in Section 2.2. The only
difference is that for simplicity, we use an Inverse-Gamma(0.5,0.5) prior for o instead of
Beta(0.5, 0.5) prior for p.

The Extreme Value density is given by
u—p

(54, ()

, —00 < u < 00.

The Wrapped Extreme Value density is obtained by wrapping the Extreme value density

onto the circle. The mean resultant, p = is a strictly decreasing function of o.

o
sinh(mo)

The general Beta density is defined as

1 (u_l)afl(,,,_u)bfl
Beta(a,b) (r—tl)atb-1

,l<u<r, a>0,b>0.

Consider the case where a =2, b=2, | = 4 — o and r = 4 + 0. Then, the density on the
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real line is,

-] p-o<u<pto (2.4)

The bimodal density is obtained by wrapping the density given in (2.4) onto the circle for
most of the values of o > 7. The mean resultant, p = ];—?(—sin(a) + cos(o)o)| is not a
strictly decreasing function of o. A plot of p as a function of ¢ is given in Figure 2.2. For our
simulation, we use the value of o = 4, that is p = 0.087. A plot of the bimodal density for
p = 0.087 is given in Figure 2.3 and Figure 2.4. In Figure 2.3, we plot the bimodal density
between —m to 7. This clearly shows the bimodal structure of the density. However, note
that the density is very flat. It varies between 0.13 and 0.19. Therefore, when we plot this

density on the circle in Figure 2.4, it looks similar to a Circular Uniform density.

0.8+ \

0.6+

0.4 \

0.2+ \

Figure 2.2: Plot of p for the bimodal distribution

For our simulation studies, we generate samples of size n = 50 from the Wrapped

Extreme Value (WEV) distribution with parameters set at 4 = 7/2 = 1.5708 and p =

0.5. We also generate samples of size n = 50 from the Wrapped Beta (WB) distribution
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Figure 2.3: Plot of the bimodal density for p = 0.087
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Figure 2.4: Plot of the bimodal density for p = 0.087 on the circle



37

Table 2.8: Fitting WEV to WEV distribution

mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob

W 1.58 0.18 1.25 | 1.58 1.95 0.91
s.e. | 0.20 0.05 0.19 | 0.19 0.27 0.01
p 0.50 0.07 0.35 | 0.50 0.62 0.91

s.e. | 0.07 0.01 0.09 | 0.07 0.06 0.01

Table 2.9: Fitting WB to WB distribution

mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
W 3.10 1.41 0.64 | 3.10 5.57 0.96

s.e. | 0.78 0.46 0.82 | 0.98 0.92 0.01
p 0.09 0.06 0.01 | 0.08 0.22 0.88
s.e. | 0.06 0.02 0.02 | 0.06 0.08 0.01

with parameters set at © = 7 = 3.1416 and p = 0.087. These values are chosen for WB
distribution parameters to obtain a bimodal distribution. We fit the true distributions and
compute the usual statistics as described in Section 2.4. In each simulation, we choose the
burn-in period to be 2000 samples, and then keep 5000 samples after burn-in, to obtain
posterior summary values. Table 2.8 and Table 2.9 contain summary values based on
these final 5000 samples. We repeat the entire procedure 500 times to see the frequentist
performance of the proposed Bayes method. In SAS, on a sparc 20 machine, on an average
it took about 50 minutes to perform the entire simulation for a given wrapped distribution.

From Table 2.8, we see that for the WEV distribution, as the underlying distri-
bution is true, both p and p have been well estimated. However, for the bimodal (WB)
distribution in Table 2.9, we see that p is well estimated but the coverage probability for p

is lower than expected. One reason for this could be that the original value of p is 0.087,
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which is quite low (that is, the value of o is high).

2.7 Application to real data sets

In this section, we analyze two data sets. The first data set is the Jander’s ant
data set, which refers to the movement of ants. The second data set is the data set about
ozone concentration and wind direction. We will use only the wind direction part of the
dataset for analysis in this section. In the next chapter, this data is analyzed in more detail,

and we fit a regression model to the data.

2.7.1 Jander’s ant data

We analyze a data set that depicts the orientation of the ants towards a black
target when released in a round arena. This experiment was originally conducted by Jander
(1957) and later mentioned by Batschelet (1981) and Fisher (1993). The data consists of
100 observations. For this data set, the circular sample mean and the resultant are 3.20
and 0.61.

We plot a circular histogram of Jander’s ant data in Figure 2.5. We fit WN, WC
and WDE distributions to this data. We compute the posterior mean, standard deviation,
2.5 percentile, median and 97.5 percentile for i and p. The percentiles are computed with
0 radians as the reference point. We have used a class of non-informative priors for (i, p),
which is given in equation (2.2), but present the results only for a, = 0.5, in Table 2.10.

At first, while fitting the data, we rejected the first 2000 samples (burn-in period)

of the MCMC chain and kept the next 5000 samples after burn-in to do posterior inference.
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180 + 0

Figure 2.5: Circular plot of the Jander’s Ant data

We noted that there were difficulties in achieving convergence using CODA. Therefore, we
increased the burn-in time to 10000 samples and kept the next 30000 samples. Initially we
use the sample estimates of © and p as our starting values. We then change our starting
values for MCMC (for example, i = 0 and p = 0.99) and overlay this Markov Chain with the
previous Markov Chain. We find that after 3000 samples they both overlap each other and
appear to mix very well. Analyzing similar results (not given here), there is no indication of
MCMC convergence problem. Summary values for the parameters are given in Table 2.10.

To compare the models we use Gelfand and Ghosh (1998) criteria (GGC). Low
values of GGC indicates better fit for a model. From Table 2.10, we see that the WC
distribution performs best based on the GGC. WDE distribution estimates are close to the
WC distribution estimates. However, the estimates from WN are different from WC and

WDE. GGC recommends WDE over WN. Using CODA, we obtained the trace plots and
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Table 2.10: Fitting WN, WC and WDE to the Ant data set with p ~ Beta(0.5,0.5)

WN | mean |stddev | 25% | 50 % | 97.5 %
n 3.14 0.14 2.88 3.14 3.42
p 0.54 0.05 0.44 0.54 0.62

GGC | 243.97 | 33.80 183.70 | 241.95 | 316.12

WC | mean |stddev | 25% | 50% | 97.5 %
I 3.24 0.06 3.12 3.25 3.36
p 0.64 0.04 0.57 0.64 0.72

GGC | 141.97 11.84 121.44 | 141.06 | 167.81

WDE | mean |stddev | 25 % | 50 % | 975 %
I 3.21 0.08 3.08 3.19 3.37
P 0.62 0.05 0.52 0.62 0.71

GGC | 183.43 23.67 142.09 | 181.62 | 234.22

the kernel density estimates of the parameters u and p based on the Wrapped Cauchy (WC)
distribution, which are shown in Figure 2.6.

Bayesian highest posterior density (HPD) can also be used instead of percentiles.
For example, in Figure 2.7, we plot the posterior density of p while fitting WC to Ant data.
Since the posterior density has most its mass close to 3.24 radians (185°), we computed the
percentiles with 0 radians as the reference point. The percentiles will change if we change
the reference point, but the change will be minimal for the Jander’s ant data set, if the
reference point is away from 3.24 radians. However, HPD is not affected by the change is
the reference point.

This data has been previously analyzed by Sengupta and Pal (2001). They find
through hypothesis testing, that WN does not fit this data very well. They recommend a
family of symmetric wrapped stable distributions (SWS, refer Mardia and Jupp, 1999, p.

52) or a mixture of SWS and Circular Uniform density for this data. This agrees with the
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Figure 2.6: Trace plots while fitting WC to Ant data
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Figure 2.7: Posterior density of p while fitting WC to Ant data

result recommended by the GGC statistic, where WN is considered to be a weak fit. In

addition, we recommend WC, which belongs to the SWS family.

2.7.2 Ozone data set

We analyze a data set containing the measurements of ozone concentration and
wind direction. Measurements were taken at 6:00 a.m. at four-day intervals between April
18th and June 29th 1975, at a weather station in Milwaukee. In this section, we will use
only the wind direction part of the data. This is shown in Figure 2.8. The circular sample
mean and the resultant for wind direction data are 6.57 radians (16°) and 0.52 respectively.
For more details under the regression setup, refer to Section 3.6 and Figure 3.1.

We compute the posterior mean, standard deviation, 2.5 percentile, median and
97.5 percentile for p and p. The percentiles are computed with 7 ~ 3.14 radians (180°) as
the reference point. We rejected the first 5000 samples (burn-in) and kept the next 15000

samples. We used the sample estimates of the mean and the mean resultant as starting
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Figure 2.8: Plot of wind directions in the ozone data.

values of 4 and p. Analyzing results from CODA (not given here), there is no indication of
MCMC convergence problem. Summary values for the parameters are given in Table 2.11.

From Table 2.11, we see that the WN distribution performs best based on the
Dev. The parameter estimates of p from WC and WDE are very close to that of WN. The
estimate for p from WC is lower than that of WN and WDE. We compare this model and

the regression model in Section 3.6

2.8 Discussion

In this chapter, we provide a generic method to fit a wide class of continuous
densities on the circle using MCMC methodology. We show that using this method, we can

easily obtain samples from the joint posterior distribution, and hence, compute the posterior
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Table 2.11: Fitting WN, WC and WDE to the Ozone data set with p ~ Beta(0.5,0.5)

WN | mean | stddev | 25 % | 50 % | 97.5 %
n 6.50 0.37 5.77 6.50 7.21
P 0.44 0.13 0.13 0.45 0.65

GGC | 63.56 22.98 28.73 | 60.36 | 116.13

Dev 61.03 2.09 58.94 | 60.37 | 66.93

WC | mean | stddev | 25 % | 50 % | 97.5 %
I 6.54 0.53 5.26 6.57 7.54
P 0.34 0.17 0.03 0.34 0.64

GGC | 59.51 28.96 23.97 | 51.64 | 127.78

Dev 63.47 2.65 60.27 | 62.84 | 69.83

WDE | mean | std dev | 2.5 % | 50 % | 97.5 %
I 6.53 0.44 5.86 6.54 7.34
o 0.45 0.16 0.10 0.46 0.70
GGC | 57.90 25.77 24.89 | 51.29 | 120.14
Dev 61.71 2.56 59.00 | 60.99 | 68.03

summary values such as the posterior mean, standard deviation, 2.5 percentile, median and
97.5 percentile for 1 and p. From simulation-based studies, we find that parameter estimates
based on WDE are robust to erroneous models. In addition, we find that the posterior
distribution is not sensitive to the non-informative class of priors that we proposed.

We also give examples of bimodal density and Wrapped Extreme Value density us-
ing this methodology. We extend this to other real life applications, with some explanatory

variables in the next chapter.
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Chapter 3

Circular Regression

3.1 Introduction

In this chapter, we explore the dependence of the circular response variable on
other circular and linear variables. There are many examples of regression involving cir-
cular data. Consider the environmental data collected on the wind direction and ozone
concentration. This study was performed at a weather station in Milwaukee in 1975 (John-
son and Wehrly, 1977). There seemed to be some evidence of association between the
wind direction and ozone concentration. Figure 3.1 shows the joint data plot. The ozone
concentrations are plotted as distances from the center and the angles represent the wind
directions.

Another interesting biological example refers to the relationship between the ori-
entation of the nests of 50 scrub birds along the bank of a creek bed and the direction of
the flow of the creek at the nearest point to the nest (Fisher, 1993). Another example is

the study of 31 blue periwinkles performed by Dr. A. Underwood and Ms G. Chapman
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Figure 3.1: Joint data plot of the ozone data. The ozone concentrations are plotted as
distances from the center.

(Fisher, 1993). Periwinkles are small snail-like intertidal animals living close to the sea
shore. They were transplanted near the seashore from the heights at which they normally
live. The position (direction of movement and the distance moved) of 15 periwinkles were

studied after 1 day and the rest were studied after 4 days.

3.2 Previous work

We are interested in modeling the variation of the mean direction of a circular
or linear response y, in terms of one or more covariates or explanatory variables. The
covariates can be linear or circular. When the response variable is linear, and it is regressed
on a circular covariate, it is the same as the linear regression model. Standard statistical

methods can be applied here. A natural model introduced by Mardia (1976) is

Xly ~ N(Bo+ Brcos(y) + Bzsin(y),o?),
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where 7y is a circular covariate and By, (1, 32 and o? are unknown parameters. Some
extensions of this model were proposed by Johnson and Wehrly (1978).

Our main interest is when the response variable is circular and the covariates are
linear or circular. Some of the earlier work in this field has been done by Gould (1969) in

which he introduces the regression model,

Yy, ~ VM(,BO—F,@lIi,Ii),’L-:1,2,...,”,

where VM () is the Von Mises distribution. Laycock (1975) describes some optimal designs
for this model. The major drawback of this approach is that the likelihood function has in-
finitely many maxima. Furthermore, 31 is not identifiable when the covariates x1, xo, ..., x,
are equally spaced.

Johnson and Wehrly (1978) proposed a different class of models in which the
response variable completes only a single spiral, as x varies through its range. Fisher and
Lee (1992) extended this concept by suggesting the use of a general link function. This
link function is a one-to-one function g(), which maps the entire real line onto (—m,7) and
satisfies g(0) = 0. Some examples are g(r) = 2tan~!(z) and g(z) = 27 F(x), where F(z) is
a distribution function. Using the link function, Fisher (1993) also describes the regression
for the mean resultant and regression with mixed models, using Von Mises distribution and

MLE techniques.
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3.3 Extension of the Data Augmentation Approach for Re-

gression

For the regression problem, we use the data augmentation approach in a Bayesian
setup. We extend the theory given in Section 2.2 for regression. Let the observations on the
circle be y = {y1,y2,93,.. ., Un}, 0 < y; <2m,j=1...n. Let X = {ay,20,23,...,2,},5 =

1...n, be the design matrix. We consider the simple regression model,

YilX; ~ WD(uj,p),

P
where wi = ﬁo -+ Z’& gi(Xij) (3.1)

i=1
and (o, 01, ..., and p are parameters to be estimated. g;()s are basis functions and WD

represents any wrapped distribution such as WN, WC or WDE. This class of regression
models can be extended to generalized additive models (GAM) for circular data (Hastie
and Tibshirani, 1986). However, we assume that the functions g;()s are completely known.
Without loss of generality, we can restrict Gy between 0 and 27, to avoid identifiability
problems. In general, the basis functions g;()s are some general set of functions that are
defined on the centered and scaled covariates. For simplicity in notation, we omit the
functions g;()s, but the covariates are now assumed to be centered and scaled.

Note that in our approach, the infinitely many maxima problem and identifiability
problem of the Gould (1969) model do not arise. Moreover, it is not necessary to use a
one-to-one link function, which transforms the real line onto (—m, 7) (Johnson and Wehrly,
1978). This is because we are using y and k to fit the data rather than just y, as suggested

by Gould (1969) and Johnson and Wehrly (1978). In order to illustrate the theory we
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assume that p = 1, that is, we use only one covariate. However, it should be noted that the
extension to the case of p covariates is straightforward.

A class of non-informative prior for (5p, 01, p) can be specified as,

B
202

[Bo, B1,p] o< Ig,(0,2m)e "1 p®TH(1 — p)*7, ap >0, (3.2)

and using p = h(o), the joint density of (5y, 1, 0) is given by
(o) (1 = h(0) R (a)], ap > 0.

[B(Jaﬂl?o-} X 150(0,271')6_

Following the same approach described in Section 2.2 and replacing u by 5o+ 5125,

the joint density of y, k, 5o, 81 and o is given by

[yvkaﬁ&ﬁlvo-] X [y|kaﬁ076170-2] [’dﬁﬂaﬁboﬂ} [ﬁﬂaﬁl?oﬂ}

!

n
Jj=1

(& p(umtomiert2nhs)) pg)or=i(1 — (o))~ 1 (o)

x 1 ﬁ f(yj—ﬁo—ﬂwﬁ%kj V(o) (1 = h(o))* ™ h (o)

on+no o
j=1
2
5
I5,(0,2m)e 751
where |i'(0)| can be factorized as —t5h(0)" hi (o). It is assumed that hi (o) is invertible.

The full conditional densities of k, 8y, 51 and ¢ are nonstandard densities. Con-
sequently, we introduce auxiliary variables z and v. Let z = {z,21, 29,23} and v =

{v1,v2,v3,...,v,}, such that

[y7k7/8075170] X /[y7k7/807ﬁ17271)70] dzdv.
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The joint density of y, k, 8o, 01, 2, v and o is given by

[y, k, ﬂo, ,81, zZ,0, U] X IZ() (O, gn+"o) H Iv]- (07 f(yj_ﬁo_ﬁ;Ij+27rkj )) [zl (0, h(o.)ap*1+nl)
j=1

{IL, (0, (1 = h(o)* ') I(a, # 1) + I(a, = 1)} I.,(0, hi (o))
[
I5,(0,2m)e 27 |

Given vj, we get {(gmy(v;), gMi(v;)), L =1...q, ¢ € Z} such that,

q
{0 < v < f(yj—,@()—ﬁ;wj-‘rQﬂ'kj )} _ U{gml(v]) < (yj_ﬂo_ﬁél‘j+2ﬂ'kj> < ng(’Uj)}
=1

is a union of disjoint sets because gmi(v;) < gMi(vj) < gma(vj) < gMa(v;) < ...

gmg(v;) < gMy(vj).

The full conditional densities of k, v, z, By and 31 are given by

vjly, k, Bo, b1, 2, v—j,0 ~ U[O’f(yj—ﬁo—ﬁ;mj+27rk]-):|

kj‘yvk—_’ﬁﬁ()?ﬁlv'z?’vva ~ DU

q
U{T% (B0 + Brzj — yj + ogmu(v)] .
=1

|5 (Bo + B — yj + ogMi(vy))] }]

where DU stands for Discrete Uniform.

Without loss of generality, let [, € {1,2,...,q} be such that,

(5= (Bo + Brj — yj + ogmy, (v))] < kj < | 5= (Bo + Bz — yj + ogMy, (vy))] -

ZO’y7k7/807517z—071;7U ~ U [07 0n+no:|

z1ly, k, Bo, B1, 2—1,v,0 ~ U [0,h(o)% 1]

U0,(1—=h(o) ], a,#1

Z2’y7k7ﬁ07617’z—2vv70 ~
29 is not needed, a, =1



Z3|y> kv /807 ﬁl? z2-3,V,0

Boly, k, b1, z,v,0
where mg,

Mg,

Bily, k, z, Bo,v,0
where mg,

Mpg

1

where

m/Bl J

Mg, ; =

_yj+27rkjfﬁofa'ng0 (’Uj) 1
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U[O,hl(O')], hl(O') §é 1

z3 is not needed, hy(o) =1

U [mﬁov Mﬁo] )

EA,IX ly; + 2mk; — Brx; — ogMiy(v;)] \/ 0

J

min [y; + 27k; — Bz — ogmy,(v))] /\(277)
7=1

U [mﬁl ) Mﬂ1] )
n
max m, \o,

n
min Mg, j \(27),

z; y Lj > 0
[y;+2wk; —Bo—ogm, (v;)]
Yj g 50. g l()( ]) 733]‘ <0
x; |
[y;j+27k;—Bo—ogmy, (vi)]
Yj j 60‘ g lo( J) 7:1:]' >0
L Zj ]
[y;i+2nk;—Bo—ogM;. (v;)]
Yj J . 9 lo( 5) L < 0.

Since h(c) is a monotone decreasing function of o and is invertible, h~! is also a

monotone function. This enables us invert the relationship between z1, zo and o and obtain

some parts of the distribution for o.

Also, since hq (o) is invertible, given z3, we get {(gm](23), gM;(23)), l=1...q, q €

Z} such that, {0 < z3 < hi(0)} = Uj_,{gm; (23) < 0 < gM;*(23)} is a union of disjoint sets

because gmi(z3) < gM7(23) < gm3(23) < gM3(z3) < ... < gmy(z3) < gM;(z3). If hi(0) is

not easily invertible, then factorize hi(c) into functions, whose inverse can be easily com-

puted. Then, this method can also be easily extended, similar to the extension given for
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the density in Section 2.2.

(maa MU) m LJ{.9777’2k (23)7 ng*(Zg)}] 5

U|y7k7ﬂ07/317zvv ~ U
=1

1

n yj—Bo—Bix;j+2mk; y;j—Po—Bix;+27k; __ap—1
I e hun (P2, SRS )V B (1= 2, > 1
- =
n y;j—Bo—P1x;+2rk; y;—Po—Pra;+27k;
manzl hm ( gmlo(vj) 5 ng()(Uj) ) ) a/p S 1
1
. y;i—Bo—Pirz;+2rk; yj—Bo—LCixj+2nk; 1 —1/_ap—14n1
mlnglzl hM( ’ gmlo(vjj) 5 ngO(vJ]-) j) /\ 1 /\h (le )’
n+no
0
where (a, > 1)J((a, <1)N (22 < 1))
MU - y;i—Po—LGrxi+2mk yi—Po—0Crxi+27k 1 1/._a }—&-n
san j—Bo—B1z; i Yi—Bo—Piz; j — —14ny
winf_y oy (UEERET, WS ) A AR T
n+no
20
Ar1(1 - )| » where ((a, <1)N (22 > 1)),
1—a,
22
yj—Bo—Brzj+2mk;  y;—Bo—Pix;+2mk; y;—Bo—Prz;j+2mk;  y;—Bo—Piz;+2mk;
where fim, ( gmy, (vj) ’ gMiq (vj) ) and hu ( gmig (vg) ’ gM (vj) )
are defined as follows.
yj—Po—Brz;+2mk;
. gMzo(Jj) ty gmig(vj) 2 0
y;—Bo—Prx;+2mk; )
h (yj—ﬁo—ﬁ1$j+27rkj yj—ﬁo—ﬁ1wj+27rkj> = gmag (vi) > gMiy(v) <0
m . Y M . -
gmlo(UJ) g lO(UJ) |: —Bo—fra;+2mk; \/ y;—fo—B1a;+2k;
gmlo (UJ ngO U]) ’
gy, (v;) <0 < gMi,(vj)]
yj —Bo—Prw;+2rk;
o) gmug (vj) = 0
yj—ﬁo—ﬂlxj-i-Qﬂkj )
h (yj*507ﬂ1x1+27rkj yj*ﬁo*ﬁlxj+2ﬂ'kj> . gMi, (v5) ’ ngO (U]) =0
M gmig (vy) ’ gMiq (vy) B
[has is not needed,
gmu, (v;) <0 < gM;,(v;)]
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For symmetric unimodal densities,

h (yj*ﬁO*ﬁll‘j+2ﬂ'kj yj*ﬁO*ﬂ1Ij+27rkj> _ |yj—Bo—Przj+2mk;|
m gmig (v5) ) gMiq (vy) gMi, (vy)

and hjs is not needed.

We illustrate the above technique for several popular distributions such as Wrapped
Normal, Wrapped Cauchy and Wrapped Double Exponential distributions. In Appendix
B, we provide more details on the exact form of the full conditional distributions for these
three wrapped distributions. We study the performance of the proposed method by several

simulation experiments.

3.4 Simulation studies

For our simulation studies, we generate samples of size n = 31 from Wrapped Nor-
mal (WN), Wrapped Cauchy (WC) and Wrapped Double Exponential (WDE) distributions
with parameters set at Gy = 1, p = 0.8 and varying 8, = —1.5,0,1.5. The observations
for the covariate x, were the distance measurements from the movement of periwinkle data
(Fisher, 1993). The covariates were centered and scaled as mentioned previously. We fit
each of the three distributions with priors given in equation (3.2) with a, = 0.5 and o3, = 5.
We compute the posterior mean, standard deviation, 2.5 percentile, median and 97.5 per-
centile for By, B1 and p for each simulation. The percentiles are computed with 0 radians
as the reference point.The simulation standard errors for each of these summary values are
also computed. We also compute the coverage probability for the 95% posterior interval
given by the 2.5 and 97.5 percentile of the posterior distribution. In each simulation, we

choose the burn-in period to be 2000 samples (i.e. throw away first 2000 samples from the
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Table 3.1: Regressing WN model to WN data

f1=—1.5 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.01 0.13 0.76 1.01 1.27 0.94
s.e. 0.20 0.10 0.14 | 0.24 0.28 0.01
01 -1.48 0.19 -1.84 | -1.48 | -1.10 0.95
s.e. 0.26 0.17 0.52 | 0.25 0.56 0.01
P 0.78 0.05 0.66 | 0.79 0.87 0.93
s.e. 0.06 0.02 0.09 | 0.06 0.03 0.01

B1=0 | mean | stddev |25 % | 50 % | 97.5 % | cov prob
0o 0.99 0.13 0.75 | 0.99 1.24 0.96
s.e. 0.12 0.02 0.12 0.12 0.13 0.01
01 0.00 0.17 -0.34 | 0.00 0.35 0.95
s.e. 0.17 0.03 0.17 | 0.17 0.18 0.01
P 0.78 0.05 0.66 | 0.79 0.86 0.93
S.e. 0.05 0.01 0.08 | 0.05 0.04 0.01

B =15 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.01 0.12 0.77 1.01 1.26 0.97
s.e. 0.11 0.02 0.12 | 0.11 0.12 0.01
01 1.49 0.17 1.16 1.49 1.83 0.95
s.e. 0.16 0.02 0.17 | 0.16 0.17 0.01
P 0.79 0.05 0.67 | 0.79 0.87 0.94
s.e. 0.05 0.01 0.07 | 0.05 0.03 0.01

MCMC chain) and keep 5000 samples after burn-in, to obtain posterior summary values.
All summary values in Table 3.1, Table 3.2 and Table 3.3 are based on these final 5000
samples. We repeat the entire procedure 500 times to see the frequentist performance of
the proposed Bayes method. In SAS, on a pentium III machine, on an average it took about
30 minutes to perform the entire simulation for a given wrapped distribution.

From Table 3.1, Table 3.2 and Table 3.3, we see that the proposed method performs
very well in terms of maintaining the nominal coverage probability. Also, the posterior mean
and median serve as good point estimates of the parameters.

In order to study the sensitivity of the sampling distribution, we generated sam-



Table 3.2: Regressing WC model to WC data

31 =—1.5 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.00 0.07 0.86 1.00 1.13 0.95
s.e. 0.07 0.02 0.08 0.07 0.08 0.01
051 -1.50 0.10 -1.70 | -1.50 | -1.30 0.96
s.e. 0.11 0.04 0.14 0.11 0.12 0.01
p 0.78 0.05 0.67 | 0.79 0.86 0.93
s.e. 0.05 0.01 0.08 0.05 0.04 0.01

1 =0 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.00 0.07 0.86 1.00 1.13 0.98
s.e. 0.06 0.02 0.07 | 0.06 0.07 0.01
01 -0.01 0.10 -0.21 | -0.00 0.19 0.96
s.e. 0.10 0.04 0.14 0.10 0.12 0.01
P 0.78 0.05 0.67 | 0.79 0.86 0.93
s.e. 0.05 0.01 0.08 | 0.05 0.03 0.01

31 =15 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.01 0.07 0.88 1.01 1.14 0.95
s.e. 0.23 0.02 0.22 0.23 0.24 0.01
01 1.49 0.10 1.29 1.49 1.69 0.93
s.e. 0.15 0.05 0.21 0.15 0.15 0.01
p 0.78 0.05 0.67 | 0.79 0.87 0.91
s.e. 0.06 0.01 0.08 0.06 0.04 0.01
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Table 3.3: Regressing WDE model to WDE data

f1=—15 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.00 0.11 0.79 1.00 1.21 0.94
s.e. 0.11 0.03 0.12 0.11 0.13 0.01
051 -1.50 0.16 -1.81 | -1.50 | -1.19 0.94
s.e. 0.16 0.04 0.19 0.16 0.17 0.01
p 0.78 0.06 0.63 | 0.78 0.88 0.95
s.e. 0.06 0.01 0.09 | 0.06 0.04 0.01

1 =0 | mean | stddev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.00 0.11 0.79 1.00 1.22 0.94
s.e. 0.11 0.03 0.12 0.11 0.12 0.01
01 0.01 0.16 -0.30 | 0.01 0.32 0.93
s.e. 0.16 0.05 0.18 | 0.16 0.19 0.01
P 0.78 0.06 0.63 | 0.79 0.88 0.92
s.e. 0.06 0.01 0.09 | 0.06 0.04 0.01

B1 =15 | mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
0o 1.00 0.11 0.79 1.00 1.21 0.96
s.e. 0.10 0.02 0.11 0.10 0.11 0.01
01 1.50 0.16 1.19 1.50 1.80 0.94
s.e. 0.16 0.04 0.18 0.16 0.19 0.01
p 0.78 0.06 0.64 | 0.79 0.88 0.95
s.e. 0.06 0.01 0.09 | 0.06 0.04 0.01
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ples of size n = 31 from WN, WC and WDE with parameters Gy = 1, 81 = 1.5 and p = 0.8.
We then fitted Wrapped Normal, Wrapped Cauchy and Wrapped Double Exponential dis-
tributions to the three datasets. We repeated the method 500 times to see the frequentist
performance of the Bayes method for erroneous models. As before, we report the poste-
rior mean, standard deviation, and two equal tail percentiles along with the Monte Carlo
standard error. The results are tabulated in Table 3.4, Table 3.5 and Table 3.6.

Comparing the results in Table 3.4, Table 3.5 and Table 3.6, we see that the model
selection criteria GGC and deviance work well and select the right distribution. A brief
description of GGC and Dev is given in Section 2.3. While fitting the WN, WC and WDE
distributions, the right distribution has the lowest GGC and Dev value. Also, in this case
Bo, B1 and p have been well estimated. In general, the location parameters Gy and (3; are
estimated well even when the models are erroneous.

In Table 3.4, Table 3.5 and Table 3.6, we see WN model estimates the location
parameters well, even when the distribution is not correctly specified. However, the lower
than nominal coverage probability of p, indicates that WN is not robust in estimating the
mean resultant length of the distribution. In the case of WC model, the location parameters
are estimated well, but the mean resultant is not well estimated. One of the reasons is that
we use a high mean resultant value (p = 0.8) for simulation and Cauchy (or WC) being a
flat distribution is unable to fit the simulated data well. For WDE model, even when the
distribution is incorrect, the parameters Gy, 51 and p have been well estimated. Therefore,
we see that the WDE model is robust in estimating [y, 51 and p.

We generate data from the Von Mises distribution on the circle(0,27). To generate



Table 3.4: Regressing WN, WC and WDE models to WN data with 6; = 1.5

WN | mean | stddev |25% | 50% | 97.5 % | cov prob
0o 1.04 0.15 0.77 1.03 1.36 0.95
s.e. 0.40 0.19 0.37 0.39 0.71 0.01
01 1.47 0.17 1.13 1.47 1.79 0.97
s.e. 0.69 0.33 1.03 0.71 0.77 0.01

P 0.77 0.06 0.64 0.78 0.86 0.93

s.e. 0.07 0.03 0.13 0.07 0.05 0.01

GGC | 152.22 44.33 70.12 | 150.67 | 243.12
s.e. 23.69 2.33 20.80 | 24.05 25.61
Dev 64.28 2.96 61.02 | 63.43 71.72
s.e. 9.35 2.20 8.98 9.24 10.87
WC | mean |stddev |25 % | 50 % | 97.5 % | cov prob
0o 1.03 0.14 0.75 1.04 1.31 0.89
s.e. 0.44 0.15 0.31 0.49 0.56 0.01
01 1.49 0.17 1.16 1.49 1.80 0.92
s.e. 0.23 0.35 0.87 0.16 0.59 0.01

P 0.65 0.07 0.50 0.65 0.77 0.27
s.e. 0.07 0.01 0.09 0.07 0.05 0.02

GGC | 160.22 44.21 78.62 | 158.59 | 251.18
s.e. 23.23 2.14 20.17 | 23.56 25.15
Dev 71.05 2.70 67.88 | 70.37 77.93
s.e. 9.06 0.72 8.76 9.07 9.24

WDE | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.02 0.14 0.76 1.01 1.30 0.92
s.e. 0.30 0.16 0.29 0.30 0.52 0.01
01 1.47 0.16 1.14 1.48 1.76 0.94
s.e. 0.40 0.33 1.05 0.32 0.24 0.01

p 0.75 0.07 0.60 0.76 0.86 0.96
s.e. 0.06 0.02 0.10 0.07 0.04 0.01

GGC | 152.09 | 43.83 71.43 | 150.38 | 242.38
s.e. 24.82 2.11 21.85 | 25.20 26.34
Dev 66.83 3.01 62.57 | 66.35 74.08
s.e. 9.05 1.48 9.01 9.19 9.63
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Table 3.5: Regressing WN, WC and WDE models to WC data with g1 = 1.5

WN | mean | stddev |25% | 50% | 97.5 % | cov prob
0o 1.04 0.16 0.72 1.04 1.36 0.96
s.e. 0.43 0.18 0.33 0.49 0.59 0.01
01 1.46 0.18 1.12 1.47 1.79 0.95
s.e. 0.46 0.26 0.89 0.39 0.34 0.01

P 0.74 0.06 0.60 0.75 0.83 0.59

s.e. 0.12 0.02 0.16 0.11 0.08 0.02

GGC | 152.27 | 45.18 69.09 | 150.53 | 245.07
s.e. 29.70 2.86 25.44 | 30.00 33.67
Dev 67.07 2.72 63.95 | 66.38 74.11
s.e. 17.23 0.77 17.10 | 17.25 17.46
WC | mean |stddev |25 % | 50 % | 97.5 % | cov prob
0o 1.00 0.07 0.87 1.00 1.15 0.94
s.e. 0.11 0.11 0.08 0.09 0.29 0.01
01 1.49 0.08 1.31 1.50 1.66 0.95
s.e. 0.11 0.25 0.71 0.07 0.42 0.01

P 0.78 0.05 0.67 0.79 0.87 0.95
s.e. 0.06 0.02 0.08 0.06 0.03 0.01

GGC | 131.97 | 40.72 58.76 | 129.87 | 217.31
s.e. 26.52 2.76 22.36 | 26.92 29.29
Dev 50.36 2.75 47.16 | 49.66 57.35
s.e. 14.43 1.07 14.21 | 14.45 14.68

WDE | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.04 0.11 0.82 1.03 1.25 0.97
s.e. 0.35 0.18 0.10 0.37 0.61 0.01
01 1.47 0.15 1.17 1.48 1.73 0.96
s.e. 0.31 0.46 1.22 0.20 0.59 0.01

p 0.79 0.06 0.66 0.80 0.89 0.83
s.e. 0.10 0.03 0.13 0.11 0.07 0.02

GGC | 138.21 | 42.93 | 60.00 | 136.20 | 227.33
s.e. 29.32 2.70 25.36 | 29.71 32.63
Dev 56.45 3.14 51.85 | 56.04 63.88
s.e. 15.91 1.36 16.19 | 16.01 15.92
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Table 3.6: Regressing WN, WC and WDE models to WDE data with g, = 1.5

WN | mean | stddev |25% | 50% | 97.5 % | cov prob
0o 1.07 0.15 0.77 1.08 1.36 0.94
s.e. 0.57 0.19 0.43 0.63 0.71 0.01
01 1.42 0.18 1.09 1.43 1.75 0.95
s.e. 0.62 0.39 1.15 0.74 0.32 0.01

P 0.76 0.06 0.63 0.77 0.85 0.77

s.e. 0.10 0.02 0.14 0.10 0.06 0.02

GGC | 151.30 | 44.52 69.09 | 149.70 | 242.65
s.e. 26.19 2.37 22.72 | 26.54 28.48
Dev 65.28 2.74 62.05 | 64.64 72.19
s.e. 13.34 1.01 12.91 | 13.47 13.47
WC | mean |stddev |25 % | 50 % | 97.5 % | cov prob
0o 1.04 0.11 0.82 1.04 1.27 0.92
s.e. 0.39 0.13 0.32 0.41 0.55 0.01
01 1.45 0.14 1.17 1.45 1.70 0.93
s.e. 0.56 0.31 1.01 0.57 0.61 0.01

P 0.70 0.06 0.56 0.71 0.81 0.62

s.e. 0.07 0.02 0.10 0.07 0.05 0.02

GGC | 149.83 | 43.18 70.78 | 148.06 | 239.19
s.e. 24.85 2.31 21.35 | 25.26 26.85
Dev 64.20 2.79 60.95 | 63.53 71.35
s.e. 11.46 1.15 11.12 | 11.59 12.08

WDE | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.02 0.12 0.79 1.02 1.25 0.95
s.e. 0.29 0.15 0.25 0.28 0.46 0.01
01 1.48 0.13 1.22 1.48 1.73 0.95
s.e. 0.16 0.26 0.61 0.15 0.42 0.01

p 0.77 0.06 0.63 0.78 0.87 0.93

s.e. 0.08 0.02 0.10 0.08 0.06 0.01

GGC | 145.64 | 43.43 | 66.02 | 143.85 | 235.47
s.e. 26.09 2.26 22.75 | 26.42 28.13
Dev 62.65 3.01 58.32 | 62.18 69.92
s.e. 11.56 1.23 11.75 | 11.59 11.75
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Table 3.7: Regressing WN, WC and WDE models to VM data with §; = 1.5

WN | mean | stddev |25% | 50% | 97.5 % | cov prob
0o 1.01 0.13 0.75 1.02 1.27 0.96
s.e. 0.22 0.08 0.13 0.26 0.26 0.01
01 1.50 0.13 1.23 1.50 1.76 0.95
s.e. 0.13 0.09 0.35 0.13 0.14 0.01

P 0.78 0.05 0.65 0.78 0.86 0.90

s.e. 0.06 0.02 0.10 0.06 0.04 0.01

GGC | 152.23 | 44.17 70.28 | 150.78 | 242.70
s.e. 25.17 2.23 22.01 | 25.46 27.24
Dev 63.79 2.68 60.71 | 63.11 70.71
s.e. 9.81 0.58 9.67 9.81 10.05
WC | mean |stddev |25 % | 50 % | 97.5 % | cov prob
0o 1.00 0.13 0.76 1.00 1.25 0.90
s.e. 0.15 0.07 0.15 0.14 0.28 0.01
01 1.50 0.14 1.23 1.50 1.78 0.91
s.e. 0.19 0.21 0.31 0.14 0.61 0.01

P 0.67 0.07 0.52 0.67 0.78 0.35
s.e. 0.05 0.02 0.08 0.05 0.04 0.02

GGC | 158.75 | 43.94 77.63 | 157.13 | 249.15
s.e. 24.75 2.17 21.31 | 25.17 26.55
Dev 68.72 2.75 65.60 | 67.98 75.73
s.e. 8.50 1.34 8.43 8.43 9.16

WDE | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.02 0.13 0.77 1.02 1.28 0.92
s.e. 0.26 0.13 0.17 0.30 0.44 0.01
01 1.46 0.14 1.17 1.47 1.73 0.93
s.e. 0.53 0.24 0.95 0.51 0.54 0.01

p 0.76 0.07 0.60 0.77 0.87 0.96
s.e. 0.07 0.02 0.10 0.06 0.04 0.01

GGC | 151.90 | 43.65 71.51 | 150.24 | 241.81
s.e. 26.70 2.35 23.56 | 27.09 28.50
Dev 65.34 3.04 61.02 | 64.79 72.71
s.e. 9.54 1.64 9.55 9.53 10.21
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the data from the Von Mises distribution, we use the algorithm given by Best and Fisher
(1978). As before, we set 5y = 1, f1 = 1.5 and p = 0.8. We fit Wrapped Normal, Wrapped
Cauchy and Wrapped Double Exponential distributions to Von Mises data and repeat the
procedure 500 times to study frequentist performance.

In Table 3.7, we see that WN is robust in estimating the §y, 61 and p, when
the data are generated from the Von Mises distribution. This is expected as WN closely
approximates the Von Mises distribution. In the case of WC model, the low coverage
probability of p indicates that WC is not robust in estimating the mean resultant length of
the distribution. However, the location parameter is estimated well. For WDE model, the
parameters p and p have been well estimated. The WDE model is robust in estimating the
Bo, 81 and p. GGC selects WDE model as the best fit for VM data. However, Dev selects
WN model as the best fit for VM data.

We extend the linear regression model by introducing an additional categorical
covariate. The results are similar and are shown in Appendix D. We introduce regression

diagnostics plots for circular data in the next section.

3.5 Regression Diagnostic plots

In this section, we illustrate the working of the regression method through a sim-
ulation study. Let w = {uj,us,...,u,} be a sample of size n = 50, generated from WN
with parameters Gy = 3, /1 = —6.5 and p = 0.8. The original mean p = [y + S, is repre-
sented by the line drawn in Figure 3.2. The observations for covariate x, were the distance

measurements from the movement of periwinkle data (Fisher, 1993). The covariates were
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Figure 3.2: Plot of the original values.
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Figure 3.3: Regression Plot of the sample and fitted values.
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centered and scaled. In Figure 3.2, the original sample on the real line, u is plotted as dots
along the y-axis and the covariates x, is plotted along the x-axis. We then wrap the values
of u onto the circle, and obtain values of y = {y1,92,...,yn} between 0 and 27. That is,
yi = ui(mod 2m), 1 < i < n. y values are shown as triangles in Figure 3.3.

We consider y as the sample circular data. We fit a linear WN regression model to
y. We compute the Bayesian posterior mean values, Bo and Bl for By and (31 respectively.
The line in Figure 3.3 represents the estimated line Bg + Blm. In addition, let k; be the
Bayesian posterior mean value of the unknown wrapping numbers, k;,1 < ¢ < n. Let
k= {151, ko, ..., k:An} In Figure 3.3, we plot the values of y + 27k as dots along the y-axis
and the covariates x, along the x-axis.

Thus, from Figure 3.2 and Figure 3.3, we see that the two plots are very similar.
We can now compute residuals, defined as y + ok — BO — ﬁlw. Therefore, we can perform
regression diagnostic methods (Chatterjee, Hadi & Price, 1999) for circular data to analyze
the performance of the fitted model. This is significant, as this is the first time regression
diagnostics methods have been performed on circular data. In the next section, we analyze

a real data set, and show a residual plot in Figure 3.7.

3.6 Application to real data sets

We analyze a data set containing the measurements of ozone concentration and
wind direction. Measurements were taken at 6:00 a.m. at four-day intervals between April
18th and June 29th 1975, at a weather station in Milwaukee (Fisher, 1993). We want to

study the relationship between the ozone concentration and the wind direction. For this



65

180 + 0

270

Figure 3.4: Plot of wind directions in the ozone data.

data set, the sample mean and the standard deviation for ozone concentration are 51.2 and
29.37 respectively. The circular sample mean and the resultant for wind direction data are
6.57 radians (16°) and 0.52 respectively.

Figure 3.1 shows the joint data plot of the ozone concentration and wind direction.
Figure 3.4 shows the circular histogram plot of the wind directions. We fit WN, WC and
WDE distributions to this data. We compute the posterior mean, standard deviation, 2.5
percentile, median and 97.5 percentile for Gy, 81 and p. The percentiles are computed with
m ~ 3.14 radians (180°) as the reference point. We have used a class of non-informative
priors for (0o, 81, p), which is given in equation (3.2), but present the results only for the
case where a, = 0.5, as given in Table 3.8.

While fitting the data, we rejected the first 2000 samples (burn-in period) of the

MCMC chain and kept the next 5000 samples after burn-in to perform posterior inference.
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There were difficulties in achieving convergence using CODA. Therefore, we increased the
burn-in time to 5000 samples and kept the next 15000 samples. We used the sample
estimates of the mean and mean resultant as starting values of Gy and p respectively. The
starting value of 31 is 0. We then change our starting values for MCMC (for example, 5y = 0
and p = 0.98) and overlay this Markov Chain with the previous Markov Chain. We find
that after 3000 samples they both overlap each other and look random. Analyzing similar
results (not given here), there is no indication of MCMC convergence problem. Summary
values for the parameters are given in Table 3.8.

To compare the models we use GGC and Dev. Low values of GGC and Dev
indicates better fit for a model. From Table 3.8, we see that the WN distribution peforms
best based on the GGC. WDE estimates are close to WC estimates. However, the estimates
from WN are different from WC and WDE. Dev value for WC is slightly less than WN, but
the GGC value of WN is significantly lower. We recommend the WN for this data set. Using
CODA, we obtained the trace plots and the kernel density estimates of the parameters 3y
and (31 based on the Wrapped Normal (WN) distribution shown in Figure 3.5.

This data has been previously analyzed by Fisher (1993). He finds that there is
some association between the two variables. We find that both parameters Gy and 3; are
significant for the linear model. This is consistent with the results of Fisher (1993).

We would also like to compare this regression model with the previous model we
fitted in Section 2.7.2. In the previous model, we used only the wind direction and did not
use the ozone concentration data. Comparing the results in Table 3.8 with Table 2.11, we

see that for all the regression models WN, WC and WDE, the GGC and Dev values are
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data set with p ~

WN | mean | std dev | 256 % | 50 % | 97.5 %
Bo 6.39 0.24 5.94 6.39 6.88
061 0.81 0.27 0.32 0.80 1.42
p 0.62 0.11 0.35 0.63 0.79

GGC | 44.16 21.51 16.47 | 39.30 | 98.16

Dev 51.65 3.03 48.26 | 50.87 | 59.71

WC | mean | stddev | 256 % | 50 % | 97.5 %
Bo 6.55 0.22 6.14 6.55 6.93
061 1.04 0.32 0.42 1.04 1.60
p 0.58 0.13 0.25 0.61 0.76

GGC | b4.27 23.47 18.55 | 50.93 | 108.66

Dev 51.53 3.65 47.82 | 50.45 | 61.66

WDE | mean | std dev | 2.5 % | 50 % | 97.5 %
Bo 6.43 0.21 5.99 6.43 6.83
061 1.02 0.34 0.31 1.04 1.66
p 0.60 0.12 0.35 0.61 0.80

GGC | 52.13 22.73 18.82 | 48.62 | 104.81

Dev 53.93 2.67 50.42 | 53.32 | 60.68
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low. The standard deviation for the parameters are also low. This shows that the regression
model is a better fit for the ozone data, which is expected. We also give the regression plot
for the data in Figure 3.6 and the plot of the corresponding residuals in Figure 3.7. The

plots show that the linear model is a good model for this data.

3.7 Discussion

In this chapter, we have extended the methods of parameter estimation to the
regression model. We have shown the advantages of the wrapping method to the other
methods. We can work with a much larger class of families instead of restricting ourselves
to Von Mises and Projected Normal distributions. The posterior summary statistics for
Bo, 1 and p can be easily computed. We are able to illustrate how the circular regression
coefficients can be interpreted in terms of the linear regression model setup. Our method is
able to provide regression diagnostics for circular data. This is significant, as this is the first
time regression diagnostics methods have been performed on circular data. We agree with
the findings of the previous chapter that the parameter estimates based on WDE model
are robust for erroneous models. More simulation results with an additional categorical
covariate are given in Appendix D. We extend this method to time series analysis in the

next chapter.
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Chapter 4

Circular Time Series

4.1 Introduction

Let us look at circular random variables that are time dependent or with a one di-
mensional spatial structure. Many examples occur in the fields of meteorology and oceanog-
raphy. A popular example is the hourly or daily measurements of wind direction. A study
was performed at a site on Black Mountain, ACT, Australia (Cameron, 1983). 72 obser-
vations were collected on wind direction to calibrate three anemometers (instrument used
to measure wind speed). The objective was to fit the data by a simple model, to forecast
future wind patterns. More details about this data is given in Section 4.5.

the one dimensional spatial model occurs in structural geology. A common example
is mapping the orientation of rock structures at regular intervals to look for an overall trend,
or for sudden changes in the general trend. 63 observations of median direction of face cleat
were collected at the coal mine, in Wallsend Boreland Colliery, NSW, Australia (Shepherd

and Fisher, 1981, 1982). These observations are shown in Figure 4.1. Face cleat is the major
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Figure 4.1: Plot of the median direction of face cleat collected at Wallsend Boreland Colliery,
NSW in Australia.

joint or cleavage system in a coal seam. The data were collected at 20-meter intervals along
a coal seam. At each 20-meter interval, five observations were taken and their median was
used as a sample. In many coal mines, a shift from the preferred direction is an indicator of
the possibility of hazardous mining conditions, that can occur due to forthcoming faults. A
simple model is needed to analyze the data, so that data can be gathered and immediately
analyzed, to give timely warning about potential hazards. The distinction of this data from

the usual time series data is that it can be analyzed in both directions.

4.2 Previous work

Many methods have been suggested to implement time series models for circu-
lar data. Mardia and Jupp (1999) suggest a Projected Normal process approach. They
consider {(X,Y?)}t=12.. as a process on a plane. Let {0;},—12 . be the corresponding
radial projection onto the unit circle, then X; = R; cos(6;) and Y; = R; sin(6;) Therefore,
if {(X¢,Y;)} =12, is a stationary bivariate Gaussian process, then 6; has the Projected
Normal distribution. They consider {Rt}t:1,27_,_ as not observed and use EM algorithm to

fit the missing data problem.
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Direct Linked process is another method to analyze time series data. This is an
extension of the method suggested by Johnson and Wehrly (1978) and Fisher and Lee
(1992) for regression using link functions. The link function is a one-to-one function g(),
which maps the entire real line onto (—m, ) and satisfies g(0) = 0. Some examples are
g(z) = 2tan"!(z) and g(z) = 27 F (), where F(z) is a distribution function. The general
idea is to transform the circular data to the real line using the link function and perform
the time series analysis on the real line. This method works only for concentrated series,
where the variance is small.

Circular Autoregressive process, CAR(p) is another approach that is constructed
using conditional distributions. This approach is associated with the Von Mises model.
If g() is a link function, then CAR(p) is defined as y¢|(yt—1,-..,Yt—p) ~ VM (i, k), where
pe = ptg(arg ™ (ye—1 —p)+. . .+ apg H(yr—p—p))) and VM () is the Von Mises distribution.
Accardi, Cabrera and Watson (1987) considered the case p = 1 and «; = 1, where the model

reduces to y¢|yi—1 ~ VM (yi—1, k).

4.3 Extension of the Data Augmentation Approach for Time

Series

We will be using the wrapped approach. Breckling (1989) gave the definitions for
the Wrapped Autoregressive process, WAR(p). Let {U;}1—1,2,.. be a process on the line.
Then, the corresponding process on the circle by wrapping U; is defined by

Y = Ui(mod 27)

or U = Y.+ 2mky,
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where k; is an unobserved integer. Fisher and Lee (1994) used the EM algorithm to fit
such processes. However, the E-step involves the ratio of large infinite sums, which needs
to be approximated at each step. This makes the algorithm computationally inefficient.
In addition, the standard errors of the MLEs have to be evaluated based on large-sample
theory. Coles (1998) also did work on WAR(p) using MCMC.

For the time series problem, we use the data augmentation approach in a Bayesian
setup. We extend the theory given in Section 3.3 for time series. Let the observations
on the circle be y = {y1,y2,93,..-,yn},0 < yj < 2m,j = 1...n. We define the regressor
variables from the regression setup, * = {x1,x2,23,...,2,},7 = 1...n as z1 = 0 and
xj =yj—1+2mkj_1 — [o,j = 2...n to obtain the WAR(1) setup. Therefore, for the simple

WAR(1) problem,

YijlXj ~ WD(uj,p),
where p1; = Bo+ 51 x;

and r; = Yj-1+ 27T]<:j_1 — 0.

This can be extended to WAR(p), where p; = B0 + > by Bi (yj—i + 2wkj—1 — Bo) and
Bo, B1, ..., B and p are parameters to be estimated. WD represents any wrapped distribu-
tion such as WN or WDE. Without loss of generality, we can restrict Sy between 0 and 27
to avoid identifiability problems. The variance of Y7 is defined slightly differently from the
others to satisfy stationarity conditions.

It is not necessary to use a one-to-one link function, which transforms the real line
onto (—m,m) (Direct Linked Processes). This is because we are using y and k to fit the

data rather than just y. In order to illustrate the theory we assume that p = 1. However,
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the extension to WAR(p) is straightforward.

A class of non-informative priors for (5y, 01, p) can be specified as,
[Bo, Br,p] o< 15, (0, 2m) 15, (=1,1)p™ (1 = p)* ™", ap > 0 (4.1)
and using p = h(o), the joint density of (5y, 81, 0) is given by
G0, Brs0] o T3y (0,27) Iy (1, D)~ (1 = h(0))* (o), a > 0.

Following the same approach described in Section 2.2 and replacing u by 5o+ 5125,

the joint density of y, k, By, 81 and o is given by

[yak,ﬁ()aﬁlaa-] & [y|kaﬁ07ﬁlao-2} [k|ﬂ0’ﬁlao-2] [ﬁo’ﬁlagﬂ
V1-5% f(y1*ﬁ0+27rk1) ﬁ (lf(yj—ﬂ0—51$j+27rkj ))

g O’/\/l—ﬁ% - o
h(o)* 11— h(a))* ™ (o) 15, (0, 27) Ig, (—1,1)
o \/1—51 y1 Bo+2mk ﬁ —Bo— ﬂ1rg+27rk)
o‘n+n0 0’/\/1 ﬁl i

h(o) M (1= h(0))* ™ hi(0)15,(0,27) I, (=1, 1),

where |I/(0)| can be factorized as —i5h(0)" hi(0). It is assumed that hi (o) is invertible.

The full conditional densities of k, 3y, 81 and o are nonstandard densities. There-

fore, we introduce auxiliary variables z and v. Let z = {zo, 21, 22, 23, 24} and v = {v1, vo,v3, . ..

such that
[y7k7/8075170—] 8 /[y7k7/807ﬁ17z7,070] dzdv.

The joint density of y, k, 8o, 01, 2, v and o is given by

— i - i—Po—P1xj+2mk;
[y, k, Bo, b1, 2,v,0] o Iy <0,f(% %)) 1_[2]Uj (O,f(yﬂ bo-ry+ J)>
]:

7v7‘L}7
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Ly (0, =5 ) Iz (0, h(0) =1 4™) 1, (0, ha (o))

{L, (0,(1 = h(o)* ) I(ap # 1)+ I(a, = 1)}

L, (o, \/1— 5%) I5,(0,2m)15,(—1,1).

The implementation is similar to that described in Section 3.3. The main difference is
that the full conditional of k; is dependent on k_;. The full conditionals for the Wrapped
Normal model are given in Appendix C.

We establish a relationship between the first order autocorrelation coefficient of
the circle and autocorrelation coefficient of the real line. The definition for the correlation
coefficient is not unique in the circular sample space. Mardia and Jupp (1999) provide a
summary of various correlation coefficients. We will use the correlation coefficient defined
by Fisher and Lee (1983). Given two circular random variables, Y7 and Y2, the correlation

coefficient is given by

v = ARV - Ya) - R+ 2)l/V[1 - RRN)][1 - R*(2Y2)), (4.2)

where R%(Y) = [E(cosY)]? + [E(sinY)]? is the square of the mean resultant for circular
variable Y. Using this definition of correlation coefficient, Fisher and Lee (1994) showed
that if U; is a Gaussian AR(p) process, the circular autocorrelation function for the Wrapped

Autoregressive Normal WARN(p) process, Y; = Uy(mod 27) is given by

’Y(k‘) _ sinh[2y;02]

sinh[203]
where v is the k-lag autocorrelation function of Uy, and 08 is the marginal variance of Us.

The marginal variance of U; is

08 = Var(Uy) = 02/(1 —Bivi — - Bp ),



77

where o2, 81, ..., 3, are the AR(p) parameters of U;. For the WARN(1) process this sim-

plifies to
__ sinh[2B3102]
7(1) o sinh[QUg]O )
where o = o%/(1 - 33).

We studied the relation between (7 and (1) for WARN(1) and found that they have
similar values for small values of o. As the value of ¢ increases, circular autocorrelation
function, (1) tends to 0 irrespective of the value of ;. This is expected as the value of
o increases, we obtain a Uniform distribution on the circle. The relationship is shown in
Figure 4.2 for p = 0.8 and p = 0.5 for WARN(1) process. The variable along the x-axis is
the autocorrelation function and the variable along the y-axis is the circular autocorrelation

function. For p = 0.5, the line is more flat because the value of ¢ is larger.

15
0.8
0.6 1
0.4
0.2

1 0806-04-029] 02 04 06 08 1
0.2 1 betal

-0.41
-0.6 1
-0.81

17

Figure 4.2: Relation between circular autocorrelation function and autocorrelation function

The corresponding sample circular correlation for (4.2) was given by Fisher and

Lee (1983). They defined the sample circular correlation between y1 = {y11,%12,--.,Yin}
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and y2 = {y21,¥22,--.,Y2n} as

> sin(y1i—y1;) sin(y2: —y2;) 43
VX sin? (y1i—y15)y/ 2 sin®(yai—y2;) (4.3)

¥ o=

where each summation is over the range 1 < ¢ < 7 < n. We use this to compute the
sample circular autocorrelation at lag k. Given time series data, y = {y1,92, ..., yn}, define
v1 = {y1,92,-- - Yn—r} and y2 = {Yr+1,Yk+2,---,Yn}. The sample circular correlation
between y1 and ys gives the k-lag sample circular autocorrelation for y.

Subsequently we study the performance of the proposed method by simulation

experiments. We illustrate the above technique for the Wrapped Normal distribution.

4.4 Simulation studies

For our simulation studies, we generate samples of size n = 50 from the Wrapped
Autoregressive Normal WARN(1) distribution, with parameters set at fy = 7 = 3.14, 51 =
0.7 and p = 0.8. We fit WARN(1) with a prior given in equation (4.1) with a, = 0.5. We
compute the posterior mean, standard deviation, 2.5 percentile, median and 97.5 percentile
for By, B1 and p for each simulation. The percentiles are computed with 0 radians as the
reference point. The simulation standard errors for each of these summary values are also
computed. We also compute the coverage probability for the 95% posterior interval given
by the 2.5 and 97.5 percentile of the posterior distribution. In each simulation, we choose
the burn-in period to be 2000 samples (i.e. throw away first 2000 samples from the MCMC
chain) and then keep 5000 samples after burn-in, to obtain posterior summary values. All
summary values in Table 4.1 are based on these final 5000 samples. We repeat the entire

procedure 500 times to see the frequentist performance of the proposed Bayes method.
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Table 4.1: Regressing WARN(1) model to WARN(1) data

mean | std dev | 2.5 % | 50 % | 97.5 % | cov prob
0o 3.13 0.42 2.28 3.13 3.99 0.96
s.e. | 0.31 0.17 0.50 | 0.31 0.49 0.01
01 0.67 0.11 0.44 0.67 0.89 0.96
s.e. | 0.12 0.02 0.15 0.12 0.08 0.01

P 0.79 0.04 0.70 0.79 0.85 0.95
s.e. | 0.04 0.01 0.05 0.04 0.03 0.01

Using SAS, on a pentium III machine, on an average it took about 2 hours to perform the
entire simulation for a given wrapped distribution.

From Table 4.1, we see that the proposed method performs well in terms of main-
taining the nominal coverage probability. Also, the posterior mean and median can serve

as a good point estimates of the parameters.

4.5 Application to real data sets

We analyze a data set containing the hourly measurements of wind direction.
This study was conducted over three days at Black Mountain, ACT, Australia. The wind
directions are plotted in Figure 4.3. The observations on wind direction were collected to
calibrate three anemometers. The circular sample mean and the resultant for wind direction
are 5.08 radians (291°) and 0.68 respectively.

We fit WARN(1) distribution to the wind direction data. We compute the posterior
mean, standard deviation, 2.5 percentile, median and 97.5 percentile for By, 81, 7(1) and p.
The percentiles are computed with 0 radians as the reference point. We have used a class

of non-informative priors for (5o, 81, p), which is given in equation (4.1). The results are
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Figure 4.3: Plot of hourly wind directions collected over three days.

Table 4.2: Fitting WARN(1) to the wind direction data set with p ~ Beta(0.5,0.5)

a,=0.5 | mean | std dev | 2.5 % | 50 % | 97.5 %
Bo 5.00 0.24 4.53 5.00 5.50
061 0.54 0.11 0.33 0.54 0.75
41 | 037 | 007 | 023 | 037 | 050
P 0.72 0.04 0.63 0.72 0.79

given in Table 4.2. The full conditionals obtained during the implementation of MCMC are
given in Appendix C.

While fitting the wind direction data, we generated 7000 samples. Using Heidel-
berger and Welch Stationarity test (1983) and other tests in CODA software, we find that
the burn-in period for the chain is 700. Therefore, we reject the first 2100 samples (burn-in
period) and keep the remaining 4900 samples to perform posterior inference. Summary val-
ues for the parameters are given in Table 4.2. Using CODA, we also obtained the trace plots
and the kernel density estimates of the parameters 5y, 31, 7(1) and p based on WARN(1)
distribution, which are shown in Figure 4.4.

The wind direction data has been previously analyzed by Fisher (1993) by two
different methods using Von Mises models. The parameter estimates for his models are

(Bo = 5.08, B1 = 0.5 and p = 0.68) and (Gy = 5.05, $; = 0.68 and p = 0.76). Therefore,
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Figure 4.5: Plot of gamma, circular autocorrelation for WARN(1) model and sample circular
autocorrelation at lags 1 to 7.

the results we obtained are consistent with the results of Fisher (1993). This is expected as
Von Mises and Wrapped Normal densities are very similar.

We computed the circular autocorrelation functions, v(1),v(2),...,7(7) for the
wind direction data set. We also computed the sample circular autocorrelation functions
at lag 1 to lag 7 given by (4.3). This is shown in Figure 4.5. From the figure, we see
that the circular autocorrelation for WARN(1) model is smaller than the sample circular

autocorrelation, which suggests that we should try to fit higher order WARN models.

4.6 Discussion

In this chapter, we extended the regression methods from the previous chapter to
fit time series models. Though we have discussed only WAR(1) in detail, this method can

be easily extended to any WAR(p) model. The posterior summary statistics for 5y, 51 and
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p are easily obtained. Previously, Von Mises distribution was the most popular distribution
to analyze circular time series data. Now, we can work with a much larger class of circular
distributions. In addition, as we are using the Bayesian setup, we can easily compute other

statistics such as circular autocorrelation functions and their standard errors.
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Appendix A

Explicit full conditionals

A.1 Wrapped Normal Distribution
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N—
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0.2
h(o) = e 2
h™(p) = V—20%logp
ng =— -1
ny = 1
gMi(v;) = /—2loguj, ¢g=1
gmi(vj) = —gMi(v;)

hi(c) = 1,s0 z3, gm[(23) and gM;(z3) are not needed.
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Appendix B

Explicit full conditionals for

regression

B.1 Wrapped Normal Distribution
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B.2 Wrapped Cauchy Distribution
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, har is not needed.
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The full conditional densities of k, v, z, (o, 31 and o2 are given by
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B.3 Wrapped Double Exponential Distribution
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gMi(v;) = logv;, ¢=1
gmi(vj) = —gMi(vj)
hi(c) = 1,s0 z3, gmj(23) and gM;(z3) are not needed.
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Since (1 — h(0)) = 02h(0), 22 is not required.

The full conditional densities of k, v, z, By, 31 and o2 are given by
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Appendix C

Explicit full conditionals for Time

series

C.1 Wrapped Normal Distribution

22
flx) = %6_7
o2
h(U) = e 2
ng = -1
ng = 1
ry = 0
Tj = yj—1+27i'kj_1—ﬂo,j:2...n

hi(c) =1, so z3 is not needed. The full conditional densities of k, v, 2z, B9, /1 and o2 are
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given by
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Appendix D

Regression with categorical

covarilate

Regression with categorical covariate is a special case of the model given by (3.1).
In Section 3.3, we considered the model j1; = Bo+ (12} in detail. In this appendix, we extend
this model with a categorical covariate, w;. w; is 0 or 1. The model is ; = Bo+ 12+ Baw;.
Without loss of generality, we can restrict B between Gy and [y + 27, to avoid identifiability
problems. Therefore, we assume a Uniform prior for 32 on (5p, 5o+ 27). The general theory
is the same as that given in Section 3.3.

In order to study the sensitivity of the sampling distribution, we generated samples
of size n = 31 from WN, WC and WDE with parameters Gy = 1, 51 = 1.5, 3 = 2 and
p = 0.8. We use the same data generating process as used in Section 3.4. w is sampled from
Bernoulli(0.5). We then fitted Wrapped Normal, Wrapped Cauchy and Wrapped Double

Exponential distributions to the three datasets. We repeated the method 500 times to see
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the frequentist performance of the Bayes method for erroneous models. As before, we report
the posterior mean, standard deviation, and two equal tail percentiles along with the Monte
Carlo standard error. The percentiles are computed with 0 radians as the reference point.
The results are tabulated in Table D.1, Table D.2 and Table D.3.

Comparing the results in Table D.1, Table D.2 and Table D.3, we see that the
model selection criteria GGC and Dev work well and select the correct distribution. Also,
in this case By, 01, f2 and p have been well estimated. In general, the location parameters
Bo, 01 and (9 are estimated well, even when the models are incorrect. The results are very
similar to the results in Section 3.4.

In Table D.1, Table D.2 and Table D.3, we see WN model estimates the location
parameters well, even when the distribution is not correct. However, the lower than nominal
coverage probability of p indicates that WN is not robust in estimating the mean resultant
length of the distribution. This is seen clearly in the case of regressing WN to WC data. In
the case of WC model, the location parameters are estimated well, but the mean resultant
is not well estimated. The coverage probabilities are very low. One reason for this could
be that we are using a high mean resultant value (p = 0.8) for simulation, and Cauchy (or
WC) being a flat distribution is unable to fit the simulated data well. For WDE model,
even when the distribution is erroneous, the parameters 3y, 51, B2 and p have been well

estimated. Therefore, WDE model is robust in estimating the 3y, £1, B2 and p.
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Table D.1: Regressing WN, WC and WDE models to WN data with categorical covariate

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.11 0.13 0.85 1.11 1.36 0.93
s.e. 0.66 0.22 0.52 0.70 0.86 0.01
061 1.39 0.12 1.14 1.40 1.60 0.93
s.e. 0.84 0.32 1.25 0.85 0.62 0.01
Ba 1.88 0.18 1.54 1.88 2.24 0.94
s.e. 0.69 0.27 1.02 0.72 0.58 0.01

P 0.77 0.03 0.71 0.78 0.82 0.90

s.e. 0.12 0.03 0.14 0.12 0.10 0.01

GGC | 374.86 | 67.13 | 248.72 | 373.17 | 510.72
s.e. 60.01 9.18 54.60 | 60.40 68.02
Dev 207.84 3.80 203.39 | 207.15 | 216.44
s.e. 29.55 7.49 28.14 | 30.45 33.94
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.07 0.13 0.84 1.07 1.31 0.85
s.e. 0.56 0.19 0.51 0.56 0.75 0.02
061 1.43 0.12 1.19 1.43 1.65 0.87
s.e. 0.62 0.38 1.24 0.67 0.42 0.02
B2 1.92 0.17 1.59 1.93 2.25 0.89
s.e. 0.54 0.23 0.83 0.54 0.56 0.01

p 0.64 0.04 0.57 0.65 0.71 0.01

s.e. 0.08 0.02 0.09 0.09 0.08 0.00

GGC | 416.54 | 69.02 | 286.61 | 414.75 | 556.34
s.e. 49.31 5.88 45.30 | 49.59 54.02
Dev | 230.48 3.26 226.40 | 229.80 | 238.17
s.e. 23.55 4.75 22.81 23.82 25.32

WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.04 0.12 0.83 1.04 1.27 0.87

s.e. 0.45 0.16 0.42 0.45 0.63 0.02
061 1.45 0.11 1.23 1.46 1.65 0.89
s.e. 0.46 0.34 1.02 0.48 0.40 0.01
Bo 1.95 0.16 1.64 1.95 2.26 0.89
s.e. 0.47 0.21 0.71 0.47 0.46 0.01

P 0.76 0.04 0.68 0.77 0.83 0.89

s.e. 0.08 0.04 0.12 0.08 0.07 0.01

GGC | 374.18 | 66.99 | 248.94 | 372.19 | 510.43
s.e. 51.47 9.10 45.80 | 51.79 59.84
Dev | 214.36 4.14 208.86 | 213.60 | 223.75
s.e. 23.02 7.32 21.33 23.31 29.16
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Table D.2: Regressing WN, WC and WDE models to WC data with categorical covariate

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.13 0.16 0.83 1.12 1.44 0.92
s.e. 0.71 0.25 0.61 0.72 0.97 0.01
061 1.36 0.16 1.06 1.37 1.64 0.94
s.e. 0.85 0.43 1.44 0.87 0.65 0.01
Ba 1.88 0.23 1.45 1.88 2.31 0.94
s.e. 0.75 0.34 1.14 0.78 0.71 0.01

P 0.72 0.04 0.65 0.72 0.78 0.45

s.e. 0.14 0.03 0.15 0.14 0.11 0.02

GGC | 388.33 | 70.11 | 256.82 | 386.45 | 530.26
s.e. 69.52 9.13 63.33 | 70.09 76.25
Dev 229.87 3.71 225.20 | 229.27 | 237.94
s.e. 37.00 7.18 35.77 | 38.04 38.66
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.08 0.10 0.92 1.07 1.28 0.93
s.e. 0.53 0.27 0.48 0.52 0.89 0.01
061 1.37 0.14 1.12 1.38 1.63 0.94
s.e. 0.85 0.56 1.74 0.87 0.80 0.01
B2 1.92 0.13 1.65 1.92 2.17 0.94
s.e. 0.53 0.34 1.05 0.53 0.61 0.01

p 0.77 0.03 0.71 0.77 0.82 0.83

s.e. 0.13 0.04 0.15 0.13 0.11 0.02

GGC | 336.94 | 62.42 | 221.92 | 334.61 | 465.21
s.e. 71.86 10.58 62.98 | 72.60 81.89
Dev | 169.76 4.17 164.75 | 169.05 | 179.16
s.e. 43.77 9.51 41.58 44.43 49.13

WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.07 0.09 0.90 1.07 1.24 0.95

s.e. 0.52 0.19 0.44 0.52 0.75 0.01
061 1.41 0.10 1.23 1.40 1.59 0.97
s.e. 0.99 0.40 1.48 1.05 0.79 0.01
Bo 1.94 0.12 1.70 1.95 2.18 0.97
s.e. 0.50 0.26 0.87 0.49 0.52 0.01

P 0.80 0.03 0.73 0.80 0.85 0.71

s.e. 0.11 0.03 0.14 0.12 0.10 0.02

GGC | 337.03 | 64.59 | 217.25 | 334.74 | 469.81
s.e. 68.01 7.13 60.32 | 68.59 75.87
Dev 184.23 3.91 178.59 | 183.72 | 193.37
s.e. 37.86 5.83 36.59 | 38.40 40.98
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Table D.3: Regressing WN, WC and WDE models to WDE data with categorical covariate

WN | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.10 0.14 0.84 1.10 1.35 0.93
s.e. 0.65 0.21 0.52 0.68 0.83 0.01
061 1.38 0.11 1.17 1.37 1.59 0.93
s.e. 0.89 0.27 1.28 0.90 0.51 0.01
Bo 1.90 0.18 1.55 1.89 2.25 0.92
s.e. 0.66 0.27 1.00 0.70 0.53 0.01

P 0.76 0.03 0.70 0.76 0.81 0.73

s.e. 0.11 0.02 0.13 0.12 0.10 0.02

GGC | 373.34 | 67.43 | 246.41 | 371.54 | 510.14
s.e. 60.86 4.04 55.62 61.16 65.09
Dev 214.12 3.15 210.11 | 213.47 | 221.66
s.e. 31.43 3.29 30.34 | 31.64 32.31
WC | mean |stddev | 2.5% | 50 % | 97.5 % | cov prob
Bo 1.03 0.09 0.86 1.03 1.22 0.90
s.e. 0.39 0.16 0.36 0.39 0.59 0.01
061 1.51 0.09 1.32 1.51 1.68 0.93
s.e. 0.53 0.39 0.86 0.54 0.83 0.01
o 1.97 0.12 1.72 1.97 2.21 0.91
s.e. 0.40 0.21 0.70 0.40 0.39 0.01

p 0.71 0.03 0.64 0.71 0.76 0.17

s.e. 0.08 0.02 0.08 0.08 0.07 0.02

GGC | 380.28 | 66.32 | 256.09 | 378.36 | 515.30
s.e. 50.39 5.28 45.75 50.78 54.02
Dev 207.52 3.12 203.42 | 206.82 | 214.91
s.e. 25.44 4.15 24.31 25.61 26.31

WDE | mean |stddev | 25 % | 50 % | 97.5 % | cov prob
Bo 1.04 0.10 0.85 1.04 1.25 0.91
s.e. 0.40 0.18 0.34 0.40 0.67 0.01
061 1.42 0.10 1.23 1.42 1.61 0.94
s.e. 0.74 0.33 1.21 0.73 0.64 0.01
Bo 1.96 0.14 1.68 1.96 2.24 0.92
s.e. 0.40 0.25 0.78 0.42 0.36 0.01

p 0.78 0.04 0.70 0.78 0.84 0.89

s.e. 0.10 0.03 0.13 0.10 0.08 0.01

GGC | 357.14 | 66.04 | 234.04 | 355.24 | 491.89
s.e. 58.02 8.90 51.51 59.13 65.88
Dev 201.95 4.14 196.25 | 201.51 | 211.34
s.e. 28.80 7.55 27.37 29.97 33.56




