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Abstract: The aim of this paper is to analyse extremal events using generalized Pareto distributions (GPD),
considering explicitly the uncertainty about the threshold. Current practice empirically determines this
quantity and proceeds by estimating the GPD parameters on the basis of data beyond it, discarding all the
information available below the threshold. We introduce a mixture model that combines a parametric form
for the center and a GPD for the tail of the distributions and uses all observations for inference about the
unknown parameters from both distributions, the threshold included. Prior distributions for the para-
meters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through
Markov chain Monte Carlo methods. Simulations are carried out in order to analyse the performance of
our proposed model under a wide range of scenarios. Those scenarios approximate realistic situations
found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the
financial market that presents many extreme events. Important issues such as predictive analysis and model
selection are considered along with possible modeling extensions.
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1 Introduction

The extreme value theory literature has grown considerably in the last few decades,
with applied interest in engineering, oceanography, environment, actuarial sciences and
economics, among others. In such areas, the main problem is the scarcity of data or,
more specifically, modeling with a fairly small amount of observations. Generally
speaking, most of the traditional theory is more concerned with the ‘center’ of the
distributions, the tails being commonly overlooked. Many theoretical developments
have been proposed to appropriately study the tail of distributions (Embrechts et al.,
1997).

We focus on the class of problems where the behavior of the distributions
over (below) a high (small) threshold is of interest, characterizing extremal events.
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Pickands (1975) shows that if X is a random quantity with distribution function F(x),
then under certain conditions, F(x|u#) = P(X <u + x|X > u) can be approximated by a
generalized Pareto distribution (GPD). A random quantity X follows a GPD if its
distribution function is (Embrechts et al., 1997)

Ex—u) /€ :
G(x|&, 0, u) = 1- (1 + 4 o'_)) g, }f ¢#0 (1.1)
1—exp{—(x—u)/o}, ifE=0

where ¢ > 0 and ¢ are the scale and shape parameters, respectively. Also, Equation
(1.1) is valid when x —#>0 for ¢>0 and for 0<x —u < —¢g/& for £ < 0. The data
exhibit heavy tail behavior when ¢ > 0.

In general, data analysis with such a model is performed in two steps. In the first one,
the threshold, #, is chosen either graphically looking at the mean excess plot
(Embrechts et al., 1997) or simply setting it as some high percentile of the data
(DuMouchel, 1983). Then, assuming that # is known, the other parameters are
estimated, as suggested, for instance, in Smith (1987). The main drawback of this
idea is that only the observations above the threshold are used in the second step.
Moreover, the threshold selection is by no means an easy task as observed by Davison
and Smith (1990) and Coles and Tawn (1994). If, on the one hand, a considerably high
threshold is chosen in order to reduce the model bias, on the other hand, this would
imply that only a few observations are used for estimating ¢ and ¢, thus increasing the
variances of the estimates.

There is uncertainty in the choice of a threshold, #, even in the traditional theory to
select it. As we said before, choosing the threshold through a mean excess plot or
choosing a certain percentile does not guarantee that an appropriate selection was made
in order to prevent model bias or violation of the independence condition of excess,
which is crucial for the use of asymptotic distribution as a model. Most of the literature
has shown how the threshold selection influences the parameter estimation (Coles and
Powell, 1996; Coles and Tawn, 1996a; Coles and Tawn, 1996Db; Frigessi, 2002a, Smith,
1987). We can see some examples where the variation in the estimates of ¢ and ¢ given
the selected u is significant and determines the fit of the model. Keeping this in mind we
propose a model where we incorporate the uncertainty in the threshold selection by
choosing a prior for u, possibly flat.

There have been different approaches proposed in the literature. Beirlant et al.
(1996), for example, suggest an optimal threshold choice by minimizing bias variance
of the model, whereas DuMouchel (1983) suggests the use of the upper 10% of the
sample to estimate the parameters. In either of the methods, the estimates of ¢ and ¢
depend significantly on the choice of the threshold. Mendes and Lopes (2004) propose
a procedure to fit by maximum likelihood (ML) a mixture model where the tails are
GPD and the center of the distribution is a normal. More recently, Frigessi et al.
(2002b) have proposed a new dynamically weighted mixture model, where one of the
terms is the GPD and the other one is a light tailed density function. They use the whole
dataset for inference and use maximum likelihood estimation for the parameters in
both distributions. However, they do not explicitly consider threshold selection.
Bermudez et al. (2001) suggest an alternative method for threshold estimation by
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choosing the number of upper order statistics. They propose a Bayesian predictive
approach to the peaks over threshold (POT) method, extensively studied in the
literature (Embrechts et al., 1997). They treat the number of upper order statistics as
another parameter in the model, with an appropriate prior distribution, and compute a
weighted average over several possible values of the threshold using the predictive
distribution avoiding, then, the problem of small sample sizes. They also approach the
problem of threshold selection but they do it indirectly, by making inference about the
number of order statistics beyond it. However, they do not consider a parametric
model for observations below the threshold, only proceeding with simple nonpara-
metric estimates for these data.

In this paper we propose a model to fit data characterized by extremal events where a
threshold is directly estimated. The threshold is simply considered as another model
parameter. More specifically, we estimate the threshold by proposing a parametric form
to fit the observations below it and a GPD for the observations beyond it. It is
recommended to have a robust model in order to fit several different situations, usually
encountered in practice. It is important to analyse if the chosen form fits data from
different distributions and influences the estimates of the threshold and the extreme
parameters. All these aspects of robustness, goodness of fit and parameter estimation
are treated in this paper.

Therefore, considering X;, X5, ..., X, independent and identically distributed
observations and u the threshold over which these observations are considered
exceedances, then we have (X;|X;>u)~ G(-|&, 0,u). The observations below the
threshold are distributed according to H, which can be estimated either parametrically
or nonparametrically. In the parametric approach we can model the X;s below u
assuming that H is any distribution like Weibull, gamma or normal. The normal
distribution is specially used when one is interested in estimating both the lower and
upper tails. In the nonparametric approach, mixtures of the parametric forms
mentioned earlier provide a convenient basis for H.

Appropriate prior distributions are used for each of the model parameters. This
includes the method suggested by Coles and Powell (1996) of eliciting information
from experts to build the prior for the GPD parameters. As expected, posterior
inference is analytically infeasible and Markov chain Monte Carlo (MCMC) methods
are extensively applied, with particular emphasis on the Metropolis—Hastings and
Gibbs types.

In the next section we will present the model that considers all the observations,
below and above the threshold, in the estimation process. In Section 3 we discuss
prior specification and use ideas of Coles and Tawn (1996a) for prior elicitation in
the GPD context. A simulation study considering different scenarios is presented in
Section 4, also, an analysis of robustness and goodness of fit of our model
is included. In Section 5 we apply our approach to real data, the Nasdaq 100
index. The results are analogous to those obtained from the simulation study. We
highlight the advantages of our Bayesian method and analyse the sensitivity of
the parameter estimates to model selection. General discussion and ideas for future
research conclude the paper in Section 6. In the appendix we present the MCMC
algorithm for sampling from the posterior distribution along with other computa-
tional details.
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2 Model

The proposed model assumes that observations under the threshold, #, come from a
certain distribution with parameters 7, denoted here H( - |7), whereas those above the
threshold come from a GPD, as introduced in Equation (1.1). Therefore, the distribu-
tion function F, of any observation X, can be written as

H(x|n), xX<u

H(uln) + [1 — Hun)|G(x|&, 0, ), x>u (2.1)

F(x|77, éa o, M) = {

For a sample of size n, x = (xq, ..., x,) from F, parameter vector 0 = (n, o, &, u),
A = {izx; < u}, and B = {i: x; > u}, the likelihood function is

o o +

1 o —(1+8)/¢
Lo x) =] [hxim] ] (1 —H(um))( [1 +M] ) (2.2)
A B

for & # 0, and L(6; x) = [T, b(xln) [Ty (1 — Huln))(1/0) exp (x, — u)/a}), for &= 0.
Figure 1 represents the model schematically. As it can be seen the threshold u is the
point where the density has a discontinuity. Depending on the parameters the density
jump can be larger or smaller, and in each case the choice of which observations will be
considered as exceedances can be more obvious or less evident. The smaller the jump
the more difficult can be the estimation of the threshold. Fitting a nonparametric model
to the data below the threshold allows smooth changes in the distribution around u.
Strong discontinuities, or large jumps, indicate separation of the data. Consequently, it
is expected that the parameter estimation would be easier. On the other hand, density

— h(n)

gle,)

k

threshold

Figure 1 Schematic representation of the model
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functions that are relatively smooth might represent an interesting challenge to our
modeling structure. The parameters in our simulations were chosen in order to produce
both situations.

As stated before, one goal of this work is to analyse whether the choice of the
distribution for observations below the threshold influences, and how, the threshold
estimation. In addition, we are interested in analysing whether the proposed model
exhibits good data fitting when compared with other analyses presented in the literature.

Finally, it is worth mentioning that our mixture model can be extended to, for
instance, a mixture of distributions below the threshold. In the next section we combine
Equation (2.2) with a prior distribution for the parameters in order to enable one to
perform posterior inference.

3 Prior elicitation and posterior inference

Recall that the parameters in the model are @ = (y, u, £, o). The prior distribution is
now described.

3.1 Priorfor parameters above threshold

In extreme value, analysis data are usually sparse, then information from experts can be
useful to supplement the information from the data. It is reasonable to hope that experts
should provide relevant prior information about extremal behavior, since they have
specific knowledge of the characteristics of the data under study. Nonetheless, expres-
sing prior beliefs directly in terms of GPD parameters is not an easy task. The idea we
use here is from Coles and Tawn (1996a), Coles and Powell (1996) and Coles and
Tawn (1996) and refers to the elicitation of information within a parameterization on
which experts are familiar. More precisely, by the inversion of Equation (1.1), we
obtain the 1 — p quantile of the distribution,

q=u+§@ﬂ—1> (3.1)
where g can be viewed as the return level associated with a return period of 1/p time
units. The elicitation of the prior information is done in terms of (¢4, ¢, q3) in the case
of location scale parameterization of GPD, for specific values of p; > p, > p3. There-
fore, parameters are ordered and ¢; < g, < q3. Therefore, Coles and Tawn suggest to
work with the differences d; =¢q;, —q;_1,i=1,2,3 with g, = e;, where e; is the
physical lower bound of the variable. They suggest setting d; ~ Ga(a;, b;) for
i=1,2,3. The case of ¢; = 0 is used in most applications. Independent prior distri-
butions are assumed for the differences d;s. The prior information is elicited by asking
the experts the median and 90% quantile (or any other) estimates for specific values of
p that they are comfortable with. Usually, 10, 100 and 1000 time periods are
considered, which correspond, respectively, to p; = 0.1, p, = 0.01 and p; = 0.001.
After that, the elicited parameters are transformed to obtain the equivalent gamma
parameters. For i > 1, neither d; nor gq; depend on u. For i = 1, p(d,|u) was approxi-
mated by (d;|u * ) ~ Ga(a, (u*), by(u*)) where u* is the prior mean for u.
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In the model proposed here, we are not considering the location parameter of GPD, so only
two quantiles are needed in order to specify the GPD parameters, g and &. Therefore, we have
the following gamma distributions with known hyperparameters: d; = q; ~ Ga(a;, b;) and
d, = g, — q; ~ Gal(a,, b,) The marginal prior distribution for ¢ and £ is

a;—1
oo lut S077 = 1| expl-bifut St -l ]

a,—1 ) §
y E (03 - p;ﬂ CXP[—bz{% (05 — p?)”

—%[(plpzrﬁ( log p, — log py) — p3° log pa + by log p ]

X

(3.2)

where ay, by, a, and b, are hyperparameters obtained from the experts information, for
example in the form of the median and some percentile, corresponding to return periods
of 1/p; and 1/p,. The prior for g, should in principle depend on u. This would impose
unnecessary complications in the prior form. In this paper, this dependence is replaced
by dependence on the prior mean of u.

Some authors find that it is interesting to consider the situation where ¢ = 0. In this
case, we can set a positive probability to this point. The prior distribution would
consider a probability g if £ =0 and 1 — g if £ # 0, spreading the elicited prior shown
above to this last case. From the computational point of view this model would not lead
to any particular complications.

3.2 Priorforthe threshold

There are many ways to set up a prior distribution for #. We can assume that u follows
a truncated normal distribution with parameters (u,,, 62), truncated from below at e,
with density

5 _ 1 exp {— 05(74 - .uu)z/ai}
7'E(Z4|Hu> () el) - \/Z;T—U—g (I)[— (61 - ,uu)/o-u]

with u, set at some high data percentile and o2 large enough to represent a fairly
noninformative prior.

This prior is used in the simulation study and the details are shown in the next section. A
continuous uniform prior is another alternative. A discrete distribution can also be assumed.
In this case, # could take any value between certain high data percentiles, which can be called
hyperthresholds, as used in the application in Section 5. As the number of observations is
usually high in applications, when the discrete prior is based on the observations the choice
between discrete or continuous prior is immaterial for practical purposes.

One approach to the discrete prior for u is presented by Bermudez et al. (2001). They
suggest threshold estimation by setting a prior distribution for the number of upper
order statistics. In this case, the threshold is indirectly chosen and given by the data
percentile corresponding to the number of exceedances. We could also have assumed

(3.3)
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one more level to set the prior distribution for u, this would require setting a prior
distribution for the hyperthresholds.

3.3 Priorfor parameters below the threshold

The prior for the parameters 1 depends on the distribution chosen for data below u,
h(x|n). It is always better to try and obtain a conjugate prior to simplify the problem
analytically. In a general way we assume 1 ~ P with density 7.

If the distribution h(x|n) chosen is gamma, we have n = (a, f§), « as the shape and f§ as
scale parameter. But, instead of working with « and f, parameters of the gamma
distribution, we reparameterize and think, in terms of prior specification, about o and
u=o/B. u has a more natural interpretation; it is the prior expected value for the
observational mean below the threshold. Also, it is more natural to assume prior
independence between the shape parameter and the mean. We then set, « ~ Ga(a, b)
and u ~ Gal(c, d), where a, b, ¢ and d are known hyperparameters. The joint prior of

n = (a, ) will then be
_ b? a—1 ,—ba d° o ! —do/p o
=g () () 4

3.4 Posteriorinference

From the likelihood [Equation (2.2)] and the prior distributions specified earlier, we can
use Bayes theorem to obtain the posterior distribution which has the following: taking a
gamma distribution for data below the threshold, functional form, on the logarithm scale

logp(0]x) = K + il(xi < u)|ologf —log'(a) + (o — 1) logx; — fx;]
i=1

+ ;I(xl- > u) log|:1 - Jo lffoc) t#le P dt:| - ;I(xl- >u)loga

+(a—1)logo — bo+ (c — 1)log<%) —d(%) —i—log(%)
1 (u—u, 2 b Ot _1q
Aot

+ log (3.5)

= 22| (P12 "(logps —logpy) = py"logpa + v log i
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where K is the normalizing constant. It is clear that this posterior distribution has no
known closed form distribution making analytical posterior inference infeasible. Note
that the posterior mentioned earlier is shown with a normal prior for the threshold and
with the likelihood for the case where & # 0. However, the case where £ = 0 is also
considered in the algorithm used in the applications.

The computation is done through the MCMC methods, via Metropolis steps within a
blockwise algorithm, which is described in the appendix. We can either sample 0 at
once, or break it into smaller blocks to be drawn from. It will depend on the
convergence rate in each case. Because of the features of the model, we are drawing
the shape parameter ¢ of GPD first, since the scale parameter ¢ and the threshold
depend on its sign. If ¢ is negative, ¢ and # have restrictions as one can see in the
definition of the GPD distribution [Equation (1)]. Following &, ¢ and # are drawn
individually and in this order. Lastly, 5 is jointly drawn. In the case of gamma
parameters, = (o, §). The use of the Metropolis—Hastings algorithms requires the
specification of candidate distributions for the parameters.

4 A simulation study

We entertained a wide range of scenarios, focusing on generating skewed and heavy
tailed distributions. For the sake of space, only a small but revealing fraction of them is
presented here, with further details directed to Behrens et al. (2002) (BLG, hereafter).
The parameters used for the simulations presented here are p = 0.1, = (0.5, 1, 10),
&=(—-0.1, —0.45,0.2) and n = (1000, 10 000). Also, the scale parameters f and o
were kept fixed (1/ = o = 5), since their changes do not influence the estimation. The
sample size #n and p automatically define the value of u. We chose ¢ = —0.45 for
generating lighter tails and for avoiding unstable ML estimation, whereas & = 0.2
generates heavier tails. Table 1 summarizes our findings based on the 18 datasets,
whereas Figure 2 shows the histograms of the marginal distributions of the model
parameters when o = 1.0 and ¢ = —0.45. As one would expect, for all entertained
datasets, the 95% credible posterior intervals contain the true values. Similar results
were found when p = 0.01 and p = 0.001 (BLG).

It is important to verify if observations from other distributions, different from
gamma, are well fitted by our model. Some variations using Weibull data for the center
of the distribution were considered and GPD results were not affected. Despite the
similarities between the distributions, these results tentatively point to robustness of the
models proposed here.

5 Modeling the Nasdaq 100 index

The next step will be the application of the model to real data and to analyse how the
methodology performs in different situations in different fields. We now apply our
approach to Nasdaq 100, an index of financial market, from January 1985 to May
2002 (N=4394). The dataset was chosen given its importance to financial market and
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Figure 2 Marginal posterior histograms of model parameters based on data generated from p=0.1a =1,
p=0.2,06=5and ¢ =-0.45. Top row: n=1000 (u = 11.85). Bottom row: n=10 000 (u = 11.4)

the presence of many extreme events and it was taken from Yahoo financial site —
http://finance.yahoo.com/q?d = t&s = "XIC. The original data, daily close index, is
converted to daily increments in the following way:

y, = 100

P, _1{
Pt—l

Absolute values are used since financial datasets usually exhibit clusters of high
volatility, caused by either positively or negatively large returns. Both positive and
negative large returns are important in most practical volatility evaluations by risk
analysts. The usual treatment involves removal of these temporal dependences through
time varying volatility formulations. Our interest here, however, is to concentrate on
large values of returns and therefore we did not perform any such standardization to the
data. Figure 3 displays a histogram of the data. As we can see there is indication of
heavy tailed data. Our main goal is to compare the results obtained by our model with
those obtained using a ML approach. Also, we want to test the efficiency of our method
in the extrapolation issue. The model used in this application uses a gamma distribution
to fit the data below the threshold.

A descriptive analysis is presented below in order to get more feeling about the data
behavior. For the ease of notation let N be the sample size, [x] is the integer part of the
number x, and y; is the ith order statistic of data (y;, ..., yx), such that y ), is the
100p data percentile, for example, y (o 7ony) is the 70% data percentile.
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Figure 3 Histogram of the data and predictive distributions: solid line, fully Bayesian and dashed line,
approximate Bayesian

Table 2 shows the ML estimator for ¢ and ¢ considering different values of #. There
are no important changes in the estimates of ¢ and ¢ as the value of u is changed. We
cannot observe any pattern in the ¢ estimates with changes in the number of
exceedances considered. When the number of exceedances is around 2% of the data,
the estimates of o and & become very unstable. We have also calculated the conditional
Bayes estimators for the extreme parameters considering the same values of # used to
obtain the ML estimators. As we can expect, a small increase in the posterior mean of ¢
is observed since the greater value of # implies less exceedances or less data points to
estimate ¢ (its variance increases with #). The results are in Table 2 and we can see that
the estimate of ¢ are consistent if compared with its Bayesian estimate. For the other
values we observe an increase in the posterior mean for the scale parameter, since we
have more uncertainty incorporated in the model. Also the credibility intervals are
larger for both extreme parameters.

Table 2 Summary of extreme parameter estimators: posterior means and 95% credibility intervals, in
brackets, of u, g, and & ML estimators for ¢ and ¢ for different values of u= y Ny

p u o ¢
Classical 0.5 0.57 0.6305 0.2396
0.7 0.93 0.8176 0.1466
0.9 2.11 0.7435 0.1689
0.95 2.92 0.7171 0.1786
Bayesian conditional on u 0.5 0.57 0.7480 [0.07; 0.80] 0.2404 [0.18; 0.30]
0.7 0.93 0.9579 [0.87; 1.04] 0.1609 [0.09; 0.23]
0.9 2.11 1.0827 [0.92; 1.24] 0.1945 [0.08; 0.32]
0.95 2.92 1.1869 [0.02; 1.46] 0.2297 [0.03; 0.42]
Bayesian - 0.9619 [0.79; 1.13] 0.9735 [0.86; 1.08] 0.1567 [0.09; 0.23]

Downloaded from smj.sagepub.com at UNIV OF CHICAGO on October 12, 2011


http://smj.sagepub.com/

238 CN Behrens, HF Lopes and D Gamerman

A bivariate analysis of ¢ and ¢ is also performed based on the likelihood and
posterior distributions to analyse correlation between blocks of parameters. We have
taken the conditional distributions considering different values of u, y o sny)»> ¥((0.78))
¥(10.9N])» Y([0.95n))> and the ML estimators for ¢ and £ and the moment estimators for o
and f. Conditional on u, the vector («, f8) is independent of (g, &). The values of & and f8
that maximize the likelihood function are not much affected by changes in the
threshold. Only the scale parameter, f5, presents a small variation since the number
of observations used to estimate it changes with #. The same happens when we look at
the conditional likelihood of ¢ and ¢&. Similarly, the values of ¢ and ¢ that maximize the
conditional likelihood are close to the ML estimators shown in Table 2.

Flat priors were considered for o, f§, ¢ and £, and hyperparameters were calculated as
described in Section 3. The chosen values were a; = 0.1, by = a,/19.8, a, = 0.9 and
by = a,/29.8. A uniform discrete prior was assumed for the threshold # and the values
of the hyperparameters are described in the appendix.

Conditional on u, ¢ and &, the values of « and f§ that maximize the posterior are close
to those in the conditional likelihood. The results for ¢ and ¢ are also analogous to
those shown in the likelihood analysis. A slight difference can be noticed when the
threshold chosen is y sny)-

On the basis of the graphs in Figure 3, the initial values to start the chains were
chosen and this is described in the appendix. The posterior mean of o and 5, 1.0202 and
1.2816, respectively, are very close to the moment estimators. The posterior mean and
variance of ¢ and ¢ are shown in Table 2. As we said above, we have chosen two similar
discrete prior distributions to perform the analysis, and since we also got similar results
with both cases only the second one is shown in Table 2.

Convergence was achieved after few iterations and Figure 4 presents the histograms
of the distributions of each parameter. The parameter ¢ has a distribution centered in
the ML estimator and o and f§ centered in the moment estimators. The Bayesian
approach shows a larger estimate for ¢ than the classical one, whereas the credibility
interval of & includes its in estimate. The distribution of the threshold, #, seems to be
bimodal, one of the modes being highly concentrated around v\ sgn; and the second
mode concentrated around yj9.9927n7)> SO the posterior mean 1s y (o 75seny)- Lhe first
mode has probability 0.67 around it and the second mode has probability 0.10
around it.

In order to observe how the model fits the data and to analyse the behavior of the
model for future observations, we computed the predictive distribution. Figure 3 shows
the predictive distributions superimposing the histogram of the data. The solid line is
the Bayesian predictive distribution, p(y|data) = [ p(y|0) p(0|data) d0, and the dashed
line is an approximate Bayesian (AB) approach, p(y|data) = p(y|0) where 6 = E(0|data),
which corresponds to concentrating all the information in the posterior mean, 0, a
reasoning similar to that used for classical prediction. We can see that the difference
between the two approaches is not so significant in the center of the distribution,
whereas the Bayesian approach gives higher probabilities in the tail. The AB predictive
distribution underestimates the probabilities for events considered extremes.

In general terms, the results show that the estimated extreme quantiles obtained from
the fully Bayesian (FB) predictive distribution seem to be more conservative than the
ones produced by using plug-in estimation such as the AB or the classical approaches.
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Figure 4 Nasdaq 100 — histograms of the marginal posterior distribution

For instance, in Table 3 we can see that P(X > 5.35) = 0.01, which means that an
extreme event higher than 5.35, occurs, on the average, once in five months using the
AB approach, since our data are taken daily. If we look at the FB estimates, we have
P(X > 5.35) = 0.04, which means that an extreme event higher than 5.35 only takes
1.25 months to occur on the average. In a decision making setting, the FB approach
represents one’s risk averse behavior. This is caused by the incorporation of the
uncertainty about the parameters of the model. This aspect of the Bayesian approach
has already been noted by other authors. Coles and Pericchi (2003) showed that this
leads to more sensible solutions to real extremes data problems than plug-in estimation.

Figure 5 shows the return levels associated with return periods from one week to one
year. The shorter return periods in the Bayesian approach, associated with any given
return level, are a direct consequence of the thicker tail observed in Figure 3. Again, we
can see that the FB approach is more conservative than the classical and AB approaches.

Table 3 Extreme tail probability using the
empirical data distribution. FB predictive distri-
bution and AB predictive distribution

Quantiles Empirical FB AB
2.1 0.9 0.86 0.897
2.92 0.95 0.91 0.947
5.35 0.99 0.96 0.99
9.00 0.999 0.98 0.998

Downloaded from smj.sagepub.com at UNIV OF CHICAGO on October 12, 2011


http://smj.sagepub.com/

240 CN Behrens, HF Lopes and D Gamerman

0 = : -
! + Classical o-&- Approximate Bayesian

< Fully Bayesian

0 5 10 15 20 25 30 35 40 45 50

Figure5 Return level associated with return period from one week to one year. The parameter values used to
calculate the return level in the classical approach refer to those where u = 0.93 = y(o7p)-

An extreme return level in the FB approach takes less time to occur on average than the
same return level considering the other two approaches.

6 Conclusions

In this paper we suggest an alternative to the usual analysis of extreme events. Inference
is based on a mixture model with gamma distribution for observations below a
threshold, and a GPD for observations above it. All observations are used to estimate
the parameters present in the model, including the threshold.

Different approaches have been tried in the literature, but in none of them is the
threshold treated as a parameter in the estimation process. The available methods
choose the threshold empirically, even those using Bayesian methodology.

A simulation study was performed and the results have shown that we obtained good
estimates of the parameters. In spite of this fact, the threshold was at times hard to
estimate, especially when the sample size was not large enough. In general, the gamma
parameters converged very fast, whereas the GPD parameters, ¢ and &, and # needed
more iterations. These last three parameters sometimes demonstrated a strong correla-
tion between their chains, but this did not affect the convergence.

This wide range of scenarios allowed us to analyse the behavior of posterior densities
under different situations. It seems that the shape of the distribution is not a problem in
parameter estimation. For sufficiently large samples, parameter estimates were very close
to the true value even for data which were strongly skewed and/or did not have a smooth
density function. The problems with convergence, and consequently with parameter
estimation, arise when the number of observations is small. The proposed model here,
although simple, is able to fit different situations. Results obtained applying our gamma
GPD model to data simulated from other distributions showed a good performance.
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Classical methods for analysing extreme events require a good choice of the threshold to
work well. Our proposed method avoids this problem while considering the threshold as a
parameter of the model and allows prior information to be incorporated into the analysis.

We could compare the results obtained here with those using a classical approach by
applying the proposed model to real data. An important issue here is the threshold being
included as a parameter in the model. The results show close estimates for GPD
parameters if we compare classical and Bayesian approaches with vague prior distribu-
tions. Only the scale parameter, g, shows a significant difference, which is explained by the
fact that we have more uncertainty incorporated into the model in the Bayesian approach.
This difference can also be observed when we compare the predictive distributions, where
the FB inference seems to fit better to more extreme data than the AB approach.

It is also interesting to look at the return level associated with a return period of 1/p
units of time. We show the plot of these values for a range of return period from one
week to one year and results has shown that the FB approach is, again, more
conservative than the classical and AB approaches. This means that a certain return
level is associated with a shorter return period in the AB approach.

A similar methodology considering other parametric and nonparametric forms for the
distribution of the observations below the threshold can also be considered. Tancredi et
al. (2002) tackles the threshold problem in a similar but independent way. They model
the non-extreme data (below threshold) by a mixture of uniforms. The use of other
parametric forms, like Student’s ¢ distribution, will allow the estimation of both tails, as
needed in many financial and insurance data, where interest lies in the estimation not
only on the large claims (or gains) but mainly on large losses. Also, a more exhaustive
study about other distributions below the threshold should be performed.
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In this appendix we describe the MCMC algorithm used to make approximate
posterior inference and also the implementation details. Gamerman (1997) and
Robert and Casella (1999) are comprehensive references on this subject. We have
used the Ox language when developing the MCMC algorithms (Doornik, 1996). It took
us about 2 h, on average, to run 10 000 iterations using a Pentium III PC with 833 MHz.

Algorithm

Simulations are done via Metropolis—Hastings steps within blockwise MCMC algo-
rithm. Therefore, candidate distributions for the parameters evolution must be speci-
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fied. The candidate distributions used in the algorithm as well as the steps of the
algorithm are presented. Suppose that at iteration j, the chain is positioned at

0 = (), B9 ul), g0, £V, Then, at iteration j+ 1 the algorithm cycles through the
following steps.

Sampling ¢&

&* is sampled from a N(&V, VII(— 6" /(M —u"), oo) distribution, where V; is an
approximation based on the ‘curvature at the conditional posterior mode, and
M = max (x4, ..., x,). Therefore, D — & with probability «; where

p(0¥1x) D((EV + 69 /(M — u'))// V)
p(Blx) (& + o) /(M — uh))// V)

oy = min

for 0 = (o), B, u', g0, &%), 8 = 0 and ®(-) is the standard normal’s cumulative
distribution function.

Sampling o

If &"Y>0, ¢* is sampled from a Ga(a;, b;) distribution, where a,—/b,-:a(f) and
aj/b]-2 =V, If D 0, 6% s sampled from a N(cV, V_)I( — (M — 1), 0)
distribution, where V_ is an approximation for the concavity in the conditional
posterior mode. Therefore, ¢+ = ¢* with probability o, where

. p(0%|x) g(a"|a;, b;)
= 1, 2=
o mm{ > p(0]x) glo*la*, b*)}

if &Y >0, and

o, = min

| PO1x) @((0 + VTV M — )/ V)
" p(Blx) O((o* + (M /J_

0 é(H Z:’ where g?/ilT) (@7, BV, ulh, o*, D), /bt = 0%, a* /b2 =V,, and
uli) gl .
b b

Sampling u

The threshold parameter u* is sampled from a N(u", V,)I (a(7+1) M) dlStrlbuthH with
a1 = min (xy, ..., x,), if &Y >0, and 2t = M%—a’“‘1 JEVDiE EUFD < 0, Again,
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V., is a value for the variance which is tuned to allow appropriate chain movements.
Therefore, #1) = u* with probability «, where

| PO 1x) (M — )/ V) — @((@D — ul?)//V,)
" p(O1x) O(M —ur)/\/V,) — O((ait) —u)//V,)

for 6 = (Oc(j), ﬂ(i)’ u*, O.(/+1), é(/+1)) and 0 = (CX("), ﬁ(l), M(j), 0(i+1)’ 5(/’+1)).

In the case where u has a discrete prior we have to follow the same model restrictions
as before. Then, the candidate distribution is: If £V >0, u* ~ U,(q1, 92), a discrete
uniform distribution on data quantiles from g, to q,, where g, can be any high quantile
as, for instance, M, whereas g, can be any quantile, as long as g; < q,. It is important
to keep in mind that g; must be small enough to reduce model bias and large enough to
respect the asymptotic properties of the model. Analogously, if &™) <o,
w* ~ Uylqy, q5), with gy =M+ o1/ In the discrete case, o, = min {p(6*|x)/
p(0x)}.

Sampling o and f

o* and f* are sampled, respectively, from a log N(a"), V,) and a Gl(a;, b;) distributions,

with a,/b; = B and a;/ biz = Vg. V, and V; are approximations for the curvatures at

the conditional posterior modes. Therefore, (a/+1), By = (o, B¥) with probability
p(071x) h(e o2, V,) 8" lay, b))
> (Blx) b1, V,) gl b)

min{ 1

for 0" = (o, ﬂ*p M(H'l)’. O'(H_l); 6(/+1)>a é = (Of(j)_a ﬂ(i)’. M(H_l), G(H_l), 5(’“))1 a*/[f)< = ﬁ*s

a*/b*> =V, b(-|c,d) is the lognormal density with mean ¢ and variance d, and
B

g( - |c, d) is the gamma density with parameters ¢ and d.

Implementation

Our implementation involved running a few parallel chains starting from different
regions of the parameter space. The first few draws from the chains were used for
tuning V,, Vg, V, and V,, the variances of the candidate distributions. Convergence
was checked by comparing the marginal distributions of the parameters obtained from
the parallel chains and by application of standard tests (Gelman and Rubin, 1992;
Geweke, 1992; Heidelberger and Welch, 1983) using the Bayesian Output Analysis
Program (Smith, 2003). Values from the chains were merged for posterior inference.
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