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Abstract: In recent years analysis of the mixture models under 

Bayesian framework has received considerable attention. 

However, the Bayesian estimation of the mixture models under 

doubly censored samples has not yet been reported. This paper 

proposes a Bayesian estimation procedure for analyzing lifetime 

data under doubly censored sampling when the failure times 

belong to a two-component mixture of the Weibull model. An 

extended version of the likelihood function for doubly censored 

samples for the analysis of a mixture of lifetime models has 

been introduced. The posterior estimation has been considered 

under the assumption of gamma prior using a couple of loss 

functions. The performance of the different estimators has been 

investigated and compared through the analysis of simulated 

data. A real-life example has been included to demonstrate 

the practical applicability of the results. The results indicated 

the preference of the estimates under squared logarithmic loss 

function (SLLF) for the estimation of the mixture model. The 

proposed method can be extended for more than two component 

mixtures.

Keywords: Credible intervals, loss functions, mixture models, 

posterior distributions, Weibull distributions.

INTRODUCTION

As a result of the adaptability in �tting time-to-failure 

of a very widespread multiplicity to multifaceted 

mechanisms, the Weibull distribution has assumed centre 

stage especially in the �eld of life-testing and reliability 

in survival analysis. It has shown to be very useful 

for modelling and analyzing lifetime data in medical, 

biological and engineering sciences (Lawless, 1982). 

Much of the attractiveness of the Weibull distribution 

is due to a variety of shapes based on its parameters. 

Nevertheless, the exponential, gamma and Weibull 

distributions are widely used in life-testing and reliability 

experiments under different scenarios. However, the 

exponential distribution is suitable only when the hazard 

rate is constant. When the hazard rate changes with time, 

the gamma and Weibull distributions are the most suitable 

due to the !exibility of the scale and shape parameters 

of these distributions. The Weibull distribution has an 

extra edge over the gamma distribution as its distribution 

function and hazard function can be expressed in closed 

forms, which is not possible for the gamma distribution 

when the shape parameter is not an integer (Danish & 

Aslam, 2012). 

 Finite mixture distributions consist of a weighted sum 

of standard distributions and are a useful tool for reliability 

analysis of a heterogeneous population. They provide 

the necessary !exibility to model failure distributions of 

components with multiple failure modes. Furthermore, it 

is the logical way of modelling a probability distribution 

of a population with distinct subpopulations. However, 

the additional modelling capability comes at a cost of 

additional parameters and analytic dif�culties.

 Some of the recent developments on the estimation 

of the Weibull distribution - for the applications of this 

distribution in different situations - have been discussed 

by many Authors (Kundu & Raqab, 2009; Upadhyay & 

Gupta, 2010; Vasile et al., 2010; Syuan-Rong & Shuo-

Jye, 2011; Danish & Aslam, 2012; Singh et al., 2013; 

Teimouri & Gupta, 2013; Yu & Peng, 2013). Several 

studies have been published on the classical analysis of 

the mixture of lifetime distributions under complete and 

censored samples. Some recent contributions include the 

following: Sultan et al. (2007), Nair and Abdul (2010), 

A�fy (2011) and Erisoglu et al. (2011). In addition, the 

analysis of mixture models under Bayesian framework has 
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developed a signi�cant interest among the statisticians. 

The authors dealing with Bayesian analysis of mixture 

models (Saleem & Aslam, 2008a; b; Saleem et al., 2010; 

Saleem & Irfan, 2010; Majeed & Aslam, 2012) have 

restricted their discussions to the Bayes point estimation 

of the parameters under type I censored data. The real 

- life situations may demand the Bayesian analysis of the 

mixture models under some other censoring techniques 

such as doubly censored samples, which has not been 

considered for mixture models up till now. 

 This paper aims to consider the Bayesian analysis of 

two-component mixture of the Weibull distribution under 

doubly censored samples. An extended version of the 

likelihood function under doubly censored samples has 

been introduced for two-component mixture of lifetime 

distributions. The Bayes estimators have been derived 

and evaluated under the assumption of two loss functions 

using gamma prior. 

METHODS AND MATERIALS

The model and likelihood function

The probability density function (pdf) of the Weibull 

distribution, de�ned by Weibull (1951) is:
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The cumulative distribution function (CDF) of the 

distribution is:
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A density function for the mixture of two component 

densities with mixing weights (̟ ,1� ̟ ) is:
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x

 0<̟<1 ...(3)

The cumulative distribution function for the mixture 

model is:

�1 21F x F x F x  ...(4)

 Consider a random sample size of �n� from Weibull 

distribution, and let x
r
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s
 be the ordered 

observations. The remaining �r �1� smallest observations 

and the �n � s� largest observations have been assumed 
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. Assuming the causes of the 

failure of the left censored items are identified, the 

likelihood function for the type II doubly censored sample 
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Substituting the corresponding entries using equations 

(1) - (4)
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Hence, the �nal version of the likelihood function can be 

written as:
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Prior and posterior distributions

One of the most commonly used priors is the conjugate/

gamma prior. The gamma prior for the mixture models 

can be de�ned as: let θ
1
 ~ G(a

1
,b

1
) and θ

2
 ~ G(a

2
,b

2
)  are 

the gamma priors for each parameter and ̟ ~B(a
3
,b

3
) 

is the beta prior for the mixing parameter π. Under the 

assumption of independence, these priors have been 

combined to produce a joint improved gamma prior for 

parameter as:
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where a
1
,a
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3
 are the parameters of prior 

distribution named as hyper-parameters.

The posterior distribution under gamma prior has been derived as:
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 and B (x,y) is a standard beta function.  

Loss functions and Bayes estimators

The performance of different Bayes estimators can be 

compared in terms of posterior risks associated with each 

estimator. The posterior risk is defined to be the expected 

value of a loss function. We have assumed a couple of 

loss functions for posterior estimation and the description 

of these loss functions is as following:

Squared error loss function (SELF): The squared error 

loss function proposed by Legendre (1805) and Gauss 

(1810) is defined as: L(θ,θ
SELF

) = (θ � θ
SELF

). The Bayes 

estimator under this loss function is: θ
SELF 

= E(θ).

Squared logarithmic loss function (SLLF): Another 

loss function Brown (1968) is called the squared based 

on logarithmic loss function. It can be defined as: 

L(θ
SLLF 

,θ) = (log θ
SLLF 

 � log θ)2. The Bayes estimate under 

SLLF is: θ
SLLF

 = exp {E(log θ )}. 

 The expressions for Bayes estimators and posterior 

risks under these loss functions have been presented in 

the following. The Bayes estimators and posterior risks 

based on SELF are given as:



328 Navid Feroze & Muhammad Aslam

December 2014 Journal of the National Science Foundation of Sri Lanka 42(4)

�

1 2

2 1 1 1 2 2 21 1 1 2 2

1 2 3

3

11 1 2
11 1

1 2 1 2

0 0 0 1 3 0 0 0
1 2

1 2

0 1 3

1
1 1

.
1 ,

1

w i i

w

w w

r r n s
u A x b x bw A m a m a

u u u w w

SELF n s
u w w w

m a
u w w wi w

r n s
e e d d d

u u
B E

r n s B A A m a

u u x b

� �� �
� �� �
� �� �

� �� �
� �� �
� �� �

��� � � �
1 2

1 2

1 1

0 0

r r

u u

���

2a

 

  ...(12)

�

1 2

1 1 2 2

1 2 3

1 2

1 2 3

1 1 2
1 2 1 1 2 2

1
0 0 0 1 3 1 1 2 2

1 1 2
1 2

0 0 0 1 3

1 , 1
1

.
1 ,

1

w

w

w w

r r n s
u w

m a m a
u u u w w i i

r rSELF n s
u w w w

m a
u u u w w wi w

r n s B A A m a m a

u u x b x b
B E

r n s B A A m a

u u x b

� �� �
� �� �
� �� �

� �� �
� �� �
� �� �

���

���
  ...(13)

Similarly, the Bayes estimators for other parameters can be derived and the generalized version of the Bayes estimator 

can be written as:

�

1 2

1

1 2 3

1 2

1 2 3

1 1 2
1 1 2 1

0 0 0 1 3

1 1 2
1 2

0 0 0 1 3

1 ,
1

.
1 ,

1

w

w w w

w

w w

r r n s
u w w w w

m a k
u u u w w wi w

r rSELF n s
u w w w

m a
u u u w w wi w

r n s B A k A m a k

u u x b
B E

r n s B A A m a

u u x b

� �� �
� �� �
� �� �

� �� �
� �� �
� �� �

���

���

           

  ...(14)

The generalized version of the posterior risk is as following:
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where B (x, y)  is the standard beta function; (B, E)
SELF

  

and ρ (B, E)
SELF

  are the Bayes estimator and posterior 

risk under SELF respectively, and ξ (x
wir 

) has been 

defined in (6). ‘K’ is a helping constant used to derive the 

generalized Bayes estimates.  
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Finally, the Bayes estimators and posterior risks based on SLLF are given as:
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The generalized version of the posterior risk is as following:
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are Bayes estimator and posterior risk under SLLF 

respectively, and �(x
wi

) has been defined in (8).

Prior elicitation

Elicitation is a method to formulate the prior beliefs 

regarding some quantities into a probabilistic model. 

Under Bayesian inference it can be regarded as a technique 

to specify the values of hyper-parameters in a prior 

distribution for one or more parameters of the sampling 

distribution. It is not easy to have an accurate elicitation, 

because in many real-life situations the experts are often 

not familiar with the concept of probabilities. Even when 

the expert is familiar with the probabilities and their 

concept, it is by no means straightforward to evaluate 

exactly a probability value for an event exactly. In such 

cases, elicitation encourages the expert and the facilitator 

to consider the meaning of the parameters being elicited. 

This has two helpful consequences. First, it brings the 

analysis closer to the application by demanding attention 

to what is being modelled, and what is reasonable to 

believe about it. Second, it helps to make the posterior 

distributions, once calculated, into meaningful quantities. 

Some methods of prior elicitation are reported by Geisser 

(1980); Chaloner and Duncan (1983); Garthwaite and 

Dickey (1992); Chaloner et al. (1993); Aslam (2003) and 

Gelman et al. (2004).

 We have used the method suggested by Aslam (2003) 

for the prior elicitation. This method uses the prior 

predictive probabilities for elicitation. It compares the 

prior predictive distribution with expert�s assessment 

about this distribution and permits the choice of the 

hyper-parameters that make the assessment agree closely 

with the member of the family. The prior predictive 
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distribution can be defined as: 

�

)x

,

0.10 0.10

0.10 0.10

2

1

1 2 1 2 1 2

0 0 0

( , , ) , ,g y g f y d d d� � �  

    ...(20)

of Weibull distribution under 10000 replications. The 

probabilistic mixing has been used to generate the 

mixture data. A random number u from Uniform (0,1) 

has been generated for each observation. If u ≤ ̟, the 

observation has been randomly taken from the first 

subpopulation and if u > ̟, the observation is selected 

from the second subpopulation. The observations in 

the respective samples have been assumed to be 20 % 

censored. The amounts of posterior risks associated with 

each Bayes estimate have been given in parenthesis in 

the tables. The simulated samples have been drawn by 

following the listed steps:

Step 1: Draw samples of size �n� from the mixture 

model 

Step 2: Generate a uniform random numbers u for each 

observation

Step 3: If u ≤ ̟, take the observation from the first 

subpopulation otherwise from the second 

subpopulation

Step 4: Determine the test termination points on left and 

right, that is, determine the values of x
r
 and x

s

Step 5: The observations, which are less than x
r 

and 

greater than x
s
 have been considered to be 

censored from each component

Step 6: Use the remaining observations from each 

component for the analysis

 We have used the elicited values of the hyper-

parameters obtained in the subsection elicitation for 

the numerical estimation. The amount of posterior risks 

associated with each Bayes estimate have been given in 

the parenthesis in Table 1. 

 Table 1 contains the Bayes estimates and posterior 

risks under gamma prior using a couple of loss functions. 

The Bayes estimates tend to converge to the true 

parametric values by increasing the sample size. The 

parameters have been over estimated in majority of the 

cases with few exceptions. The degree of over estimation 

where, �1 2( , , )xg

,

0.10

0.10

 is the prior distribution and 

�1 2; , ,f y

0.10

0.1

 is the mixture density for future 

observation from the model (3). According to equation 

(20), the prior predictive distribution under gamma prior; 

presented in equation (9) is:

�

1 21 2

1 2
1 2 1 2

1 1

1 2 3 3 1 1 2 3 3 21 2

1 1

1 2 3 3
1 2 1 2

1 ( 1, ) 1 ( , 1)

( , )

a a

a a
a a

a a B a b y a a B a b yb b
g y

a a B a b b y b b b y

� �
� �
� �
� �

0.10 0.10 0.10 0.10

0.10 0.10

0.037613

45

2

 ...(21)

As we have to elicit six hyper-parameters (a
1
, a

2
, a

3
, 

b
1
, b

2
, b

3
) we have to consider six integrals. The set of 

hyper-parameters with minimum values has been chosen 

to be the elicited values of the hyper-parameters. By 

considering the prior predictive distribution in equation 

(21), we have assumed the expert�s probabilities to be 0.10 

for each integral. We considered the following integrals: 

�

10

0

0.10g y dy�

0.10

, �0.10

20

10

0.10g y dy�

0.10 0.10

, �0.10 0.10

30

20

0.10g y dy�

0.10 0.10

,0.028352

, 10,

2

,

�0.10

40

30

0.10g y dy�

0.037613

45

2

, �

50

40

0.10g y dy� , and 0.10

60

50

0.10g y dy�

For convenience in the numerical calculations we have 

taken α
1
 = α

2
 = 1.5. Now, in order to solve these integrals 

simultaneously, a programme has been framed in SAS 

package using the �PROC SYSLIN� command and 

the elicited values of the hyper-parameters have been 

found to be: (a
1
, b

1
, a

2
, b

2
, a

3
, b

3
) = (0.872167, 0.376822, 

0.746821, 0.487262, 0.028352, 0.037613). (Aslam, 

2003). For the elicitation purpose the expert probability 

assumed to be so that the sum of probabilities for all the 

integrals is less than or equal to one. Generally these 

probabilities are considered the same for each integral 

Kazmi et al. (2012).

SIMULATION STUDY AND RESULTS 

As the analytical comparisons among the performance of 

different estimators are not possible, a simulation study 

has been conducted to serve this purpose. The performance 

of various estimators has been investigated and compared 

with respect to different priors, loss functions, parametric 

values, mixing weights and sample sizes. The parametric 

space used is: (θ
1
,θ

2
,π)∈{(0.10,0.13, 0.45), (10,13,0.45), 

(0.10,13,0.45), (10,0.13,0.45)}. The samples of sizes n 

= 20, 50 and 100 have been generated by the inverse 

transformation method from two components mixture 
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is directly proportional to true parametric values. In 

addition, squared logarithmic loss function (SLLF) 

provides better convergence irrespective of choice of 

true parametric values.

 The posterior risk is the well known criterion for the 

comparison of the performance of the different Bayes 

estimates. The amount of the posterior risk is directly 

proportional to true parametric values and is inversely 

proportional to the sample size. This suggests that the 

estimates are consistent. The estimates based on SLLF 

correspond to the least amounts of risks. 

   π                  Using SELF                    Using SLLF

        �
1
�  �

1
�

2
�   �
1
� �  �

1
�  �

1
�

2
�  �

1
� �  

0.45 0.32116 0.33254 0.43600 0.33611 0.33719 0.44134

 (0.26384) (0.21810) (0.01624) (0.01257) (0.01208) (0.00574)

0.60 0.31650 0.33660 0.53411 0.32145 0.34135 0.54064

 (0.23889) (0.22800) (0.01861) (0.01139) (0.01267) (0.00663)

Table 2: Bayes estimates and posterior risks under real-life data with 20 % censoring using 

SELF and SLLF

Real-life example

This section covers the analysis of a real-life dataset 

regarding the breaking strengths of 64 single carbon fibers 

of length 10 presented by Lawless (2003). The idea has 

been to determine whether the results and properties of 

the Bayes estimators explored by a simulation study, have 

the same behaviour under a real-life situation. We have 

used the Kolmogorov-Smirnov and chi square tests to see 

whether the data follow the Weibull distribution. These 

tests show that the data follow the Weibull distribution 

at 5 % level of significance with p values 0.38473 and 

θ
1
, θ

2
, π n                      Using SELF                      Using SLLF

      �
1
�  �

1
�

2
�   �
1
� �  �

1
�  �

1
�

2
�  �
1
� �

             

 20 0.11348 0.14144 0.46673 0.11268 0.14108 0.46482

  (0.09732) (0.11914) (0.10709) (0.04689) (0.04988) (0.01378)

0.10, 0.13, 0.45 50 0.10516 0.13444 0.45448 0.10442 0.13410 0.45263

  (0.07937) (0.08774) (0.07569) (0.03251) (0.03644) (0.01006)

 100 0.10324 0.13079 0.45080 0.10251 0.13046 0.45067

  (0.05871) (0.05761) (0.05930) (0.02590) (0.02881) (0.00782)

 20 10.40110 13.61047 0.47139 10.29146 13.48383 0.46943

  (0.42651) (0.42886) (0.17894) (0.19818) (0.21323) (0.02280)

10, 13, 0.45 50 10.19427 13.45415 0.45867 10.12410 13.38009 0.45692

  (0.34654) (0.31235) (0.12594) (0.13449) (0.15144) (0.01640)

 100 10.12308 13.11796 0.45493 10.03259 13.09231 0.45493

  (0.25218) (0.20283) (0.09807) (0.10705) (0.11957) (0.01275)

 20 0.11492 13.30797 0.46375 0.11434 14.08057 0.46053

  (0.09854) (0.42668) (0.10642) (0.04745) (0.21326) (0.01371)

0.10, 13, 0.45 50 0.10640 13.22346 0.45268 0.10564 13.38727 0.45048

  (0.08031) (0.30993) (0.07518) (0.03287) (0.15559) (0.01000)

 100 0.10433 13.13292 0.45028 0.10359 13.05950 0.45058

  (0.05930) (0.20106) (0.05909) (0.02618) (0.12275) (0.00779)

 20 10.37538 0.14613 0.46965 10.27118 0.14606 0.46644

  (0.42435) (0.12063) (0.17820) (0.19719) (0.05047) (0.02266)

10, 0.13, 0.45 50 10.17931 0.14015 0.45411 10.11064 0.13978 0.45510

  (0.34385) (0.08876) (0.12546) (0.13363) (0.03685) (0.01629)

 100 10.08450 0.13218 0.45342 10.02360 0.13183 0.45081

  (0.24998) (0.05819) (0.09797) (0.10615) (0.02911) (0.01270)

Table 1: Bayes estimates and posterior risks under gamma prior 
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0.82786, respectively. We have taken n = 64, π = 0.45 

and the data has been classified into two populations 

using probabilistic mixing (as discussed in the previous 

section), which produced: r
1 
= 4, r

2 
= 3, s = 58, m

1 
= 18, 

m
2 
= 33, so that the censoring rate is close to 20 % (that 

has been used in simulation study). The details of the 

censored mixture data are: Population I: 2.397, 2.522, 

2.532, 2.614, 2.659, 2.740, 2.856, 2.917, 2.928, 2.937, 

2.937, 3.139, 3.235, 3.377, 3.501, 3.537, 3.554, and 

3.562. Population II: 2.396, 2.445, 2.454, 2.454, 2.474, 

2.518, 2.525, 2.575, 2.616, 2.618, 2.624, 2.675, 2.738, 

2.977, 2.996, 3.030, 3.125, 3.145, 3.220, 3.223, 3.243, 

3.264, 3.272, 3.294, 3.332, 3.346, 3.408, 3.435, 3.493, 

3.628, 3.852, 3.871 and 3.886. The results of the analysis 

are given in Table 2. The amounts of posterior risks 

associated with each estimate have been presented in 

parenthesis in the table.

 The analysis under real-life data replicated the 

findings explored in the simulation study. The posterior 

risks under SLLF are the minimum for all the cases. The 

increase in the value of the mixing parameter (π) imposes 

a positive impact on the performance of the estimates 

for the first component of the mixture. This is simply 

due to the reason that the increase in the values of the 

mixing parameter will incorporate a larger proportion of 

the sample values for the analysis of the first component 

of the mixture. Hence, the results under real-life data 

gave us more confidence to suggest the use of SLLF for 

the estimation of the parameters of the mixed Weibull 

distribution under doubly censored samples.

Hazard rate for the mixture of Weibull distribution

The hazard rate is a useful way of describing the 

distribution of �time to event� because it has a natural 

interpretation that relates to the ageing of a population. 

The hazard function is the risk of failure in a small time 

interval, given survival at the beginning of the time 

interval. As a function of time, a hazard function may 

be increasing, i.e. as time increases the rate for failure 

increases. For example, when a patient is untreated 

for a disease such as cancer or the medication do not 

work properly; or when a person is recovering from 

severe trauma like a surgery, The hazard function may 

be constant, meaning the rate of failure is the same 

regardless of how much time has passed. The constant 

hazard rate is mostly unrealistic. The hazard rate for the 

mixture of Weibull distribution has been compared under 

a range of parametric values.

The hazard rate function for the mixture of Weibull 

distribution is:

�

1 2
1 1 2 2

1 2
1 2

1 1

1 1 2 21

1 1 1 1

t t

t t

t e t e
H t

e e
 ...(15)

 The graphs for the hazard rate of the mixture model 

for different parametric values and for the various ranges 

of the variable, are presented in the following. 

 The graphs suggest that the hazard rate for the mixture 

model is monotonically decreasing over time for α
1
, α

2
 < 1. 

If α
1
 = α

2
 = 1, the hazard rate is a constant function except 

for PR4 and PR5. Similarly for α
1
, α

2
 > 1, the hazard 

rate has different patterns for various combinations of 

the parameters. On the other hand, if we mix the above 

situations, that is, if we take (α
1,
 α

2
) = {(0.50, 1.00), 

(0.50, 1.50), (1.00, 1.50)}, the behaviour of the hazard 

rate becomes different. Using α
1
 = 0.50 and α

2
 = 1.00, the 

hazard rate is decreasing but the tendency is different. 

In case where α
1
 = 0.50 and α

2
 = 1.50, the hazard rate is 

decreasing except under PR4 and PR5. For α
1
 = 1.00 and 

α
2
 = 1.50, the hazard function of the mixture density is 

decreasing, increasing and constant for different choices 

of the parametric values.

CONCLUSION

The Bayesian analysis of the Weibull distribution 

has been discussed by many authors under different 

censoring techniques. However, the Bayesian estimation 

of the mixture of Weibull distribution under doubly 

censored samples has not been reported in literature to 

date. This issue has been addressed in this paper. The 

paper proposes the Bayesian analysis of the doubly 

censored lifetime data using a two-component mixture 

of Weibull distributions under different loss functions 

using gamma prior. From the detailed analysis it can be 

concluded that the estimates under squared logarithmic 

loss function (SLLF) can be preferred for the estimation 

of the mixture model. The proposed estimators are 

consistent and capable of providing stable results from 

moderate to large samples. The findings of the study are 

useful for analysts from different fields dealing with the 

analysis of lifetime models, when causes of failures are 

more than one and the data is doubly censored. The study 

can further be extended for more than two component 

mixtures of the Weibull distribution.
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