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RESUMO

Este artigo utiliza procedimentos de inferência bayesiana para estimar modelos
econométricos freqüentemente usados. Em particular, os modelos dinâmicos ou de
espaço de estado são considerados detalhadamente. Procedimentos de inferência
baseiam-se em esquemas de integração híbridos, em que as variáveis de estado são
integradas analiticamente, e os hiperparâmetros são integrados utilizando o méto-
do de cadeias de Markov de Monte Carlo. As regiões de credibilidade da previsão
e das funções de resposta a impulso são também avaliadas. Os procedimentos são
ilustrados com dados reais da economia brasileira.
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ABSTRACT

This paper is concerned with the study of Bayesian inference procedures to commonly

used time series models. In particular, the dynamic or state-space models, the time-varying

vector autoregressive model and the structural vector autoregressive model are considered in

detail. Inference procedures are based on a hybrid integration scheme where state parameters

are analytically integrated and hyperparameters are integrated by Markov chain Monte Carlo

methods. Credibility regions for forecasts and impulse responses are then derived. The

procedures are illustrated in real data sets.
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1. INTRODUCTION

One of the most widely used method to estimate parameters in econometric time series

models is maximum likelihood (ML). The method is described in detail in the books by

Harvey (1) and Hamilton (2). Typically, model parameters are divided into µ, that is usually

referred to as state parameter, and Ã referred to as hyperparameter. More explicitly, µ consist

of the parameters that can be eliminated by integration or concentration. The method

consists on eliminating µ and performing inference on Ã. This procedure is inappropriate for

many reasons. First, it does not take into account the uncertainty associated with Ã when

making inference about µ, thus leading to overly optimistic con¯dence bounds for functions

of µ. Secondly, inference procedures are based on asymptotic approximations that may work

very poorly in applications, specially when transformations of the parameters are required.

Also, it disregards the possibility of multiple maxima.

From a Bayesian perspective, most calculations required for inference involve integration.

In many time series models, this poses a computational problem that cannot be solved

analytically. There has been a surge in the literature in recent years using Markov chain

Monte Carlo (MCMC) methods in order to solve the computational problem. After the initial

work by Carlin et al. (3), other papers by Carter and Kohn (4), Fruhwirth-Schnatter (5) and

Chib and Greenberg (6) followed with a computationally improved methodology for normal

state space models. Extensions to non-normal observations are presented by Shephard and

Pitt (7) and Gamerman (8). MCMC methods were used in vector autoregressive (VAR)

models by Kadiyala and Karlsson (9). All relevant features of the likelihood and of the

posterior of Ã, including multimodality and asymmetry, can clearly be identi¯ed now. A

common feature of these papers is the use of MCMC-based approximations to all model

parameters. In doing it, they disregards the analytical tractability of the models with respect

to µ and thus make unnecessary approximations for that component of the model.

This paper combines the advantages of analytical integration of µ used for ML estimation

with the advantages of MCMC techniques for Ã in a fully Bayesian analysis to all model

parameters. Integrations required for inference about Ã are replaced by averages based on

MCMC samples. Note that proper account of the uncertainty about Ã is retained here.

The integrations required for inference are hybrid as they combine analytic expressions for

µ with (MCMC-based) approximations for Ã. Note also that typically the dimension of µ is

orders of magnitude larger than the dimension of Ã. For example, in the ¯rst application
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of this paper the dimension of µ is 971 whereas the dimension of Ã is 7. Approximations

over a 7-dimensional space should be more precise than those over a 978-dimensional space

that includes the smaller space. Hybrid rules were previously used in econometric models

by Lopes, Moreira and Schmidt (10) and by Sims and Zha (11) with resampling based

approximations for Ã. Their main di±culty was the speci¯cation of a suitable importance

sampling density. This point is discussed by Schmidt, Gamerman and Moreira (12) and

they suggest using adaptive resampling procedures. Their approach works well for models

with a limited number of hyperparameters but suitable importance distributions becomes

increasingly hard to specify. This paper proposes a di®erent class of procedures that is more

encompassing and works with any dimension of the hyperparameter space.

The next Section describes the time series models considered in this paper. They are

the univariate dynamic linear model (DLM), described from a Bayesian perspective by West

and Harrison (13) and from a frequentist perspective by Harvey (1), the time-varying VAR

models, described by Kitagawa and Gersch (14), and the structural VAR models, described

from a Bayesian perspective by Sims and Zha (11) and from a frequentist perspective by

Hamilton (2). They can be encompassed as special cases of common components multivariate

DLM's.

The analytic part of the required integrations is described in Section 2. The MCMC

methodology used to perform the sampling-based approximations for Ã is described in Sec-

tion 3. The methods are very °exible and can accommodate for many choices of prior

distribution for Ã. A few guidelines on the choices of prior distributions are provided and

serve as an example to applications often found in econometric time series. The method is

an inferential tool as easily applicable as ML estimation, with replacement of optimization

by sampling routines.

Section 4 presents the applications to real data sets to illustrate the methodology. In

particular, speci¯c issues of the models are discussed. Special attention is given to trans-

formations of the model parameters and an appropriate account of their uncertainty. In

dynamic models, interest centers in forecasts and estimation of some model components.

In structural VAR models, interest centers in forecasts and the impulse response function

of the identi¯ed shocks, which describes the interpretable dynamic properties of the model.

Finally, Section 5 draws some concluding remarks.

Distributional notation is speci¯ed in an Appendix. All distributions mentioned there are
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easy to draw samples from, have known moments and allow simple evaluation of probability

intervals. It will be shown in the sequel that conditional on Ã, the required distributions are

given as in the Appendix, and the analysis is analytically tractable. Approximating MCMC

methods will only be used for the intractable part of the posterior distribution, namely the

posterior marginal of Ã.

2. MODELS

This section presents the univariate dynamic linear models, the time-varying vector au-

toregressive models and the structural VAR models. These model are applied to real data

sets in Section 4. They can all be written as special cases of the common component dy-

namic linear models. Normal inverse Wishart priors have shown good empirical performance

in similar models (Kadiyala and Karlsson (9)) and are used here.

For univariate DLM's and time-varying VAR models, µ consists of the state parameters

or time-varying regression coe±cients and the hyperparameter Ã consists of the system

evolution variance and sometimes also elements of the system transition matrix. For the

structural VAR models, µ is the matrix of regression coe±cients of the reduced form of the

model and the hyperparameter Ã consists of the elements of the matrix of contemporaneous

relation of the endogenous variables. In many cases, observational variances can also be

integrated out analytically and are included in µ.

2.1. Common component dynamic linear models

This model is used to describe the joint temporal movement of multivariate time series

models that share the same explanatory variables. The description of the di®erent component

series di®ers by a di®erent regression coe±cent for each series. In addition, it will be assumed

that the regression coe±cients are subject to the same time evolution. Namely,

y0t = x0t(Ã)µt + v
0
t ; vt » N(0;§) ; t = 1; :::; n (1)

µt = Gt(Ã)µt¡1 + wt ; wt » N (0;Wt(Ã);§) (2)

where yt = (yt;1; :::; yt;q) is a q-vector of observations, xt is a p-vector of explanatory vari-

ables, µt = (µt;1; :::; µt;q) is a p£ q parameter matrix, µt;j = (µt;j1; :::; µt;jp)0 is the p-vector of
regression coe±cients for the jth observation, j = 1; :::; q and the notation N(A;B;C) for

the matricvariate normal distribution is explained in the Appendix. The model is completed

with prior (µ0;§)jÃ;D0 » NIW (m0; C0; º0; S0) where all parameters may depend on Ã and
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ÃjD0 with density fÃ and Dt denote the information at time t.

Given the value of Ã, relevant conditional distributions are given by the Kalman ¯lter

and smoother (Harvey (1); Hamilton (2); West and Harrison (13)). In particular, the one-

step-ahead predictive distributions of yt+1jÃ;Dt and the smoothed distributions are µtjÃ;Dn

are Student t with de¯ning parameters analytically obtained.

Quantities of interest for inference include components of the parameters µt and § or their

functions such as impulse response functions and future observations yn+h. If Á denotes a

quantity of interest, the densities of interest are given by

p(ÁjDn) =
Z
p(ÁjÃ;Dn)p(ÃjDn)dÃ: (3)

For many of the quantities above, p(ÁjÃ;Dn) is analytically tractable. In the other cases, it
is always possible to sample from it. Also, the marginal posterior of Ã is given by

p(ÃjDn) / l(ÃjD0)fÃ(ÃjD0) (4)

where fÃ is the prior density of Ã and l(ÃjD0) is the likelihood of Ã given by

l(ÃjD0) = p(y1; :::; ynjÃ;D0) =
nY

t=1

p(ytjÃ;Dt¡1) (5)

and each term in the right hand side of (5) is given by the Student t one-step-ahead predictive

distribution.

Analytic integration of (3) will very rarely be possible but it can be approximated by

p̂(ÁjDn) =
1

N

NX

i=1

p(ÁjÃ(i); Dn) (6)

where the Ã(i)'s are a sample from p(ÃjDn). Unfortunately, the analytic dependance of (5),
and consequently of (4), on Ã is far too complicated to allow the use of easy sampling schemes.

E±cient resampling schemes become increasingly hard to build with increased dimensionality

of Ã (Schmidt, Gamerman and Moreira (12)). In this paper, MCMC methods will be used

to draw the values of Ã from (4).

2.2. Special cases

Univariate DLM's are obtained when q = 1 and § is a scalar. Typically, hyperparameters

include unknown elements of the system variance matrix, for example Wt = diag(Ã1; :::Ãp).
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Examples of dependence of xt on Ã include the threshold and the smooth transition au-

toregressive models (see, for example, Chan and Tong (15) and Terasvirta and Anderson

(16)). Examples of dependence of Gt on Ã include models for cycles. When cycles are

present, the system equation can be written in trigonometric form or in the AR(2) form

µt = Ã1µt¡1 + Ã2µt¡2 + wt where wt » N (0; ¾2Ã23), ¡2 ¸ Ã1 ¸ 2 and ¡1 ¸ Ã2 ¸ 0. In the

notation of equation (2), this means that

Gt(Ã) =

0
@ Ã1 Ã2

1 0

1
A and Wt(Ã) =

0
@ Ã23 0

0 0

1
A : (7)

The hyperparameter associated with the cycle is Ã = (Ã1; Ã2; Ã3) and the cycle wavelength

¸ and decay ½ are given by ¸ = 2¼= cos¡1(Ã1=2½) and ½ = (¡Ã2)1=2. When Ã2 = ¡1, there
is no decay and the series exhibits a persistent cycle.

Another special case of (1)-(2) is obtained when xt consist on previous values of the

observation vector, i.e., x0t = (y
0
t¡1; :::; y

0
t¡r). In fact, xt may also include exogenous variables

zt but should necessarily include lagged values of the observed series. This is the time varying

(or dynamic) vector autoregressive model discussed in Kitagawa and Gersch (14, ch. 12) and

references therein. The can be written as

yt = µ0txt + vt ; vt » N(0;§) (8)

µt = µt¡1 + wt ; wt » N (0;Wt(Ã);§)

and completed with prior (µ0;§)jÃ;D0 » NIW (m0; C0; º0; S0).

When the matrices of regression coe±cents in (8) are ¯xed with time, reduced form VAR

models are obtained with observation equation

yt = µxt + vt ; vt » N (0;§) (9)

and prior (µ;§)jD0 » NIW (m0; C0; º0; S0) as before. In this simple case, full analytical

analysis can be performed conditional on Ã.

Econometric theories are frequently used to specify contemporaneous as well as lagged

relations between variables observed through time. This setup can be accommodated into a

form that is similar to (9) but for the presence of restrictions in the form of §. Let A0 be a

non-singular matrix such that § = A¡10 (A
¡1
0 )

0. Equation (9) can be rewritten as

A0yt = µ¤xt + ²t ; ²t » N (0; I) (10)
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where µ¤ = A0µ is the new matrix of regression coe±cents and ²t = A0vt, t = 1; :::; n, are the

vectors of structural shocks.

The identi¯cation of the model is achieved by the introduction of restrictions on the

matrix A0 of contemporaneous relations. The restrictions are suggested by theory and esti-

mation of A0 helps in assessing the ¯t of the theory to empirical data. The model can thus

be exactly or over identi¯ed (Hamilton (2), pg. 332) and (10) is called the structural form

of a VAR model. Exact inference cannot be performed for this model. Also, the model can

be equivalently de¯ned with diagonal entries of A0 equal to 1 and shocks having a diagonal

variance matrix ¤1.

This section can be summarized in table 1 below.

TABLE I. Special cases of the common component DLM

model element

model q § Gt Wt

univariate DLM 1 scalar any any

time-varying VAR integer any I any

structural VAR integer A¡10 (A
¡1
0 )

0 I 0

2.3. Inference for structural VAR models

Although the model is just a special case of (1)-(2), it is useful to highlight a few as-

pects of the inference. The model can be written in terms of µ or µ¤. Opting for the ¯rst

parametrization, gives the likelihood function

l(µ; A0jD0) =
nY

t=1

p(ytjµ; A0; Dt¡1) = (2¼)
¡nq=2jA0jn exp

½
¡1
2
Q(µ; A0)

¾

where

Q(µ;A0) = tr

"
nX

t=1

(yt ¡ µxt)(yt ¡ µxt)0A00A0
#

For the prior distribution, we will assume a conditional conjugate form µj§; D0 » N (m0; C0;§),

where m0 and C0 may depend on Ã and ÃjD0 with density fÃ . This prior also implies a

1In this case, the contemporaneous matrix is denoted by A¤
0 and § = (A¤

0)
¡1¤[(A¤

0)
¡1]0.
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normal prior for µ¤j§. If m0 and C0 do not depend on Ã, the hyperparameter is reduced to

the unknown elements of A0 (and we will denote this by Ã = A0) and the prior density for

A0 will be denoted by fA. The non-informative prior is the limiting case C
¡1
0 ! 0.

The posterior distribution is obtained by Bayes theorem as µjÃ;Dn » N(m1; C1;§)

where m1 = C1
³
C¡10 m0 +

Pn
t=1 xty

0
t

´
and C¡11 = C¡10 +

Pn
t=1 xtx

0
t. Once again, inference

conditional on hyperparameters is analytically tractable for the model with state parameters

µ or µ¤. In any case, the state parameter can be integrated out, leading to p(ÃjDn) /
jA0jnjC0j¡q=2jC1jq=2fÃ(Ã) expf¡tr(n1S1A00A0)=2g where n1S1 = (m1 ¡m0)0C

¡1
0 (m1 ¡m0) +

Pn
t=1(yt ¡m1xt)

0(yt ¡m1xt). When m0 and C0 do not depend on Ã, the marginal posterior

distribution of the hyperparameter A0 is

p(A0jDn) / jA0jn exp
½
¡1
2
tr [n1S1A

0
0A0]

¾
fA(A0) (11)

which is not analytically tractable2.

In the case of a non-informative prior for µ, m1 ! µ̂ = (
P
t xtx

0
t)
¡1 P

t xty
0
t, C1 !

(
P
t xtx

0
t)
¡1 and (11) simpli¯es by replacement of n1S1A0A00 by Q(µ̂; A0). This is the ex-

pression for the marginal posterior distribution obtained by Sims and Zha (11) but for the

prior density fA, which remains unspeci¯ed here. They make inference by simulation us-

ing a resampling technique (Rubin (17)). The basis for sampling is provided by a normal

distribution obtained by a second order Taylor expansion of log p(A0jDn) about its mode.
Other quantities of interest also depending on A0 are the measures of the propagation of

the shocks ²t over the observed variables. These measures are usually called impulse response

functions and are obtained as the coe±cients of A¡1(L) where A(L) is the autoregressive

polynomial derived from (10) and L is the lag operator.

The fully Bayesian approach considers implicitly the uncertainty about § and therefore

the distribution of the impulse response functions takes into account the uncertainty about all

model parameters. This methodology can be naturally extended to structural VEC models

where restrictions on A0 are derived from the speci¯cation of suitable forms for the long-run

impulse response functions as in King et al. (18) or Mellander, Vredin and Warne (19).

2If the ¤ parametrization is used and independent IG(®i; ¯i) distribution are set a priori for the ¸i's

then they are still independent a posteriori given A¤
0 with IG(®¤

i ; ¯¤
i ) distributions where ®¤

i = ®i + n=2,

¯¤
i = ¯i + dii=2 and D = (dij) = A¤

0n1S1(A
¤
0)

0 and p(A¤
0jDn) / jA¤

0jn
Qq

i=1 ¯¤
i

¡®¤
i fA(A¤

0).
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3. MCMC METHODOLOGY

We tackle the intractable marginal posterior of the hyperparameter by drawing samples

from it. As already shown, the form of the density p(ÃjDn) in the models considered in

this paper does not allow for simple, reliable sampling schemes. Sims and Zha (11) reported

large variation in the resampling weights for structural VAR models. Schmidt, Gamerman

and Moreira (12) encountered similar problems in the context of dynamic models.

The more sophisticated MCMC methods are particularly suitable in those situations.

They provide a sample of the posterior of interest by embeding it in a Markov chain as

an equilibrium distribution and simulating a trajectory from the chain until equilibrium

is reached. An introductory account of MCMC is provided in Gamerman (20). Further

advanced reading and areas of application are given in Gilks, Richardson and Spiegelhalter

(21).

In this paper, chains formed by Metropolis-Hastings algorithms are used. This means

that chain moves are made in two steps: a proposal transition and an acceptance/rejection of

the move proposed. Moves can be proposed according to transition kernels in random walk

forms q(Ã(old); Ã(new)) = g(Ã(new) ¡Ã(old)) where g is the density of a distribution symmetric
around zero, e.g. N(0; C). These moves can also be made componentwise according to

univariate N (0; c) distributions. The acceptance probability for random walk proposals is

given by ®(Ã(old); Ã(new)) = min f1; p(Ã(new)jDn)=p(Ã
(old)jDn)g. In theory, these proposals are

not acceptable for parameters with limited variation such as system variances and should be

adapted with the corresponding truncation probabilities. In our applications, the range of

likely values for the hyperparameters lead to e®ective proposals with truncation probabilities

negligibly small. If, however, any of the parameters is close to the boundary then truncation

probabilities cannot be discarded and the acceptance probability will no longer have a simple

form. In these cases, other proposals suggested below can just as easily be used. The value

of the random walk variance is crucial in ensuring that chain moves are reasonably paced

towards equilibrium. Therefore, whenever a value for the variance is leading to large (small)

acceptance rates it is automatically reduced (increased) to allow for suitable values of the

acceptance rate and hence faster convergence.

There are other possibilities for the proposal kernel. One can consider likelihood-based or

even prior-likelihood-based normal forms for the proposal (Gamerman (22)). One possibility

is a normal distribution centered on the posterior mode and with precision matrix given by
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the observed posterior information matrix. Evaluation of the posterior mode would require

a maximization algorithm that typically also provides the information matrix. Another

attractive alternative for moves on variances and variance matrices is to use a generalized

form of random walk where the proposal is centered around the previous chain value but

Gamma and Wishart distributions are used instead of normal forms. For these cases, the

acceptance probability requires more computational e®ort than for the random walk above.

To avoid chains getting trapped in local modes, it is sometimes recommended to have a

few chains starting from (preferably overdispersed) initial points. Chains which appear to

show convergence towards local, insigni¯cant modes, as measured by their posterior density

values, are discarded. In the applications it was not di±cult to specify a likely region for the

hyperparameters which allows easy speci¯cation of reasonable initial points near or at the

border of the region.

Once convergence is ascertained according to some of the many methods available (Gel-

man and Rubin (23); Geweke (24)), values from the chains form an approximate sample

Ã(1); :::; Ã(N ) from (4) or (11). Inference about the hyperparameter is then based on these

values. If interest centers on the state parameters µ, some of their transformations h(µ) or

future values of the series then their marginal distribution can be approximated according to

(6). If the transformations are more complicated as is the case for impulse responses, then

inference for them can also be based on samples h(µ(j))'s obtained after drawing the µ(j)'s

from p̂ in (6).

The full MCMC algorithm can be summarized as follows

1. start the chain with Ã(1), evaluate the posterior density at Ã(1) and set j = 1;

2. propose a new value Ã(new) according to Ã(new) » N(Ã(j); C) either in block or compo-

nentwise and evaluate the posterior density at Ã(new);

3. take Ã(j+1) = Ã(new) with probability ®(Ã(j); Ã(new)), otherwise take Ã(j+1) = Ã(j);

4. check convergence according to the criteria above and if the chain is assumed to have

converged go to the next step only for further N iterations;

5. set j ! j + 1 and return to (2).

10



4. APPLICATIONS

Three di®erent applications were made. The ¯rst one to the series of the Brazilian indus-

trial production index, the last ones to a multivariate study of government policy making.

Vague prior distributions were used for the hyperparameters according to the relevant in-

formation available. They were taken as independent and truncated normal for the system

standard deviations and uniform for the other parameters. Truncation was caused by nat-

ural restriction (on variances, for example) and also by meaningful interpretation on the

parameter in question.

In all the applications, 4 chains were run from initial overdispersed values. These values

were chosen from prior knowledge of the likely regions for the hyperparameter. They were

taken as the endpoints of intervals for components that were uniformly distributed and the

0.01 and 0.99 quantiles for components that were normally distributed. Chains were run

until convergence was diagnosed according to the Gelman and Rubin (23) and Geweke (24)

diagnostics applied to the posterior density. After convergence, samples of size 2000 were

stored for inference from all the chains. The pace of the moves between iterations was set

by increasing and/or decreasing the proposal random walk variance in such a way as to have

the acceptance rates between 30% and 60%. These proposal have been extensively used in

the literature with good results reported. This was con¯rmed in our simulations. Therefore,

alternative forms outlined above were not used in the applications.

4.1. Univariate dynamic linear model

The industrial production index is the main indicator of economic activity in Brazil and is

measured monthly by the o±cial Brazilian Institute of Statistics and Geography (IBGE). In

this application, the data goes from Jan/1981 to Jun/2001. The model chosen is a univariate

DLM with observation equation

yt = ¹t + st + ct + ®txt + vt ; vt » N(0; ¾2)

where ¹t, st and ct respectively denote the trend, seasonal and cycle components and xt is

the only explanatory variable with the number of working days in month t. The trend is

subject to a local linear growth

¹t = ¹t¡1 + ¯t + w1t ; w1t » N(0; ¾2Ã23)

¯t = ¯t¡1 + w2t ; w2t » N(0; ¾2Ã24)
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The seasonal component re°ects the production pattern and follows a permutation evolution

governed by a zero-sum constraint on e®ects and driven by a (p¡1)-dimensional disturbance
vector wSt. The cycle component re°ects short range °uctuations and its evolution was

described by (7). The regression coe±cient follows a locally constant random walk with

disturbance wRt. The seasonal, cycle and regression evolutions disturbances have respective

standard deviations ¾Ã5, ¾Ã6 and ¾Ã7.

The model can be phrased in terms of (1)-(2) with µt = (¹t; ¯t; st; :::; st¡10; ct; ct¡1; ®t)0,

Gt(Ã) = diag(GT ; GS; GC(Ã); 1) and Wt(Ã) = diag(Ã23 ; Ã
2
4 ; Ã

2
5I11; Ã

2
6 ; 0; Ã

2
7) and § = ¾2

where GT =

0
@ 1 1

0 1

1
A, GS =

0
@ 010 I10

¡1 ¡1 ¢ 1010

1
A, GC is as given by (7) and 0m (1m) is a m-

dimensional vector of 0's (1's). The hyperparameter is therefore Ã = (Ã1; Ã2; Ã3; Ã4; Ã5; Ã6; Ã7).

The prior for the cycle parameters was taken as uniform over [0:5; 2]£ [¡1; 0]. The system
standard deviations had prior means 2; 1; 0:5; 1 and 2 and standard deviations 0:66; 0:33; 0:15; 0:33

and 0:66, before truncation. The respective variances of the componentwise random walk

proposals were 0.2, 0.2, 1.5, 0.2, 0.2, 1.0 and 0.5.

The summary of the posterior inference is provided in Tables 2 and 3 and Figures 1

and 2 below. The dynamic movement of the growth and the seasonal component are rather

small and perhaps, these components could be taken as constant over time. Table 3 contains

predictions at the end of the series for 1 up to 6 months ahead . Note that the largest

(negative) correlation is again that between Ã1 and Ã2. The other correlations are reasonably

small. Therefore, we do not expect to have convergence di±culties for single move chains in

such situations. Also, as expected, the lengths of the predictive intervals increase with the

prediction horizon.
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TABLE II. Summary of estimation for application 1 - Brazilian industrial production index data

Mode Mean S.D. 95% limits

Ã1 1.44 1.41 0.10 (1.17, 1.60)

Ã2 -0.69 -0.61 0.10 (-0.83, -0.38)

Ã3 1.25 1.10 0.47 (0.17, 2.05)

Ã4 0.01 0.10 0.07 (0.00, 0.28)

Ã5 0.11 0.13 0.04 (0.06, 0.23)

Ã6 0.68 1.02 0.27 (0.58, 1.60)

Ã7 0.09 0.18 0.08 (0.04, 0.36)

TABLE III. Summary of prediction for application 1 - Brazilian industrial production index data

Mean S.D.

yn+1 131.2 3.3

yn+2 134.2 4.2

yn+3 132.3 5.2

yn+4 136.9 6.0

yn+5 131.6 6.6

yn+6 119.6 7.1

The correlation matrix of Ã is

0
BBBBBBBBBBBBBBBB@

1

¡0:87 1

0:10 ¡0:22 1

¡0:05 ¡0:02 ¡0:41 1

0:15 ¡0:16 0:35 0:00 1

¡0:48 0:57 ¡0:10 0:15 0:29 1

0:04 ¡0:05 0:18 0:10 0:40 0:34 1

1
CCCCCCCCCCCCCCCCA

It is interesting to note the large variation between values of the system standard devi-

ations with some system volatilities exhibiting large values while other system components

show virtually no time volatility. Also, the trend volatility is larger than the observational

volatility. The results again con¯rm the large correlation between cycle parameters as the
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only relevant correlation between hyperparameters. The predictions however are very well

behaved and their predictive distributions can very well be approximated by normal forms,

in this case. Examination of the ¯tted residuals shows a signi¯cant but small autocorrelation

of order 1 (the 95% con¯dence interval is [0.17, 0.33]) but no further relevant autocorrelation

structure. We have therefore considered the model to be reasonably adequate.

4.2. Time-varying VAR

The high volatility of the Brazilian economy led to large and persistent in°ation rates.

The rates forced private and public agents to adopt defensive mechanisms such as price

indexation and the Government to design successive stabilization plans to interfere with the

mechanism of price corrections.

The form that monetary policies have been implemented in Brazil suggests that the

most parsimonious list of variables capable of describing the price dynamics is given by

yt = (Pt; Et; It) where Pt is the consumer price index (INPC) series, Et is the series of

exchange rates Real/USD and It is 1 + the (SELIC) rate of public bonds (all measured in

logs). The e®ect of nominal shocks over price can be described by a VAR model with lag

r = 3 that dynamically relates these variables. The VAR coe±cients implicitly describe the

correction mechanisms.

The choice of the lag was based on various considerations. Model selection criteria such

as BIC when applied to the static version of this model pointed to r = 3. Also, it allows for

complex roots for the AR polynomial and can be used to model dampened cycles. Finally,

parsimony leads to the choice of the smallest possible number of meaningful lags.

The economic agents are expected to adapt their price adjustments mechanisms to the

varying conditions, in particular, to the alterations in the in°ation rate and to the stabi-

lization plans. This may imply °uctuation of the VAR coe±cients through time. These

°uctuations are expected to be higher when a stabilization plan takes place.

In this application, we have used monthly data collected in Brazil from Apr/73 to Dec/98.

The model used is given by (8) with two regimes of time variation. One of them takes place

at the times T = fJun=1980; Jun=1986; Jul=1990; Oct=1994g. Given the autoregressive
structure of the model, we have discarded data information of the r months preceding the

times in T . They correspond to r months after an actual plan explictly attempting to alter
the indexation mechanisms was applied. The other regime is applied to all other times.

The hyperparameter is Ã = (Ã1; Ã2)0 and the values of Wt(Ã) are Ã1I, if t =2 T and Ã2I, if
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t 2 T . The hyperparameter have prior mean (0:05; 0:5) and variance diag(0:001; 0:1). The
respective variances of the componentwise random walk proposals were 0.02 and 0.3.

Inference about Ã illustrates the degree of adaptation su®ered by the economy at periods

of instability and at periods of introduction of economic plans. It can be summarized in

¯gures 3 and 4 and table 4 below.

TABLE IV. Summary of inference for application 2 - time-varying VAR

Mode Mean S.D. 95% limits Correlation

Ã1 0.000 0.003 0.002 ( 0.000, 0.008) 1

Ã2 0.017 0.192 0.158 ( 0.000, 0.528) 0.398 1

The system variance at structural changes is substantially higher than the variance at

other times, re°ecting the anticipated impact of the stabilization plans. There is great

uncertainty about Ã1 because of the scarcity of data points and these ¯gures should be inter-

preted with care. The hyperparameters are not strongly correlated. The modal integrated

log-posterior of the time-varying VAR is 7.28 points higher than the integrated static VAR

log-posterior and 2.33 points higher than the VAR varying only in T (i.e., Ã1 = 0) indicating

the better ¯t of the fully time-varying VAR.

4.3. Structural VAR

Structural VAR models have been used to analyse the e®ects of changes in economic

policies. There is an extensive list of papers analysing the e®ects of public policies that use

structural VAR models. Relevant work in the area of monetary policy is given by Cristiano,

Eichenbaum and Evans (25), Sims (26) and Sims and Zha (27). Relevant references in the

area of open economy are Eichenbaum and Evans (28), King et al. (18) and Mellander,

Vredin and Warne (19).

The use of this methodology is a consequence of the endogeneity of the relevant variables

and, therefore, of the impossibility of direct measurement of the exogenous components of

economic policy changes. The model residuals are uncorrelated, exogenous shocks that under

certain conditions can be interpreted as the impact of unobserved policy changes.

The Brazilian economy had experienced high in°ation rates and successive stabilization

plans that promoted instability in the nominal variables up to July 1994, as shown in the
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previous application. Fiorencio and Moreira (29) show that the economy moved smoothly

towards a stable phase after the last plan. Therefore, only data after July 1994 and a

static version of the model is considered here. In structural VAR models, the matrix A0 has

p2 entries of which only
³
p
2

´
are linearly independent and p(p + 1)=2 restrictions must be

imposed.

The standard estimation procedure is maximum likellihood but the distribution of esti-

mators is di±cult to obtain and the relevant signi¯cance of parameters cannot be ascertained.

The restrictions imposed here are:

1. the exchange rate E is not contemporaneously a®ected by (I; P )

2. the interest rate I is a®ected by E and P, but the P coe±cient is restricted to -1 to

represent the e®ect of E on the real interest rate I ¡ P

3. the price index P is a®ected by (E;P )

4. the diagonal elements are all 1

With these restrictions, the matrix of contemporaneous e®ects is given by

A¤0 =

0
BBB@

1 Ã1 Ã2

0 1 0

¡1 Ã3 1

1
CCCA ;

with a 3-dimensional hyperparameter Ã. The model for yt = (Pt; Et; It) becomes A0yt =

~yt + ²t where ~yt = A1yt¡1 + A2yt¡2 + A3yt¡3 and ²t = (²P;t; ²E;t; ²I;t)0 » N(0;¤). The

structural equations are individually given by

Pt = ¡Ã1Et ¡ Ã2It + ~Pt + ²P;t

Et = ~Et + ²E;t

It = Pt ¡ Ã3Et + ~It + ²I;t

where ( ~Pt; ~Et; ~It)
0 = ~yt.

This is a simultaneous system of equations where economic theory suggests that shocks

on interest rates have a dampening e®ect on price over time and that a shock on the exchange

rate has a positive e®ect on prices. It is particularly relevant to measure the magnitude of

that e®ect. It is also expected that a price innovation will cause a rise on interest rates. The
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reasoning above suggests that Ã2 > 0, Ã1 < 0 and Ã3 < 0. All these parameters are short-run

elasticities and were given independent N(0,1) priors. The variances of the componentwise

random walk proposals were all taken as 0.2.

In this application, we have used the same data of the previous section. Inference about

the hyperparameter is summarized on Table 5 and Figures 5 and 6. They con¯rm empirically

that the parameters lie mostly in the regions suggested by the theoretical reasoning above,

even though this was not imposed a priori. All components of the hyperparameter are

signi¯cantly di®erent from zero. The e®ect of an exogenous increase of the interest rates,

namely restrictive monetary policies, is only partially incorporated into prices. The exchange

rate is not as a®ected by restrictive monetary policies as expected. Another interest in these

types of study is the determination of the impulse response functions. These are depicted

on Figure 7 along with their respective credibility bands.

TABLE V. Summary of inference for application 3 - structural VAR

Mode Mean S.D. 95% limits Correlation

Ã1 -0.236 -0.256 0.119 (-0.612, 0.058) 1

Ã2 0.822 0.914 0.239 ( 0.377, 1.650) -0.513 1

Ã3 -0.319 -0.313 0.116 (-0.635, 0.023) -0.001 0.000 1

4.4. Comments

The main purpose of this section was to highlight the °exibility of the methodology in

three di®erent classes of models that share a common structure. A number of issues relating

to DLM require further clari¯cation. One referee raised an interesting question about the

suitability of the use of trended regressors. Discussion of these and many other properties

of DLM can be found in West and Harrison (13). Use of MCMC to these models is also

described in the above book and simulation studies were carried out by Carter and Kohn

(4) and Fruhwirth-Schnatter (5).

In terms of the applications themselves, further studies are called for in terms of model

comparison and model determination. The ¯rst application suggests that a constant trend

growth is a plausible alternative with Ã4 = 0. The second application seems to indicate

constancy of VAR coe±cients when no stabilization plan was being introduced. In the third
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application, models leading to anticipated forms for the impulse response should also be

entartained. These considerations should lead to a fuller comparison of alternative models

than the one made here. This is an important component of an econometric analysis but

goes beyond the illustrative purpose of the present paper.

In terms of VAR models, it has been common practice to check for unit roots and coin-

tegration. The unrestricted VAR form is preferred here because unit roots test have low

power (Campbell and Perron (30)), specially in the case of a short time span. Fiorencio and

Moreira (29) discuss this point further suggesting that the unit root approach may not be

appropriate in this context.

5. CONCLUDING REMARKS

This paper considers the problem of inference in dynamic models by a sampling based

approach for hyperparameters and analytic integration for state parameters. It was shown

that this strategy is particularly useful in commonly used state-space models and structural

VAR models. It is to be expected that the same methodology could be applied to other

models used in Economics, Finance and other ¯elds of Science. Many authors have shown

the importance of GARCH models and spatial autocorrelation models. Their mathematical

form is not entirely di®erent from the ones used in this paper and we can conjecture at this

point that it will be possible to adapt them for application of the methodology presented

here.

This methodology is easy to use, °exible and in fact has been implemented for experimen-

tal use in PRV for Windows (Moreira (31)). It allows speci¯cation of di®erent form of priors

for the hyperparameter, including (but not exhausted by) the conditional conjugate forms

used in conjunction with the Gibbs sampling methodology. It detects secondary modes by

monitoring the integrated posteriors (4) and (11). It also adapts for appropriate pace of the

movements of the parallel chains. The software is freely available and can be downloaded

from the site http://www.ipea.gov.br.

APPENDIX: Normal inverse wishart distributions

A multivariate normal distribution with vector mean ¹ and covariance matrix § is de-

noted by N(¹;§). A p £ q matrix X is said have a matricvariate normal distribution

with vector mean ¹, left covariance matrix V and right covariance matrix §, denoted by

N(¹;V;§), if vec(X) » N(¹; V ­§), where vec(X) denotes the column vectorization of X.
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A p£ p matrix X is said to have a Wishart distribution with º degrees of freedom and scale

matrix S, denoted W (º; S), if its density is given by

kjXj(º¡p¡1)=2 exp
½
¡1
2
tr(ºS¡1X)

¾
;

if X is a positive de¯nite matrix, and 0, otherwise where k is a normalizing constant. If

X » W (º; S) then X¡1 has an inverse Wishart distribution with º degrees of freedom and

scale matrix S, denoted IW (º; S). When p = 1 and X becomes a scalar quantity, (inverse)

Wishart distributions are called (inverse) Gamma.

If Y j§ » N (¹; V;§) and § » IW (º; S) then the pair (Y;§) is said to have Normal-

inverse Wishart distribution with parameters ¹; V; º and S, denoted by NIW (¹;V; º; S). As

a consequence, the marginal distribution of Y is a matricvariate Student t distribution with

º degrees of freedom, location parameter ¹, right scale parameter V and left scale parameter

S, denoted by tº(¹; V; S). This means that vec(Y ) » tº(¹; V ­ S). If Y is a vector then V
is scalar and the matricvariate results above become multivariate results.
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Figure 7
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Caption for the ¯gures

Figure 1. Summary of posterior inference for application 1 - histograms of the components

of the hyperparameter: a. Ã1; b. Ã2; c. Ã3; d. Ã4; e. Ã5; f. Ã6; g. Ã7.

Figure 2. Summary of posterior inference for application 2 - 1 up to 6 step ahead predic-

tive distributions.

Figure 3. Summary of posterior inference for application 2 - histograms of the components

of the hyperparameter: a. Ã1; b. Ã2.

Figure 4. Summary of posterior inference for application 2 - ¯tted mean responses (full

line) with two s. d. limits (dashed lies) and data (dots) on (P;E; I). The data is represented

in terms of ¯rst order di®erences for visual clarity.

Figure 5. Summary of posterior inference for application 3 - histograms of the 3 compo-

nents of the hyperparameter: a. Ã1; b. Ã2; c. Ã3.

Figure 6. Summary of posterior inference for application 3 - pairwise plots of the 3

components of the hyperparameter.

Figure 7. Estimates of the impulse response functions: top row, responses due to shock

on prices; middle row, responses due to shock on exchange rate policy; bottom row, responses

due to shock on monetary policy; 1st. column: responses on prices; 2nd. column: responses

on exchange rates; 3rd. column: responses on interest rates. Point estimates are depicted in

full lines and one standard deviation limits are provided in dashed lines.
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