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A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model

Lesley De Cruz, Jan Ryckebusch,∗ Tom Vrancx, and Pieter Vancraeyveld
Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

(Dated: July 25, 2012)

We address the issue of unbiased model selection and propose a methodology based on Bayesian
inference to extract physical information from kaon photoproduction p(γ,K+)Λ data. We use
the single-channel Regge-plus-resonance (RPR) framework for p(γ,K+)Λ to illustrate the proposed
strategy. The Bayesian evidence Z is a quantitative measure for the model’s fitness given the world’s
data. We present a numerical method for performing the multidimensional integrals in the expression
for the Bayesian evidence. We use the p(γ,K+)Λ data with an invariant energy W > 2.6 GeV in
order to constrain the background contributions in the RPR framework with Bayesian inference.
Next, the resonance information is extracted from the analysis of differential cross sections, single
and double polarization observables. This background and resonance content constitutes the basis
of a model which is coined RPR-2011. It is shown that RPR-2011 yields a comprehensive account
of the kaon photoproduction data and provides reasonable predictions for p(e, e′K+)Λ observables.

PACS numbers: 14.20.Gk, 14.40.Df, 11.55.Jy

I. INTRODUCTION

How to extract the nucleon resonance (N∗) con-
tent of the open strangeness photoproduction reactions
p(γ,K+)Λ is a long-standing question. Various analyses
lead to disparate outcomes concerning the set of reso-
nances that are likely to contribute [1–8]. The recent
availability of abundant high-statistics data has not pro-
foundly changed the situation so far. This indeterminacy
for the open strangeness channel is in stark contrast to
the situation for pionic channels, where the contributing
resonances can be successfully identified by means of a
partial wave analysis for invariant energiesW < 1.8 GeV.
In open strangeness channels, this technique is less pow-
erful as the nonresonant, or background, contributions
are larger. The importance of background contributions
calls for a framework which accounts for resonant and
nonresonant processes and which provides a means to
constrain both classes of reaction mechanisms indepen-
dently.

An efficient way of pinpointing the background am-
plitude involves Regge phenomenology [9, 10]. We will
describe the p(γ,K+)Λ reaction in the so-called Regge-
plus-resonance (RPR) model, which combines ingredients
of Regge phenomenology with elements of a typical iso-
bar approach. The latter belongs to the class of tree-level
effective Lagrangian models. In the RPR framework, the
background amplitude is constrained by optimizing the
adjustable parameters of a Reggeized background model
to data obtained at sufficiently high energies so that the
contribution of individual resonances is projected to be-
come marginal [9, 11].

Even with a properly constrained background contri-
bution, the identification of the contributing resonances
to p(γ,K+)Λ remains a precarious task. Adding res-

∗Jan.Ryckebusch@UGent.be

onances increases the amount of adjustable parameters
and improves the quality of the fit to the data. It stands
to reason that one should not add more resonances than
strictly necessary, in order to obtain a good model. One
of the guiding principles for model selection is Occam’s
razor [12]. This principle dictates that if one has to
choose between a simple and a more complex model, all
else being equal, the simpler one should be preferred. In
a realistic situation, however, all else is not equal, and
this guiding principle should somehow be translated to
a quantitative measure which balances between model
complexity on the one hand and accuracy on the other
hand. Such a measure can be derived from first princi-
ples using Bayesian inference. This measure, called the
Bayesian evidence Z, evaluates the overall performance
of the model while penalizing for excessive complexity.

In recent years, much effort has been directed to-
wards a more comprehensive description of both elec-
tromagnetic and hadronic meson production reactions
from the nucleon within coupled-channels frameworks
[3, 10, 13]. Ideally, one would like to apply Bayesian in-
ference to a state-of-the-art dynamical coupled-channels
model. However, due to the multidimensional integrals
involved in the computation of the Bayesian evidence,
one is stricken by the curse of dimensionality: at worst,
the computational cost increases exponentially with the
number of adjustable parameters. Even if the number of
adjustable parameters is kept in check, the sheer num-
ber of model evaluations required for a Monte Carlo in-
tegration calls for a realistic model of modest complex-
ity. In this work, we will apply Bayesian inference to
the single-channel RPR framework for kaon photopro-
duction. We will consider several variants of the RPR
model and use Bayesian inference to select the most prob-
able model given the world’s data. The RPR model has
been shown to efficiently describe the p(γ,K+)Λ observ-
ables over a broad energy range [9, 14, 15]. The RPR
framework, as it will be used in this work, has a mod-
est number of adjustable parameters. The background in
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the RPR framework consists of Reggeized K+(494) and
K∗+(892) exchange in the t channel. With these assump-
tions, the background part has two unknown phases and
three unknown coupling constants. In addition to the
background, the RPR model incorporates N∗ in the s
channel. The improved version of the RPR model, as
it will be introduced in this work, uses consistent N∗

interaction Lagrangians and this is an enormous asset
in order to reduce the number of coupling strengths [16].
For each added N∗ one introduces one unknown coupling
constant for J = 1

2 and two unknown coupling constants

for J ≥ 3
2 .

The outline of the remainder of this paper is as fol-
lows. In Section IIA the observables and kinematics of
the N(γ,K)Y and N(e, e′K)Y reactions are introduced.
In Section II B we summarize the underlying assump-
tions of the Regge-plus-resonance formalism used to de-
scribe these reactions. Section III discusses a Bayesian
approach to model selection. The computation of the
Bayesian evidence is a high-dimensional problem which
requires dedicated numerical methods and strategies. In
Section IIID we provide details of these methods. A
proof of principle of the adopted numerical strategy is
described in Section III E. Bayesian methodology is ap-
plied to determine the Reggeized background amplitude
in Section IV. In Section V, we determine the optimal
resonant content for p(γ,K+)Λ by evaluating a set of
11 candidate resonances. For each of them we compute
the relative resonance probability and the results are pre-
sented in Section VC. The results for the various pho-
toproduction observables and predictions for electropro-
duction observables are presented in Sections VD and
VE. A conclusion is given in Section VI.

II. REGGE-PLUS-RESONANCE FORMALISM

A. Observables and kinematics

1. Photoproduction

The unpolarized cross section for N(γ,K)Y has the
following expression

dσ =

∫
1

νrel(2ω)(2EN )

d3pK

(2π)
3

1

2EK

d3pY

(2π)
3

1

2EY
(2π)

4

×δ(4) (pN + k − pK − pY )
1

4

∑

λγ ,λN ,λY

∣∣∣MλNλY

λγ

∣∣∣
2

, (1)

where νrel is the relative photon-nucleon energy, the

pN (EN , ~pN ), k(ω,~k), pK(EK , ~pK), and pY (EY , ~pY ) are
the four-momenta of the nucleon, photon, kaon, and hy-
peron. The λγ , λN and λY denote the photon, nucleon,
and hyperon polarization.

In the center-of-momentum (c.m.) frame, the particles’

four-momenta are defined as follows:

k∗ = (ω∗,k∗) p∗K = (E∗
K ,p

∗
K)

p∗N = (E∗
N ,−k∗) p∗Y = (E∗

Y ,p
∗
Y ) = (E∗

Y ,−p∗
K). (2)

The z-axis is the propagation direction of the incident
photon, and the xz-plane is the reaction plane.

Inserting the c.m. momenta of Eq. (2) into Eq. (1)
yields the expression for the unpolarized differential cross

section at fixed
(
s =W 2 = (k∗ + p∗N )

2
, t = (p∗K − k∗)2

)

dσ

dΩ∗
K

=
1

64π2

|p∗
K |
ω∗

1

(E∗
N + ω∗)2

×1

4

∑

λγ ,λN ,λY

∣∣∣MλNλY

λγ

∣∣∣
2

, (3)

where the transition amplitude can be written as the
product of the photon polarization vector εµλγ

and the

hadronic current MλNλY

λγ
= εµλγ

JλNλY
µ . The hadronic

current adopts the form

JλNλY
µ = uYλY

(pY ) Tµ uNλN
(pN ) , (4)

where uYλY
(pY ) and uNλN

(pN ) are the hyperon and nu-
cleon spinors.

The target (T ) and recoil (P ) asymmetries are defined
as

T, P =
dσλX=+ 1

2 − dσλX=− 1
2

dσλX=+ 1
2 + dσλX=− 1

2

, (5)

where dσ ≡ dσ
dΩ∗

K

, and λX is the nucleon and hyperon

spin projection on the y-axis, respectively. The beam
asymmetry Σ follows the definition

Σ =
dσ⊥ − dσ‖

2dσ
, (6)

where σ⊥(σ‖) refers to a linear photon polarization along
the y(x) axis.

Double polarization observables are defined as

dσ(++) + dσ(−−) − dσ(+−) − dσ(−+)

dσ(++) + dσ(−−) + dσ(+−) + dσ(−+)
, (7)

where (+−) is a shorthand notation for (λA = +sA, λB =
−sB), the polarizations of the particles A and B that
determine the asymmetry. Beam-recoil p(γ,K+)Λ dou-
ble polarization data are available for circularly (Cx, Cz)
and obliquely (Ox, Oz) polarized photon beams. These
are more commonly expressed in the “primed” reference
frame, which is rotated about the y = y′-axis over an an-
gle θ∗K , with θ∗K the angle between the incoming photon
and the outgoing kaon momentum in the c.m. frame.
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2. Electroproduction

For incoming and outgoing electron four-momenta

k1(ǫ1,~k1) and k2(ǫ2, ~k2) the electroproduction cross sec-
tion in the one-photon exchange approximation (OPEA)
has the following form

dσ =

∫
1

νrel2ǫ12EN

d3pY

(2π)
3

1

2EY

d3k2

(2π)
3

1

2ǫ2

d3pK

(2π)
3

1

2EK

× (2π)
4
δ(4) (pN + k1 − pK − pY − k2)

1

4

∑

λi

|Tλi
|2 ,

(8)

where the hadronic part of the reaction is evaluated in
the γ∗N c.m. frame and the leptonic part in the labo-
ratory frame

(
plabN ≡ (mN ,0)

)
. This yields the following

expression for the unpolarized differential cross section

d3σ

dǫlab2 dΩlab
2 dΩ∗

K

=
1

32(2π)5
1

mN

|p∗
K |
W

ǫlab2

ǫlab1

×1

4

∑

λ1λ2λNλY

∣∣∣T λ1λ2

λNλY

∣∣∣
2

, (9)

where ǫlab1 (ǫlab2 ) is the incoming (outgoing) electron en-
ergy in the lab frame and W is the invariant energy.

In the transition amplitude T λ1λ2

λNλY
, λ1 and λ2 are the

polarizations (for high-energy electrons equal to the he-
licities) of the incoming and outgoing electron. This am-
plitude has a leptonic and a hadronic current, connected
by a photon propagator

T λ1λ2

λNλY
= e lλ1λ2

µ

(−gµν
k2

)
JλNλY
ν , (10)

where the hadronic current JλNλY
ν is defined in Eq. (4),

lλ1λ2
µ is the leptonic current, and k2 = (k2−k1)2 = −Q2.

Therefore, T λ1λ2

λNλY
can be linked toMλNλY

λγ
and one can

write

T λ1λ2

λNλY
=

e

Q2

∑

λγ=−1,0,+1

(−1)λγLλ1λ2∗
λγ

MλNλY

λγ
, (11)

where the photon propagator was rewritten using the re-
lation

∑

λγ=0,±1

(−1)
λγ ε∗µλγ

ενλγ
= gµν +

kµkν

Q2
, (12)

and Q2 = −k2 is the photon virtuality.
The tensor Lλ1λ2

λγ
is defined as a contraction between

the photon polarization four-vector and the leptonic cur-
rent

Lλ1λ2∗
λγ

= lλ1λ2

µ ε∗µλγ
. (13)

Using Eq. (11) in the OPEA, one can conveniently sep-
arate the quantum electrodynamics (QED) part from the

hadronic part, by defining the two tensors

Lλγλγ
′ =

∑

λ1,λ2

(−1)λγ+λγ
′

Lλ1λ2

λγ

(
Lλ1λ2

λγ

)†
, (14)

Hλγλγ
′ =

∑

λN ,λY

MλNλY

λγ

(
MλNλY

λγ
′

)†
. (15)

This allows one to replace the squared transition ampli-
tude in Eq. (9) by

∑

λ1,λ2,λN ,λY

∣∣∣T λ1λ2

λNλY

∣∣∣
2

=
e2

Q4

∑

λγ ,λγ
′=0,±1

Lλγλγ
′Hλγλγ

′ .

(16)

After this replacement, the separated cross sections or
structure functions emerge. They do not depend on the
kaon azimuthal angle φ∗K and are defined as

dσT
dΩ∗

K

= χ (H1,1 +H−1,−1) , (17)

dσL
dΩ∗

K

= 2χH0,0 , (18)

dσTT

dΩ∗
K

= −χ (H1,−1 +H−1,1) , (19)

dσLT

dΩ∗
K

= −χ (H0,1 +H1,0 −H−1,0 −H0,−1) , (20)

where χ = 1
(16π)2WmN

|p∗

K |
(

ωlab− Q2

2mN

) .

Expressing Eq. (9) in terms of the separated cross sec-
tions, we obtain

d3σ

dǫlab2 dΩlab
2 dΩ∗

K

=Γ

(
dσT
dΩ∗

K

+ ε
dσL
dΩ∗

K

+ ε
dσTT

dΩ∗
K

cos (2φ∗K)

+
√
ε(1 + ε)

dσLT

dΩ∗
K

cos (φ∗K)

)
, (21)

in which the dependence on φ∗K has been made explicit.
The virtual photon flux

Γ =
α

2π2

ǫlab2

ǫlab1

(
ωlab − Q2

2mN

)

Q2

1

1− ε
, (22)

and the virtual photon (transverse) polarization

ε =

(
1 +

2 |klab|2
Q2

tan2
θe
2

)−1

, (23)

are defined in terms of the electron scattering angle θe
and the virtual photon three-momentum in the lab frame
klab.

B. Regge-plus-resonance formalism

This section deals with the dynamics of kaon produc-
tion as described by the Regge-plus-resonance (RPR)
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framework introduced in Refs. [9, 14, 17, 18]. The RPR
model conjoins the economic description of high-energy
data by means of Regge phenomenology with a single-
channel hadrodynamical approach in the resonance re-
gion. We have stressed the importance of the background
diagrams in KY photoproduction for a correct determi-
nation of the resonance parameters. In a isobar model,
in which the amplitude is described as a sum of tree-level
s, t and u-channel diagrams [1, 19], the determination of
the background is highly model dependent [20]. Another
issue with isobar models is there violation of the Froissart
bound [21–23]. Indeed, the background amplitude of iso-
bar models displays a power-law sα dependence at large
energies where the exponent α depends linearly on the
spin of the exchanged particles [21]. The RPR approach
overcomes these shortcomings by describing the nonres-
onant contributions to the total amplitude by means of
Regge theory [9].

1. Regge background

Guidal, Laget and Vanderhaeghen showed that the ex-
change of a limited number of Regge trajectories in the
t-channel reproduces the high-energy, forward-angle data
of both photoproduction [24] and electroproduction [25–
27] of pions and kaons off the nucleon. Along those
lines, the RPR background is obtained by Reggeizing
the first materializations of the lightest kaon trajectories,
K+(494) and K∗+(892). The Reggeized amplitudes are
obtained by replacing the t-channel Feynman propagator
by a Regge one with the appropriate signature.

The odd-spin and even-spin kaon trajectories are ob-
served to coincide. The measured t-dependence of the
dσ/dΩ∗

K at large s does not display any pronounced
structure, and this gives additional support to the strong
degeneracy of the trajectories. Therefore, the Regge
propagator reduces to

PK
Regge(s, t) =

(
s

s0

)αK(t)
πα′

K

sin (παK(t))

{
1

e−iπαK(t)

}

× 1

Γ (1 + αK(t))
, (24)

where α′
K is the slope of the trajectory and the scale

factor s0 is fixed at 1 GeV2.

The relative sign between the odd-spin and even-spin
propagators determines the phase (1 or e−iπαK(t)) of
PK
Regge and cannot be determined from first principles.

The issue of determining this phase by comparing model
predictions with data will be addressed in Section IV.

For vector mesons, we obtain the proper pole positions
by subtracting the spin from the trajectories in the Regge
propagator. For the K∗+(892), the resulting propagator

is

PK∗

Regge(s, t) =

(
s

s0

)αK∗ (t)−α0 πα′
K∗

sin (π(αK∗(t)− α0))

×
{

1
e−iπ(αK∗ (t)−α0)

}
1

Γ (1 + α(t)K∗ − α0)
, (25)

where α0 = 1. The employed parametrization for the
K+(494) and K∗+(892) trajectories is given by [20]

αK(t) = 0.70 GeV−2
(
t−m2

K

)
, (26)

αK∗(t) = 1 + 0.85 GeV−2
(
t−m2

K∗

)
. (27)

2. Gauge restoration

The K+(494) exchange diagram in the t-channel
breaks gauge invariance. One way of restoring it is to
add the electric part of the s-channel Born-diagram with
the same coupling constant as in the K+ exchange dia-
gram. This procedure is also applicable for a Reggeized
t-channel. It turns out to be essential for a proper de-
scription of the forward-angle differential cross sections
and of the beam asymmetries in charged pion photopro-
duction [24].
For p(γ,K+)Λ, the gauge-restoring s-channel contri-

bution is pivotal to account for the plateau in the differ-
ential cross sections at very forward kaon angles or small
|t| [24]. The differential cross section for p(γ,K+)Λ is
shown in Fig. 1.
Along similar lines, gauge invariance for electroproduc-

tion can be restored by adopting the sameQ2-dependence
in both the electromagnetic coupling of the K+ exchange
diagram and the electric part of the s-channel Born term.
In practice, this implies that a monopole kaon form fac-
tor is assigned to the electric part of the proton exchange
diagram [28]. This procedure has been shown to result
in a reasonable prediction of the σL/σT ratio [26].

3. Adding resonance contributions

While Regge theory provides a fair description of me-
son photoproduction observables at high energies and
forward angles, there are arguments that it can also
be applied in the resonance region. Indeed, the notion
of reggeon-resonance duality states that the amplitude
should be reproduced by summing over all diagrams of a
certain channel, be it the s, u or t-channel [29].
Even though the smooth s dependence of the Regge

amplitude does not allow one to describe the structures
in the resonance region, the global trends can be fairly
reproduced [26]. Furthermore, the forward peaking of
the differential cross sections supports large contributions
from the nonresonant t-channel background.

Inspired by these observations, Corthals et al. [9, 14,
17, 18] developed a hybrid model for KY photoproduc-
tion dubbed Regge-plus-resonance (RPR). We will refer
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to this model as RPR-2007. The RPR-2007 model uses
amplitudes which consist of s-channel resonances and
Reggeized t-channel background terms. This approach
has also been successfully applied to the electromagnetic
production of ππ [30], as well as η and η′ [31].

The Regge background amplitude of RPR-2007 is con-
strained to above-resonance (

√
s > 3 GeV), forward-

angle (cos θ∗K > 0.35) data. By extrapolating the re-
sulting amplitude to smaller

√
s, one gets a parameter-

free background for the resonance region. The s-channel
resonances are coherently added to the background am-
plitude, resulting in a hybrid amplitude for the resonance
and high-s region. RPR-2007 describes the data for
forward-angle photo- and electroproduction of K+Λ and
K+Σ0 [9, 14, 18]. With regard to the N∗’s, it includes
the established PDG resonances S11(1650), P11(1710),
P13(1720), the less established P13(1900), as well as the
missing D13(1900). The resonance parameters of the
RPR-2007 model are constrained to the cos θ∗K > 0.35
data.

0.1

0.2

0.3

0.4

0.5

 = 1575 MeV
lab

ω

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

 = 2175 MeV
lab

ω

0.1

0.2

0.3

0.4

0.5

 = 1875 MeV
lab

ω

CLAS - Bradford 2006

SAPHIR - Glander 2004

LEPS - Hicks 2007

CLAS - McCracken 2009

RPR-2007

*

Kθcos

b
/s

r)
µ

 (
Ω

/d
σ

d

Figure 1: (color online). The p(γ,K+)Λ differential cross sec-
tion as a function of cos θ∗K for the laboratory photon-energy
bins ωlab = 1575 MeV, 1875 MeV and 2175 MeV. The line
denotes the RPR-2007 result and the data are from refer-
ences [32–35]. The RPR-2007 model is optimized against the
cos θ∗K > 0.35 data (indicated with the arrow).

In Fig. 1 we confront the predictions of the RPR-2007
model with a selection of differential cross-section data.
At forward angles the data are nicely described, in stark
contrast to the situation at backward kaon angles. This
failure of the model at backward angles can be largely
attributed to the adopted description for the spin-3/2
resonance diagrams in RPR-2007 [16]. Obviously, un-
physical bumps at backward angles manifest themselves
and the situation worsens with increasing lab photon en-
ergy ωlab. In the forthcoming Section it is pointed out
how the introduction of consistent high-spin interactions
can remedy this situation.

4. Consistent high-spin interactions

In the RPR-2007 framework, spin-3/2 resonances
are described by the Rarita-Schwinger formalism [36].
Rarita-Schwinger fields, however, contain lower-spin
components, which are not physical. In the noninter-
acting Rarita-Schwinger theory these unphysical compo-
nents are eliminated by imposing the so-called “Rarita-
Schwinger constraints”. These constraints, however, do
not prevent the unphysical components from participat-
ing in the interacting theory. The spurious lower-spin
components generate non-localities, violate causality [37],
and must therefore be avoided.
The spin-3/2 interaction Lagrangians that are used in

the RPR-2007 model are inconsistent since they allow for
the propagation of the unphysical spin-1/2 modes of the
Rarita-Schwinger field. These Lagrangians involve the
coupling of the spin-3/2 Rarita-Schwinger field through
the so-called “off-shell tensor”, which contains a free pa-
rameter. This off-shell parameter is associated with the
unphysical contribution to the spin-3/2 interaction. The
spin-3/2 resonance exchange diagrams of the RPR-2007
model contain three off-shell parameters.
In Ref. [16] a consistent theory for the interaction of

high-spin fermions was devised. There it was shown that
an interaction theory that is invariant under the so-called
“unconstrained Rarita-Schwinger gauge” is consequently
a consistent theory, i.e. the unphysical components of the
Rarita-Schwinger field decouple from a gauge-invariant
interaction.
In the updated version of the RPR framework, dubbed

RPR-2011, the exchange of spin-3/2 resonances is de-
scribed by the consistent interaction theory of Ref. [16].
In addition, the RPR model has been extended to include
the exchange of spin-5/2 resonances. The expressions for
the KY R(3/2) and KY R(5/2) interaction Lagrangians
read [16]

LKYR(3/2) =
ifKYR(3/2)

m2
K

Ψ
µ

RΓψY ∂µφK +H.c., (28)

LKYR(5/2) = −fKYR(5/2)

m4
K

Ψ
µν

R Γ′ψY ∂µ∂νφK +H.c. (29)

Here, ψY and φK represent the hyperon spinor and the
kaon field. The factors fKYR(3/2) and fKYR(5/2) are
strong coupling constants. Further, Γ = 1,Γ′ = γ5 for
even parity resonances and Γ = γ5,Γ

′ = 1 for odd parity
resonances. The explicitly gauge-invariant fields Ψµ

R and
Ψµν

R describe the consistent spin-3/2 and the spin-5/2
resonances and read

Ψµ
R = i(∂µγνψ

ν
R − /∂ψµ

R), (30)

Ψµν
R = ∂µ∂λψ

νλ
R + ∂ν∂λψ

µλ
R − ∂µ∂νγλγρψ

λρ
R − ∂2ψµν

R ,
(31)

where ψµ
R and ψµν

R denote the spin-3/2 and spin-5/2
Rarita-Schwinger fields. The interaction Lagrangians for
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the γpR(3/2) and γpR(5/2) couplings are given by

L(1)
γpR(3/2) =

ieκ
(1)
pR(3/2)

4m2
p

Ψ
µ

RΓ
′γνψpFνµ +H.c., (32)

L(2)
γpR(3/2) = −

eκ
(2)
pR(3/2)

8m3
p

Ψ
µ

RΓ
′∂νψpFνµ +H.c., (33)

and

L(1)
γpR(5/2) = −

eκ
(1)
pR(5/2)

16m4
p

Ψ
µν

R Γγλ∂µψpFλµ +H.c., (34)

L(2)
γpR(5/2) = −

ieκ
(2)
pR(5/2)

32m5
p

Ψ
µν

R Γ∂λ∂µψpFλµ +H.c. (35)

The electromagnetic tensor Fµν contains the photon field
Aµ and is given by Fµν = ∂µAν −∂νAµ. Further, ψp rep-

resents the proton spinor and κ
(1)
pR(3/2), κ

(2)
pR(3/2), κ

(1)
pR(5/2),

and κ
(2)
pR(5/2) are electromagnetic coupling constants.

The RPR-2007 model employs a Gaussian hadronic
form factor (HFF) to regularize the transition amplitude
beyond a certain energy scale. From the expressions (30)
and (31) for the explicitly gauge-invariant fields, it is seen
that the power of the momentum dependence of a consis-
tent interaction rises with the spin of the exchanged par-
ticle. In Ref. [16] it is shown that unlike a Gaussian HFF
a “multidipole-Gauss form factor” is capable of suppress-
ing this momentum dependence. The functional form of
this HFF reads

FmG(s;mR,ΛR,ΓR, JR) = exp

(
− (s−m2

R)
2

Λ4
R

)

×
(

m2
RΓ̃

2
R(JR)

(s−m2
R)

2
+m2

RΓ̃
2
R(JR)

)JR− 1
2

, (36)

where Γ̃R(JR) is defined as

Γ̃R(JR) =
ΓR√
2

1
2JR

−1
. (37)

In this expression, mR,ΛR,ΓR, and JR denote the mass,
the cut-off energy, the decay width, and the spin of the
exchanged resonance. For JR = 1/2, Eq. (36) reduces to
the familiar Gaussian HFF. The RPR-2011 model uses
the multidipole-Gauss HFF of Eq. (36) in order to regu-
larize the high-energy behavior of the consistent spin-3/2
and spin-5/2 transition amplitudes. We use one common
cut-off ΛR for all resonances.

III. BAYESIAN INFERENCE

In this Section we outline how Bayesian inference can
be used to constrain a framework like RPR against a set
of data.

Table I: Jeffreys’ scale for the natural logarithms of evidence
ratios ∆ lnZ = ln ZA

ZB
[38, 39]. It provides a translation be-

tween the evidence ratio or Bayes factor and a qualitative as-
sessment of the premise that model A is more probable than
model B.

|∆ lnZ| < 1 Not worth more than a bare mention
1 < |∆ lnZ| < 2.5 Significant

2.5 < |∆ lnZ| < 5 Strong to very strong
5 < |∆ lnZ| Decisive

A. Model comparison

Using Bayes’ theorem, P (A|B)P (B) = P (B|A)P (A),
one can straightforwardly derive a quantity of interest
for model comparison: the probability P (M | {dk}) of a
model M , given a set of experimental data {dk}

P (M | {dk}) =
P ({dk} |M)P (M)

P ({dk})
. (38)

The quantity P ({dk} |M) is referred to as the marginal
likelihood or the Bayesian evidence (Z). If the model
M can have different outcomes, which are parametrized
with a set of numbers αM , marginalization yields

Z ≡ P ({dk} |M) =

∫
P ({dk} ,αM |M) dαM , (39)

=

∫
L(αM )π(αM ) dαM . (40)

This expression states that the Bayesian evidence is the
integral of the product of two distributions: (i) the prob-
ability of the dataset {dk}, given the set of parameters
αM and the modelM , and (ii) the probability of the set
of parameters αM , given the model M . The first fac-
tor, P ({dk} |αM ,M), can be identified as the likelihood
function, L(αM ). Any prior knowledge of the parame-
ters’ probability distribution before considering the data
{dk} is contained in the second factor P (αM |M), which
is referred to as the prior distribution π(αM ).

The quantity of interest for model comparison is the
relative probability of a model MA versus a model MB ,
given the available experimental data {dk}. By applying
Bayes’ theorem (38), the evidence ratio or Bayes factor
readily emerges from the expression for this probability
ratio:

P (MA| {dk})
P (MB | {dk})

=
P ({dk} |MA)

P ({dk} |MB)

P (MA)

P (MB)
(41)

=
ZA
ZB

forP (MA) = P (MB). (42)

The natural logarithm of the evidence ratio can be inter-
preted qualitatively with the aid of Jeffreys’ scale [38, 39],
given in Table I.
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B. Probability of a resonance

Bayesian inference can also be used to extract the phys-
ical properties from the data. For example, does the fit
to a set of photoproduction data provide evidence for
the introduction of a hitherto unknown resonance? We
present a procedure to calculate the relative probability
of a certain nucleon resonance within a model for KY
production, such as the RPR model. This procedure will
help fill the need for an unbiased quantity that expresses
the need for introducing an unknown resonance.
Note that all probabilities mentioned in this subsection

are implicitly conditional on a given framework. The de-
pendence on the RPR framework MRPR is implied from
now on, but will be omitted for the sake of clarity, i.e.
P (X) ≡ P (X | MRPR). One can write the probability
of a given resonance R, given experimental data {dk} as

P (R | {dk}) =
∑

Mi

P (R,Mi | {dk}) , (43)

=
∑

Mi

P (R |Mi, {dk})P (Mi | {dk}) . (44)

The conditional probability P (R |Mi, {dk}) simply re-
duces to one if the resonance R is included in the set of
resonances Si used in the model variantMi, and zero oth-
erwise. Therefore, the summation covers only a limited
set of models,

P (R | {dk}) =
∑

Mi|R∈Si

P (Mi | {dk}) , (45)

=
∑

Mi|R∈Si

P ({dk} |Mi)
P (Mi)

P ({dk})
. (46)

Applying Bayes’ theorem, one finds that the evidence
P ({dk} |Mi) appears in equation (46). Assuming that
there is no preference for any specific model before com-

paring it to data, the factor P (Mi)
P ({dk}) is equal for all

model variants i. Therefore, the factor can be omitted
in all subsequent calculations for the probability ratios.
This again reduces the calculation of relative probabili-
ties P (R1 | {dk}) /P (R2 | {dk}) to the evaluation of the
evidence integrals of the form of Eq. 40.

C. Likelihood function

Experimental data are usually reported to have nor-
mally distributed errors and to be independent. The ad-
dition of N squared normally distributed, independent
random variables with mean 0 and variance 1 results in
a variable X =

∑N
i=1 x

2
i that obeys a chi-square distri-

bution [40, 41]

fN (X) =
XN/2−1e−X/2

2N/2Γ(N2 )
. (47)

The quantity χ2(αM ) is defined as

χ2(αM ) =

N∑

i=1

(di − fi(αM ))
2

σ2
i

, (48)

where N is the total number of data points, σi is the error
on data point di, and fi(αM ) is the corresponding model
prediction. The quantity χ2(αM ) represents a sum of
squares of normally distributed variables and is expected
to obey the chi-square distribution of Eq. (47).
With a likelihood function of the form (47), we get the

log-likelihood

lnL(αM ) =

(
k

2
− 1

)
lnχ2(αM )− k

2
ln 2

− ln Γ

(
k

2

)
− χ2(αM )

2
, (49)

where k is the number of degrees of freedom: this is equal
to the number of data points N minus the number of
free parameters. This correction is necessary because by
constraining the free parameters using the data, one ef-
fectively decreases the number of degrees of freedom.
The χ2(αM ) and L(αM ) are unknown functions of the

model parameters αM and the numerical computation of
the Bayesian evidence Z with the aid of the Eq. (40) in-
volves a multidimensional integral

∫
dαM over the full

parameter space. This is highly nontrivial from the nu-
merical point of view. In the forthcoming section IIID
we outline the adopted strategy in order to compute the
Bayesian evidence.

D. Numerical computation of the Bayesian

evidence

For low-dimensional problems (d . 10), the Nested
Sampling (NS) Monte Carlo algorithm by Skilling [42, 43]
provides an efficient means to compute the Bayesian ev-
idence. The posterior distribution P (αM | {dk} ,M) can
also be computed by this algorithm. We employ this
method to determine the Reggeized background ampli-
tude of the RPR-2011 model [44]. The results of this
analysis are reported in Section IV.
In high-dimensional problems, NS has been criticized

for having a sharply decreasing acceptance rate as the
likelihood constraint becomes more exclusive [45]. There-
fore, high-dimensional problems call for an alternative
numerical technique. If there is no need to determine the
posterior distribution, or if the parameters are so-called
“nuisance parameters”, whose value are of no interest,
other Monte-Carlo integration methods can be employed.
One such method is the vegas algorithm by Lepage [46].
vegas uses importance sampling: the points are sam-
pled from a proposal distribution which approximates
the normalized integrand. The proposal distribution is
discretized in the form of an adaptive grid, of which each
cell is sampled with an equal probability. This idea is
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Figure 2: (color online). The likelihood function L(α) (green
surface) and the proposal distribution determined by vegas,
represented by a grid (red lines) with a number of bins per
dimension (here 8).

illustrated in Fig. 2. The vegas algorithm is most suit-
able if the integrand L(αM ) can be approximated by a
separable function.

We have adapted the GNU Scientific Library (GSL)
implementation [47] of the vegas algorithm to the in-
tegrand of the evidence integral, which can assume very
small values. This adapted vegas method, which we will
refer to as log-vegas, requires a function which returns
the natural logarithm of the integrand. The integral is
computed while ensuring minimal loss of numerical accu-
racy that would occur by exponentiation of this function.
This measure is indispensable for the integration of small
quantities such as a likelihood.

Like any stochastic integration method, the log-vegas
algorithm is apt to miss a highly localized maximum.
We remedy this by locating the maximum with a genetic
algorithm (GA) before performing the integration. We
combine a rough search in the full parameter space using
a GA and a subsequent fine search in a selected part of
the parameter space using the gradient-based methods
of minuit, the optimization module of the root library
[48]. This strategy has been successfully applied to a
precise determination of resonance parameters by Ireland
et al. [2].

The next step is to reduce the integration space to the
volume around the peak, with a range of the order of
three standard deviations in each dimension. The stan-
dard deviation around the maximum can be calculated
using the minos routine of minuit [48].

The first question that springs to mind is whether we
do not risk underestimating the evidence by limiting the
integration domain to the peak volume. We have ad-

dressed this concern by applying this method to a toy
example, which is detailed in the following Section.

E. Toy example

As a proof of principle, we apply the methods outlined
in Section IIID to a tractable and realistic-sized problem.
To this end, we use an event described by the function
md(x) which is expressed in terms of a sum of d Legendre
polynomials:

md(x) =

d−1∑

l=0

alPl(x) x ∈ [−1, 1]. (50)

The parameters al(l = 0, . . . , d − 1) are uniformly dis-
tributed in in [−10, 10] and randomly generated. A mock
data set with Gaussian noise is generated from md(x).
The effectiveness of the GA is assessed by testing whether
the values al can be determined from the mock data. In
the next step it is investigated whether Bayesian infer-
ence can determine which model was used to generate
a particular set of mock data. In essence, this amounts
to use Bayesian inference to find the dimension d of the
model from which the mock data are generated.
We investigate the performance of a GA for models

with a complexity ranging from d = 1 to d = 12. We
consider 4000 data points, a size comparable to that of
the world’s K+Λ photoproduction data set. For each
data set, we attempt to determine the parameters of the
underlying model. We scale the population size in the
GA linearly with d. Due to its random character, con-
vergence times can vary greatly between the different GA
runs. To account for this, we have repeated the GA 40
times for each value of d, using a different, random set
of parameters for each run. We have found that con-
vergence occurs for all trial runs, and that the original
parameters are reproduced by the GA with an error per
parameter of the order of 0.5%.
Can one determine the model which best describes a

given data set from a number of model variants? This
key question can be rigorously addressed using Bayesian
inference. To illustrate the potential of this method, we
generate mock data using the toy model of Eq. (50) at a
fixed d. In a next step, we try to determine the under-
lying model (including its dimension d) by calculating
the Bayesian evidences for different trial models using
the log-vegas method. This procedure is tested for data
sets generated by models of different complexity: from
d = 1 up to d = 12.
The results of the log-vegas integrations over the en-

tire parameter space are compared to those limited to
the peak volume in Fig. 3. We find that the maximum
evidence value corresponds to the correct model up to at
least d = 12.
Two striking conclusions can be drawn from Fig. 3. A

first observation is that in the low-dimensional problems
(d . 10), where the log-vegas result can be considered
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Figure 3: (color online). The − lnZ values calculated with the log-vegas algorithm (red squares) and with a combined
GA+minuit+log-vegas integration (blue diamonds), for different model dimensions. Each box corresponds with a model with
dimension d, indicated with the grey band. The mock data set has 100 points.

accurate, the two methods provide a comparable value
for the computed integrals. This means that the like-
lihood in the parameter space outside the peak region
is small as compared to the maximum likelihood. Sec-
ond, the results for high-dimensional models (d & 10)
indicate that the bulk of the evidence is somehow over-
looked by the global log-vegas integration. The global
integrals for high-dimensional problems can be orders of
magnitudes smaller than those that cover only the re-
gion around the peak. This indicates that the search
space for the log-vegas integration is too large in these
high-dimensional problems, and a more dedicated search
strategy is required. The results of Fig. 3 indicate that a
combined GA+minuit+log-vegas integration strategy
is apt to the task of dealing with high-dimensional prob-
lems.

IV. BACKGROUND SELECTION IN THE RPR

MODEL

In this section, we apply Bayesian inference to select
the optimum model variant for the RPR background am-
plitude.

A. Parameters of the Reggeized background model

The unknown phases in Eqs. (24) and (25) give rise to
several model candidates. The possibility of the K+ and
K∗+ trajectories having a constant phase is excluded,
as this gives rise to a recoil asymmetry P = 0, which
disagrees with the data. In the forthcoming, the re-
maining three possibilities, namely (rotating K+ /rotat-
ing K∗+), (rotating K+/constant K∗+), and (constant
K+/rotatingK∗+), will be referrred as RR, RC, and CR.

Apart from these variants, the background model has
three continuous parameters proportional to the product
of the strong and electromagnetic couplings,

egK+Λp , eGv,t
K∗+ = e gv,tK∗+ Λp κK+K∗+ . (51)

Here, κK+K∗+ is the transition magnetic moment for
K∗+(892) → γK+(494) decay. Further, the parameters
feature the strong coupling constant gK+Λp of the K+

trajectory and the tensor and vector couplings gv,tK∗+ Λp

of the K∗+ trajectory.

1. Likelihood distribution and data

As discussed in Section III C, the likelihood distribu-
tion of the model parameters with regard to the data
is the chi-square distribution of Eq. (47). Recently, the
CLAS collaboration published K+Λ [35] and K+Σ0 [49]
photoproduction data, featuring high-statistics differen-
tial cross-sections and recoil polarizations. The data cov-
ers nearly the full angular range and has 1.620 GeV
. W . 2.840 GeV. The broad energy range makes it
a great testing ground for both isobar, Regge and hybrid
models such as RPR. Indeed, it includes measurements
taken at energies up to W = 2.840 GeV, which is well
above the resonance region.
Sibirtsev et al. [11] demonstrated that the p(γ, π+)n

and n(γ, π−)p reactions display Regge-like behavior for
invariant mass energies as low as 2.6 GeV. Further-
more, Schumacher and Sargsian [50] pointed out that
in the small-|t| limit, the differential cross section for
p(γ,K+)Λ exhibits Regge-like scaling behavior ∝ s−2

down to W ≈ 2.3 GeV. One would therefore expect that
a Regge background model optimized to the W > 3 GeV
SLAC and DESY data [44], provides a fair description
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of the W > 2.6 GeV CLAS data. However, this is not
the case. Fig. 4 shows the W > 2.6 GeV K+Λ photopro-
duction data, as well as the prediction of the Reggeized
background model optimized to the W > 3 GeV data.
Clearly, the Regge model overshoots the CLAS data by
at least a factor of 2. There is an obvious discontinuity
in theW dependence between the SLAC and CLAS data
at cos θ∗K ≈ 0.865, 0.8, and 0.7.
Dey et al. [52] showed that a small set of p(γ,K+)Λ

data from CEA [53] is inconsistent with the CLAS data.
They find similar discrepancies between new CLAS data
and old high-energy data from SLAC, DESY and CEA
for other pseudoscalar meson production reactions. They
conclude that there is a persistent normalization is-
sue in the old high-energy differential cross-section data
for a number of reactions, including p(γ,K+)Λ and
p(γ,K+)Σ0. The observations of Fig. 4 add support to
these findings.
Because of these observations, we opt to use the data

from CLAS, which is consistent with other differen-
tial cross-section measurements in the resonance region
[34, 54], in order to constrain the adjustable parame-
ters in the Reggeized background model. We employ
the statistical methods described in Ref. [44], using the
2.6 GeV < W < 3 GeV CLAS data to compute the
likelihood function. Below this energy region, resonance
contributions become more important [11]. Because the
validity of Regge theory is limited to small |t|, we use
cos θ∗K > 0.35 data to constrain the background parame-
ters. With these criteria, we retain 132 differential cross
sections and 130 recoil polarization P . This is over a fac-
tor of four more data than for the combined SLAC/DESY
data used in the analysis reported in Ref. [44].

2. Prior distribution

We opt to use a uniform prior distribution U for the
coupling constants of Eq. (51). Under conditions of
highly concentrated likelihood, compared to which the
prior distribution varies mildly, the likelihood dominates
the shape of the posterior distribution [42]. Accordingly,
the evidence calculations will not be largely affected by
the choice with regard to the shape of the prior distribu-
tion. A sensitivity analysis will verify this assumption.
The assumption that SU(3) symmetry is broken at the

20% level yields the following prior ranges for gK+Λp [55,
56]

−4.5 ≤gK+Λp√
4π

≤ −3.0 . (52)

To our knowledge, for the K∗+Λp vertex, no reliable the-
oretical constraints are available [27]. We choose a uni-
form distribution between −100 and +100 as the initial
prior for

(
Gv

K∗+ , Gt
K∗+

)
. To test the sensitivity of the

results to the prior width, the calculations are repeated
for a prior width of 2000 and 20000.

3. Asymptotic behavior

In the Regge (large s and small |t|) limit, one can ap-
proximate s by −u for fixed values of t. This implies that
the energy dependence of the cross section, which follows
the power law sα(t) according to Regge theory, can be re-
placed by ( s−u

2 )α(t) [20, 57]. In an analysis ofW > 3 GeV
data, this difference is not relevant, but at the energies
considered here the difference between the two asymp-
totic behaviors becomes noticeable. Therefore, we have
investigated both options using Bayesian inference.

B. Results

1. Optimum background model variant

The results of our analysis are listed in Table II. The
data clearly favor a model featuring an sα(t) dependence
in the cross section and two rotating trajectories. In-
deed, the difference in lnZ with the second-best variant
is 32.7± 1.4, which exceeds the value of 5 required for a
decisive statement.

The values of the coupling constants from the best
model variant are

gK+Λp√
4π

= −3.6± 0.3,

Gv
K∗+ = 9.0± 0.5,

Gt
K∗+ = 20.9± 0.4. (53)

In comparison with the Bayesian analysis of Ref. [44]
which was based on the W > 3 GeV data, the tensor
coupling Gt

K∗+ has changed sign, and its magnitude has
decreased by about a factor of two. In Ref. [44] which
was based on the W > 3 GeV data, the likelihood hyper-
surface exhibited a distinct multimodal behavior, with
different combinations of the coupling constants’ rela-
tive signs giving similar likelihoods. Interestingly, the
increased amount of data used here causes the likelihood
to be concentrated in only one quadrant of the param-
eter space in

(
Gv

K∗+ , Gt
K∗+

)
and all sign issues for the

coupling constants can be resolved.

The expectation value (53) for gK+Λp is close to its
SU(3) prediction of Eq. (52). Nevertheless, we have re-
peated the analyses with a prior for gK+Λp broader than
the condition of Eq. (52) in order to to test whether
stronger SU(3) flavor symmetry breaking is compatible
with the data. The results of this analysis are listed in Ta-
ble III. By comparing the results of Tables II and III one
can conclude that the order of the models is unaffected by
the operation of broadening the boundaries for the gK+Λp

priors. Also the extracted value for gK+Λp is not signifi-
cantly affected by the broader limits on its prior distribu-
tion. Its expectation value becomes

g
K+Λp√

4π
= −3.7± 0.3

which is again compatible with the SU(3) value of −3.75.
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Figure 4: (color online). The p(γ,K+)Λ differential cross sections as a function of W for various cos θ∗K . The dashed lines
represent the best model (RR) of Ref. [44] which follows from a Bayesian analysis of the W > 3 GeV data. The full lines
correspond to the best model (RR) from Table II, optimized against the 2.6 GeV < W < 3 GeV CLAS data. The lines and
the data are color coded according to cos θ∗K : from 0.4 (blue) to 1.0 (red). The orange lines correspond to cos θ∗K = 0.95, the
other lines have a value that corresponds to the CLAS cos θ∗K bins, i. e. 0.865, 0.8, 0.7, 0.6, 0.5 and 0.4. Data are from Refs.
[35] and [51].

Table II: Logarithms of the evidence ratios (∆ lnZ ≡ ln (Z/Zmax)) for the six model variants resulting from phase combinations
and asymptotic behavior options in the two-trajectory Regge model for γp → K+Λ. The prior for the coupling constant gK+Λp

is defined by the Eq. (52). The results are listed in order of decreasing probability for the lowest prior width, π = U(−100, 100)
for the Gt,v

K∗+ couplings.

K+ / K∗+ phase asymp. π = U(−100, 100) π = U(−1000, 1000) π = U(−10000, 10000)
RR s 0.0 0.0 0.0
RC s −32.7 ± 1.4 −33.5 ± 2.7 −31 ± 13
RR (s− u)/2 −359.7 ± 1.1 −360.8 ± 7.2 −389 ± 57
RC (s− u)/2 −432.9 ± 1.1 −435 ± 8.9 −472 ± 58
CR s −2257.2 ± 1.1 −2259.3 ± 6.4 −2282 ± 31
CR (s− u)/2 −2425.5 ± 1.1 −2426.3 ± 2.6 −2440 ± 27

2. High-energy predictions

The high-energy differential cross section as calculated
by the best model variant for p(γ,K+)Λ is represented
by the full lines in Fig. 4. As expected, the predictions
are incompatible with the SLAC data. We attribute this
to the normalization discrepancy discussed in Ref. [52]
and Section IVA1. The polarization observables Σ [51,
58] and P [59] are not sensitive to normalization issues.
Predictions for Σ at ωlab = 16 GeV are shown in Fig. 5(a)

for K+Λ. Fig. 5(b) shows the predictions for P at ωlab =
5 GeV. These predictions display an excellent agreement
with data. By constraining the Reggeized background
at 2.6 GeV < W < 3 GeV, one can predict P and Σ
at W > 3 GeV. This highlights the predictive power of a
Regge model at highW , and corroborates the assumption
that the Reggeized background model can be constrained
against W & 2.5 GeV observables.

Summarizing the background evaluations, we find that
the optimum two-trajectory Regge model for p(γ,K+)Λ
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Table III: Logarithms of the evidence ratios (∆ lnZ ≡ ln (Z/Zmax)) for the six model variants resulting from phase combinations
and asymptotic behavior options in the two-trajectory Regge model for γp → K+Λ. A deviation of up to 40% from the
SU(3) prediction for gK+Λp is allowed. The results are listed in order of decreasing probability for the lowest prior width,

π = U(−100, 100) for the Gt,v

K∗+ couplings.

K+ / K∗+ phase asymp. π = U(−100, 100) π = U(−1000, 1000) π = U(−10000, 10000)
RR s 0.0 0.0 0.0
RC s −17.8 ± 1.1 −17.4 ± 2.9 −15 ± 18
RR (s− u)/2 −359.7 ± 1.0 −364.0 ± 16.0 −387 ± 37
RC (s− u)/2 −432.7 ± 1.2 −434.9 ± 5.3 −474 ± 68
CR s −2257.1 ± 1.2 −2261.5 ± 7.7 −2272 ± 28
CR (s− u)/2 −2425.6 ± 1.1 −2426.3 ± 3.0 −2426 ± 22
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Figure 5: (color online). Predictions of the best Regge model from Table II (full red line) for the p(γ,K+)Λ observables Σ and
P at W > 3 GeV, as a function of −t. (a) Σ at ωlab = 16 GeV. Data are from Ref. [51]. (b) P at ωlab = 5 GeV. Data are from
Ref. [59].

features two rotating phases and positive vector and ten-
sor couplings. We also find that an asymptotic sα(t)

dependence of the Regge amplitude is preferred over a

((s− u)/2)
α(t)

one. This model will be referred to as
Regge-2011 and determines the prior for the background
amplitude of the RPR-2011 model.

V. RESONANCE SELECTION IN THE RPR

MODEL

Given the world’s p(γ,K+)Λ data, this section ad-
dresses the following questions: (a) From a proposed set
of resonances, what subset features in the most probable
model? (b) What is the probability of a proposed reso-
nance R? Bayesian inference allows one to answer these
questions in a quantitative way.

A. Data and resonances

An overview of the available p(γ,K+)Λ data is listed in
Table IV. In view of the normalization issue discussed in
Section IV, the data from SLAC [51] and DESY [59] are
not included in the analysis presented below. The total

number of data points which we incorporate is 6148, of
which 3455 are differential cross sections, 2241 are single
and 452 are double polarization results. We stress that
after accounting for the error bars all data carry the same
weight.

We use the differential cross section data measured by
the CLAS collaboration [34, 35] and LEPS [33]. Due to
unresolved discrepancies with other data sets [66], the
SAPHIR differential cross-section data [32] is excluded.
This decision is motivated by the fact that the different
cross-section measurements by CLAS are internally con-
sistent [35] and consistent with the LEPS data [33]. To
date, there is no independent measurement that confirms
the SAPHIR data.

The single polarization data consists of two sets of re-
coil polarization data published by the CLAS collabora-
tion [35, 64], as well as a set from GRAAL [61]. The
beam asymmetry data used in our analysis includes re-
sults from LEPS [33, 54, 60] and GRAAL [61]. The in-
cluded target asymmetries were determined by means of
beam-recoil measurements by the GRAAL collaboration
[63]. The included double polarization observables are
beam-recoil asymmetries, consisting of Cx and Cz data
by CLAS [65] and GRAAL’s measurements of Ox′ and
Oz′ [63].
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Table IV: Overview of the published experimental data for
the reaction p(γ,K+)Λ.

Observable #data Experiment Year Reference
dσ

dΩ
56 SLAC 1969 Boyarski [51]
720 SAPHIR 2004 Glander [32]
1377 CLAS 2006 Bradford [34]
12 LEPS 2007 Hicks [33]

2066 CLAS 2010 McCracken [35]

Σ 9 SLAC 1979 Quinn [58]
45 LEPS 2003 Zegers [60]
54 LEPS 2006 Sumihama [54]
4 LEPS 2007 Hicks [33]
66 GRAAL 2007 Lleres [61]

T 3 BONN 1978 Althoff [62]
66 GRAAL 2008 Lleres [63]

P 7 DESY 1972 Vogel [59]
233 CLAS 2004 McNabb [64]
66 GRAAL 2007 Lleres [61]

1707 CLAS 2010 McCracken [35]

Cx , Cz 320 CLAS 2007 Bradford [65]
Ox′ , Oz′ 132 GRAAL 2008 Lleres [63]

Table V: The nucleon resonances evaluated in the analysis
given in the notation L2I,2J(M), along with their PDG status,
spin (J) and parity (π), Breit-Wigner mass (M), width (Γ),
and the uncertainty on the width (∆Γ).

Resonance PDG status Jπ M(MeV) Γ(MeV) ∆Γ(MeV)
S11(1535) ⋆⋆⋆⋆ 1/2− 1535 150 ±25
S11(1650) ⋆⋆⋆⋆ 1/2− 1650 150 ±20
D15(1675) ⋆⋆⋆⋆ 5/2− 1675 150 −20/+ 15
F15(1680) ⋆⋆⋆⋆ 5/2+ 1685 130 ±10
D13(1700) ⋆⋆⋆ 3/2− 1700 100 ±50
P11(1710) ⋆⋆⋆ 1/2+ 1710 100 −50/+ 150
P13(1720) ⋆⋆⋆⋆ 3/2+ 1720 150 −50/+ 100
D13(1900) missing 3/2− 1895 200 −
P13(1900) ⋆⋆ 3/2+ 1900 500 −360/+ 80
P11(1900) missing 1/2+ 1895 200 −
F15(2000) ⋆⋆ 5/2+ 2000 140 −40/+ 30

The 11 resonances considered in this work and their
properties are listed in Table V. We have “established”
as well as “missing” nucleon resonances. As for their
quantum numbers, mass, width and transition form fac-
tors, we take the values quoted by the PDG. If these are
not available, we employ the values determined by analy-
ses based on CQM predictions [4]. This allows us to keep
the number of adjustable parameters small.
The established four-star resonances listed by the PDG

are S11(1650), D15(1675), F15(1680) and P13(1720).
The four-star S11(1535) lies below the kaon production
threshold, but is included because of its large decay width
and its strong predicted coupling to the open strangeness
sector [67]. To our knowledge, the contribution of the
three-star D13(1700) to p(γ,K+)Λ is confirmed only by
the Giessen analysis [5]. The P11(1710), which is found
in some K+Λ analyses, is evaluated as well. The impor-

tance of this resonance in the πN system was questioned
in the most recent SAID analyses [68–70]. The P11(1710)
has also been identified in the ππN system [71].
Furthermore, the two-star resonances P13(1900) and

F15(2000)[87] are evaluated. The first of these,
P13(1900), was found to couple to K+Λ by the Giessen
group [72] and by the RPR-2007 model, and accounts for
the structure in the energy dependence of the differen-
tial cross-section data at W ≈ 1900 MeV. Schumacher
and Sargsian [50] show that the differential cross sec-
tion data from CLAS [35] supports one or more reso-
nances at W ≈ 2 GeV. Therefore, the consideration of
the F15(2000) seems justified. The missing D13(1900)
and P11(1900) resonances earlier introduced in the Ghent
isobar model [19, 20], the RPR-2007 model [9, 17], and
Kaon-Maid [4] are also evaluated.
A conclusive statement with regard to the M ≈

1900 MeV resonances is extremely useful to improve our
understanding of the nucleon’s structure. Indeed, quark-
diquark models do not predict a resonance at this energy
[73, 74]. By contrast, a number of resonances with a mass
of around 1900 MeV is predicted by CQMs [75, 76].

B. Likelihood function

When calculating the likelihood function against a sin-
gle data set, one usually does not take systematic errors
σsys into account. However, this course of action is not
valid when multiple data sets are combined, as it would
result in an underestimate of the likelihood. Assuming
that systematic errors are independent and normally dis-
tributed, the total errors can be determined by adding
the systematic and statistical contributions in quadra-
ture,

σ2
tot = σ2

stat + σ2
sys . (54)

A more conservative estimate is to add the systematic
and statistical errors linearly

σ′
tot = σstat + σsys . (55)

The numerical calculations for the Bayesian evidences are
very demanding and it is prohibitive to run the calcula-
tions with various choices for the values of σtot. In what
follows, we outline an approximate method which allows
one to relate the evidences computed with Eq. (54) to
those which use Eq. (55).
Most often, the systematic errors σsys are computed by

taking the squared sum of a number of partial systematic
errors σi

sys from different sources. This approach is prone
to underestimate the σsys. For a systematic error that is
dominated by two errors with a comparable magnitude
σsys,1 ≈ σsys,2, one obtains in the conservative approach

σ′
sys =

∑

i

σsys,i ≈ 2σsys,1 ≈
√
2σsys. (56)
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Figure 6: The integral over the likelihood function (black
curve) can be approximated by the contribution for which
L(α) ≈ Lmax, or conversely, for which χ2(α) = χ2

min (grey
box).

In a scenario where σstat ≈ σsys, the estimate (54) leads

to σtot ≈
√
2σstat and to the following value for a more

conservative estimate of σ′
tot

σ′
tot = σstat + σ′

sys ≈ σstat +
√
2σsys ≈

1 +
√
2√

2
σtot.

(57)

One can convert the Z values computed with the errors
of Eq. (54) into a Z ′ which use σ′

tot. If the errors are
multiplied by c, the log-chi-square distribution lnL(αM )
of Eq. (49) scales as

S(k, χ2
R(αM ), c) ≡ ln

( L(αM )

L′
c(αM )

)

= (k − 2) ln c− χ2
R

k

2

c2 − 1

c2
. (58)

Here, k denotes the number of degrees of freedom, χ2
R ≡

χ2/k is the reduced chi-squared as computed with the
values σtot. One can estimate the evidence resulting from
the scaled likelihood function L′

c(αM ) as follows. Insert-
ing a uniform prior into the Eq. (40) yields the following
expression for Z

Z =
1

∆

∫ α1

α0

L(α)dα ≈ 1

∆

∫

D

L(αmax)dα, (59)

where ∆ ≡
∏

i (∆αi) is the volume of the prior hy-
percube. Indeed, if L(α) is the chi-square distribu-
tion with χ2

R(α) far from its optimal value of 1 (e.g.
χ2
R = 4), it falls rapidly with increasing χ2(α), and the

bulk of the likelihood originates from a volume D where
L(α) ≈ Lmax, or χ

2
R(α) ≈ χ2

R,min, as illustrated in Fig. 6.

By expressing the corrected likelihood L′
c(α) in terms

of the likelihood L(α) and the scaling factor of Eq. (58),
the expression for Z ′ becomes

Z ′ ≈ 1

∆

∫

D

L′
c(αmax)dα

≈ 1

∆

∫

D

L(αmax)e
−S(k,χ2

R(αmax),c) dα (60)

≈ Z e−S(k,χ2
R,min,c), (61)

which yields our final result

lnZ ′ ≈ lnZ − S
(
k, χ2

R,min, c
)
. (62)

The expression (54) for σtot presupposes stringent inde-
pendences between the various contributions. The σ′

tot

of Eq. (55) provides a more conservative estimate of the
evidence. In order to avoid overestimating the amount
of information that is provided by the data, we will use
σ′
tot in the forthcoming analyses.

C. Identifying the resonance content of p(γ,K+)Λ

The 11 proposed resonances of Table V give rise to
211 = 2048 model variants. The Bayesian evidence Z ′ of
Eq. (62) is computed for each model, resulting in a map
of the RPR model space, shown in Fig. 7.
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Figure 7: (color online). The evidences (− lnZ ′) of the 2048
model variants in the RPR model space (blue circles), as a
function of the number of free N∗ parameters. The latter
value equals the number of N∗ couplings plus one for the ΛR.
The smaller the value of − lnZ ′ the higher the evidence. The
best model for a fixed number of parameters is indicated with
a red square. The model with the highest evidence, RPR-
2011, is denoted with a black diamond.

The parameters of the Reggeized background are as-
signed localized priors of 20% around the values deter-
mined in Section IV. Therefore, the total number of ad-
justable parameters is the sum of the number of N∗ cou-
plings, of the three background parameters, and of the
cut-off value ΛR of Eq. (37). The number of fitted N∗

couplings extends from 1 (one spin-1/2 coupling) to 18
(4× 1 spin-1/2, 4× 2 spin-3/2, 3× 2 spin-5/2 couplings).
We adopt one common value for ΛR for all resonances
with a uniform prior between 1.0 and 3.5 GeV. When se-
lecting a prior distribution, it is good practice to ignore
the data. Often an overestimation of the evidence re-
sults from determining the likelihood and the prior with
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Figure 8: (color online). The evidences (− lnZ ′) of the 2048 model variants in the RPR model space (blue circles). The purple
diamonds correspond with the subset of models which contain the resonance indicated in the top right corner of each panel.

a particular data set. In this work, the ranges of the
prior distributions of the resonance couplings are selected
on the basis of naturalness arguments. Indeed, the con-
tribution of a single resonance is unlikely to exceed the
total p(γ,K+)Λ cross section (σ ≈ 5µb) by a large fac-
tor. We performed calculations of the total cross sections
(σR) in a model which includes a single resonance R and
the Reggeized background. It is observed that the crite-
rion σR < 25µb leads to absolute values of the coupling
constants smaller than 100 in the adopted units conven-
tion. Therefore, we adopt a uniform distribution for the
priors of the resonance coupling constants in the range
[−100, 100].

Jeffreys’ scale allows us to determine the “best” model
from the 2048 variants. The model with the highest evi-
dence has 14 N∗ parameters (13 couplings and ΛR) and
features the S11(1535), S11(1650), F15(1680), P13(1720),

P11(1900), F15(2000), and the missing D13(1900) and
P13(1900). This model variant will be referred to as RPR-
2011 [77]. The “second-best” model has two parameters
less due to the absence of the D13(1900). The difference
in − lnZ between the “best” and “second-best” models is
2.3. This corresponds to significant to strong evidence in
favor of RPR-2011. The difference with the other models
is at least 6.8, which is consistent with decisive evidence
for RPR-2011.

In a next step, one can quantify the probability of
each resonance separately by evaluating P (R | {dk}) of
Eq. (46). Fig. 8 visualizes which models are included in
the sum. It is also instructive to calculate P (∼ R | {dk}),
the probability that a resonance is not required to de-
scribe the reaction. The calculation of this quantity is
completely analogous to Eq. (46). In Fig. 9, the mod-
els which do not include a resonance R are visualized for
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Figure 9: (color online). The evidences (− lnZ ′) of the 2048 model variants in the RPR model space (blue circles). The orange
diamonds correspond with the subset of models which do not contain the resonance indicated in the top right corner of each
panel.

each proposed resonance.
The probability ratios

ln (P (R | {dk}) /P (∼ R | {dk})) , (63)

are plotted in Fig. 10. A positive ratio indicates that
the probability that the resonance R contributes to the
reaction p(γ,K+)Λ is greater than the probability that
it does not. Conversely, a negative ratio means that the
data does not support the possibility that R contributes
to the reaction.
The results indicate that the resonances in RPR-2011

are those that have a positive probability ratio. More-
over, the two resonances with the highest probabilities
are P13(1720) and S11(1650). These are the two reso-
nances that are also deemed important for the description
of p(γ,K+)Λ by most other models. There is decisive ev-
idence that the D15(1675), D13(1700), and P11(1710) are

not required to describe the p(γ,K+)Λ data. With re-
gard to the resonance content in the 1800-2000 MeV mass
range several suggestions have been in the literature, but
no consensus has been reached. We have evaluated four
states in that mass region (Table V): two have a two-
star status and two are labeled as “missing”. Our anal-
ysis provides decisive evidence for three of these states:
P13(1900), P11(1900), and F15(2000). Note that the evi-
dence for the “missing”D13(1900) is significant to strong,
but not decisive.

D. Photoproduction with RPR-2011

The p(γ,K+)Λ observables presented in this subsec-
tion are calculated with the RPR-2011 model parameters
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fixed at their maximum likelihood values. The RPR-2011
results are compared to the Reggeized background model
Regge-2011 that was determined in Section IV. From the
difference between the Regge-2011 and the RPR-2011 re-
sults one can infer conclusions about the role of the res-
onances for the various observables.
The p(γ,K+)Λ differential cross section is displayed

as a function of cos θ∗K in Fig. 11. RPR-2011 provides
a good description over a wide range of kinematics. For
the lowest energies and backward angles there are devia-
tions between the model and the data, hinting at possible
missing dynamics such as u-channel contributions. It is
striking that the t-channel background of the Regge-2011
model already provides a reasonable description of the
gross features of both the ωlab and cos θ∗K dependence
of the differential cross sections. The biggest effect from
the resonance contributions is observed at the forward
and backward kaon angles.
Both RPR-2011 and Regge-2011 models exhibit a steep

rise at extremely forward angles. At the three lowest
ωlab energies considered in Fig. 11 the inclusion of the
resonances softens this rise and improve the goodness of
the fit to the data. Note that the SAPHIR data (Fig. 1)
suggest a plateau at forward kaon angles and that this
feature is absent in the CLAS data.
The angular dependence of the single-polarization ob-

servables Σ, P, T is shown for three representative ener-
gies in Fig. 12. The Σ, P, T receive stronger contributions
from the N∗’s than the differential cross sections. In con-
trast to the high-energy situation considered in Fig. 5, the
photon asymmetries in the resonance region are relatively
small. The Regge-2011 reproduces the trend of increas-
ing Σ with growing ωlab. The inclusion of the N∗’s does
not lead to a considerably improved quality of the fit.
The recoil polarization P and target polarization T are
highly sensitive to the resonance contributions.
We now turn our attention to the double polarization

observables. We stress that they represent but 7% of the
total amount of data and that we give each data point an
equal weight. As the bulk of the data is in the differential
cross sections and to a lesser extent in the single polar-
ization observables, the double polarization observables
represent stringent tests of the RPR-2011 model. Per-
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Figure 10: The relative resonance probabilities of Eq. 63 for
each resonance listed in Table V.

haps somewhat surprisingly, Regge-2011 provides a good
approximation to the double-polarization observables Cx

and Cz. The observed trends Cz ≈ 1 and Cx ≈ Cz−1 [78]
are well reproduced by both the Reggeized background
(Regge-2011) and RPR-2011. This observation hints at
the fact that the Cx, Cz are very background dominated.
A large sensitivity to resonance contributions is observed
for Ox′ and Ox′ , which are considerably better described
by RPR-2011 than by Regge-2011.

E. Electroproduction predictions with RPR-2011

Electroproduction reactions have the potential to
probe the hadron’s electromagnetic substructure. The
existence of this substructure can be parametrized by in-
troducing a Q2 dependence in the electromagnetic cou-
pling constants. In addition, the p(e, e′K+)Λ reaction
dynamics becomes sensitive to longitudinal couplings. In
part, these couplings arise naturally from the photopro-
duction amplitudes when gauge invariance is imposed. A
peculiar class of longitudinal couplings vanishes for pho-
toproduction reactions and cannot be constrained against
real-photon data. The latter class of longitudinal cou-
plings are neglected in the RPR model. In brief, we fix
the basic reaction mechanism to the p(γ,K+)Λ data and
treat the electroproduction data as a test of the model.
Thereby, we make some reasonable assumptions with re-
gard to the electromagnetic form factors of the t-channel
kaons and s-channel N∗’s. Such an extrapolation of the
p(γ,K+)Λ amplitude to p(e, e′K+)Λ has been shown as
reasonably successful for the RPR-2007 model [14]. We
use the same N∗ helicity amplitudes (HA) as in Ref. [14].
Also the transition form factors for the spin-1/2 particles
are those from Ref. [14]. The transition form factors
for the spin-3/2 particles are derived from the consistent
Lagrangians of Eqs. (32)–(33). For the spin 3/2 and 5/2
particles, the HA are calculated in the Bonn constituent
quark model [76], and the transition form factors are de-
rived using Eqs. (34)–(35).
A comparison between recent low Q2 = 0.030 −

0.055 GeV2 measurements and RPR-2011 predictions are
contained in Ref. [83]. It was observed that RPR-2011
provides a fair description of those data. Unseparated
structure functions σT + ε σL at very forward kaon an-
gles obtained in the 1970s are shown as a function of W
and Q2 in Fig. 14 together with Regge-2011 and RPR-
2011 predictions. Obviously, at cos θ∗K ≈ 1 the major im-
pact of the intermediate resonances is to reduce the cross
section by some modest factor. This is in line with the
observations made for the real-photon differential cross
sections of Fig. 11. The electromagnetic form factors
of the intermediate resonances reduce the effect of the
N∗’s with growing photon virtuality Q2. The RPR-2011
model provides a fair prediction for both the Q2 and W
dependence of the data.
Fig. 15 shows the energy dependence of the separated

structure functions σL and σT . In line with the data,
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Figure 11: (color online). Angular dependence of the differential cross section at various incident photon energies ωlab. The
full red line represents the RPR-2011 model, the blue dashed line corresponds with Regge-2011. Data are from Refs. [32–35].

RPR-2011 predicts a σL and σT of almost equal mag-
nitude. The σT appears to be systematically underpre-
dicted while σL is somewhat overpredicted. The fair re-
production of both the magnitude and theW dependence
of σL provides support for our assumptions with regard
to the longitudinal couplings.

Predictions for the transferred polarisation are pre-
sented in Fig. 16. The Reggeized background model
Regge-2011 as it was determined in Sect. IVB1 predicts
the flat W dependence and the magnitude of P ′

z ≈ 0.0
and P ′

x ≈ 0.5. For P ′
z, the introduction of resonances

worsens the quality of the agreement with the data ob-
tained in Regge-2011. For P ′

x the effect of the N∗ is
smaller and the quality of the agreement is better than
for P ′

z.

VI. CONCLUSION

The RPR framework conjoins a Reggeized t-channel
background with tree-level s-channel nucleon resonances

from an isobar approach into an economical model for
kaon photoproduction in and above the resonance region.
The RPR model clearly separates nonresonant from reso-
nant amplitudes which is an asset when searching for the
properties of those (missing) resonances which contribute
to p(γ,K+)Λ.

We have used Bayesian inference to perform model se-
lection both with regard to the resonant and nonreso-
nant content of the RPR framework. It was shown that
the Bayesian evidence Z is a quantitative measure for
a model’s fitness given data. The computation of Z
requires involving multidimensional integrals which de-
mand dedicated numerical methods. To that purpose
we have proposed the “GA+minuit+log-vegas” inte-
gration strategy. With this method one can reliably com-
pute Z for models with a moderate number of adjustable
parameters such as the RPR framework.

First, the most probable model variant for the
Reggeized background was determined against the
2.6 GeV< W <3.0 GeV data. This involves the de-
termination of three continuous and two discrete ad-
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Figure 12: (color online). Angular dependence of the single polarization observables: beam asymmetry Σ (top row), recoil
polarization P (middle row), and target asymmetry T (bottom row), at various incident photon energies ωlab. Line conventions
as in Fig. 11. Data are from Refs. [35, 60, 61, 63, 64].

justable parameters. The extracted value for gK+Λp is
compatible with the one predicted by SU(3) symme-
try. Next, we have considered a set of 11 nucleon res-
onances to determine the optimum resonant contribu-
tion in the RPR p(γ,K+)Λ framework. To this end,
the Bayesian evidence was calculated for all 2048 model
variants resulting from the various resonance combina-
tions. The model with the highest evidence, dubbed
RPR-2011, includes the resonances S11(1535), S11(1650),
F15(1680), P13(1720), P11(1900), F15(2000), D13(1900),
and P13(1900). An evaluation of the individual reso-
nances’ probabilities reveals that the two resonances with
the highest evidence of contributing to p(γ,K+)Λ are
the S11(1650) and P13(1720). There is decisive evidence
that the D15(1675), D13(1700), and P11(1710) are not
required to describe the current p(γ,K+)Λ world’s data.
The computed evidence for the two-star P13(1900), the
two-star F15(2000), and the “missing” P11(1900) is deci-
sive, whereas for the “missing”D13(1900) it is significant,
but not decisive.
After fixing the basic reaction reaction mechanism to

the p(γ,K+)Λ data, the electroproduction data serve as
a test of the model. In general our predictions for the
electroproduction data are reasonably good which proves
that the RPR-2011 model possesses predictive power
and goes beyond a mere analysis framework. Therefore,
we consider RPR-2011 as an efficient and robust model
which can, for example, be used as an elementary pro-
duction operator in strangeness production reactions in-
volving the deuteron and finite nuclei.
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Figure 13: (color online). Angular dependence of the beam-recoil double polarization observables with circular beam polar-
ization, Cx and Cz (top rows), and with oblique beam polarization, Ox′ and Ox′ (bottom rows), at various incident photon
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