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Abstract  In this paper, we developed the Bayesian estimators of the population proportion of a stigmatized attribute 
using Kumaraswamy and Generalised Beta prior distributions when data were obtained through the Randomized Response 
Technique (RRT) proposed by Kim and Warde [15]. We validated our newly developed Bayesian estimators for a wide range 
of the designed values of the population proportion at varying sample sizes. It was observed that our newly developed 
Bayesian estimators performed significantly better than the Bayesian estimator developed by Hussain and Shabbir [12] for 
relatively small as well as moderate sample sizes. However, the reverse was the case for very large sample sizes. 
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1. Introduction 
Obtaining information about a stigmatized (induced 

abortion, use of drugs, tax evasion, etc.) attribute rampant in 
a human population is a complicated issue. Direct 
interrogating approach generally lead to doctoring of the true 
answers. The reason may be fear of social disgrace or 
counter attacks. But due to socioeconomic reasons, 
information about prevalence of such attributes in the 
population becomes essential. Warner [22] introduced an 
ingenious method of survey to obtain information about 
stigmatized attributes by guaranteeing confidentiality to the 
respondents. Numerous developments and improvements on 
Warner’s Randomized Response Technique have been 
suggested by many researchers. Greenberg et al. [9], Folsom 
et al. [8], Christofides [7], Mangat [16], Kim and Warde [15], 
Adebola and Adepetun [1], Adebola and Adepetun [2], 
Adebola and Adepetun [3], Adepetun and Adebola [4] are 
some of the many to be mentioned. 

At times, prior information about the unknown parameter 
may be available and can be used along with the sample 
information for the determination of that unknown parameter. 
This is called the Bayesian approach of estimation. The work 
on Bayesian analysis of randomized response techniques is 
not very enormous. Nonetheless, attempts have been made 
on the Bayesian analysis of randomized response techniques. 
Winkler and Franklin [23], Spurrier and Padgett [20],  
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O’Hagan [18], Oh [19], Migon and Tachibana [17], and 
Unnikrishnan and Kunte [21], Barabesi and Marcheselli [5, 
6], Hussain and Shabbir [10, 11], Hussain et al [13], Hussain 
and Shabbir [12] and Kim et al. [14] are the major references 
on the Bayesian analysis of the Randomized Response 
Techniques. 

2. Presentation of the Existing 
Technique 

Hussain and Shabbir [12] in their paper presented a 
Bayesian analysis to the Randomized Response Technique 
(RRT) proposed by Kim and Warde [15] using a simple beta 
prior distribution to estimate the population proportion of 
respondents possessing stigmatized attribute. 

Let the simple beta prior be defined as follows  

𝑓𝑓(𝜋𝜋) = 1
𝐵𝐵(𝑎𝑎 ,𝑏𝑏)

𝜋𝜋𝑎𝑎−1(1 − 𝜋𝜋)𝑏𝑏−1  ;   0 < 𝜋𝜋 < 1    (2.1) 

where (𝑎𝑎, 𝑏𝑏) are the shape parameters of the distribution 
and 𝜋𝜋  is the population proportion of respondents 
possessing the stigmatized attribute. 

By letting 𝑋𝑋 = ∑𝑥𝑥𝑖𝑖  denotes the total number of the yes 
response in a sample of size n drawn from the population 
with simple random sampling with replacement (srswr). The 
conditional distribution of 𝑋𝑋 given 𝜋𝜋 is  

𝑓𝑓(𝑋𝑋|𝜋𝜋) = �𝑛𝑛𝑥𝑥�𝜙𝜙
𝑥𝑥(1 − 𝜙𝜙)𝑛𝑛−𝑥𝑥         (2.2) 

where 𝜙𝜙 = 𝑇𝑇𝜋𝜋 + 1 − 𝑇𝑇 is the probability of “yes response” 
in a sample of size n and 𝑇𝑇 and 1 − 𝑇𝑇 are the pre-assigned 
probabilities respectively. 

Then  
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𝑓𝑓(𝑋𝑋|𝜋𝜋) = �
𝑛𝑛
𝑥𝑥
� (𝑇𝑇𝜋𝜋 + 1 − 𝑇𝑇)𝑥𝑥(1 − 𝑇𝑇𝜋𝜋 − 1 + 𝑇𝑇)𝑛𝑛−𝑥𝑥  

𝑓𝑓(𝑋𝑋|𝜋𝜋) = �
𝑛𝑛
𝑥𝑥
�𝑇𝑇[𝜋𝜋 +

[1 − 𝑇𝑇]
𝑇𝑇

])𝑥𝑥(𝑇𝑇 − 𝑇𝑇𝜋𝜋)𝑛𝑛−𝑥𝑥  

 = �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑥𝑥 �𝜋𝜋 +

1 − 𝑇𝑇
𝑇𝑇

�
𝑥𝑥

[𝑇𝑇(1 − 𝜋𝜋)]𝑛𝑛−𝑥𝑥    

= �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑥𝑥𝑇𝑇𝑛𝑛−𝑥𝑥 �𝜋𝜋 +

[1 − 𝑇𝑇]
𝑇𝑇

� (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥  

Let 𝑑𝑑 = 1−𝑇𝑇
𝑇𝑇

 

𝑓𝑓(𝑋𝑋|𝜋𝜋) = �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑛𝑛(𝜋𝜋 + 𝑑𝑑)𝑥𝑥(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥  

Using binomial series expansion 

(𝜋𝜋 + 𝑑𝑑)𝑥𝑥 = ��
𝑥𝑥
𝑗𝑗
�𝜋𝜋𝑗𝑗𝑑𝑑𝑥𝑥−𝑗𝑗

𝑥𝑥

𝑗𝑗=0

 

𝑓𝑓(𝑋𝑋|𝜋𝜋) = �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑛𝑛 ��

𝑥𝑥
𝑗𝑗
�𝜋𝜋𝑗𝑗𝑑𝑑𝑥𝑥−𝑗𝑗

𝑥𝑥

𝑗𝑗=0

(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥  

= �𝑛𝑛𝑥𝑥�𝑇𝑇
𝑛𝑛 ∑ �𝑥𝑥𝑗𝑗 � 𝜋𝜋

𝑗𝑗𝑑𝑑𝑥𝑥−𝑗𝑗 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥𝑥𝑥
𝑗𝑗=0                                (2.3) 

The joint density function of 𝜋𝜋 and X was derived as follows 

𝑓𝑓(𝑋𝑋,𝜋𝜋) =
𝜋𝜋𝑎𝑎−1(1 − 𝜋𝜋)𝑏𝑏−1

𝐵𝐵(𝑎𝑎, 𝑏𝑏) �
𝑛𝑛
𝑥𝑥�𝑇𝑇

𝑛𝑛 ��
𝑥𝑥
𝑗𝑗�𝜋𝜋

𝑗𝑗 𝑑𝑑𝑥𝑥−𝑗𝑗 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥
𝑥𝑥

𝑗𝑗=0

 

𝑓𝑓(𝑋𝑋,𝜋𝜋) = �𝑛𝑛𝑥𝑥�𝑇𝑇
𝑛𝑛

𝐵𝐵(𝑎𝑎 ,𝑏𝑏)
∑ �𝑥𝑥𝑗𝑗 � 𝑑𝑑

𝑥𝑥−𝑗𝑗𝑥𝑥
𝑗𝑗=0 𝜋𝜋𝑎𝑎−1+𝑗𝑗 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥+𝑏𝑏−1                          (2.4) 

The marginal probability density function was found using  

𝑓𝑓(𝑋𝑋) = �𝑓𝑓(𝑋𝑋,𝜋𝜋)𝑑𝑑𝜋𝜋
1

0

= �
𝑛𝑛
𝑥𝑥
�

𝑇𝑇𝑛𝑛

𝐵𝐵(𝑎𝑎, 𝑏𝑏)��
𝑥𝑥
𝑗𝑗
�

𝑥𝑥

𝑗𝑗=0

𝑑𝑑𝑥𝑥−𝑗𝑗 �(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥+𝑏𝑏−1

1

0

𝜋𝜋𝑎𝑎−1+𝑗𝑗 𝑑𝑑𝜋𝜋 

= �𝑛𝑛𝑥𝑥�
𝑇𝑇𝑛𝑛

𝐵𝐵(𝑎𝑎 ,𝑏𝑏)
∑ �𝑥𝑥𝑗𝑗 �
𝑥𝑥
𝑗𝑗=0 𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎 + 𝑗𝑗,𝑛𝑛 − 𝑥𝑥 + 𝑏𝑏)                        (2.5) 

Thus, the posterior distribution of 𝜋𝜋 given X was  

𝑓𝑓(𝑋𝑋|𝜋𝜋) =
𝑓𝑓(𝑋𝑋,𝜋𝜋)
𝑓𝑓(𝑋𝑋) =

�𝑛𝑛𝑥𝑥�𝑇𝑇
𝑛𝑛

𝐵𝐵(𝑎𝑎, 𝑏𝑏)∑ �𝑥𝑥𝑗𝑗 � 𝑑𝑑
𝑥𝑥−𝑗𝑗𝑥𝑥

𝑗𝑗=0 𝜋𝜋𝑎𝑎−1+𝑗𝑗 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥+𝑏𝑏−1

�𝑛𝑛𝑥𝑥�
𝑇𝑇𝑛𝑛

𝐵𝐵(𝑎𝑎, 𝑏𝑏)∑ �𝑥𝑥𝑗𝑗 �
𝑥𝑥
𝑗𝑗=0 𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎 + 𝑗𝑗,𝑛𝑛 − 𝑥𝑥 + 𝑏𝑏)

 

𝑓𝑓(𝑋𝑋|𝜋𝜋) = 
∑ �𝑥𝑥𝑗𝑗 �𝑑𝑑

𝑥𝑥−𝑗𝑗𝑥𝑥
𝑗𝑗=0 𝜋𝜋𝑎𝑎−1+𝑗𝑗 (1−𝜋𝜋)𝑛𝑛−𝑥𝑥+𝑏𝑏−1

∑ �𝑥𝑥𝑗𝑗 �
𝑥𝑥
𝑗𝑗=0 𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎+𝑗𝑗 ,𝑛𝑛−𝑥𝑥+𝑏𝑏)

                                   (2.6) 

Under the Square error loss, the Bayes estimator i.e the posterior mean was found using  

𝜋𝜋�𝐻𝐻 = �𝜋𝜋
1

0

𝑓𝑓(𝜋𝜋|𝑋𝑋)𝑑𝑑𝜋𝜋 =
∑ �𝑥𝑥𝑗𝑗 � 𝑑𝑑

𝑥𝑥−𝑗𝑗𝑥𝑥
𝑗𝑗=0 ∫ (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥+𝑏𝑏−11

0 𝜋𝜋𝑎𝑎+𝑗𝑗 𝑑𝑑𝜋𝜋

∑ �𝑥𝑥𝑗𝑗 �
𝑥𝑥
𝑗𝑗=0 𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎 + 𝑗𝑗,𝑛𝑛 − 𝑥𝑥 + 𝑏𝑏)

 

𝜋𝜋�𝐻𝐻 =
∑ �𝑥𝑥𝑗𝑗 �𝑑𝑑

𝑥𝑥−𝑗𝑗𝑥𝑥
𝑗𝑗=0 𝐵𝐵(𝑎𝑎+𝑗𝑗+1,𝑛𝑛−𝑥𝑥+𝑏𝑏)

∑ �𝑥𝑥𝑗𝑗 �
𝑥𝑥
𝑗𝑗=0 𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎+𝑗𝑗 ,𝑛𝑛−𝑥𝑥+𝑏𝑏)

                                            (2.7) 

The bias as well as the Mean Square Error (MSE) of 𝜋𝜋�𝐻𝐻  corresponding to the sample of size n was given by 

𝐵𝐵(𝜋𝜋�𝐻𝐻) = 𝜋𝜋�𝐻𝐻 − 𝜋𝜋                                         (2.8) 
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𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋�𝐻𝐻) = ∑ (𝜋𝜋�𝐻𝐻 − 𝜋𝜋)2 𝑛𝑛
𝑥𝑥=0 𝜙𝜙𝑥𝑥(1 − 𝜙𝜙)𝑛𝑛−𝑥𝑥                            (2.9) 

3. Presentation of the Proposed Techniques 
In this section, we present a Bayesian analysis to Kim and Warde [15] Randomized Response Technique using both 

Kumaraswamy and Generalised Beta prior distributions as our alternative prior distributions in addition to the simple Beta 
prior distribution used by Hussain and Shabbir [12]. 

3.1. Estimation of 𝝅𝝅 Using Kumaraswamy Prior 
The Kumaraswamy prior distribution of  𝜋𝜋  is given as 

𝑓𝑓(𝜋𝜋) = 𝑎𝑎𝑏𝑏𝜋𝜋𝑏𝑏−1(1 − 𝜋𝜋𝑏𝑏)𝑎𝑎−1  ;𝑎𝑎, 𝑏𝑏 > 0                              (3.1) 

The joint density function of 𝜋𝜋 and X with Kumaraswamy Prior is as follows 

𝑓𝑓(𝑋𝑋,𝜋𝜋) = 𝑎𝑎𝑏𝑏�𝑛𝑛𝑥𝑥�𝑇𝑇
𝑛𝑛 ∑ �𝑥𝑥𝑗𝑗 � 𝜋𝜋

𝑗𝑗𝑑𝑑𝑥𝑥−𝑗𝑗 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥𝑥𝑥
𝑗𝑗=0 𝜋𝜋𝑏𝑏−1(1 − 𝜋𝜋𝑏𝑏)𝑎𝑎−1                   (3.2) 

The marginal probability density function is found using  

𝑓𝑓(𝑋𝑋) = �𝑓𝑓(𝑋𝑋,𝜋𝜋)
1

0

𝑑𝑑𝜋𝜋 

Recall that  

(1 − 𝜋𝜋𝑏𝑏)𝑎𝑎−1 = �(−1)𝑘𝑘 �
𝑎𝑎 − 1
𝑘𝑘

�
𝑎𝑎−1

𝑘𝑘=0

𝜋𝜋𝑏𝑏𝑘𝑘  

Then  

𝑓𝑓(𝑋𝑋) = �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑛𝑛𝑎𝑎𝑏𝑏��(−1)𝑘𝑘 �

𝑥𝑥
𝑗𝑗
� 𝑑𝑑𝑥𝑥−𝑗𝑗 �(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥

1

0

𝜋𝜋𝑏𝑏𝑘𝑘+𝑏𝑏+𝑗𝑗−1𝑑𝑑𝜋𝜋 
𝑎𝑎−1

𝑘𝑘=0

𝑥𝑥

𝑗𝑗=0

 

𝑓𝑓(𝑋𝑋) = �𝑛𝑛𝑥𝑥�𝑇𝑇
𝑛𝑛𝑎𝑎𝑏𝑏∑ ∑ (−1)𝑘𝑘 �𝑥𝑥𝑗𝑗 � 𝑑𝑑

𝑥𝑥−𝑗𝑗𝐵𝐵(𝑏𝑏𝑘𝑘 + 𝑏𝑏 + 𝑗𝑗,𝑛𝑛 − 𝑥𝑥 + 1)  𝑎𝑎−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0                  (3.3) 

The posterior distribution is  

𝑓𝑓(𝜋𝜋|𝑋𝑋) =
∑ ∑ �𝑥𝑥𝑗𝑗 � (−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝑎𝑎−1

𝑘𝑘=0
𝑥𝑥
𝑗𝑗=0 𝜋𝜋𝑏𝑏𝑘𝑘+𝑏𝑏+𝑗𝑗−1(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥

∑ ∑ �𝑥𝑥𝑗𝑗 � (−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑏𝑏𝑘𝑘 + 𝑏𝑏 + 𝑗𝑗,𝑛𝑛 − 𝑥𝑥 + 1) 𝑎𝑎−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0

 

Thus the posterior mean is  

𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 =
∑ ∑ �𝑥𝑥𝑗𝑗 �(−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝑎𝑎−1

𝑘𝑘=0
𝑥𝑥
𝑗𝑗=0 𝐵𝐵(𝑏𝑏𝑘𝑘+𝑏𝑏+𝑗𝑗+1,𝑛𝑛−𝑥𝑥+1)

∑ ∑ �𝑥𝑥𝑗𝑗 �(−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑏𝑏𝑘𝑘+𝑏𝑏+𝑗𝑗 ,𝑛𝑛−𝑥𝑥+1)𝑎𝑎−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0

                        (3.4) 

The bias as well as Mean Square Error (MSE) of 𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 is computed as  

𝐵𝐵�𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1� = 𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 𝜋𝜋                                             (3.5) 

 𝑀𝑀𝑀𝑀𝑀𝑀�𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1� = ∑ �𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 𝜋𝜋�2 𝑛𝑛
𝑥𝑥=0 𝜙𝜙𝑥𝑥(1 − 𝜙𝜙)𝑛𝑛−𝑥𝑥                              (3.6) 

3.2. Estimation of 𝝅𝝅 Using Generalised Beta Prior 

The Generalised Beta prior is defined as  

𝑓𝑓(𝜋𝜋) = 𝑐𝑐
𝐵𝐵(𝑎𝑎 ,𝑏𝑏)

𝜋𝜋𝑎𝑎𝑐𝑐−1(1 − 𝜋𝜋𝑐𝑐)𝑏𝑏−1;    𝑎𝑎,𝑏𝑏, 𝑐𝑐 > 0                             (3.7) 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are the shape parameters of the prior distribution as given in formula (3.7) 
We recall from Binomial series expansion that 

(1 − 𝜋𝜋𝑐𝑐)𝑏𝑏−1 = �(−1)𝑘𝑘 �
𝑏𝑏 − 1
𝑘𝑘

�
𝑏𝑏−1

𝑘𝑘=0

(𝜋𝜋𝑐𝑐)𝑘𝑘  
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So that  

𝑓𝑓(𝜋𝜋) =
𝑐𝑐

𝐵𝐵(𝑎𝑎, 𝑏𝑏)�
(−1)𝑘𝑘 �

𝑏𝑏 − 1
𝑘𝑘

�
𝑏𝑏−1

𝑘𝑘=0

𝜋𝜋𝑐𝑐(𝑘𝑘+𝑎𝑎)−1 

The joint density function of 𝜋𝜋 and X with generalized beta prior is  

𝑓𝑓(𝑋𝑋,𝜋𝜋) =
𝑐𝑐

𝐵𝐵(𝑎𝑎, 𝑏𝑏) �
𝑛𝑛
𝑥𝑥
�𝑇𝑇𝑛𝑛 ��

𝑥𝑥
𝑗𝑗
�𝜋𝜋𝑗𝑗𝑑𝑑𝑥𝑥−𝑗𝑗

𝑥𝑥

𝑗𝑗=0

𝜋𝜋𝑎𝑎𝑐𝑐−1(1 − 𝜋𝜋𝑐𝑐)𝑏𝑏−1(1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥  

which simplify to 

𝑓𝑓(𝑋𝑋,𝜋𝜋) = 𝐴𝐴∑ ∑ (−1)𝑘𝑘 �𝑥𝑥𝑗𝑗 �
𝑏𝑏−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0 �𝑏𝑏−1

𝑘𝑘 �𝑑𝑑𝑥𝑥−𝑗𝑗𝜋𝜋𝑎𝑎𝑐𝑐+𝑗𝑗−1+𝑐𝑐𝑘𝑘 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥                       (3.8) 

where 𝐴𝐴 = 𝑐𝑐
𝐵𝐵(𝑎𝑎 ,𝑏𝑏) �

𝑛𝑛
𝑥𝑥�𝑇𝑇

𝑛𝑛  

The marginal probability density function is  

𝑓𝑓(𝑋𝑋) = 𝐴𝐴∑ ∑ (−1)𝑘𝑘 �𝑥𝑥𝑗𝑗 �
𝑏𝑏−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0 �𝑏𝑏−1

𝑘𝑘 �𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎𝑐𝑐 + 𝑗𝑗 + 𝑐𝑐𝑘𝑘,𝑛𝑛 − 𝑥𝑥 + 1)                   (3.9) 

Thus, the posterior distribution of 𝜋𝜋 given X is  

𝑓𝑓(𝜋𝜋|𝑋𝑋) =
𝑓𝑓(𝑋𝑋,𝜋𝜋)
𝑓𝑓(𝑋𝑋) =

∑ ∑ (−1)𝑘𝑘 �𝑥𝑥𝑗𝑗 �
𝑏𝑏−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0 �𝑏𝑏−1

𝑘𝑘 �𝑑𝑑𝑥𝑥−𝑗𝑗 𝜋𝜋𝑎𝑎𝑐𝑐+𝑗𝑗−1+𝑐𝑐𝑘𝑘 (1 − 𝜋𝜋)𝑛𝑛−𝑥𝑥  

∑ ∑ (−1)𝑘𝑘 �𝑥𝑥𝑗𝑗 �
𝑏𝑏−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0 �𝑏𝑏−1

𝑘𝑘 �𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑎𝑎𝑐𝑐 + 𝑗𝑗 + 𝑐𝑐𝑘𝑘,𝑛𝑛 − 𝑥𝑥 + 1)
 

The posterior mean which is the Bayes estimator is found by using 

𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 =   �𝜋𝜋
1

0

𝑓𝑓(𝜋𝜋|𝑋𝑋)𝑑𝑑𝜋𝜋 

 𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2  =
∑ ∑ �𝑥𝑥𝑗𝑗 �(−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝑏𝑏−1

𝑘𝑘=0
𝑥𝑥
𝑗𝑗=0 𝐵𝐵(𝑐𝑐𝑘𝑘+𝑐𝑐+𝑗𝑗+1,𝑛𝑛−𝑥𝑥+1)

∑ ∑ �𝑥𝑥𝑗𝑗 �(−1)𝑘𝑘𝑑𝑑𝑥𝑥−𝑗𝑗𝐵𝐵(𝑐𝑐𝑘𝑘+𝑐𝑐+𝑗𝑗 ,𝑛𝑛−𝑥𝑥+1)𝑏𝑏−1
𝑘𝑘=0

𝑥𝑥
𝑗𝑗=0

                        (3.10) 

The bias of 𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 is 

𝐵𝐵�𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2� =  𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 − 𝜋𝜋                                  (3.11) 

The Mean Square Error (MSE) of 𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 is 

𝑀𝑀𝑀𝑀𝑀𝑀�𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2� = ∑ �𝜋𝜋�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 − 𝜋𝜋�2 𝑛𝑛
𝑥𝑥=0 𝜙𝜙𝑥𝑥(1 − 𝜙𝜙)𝑛𝑛−𝑥𝑥                         (3.12) 

4. Presentation and Comparison of Results 
In this section, we present as well as compare our results with the existing Hussain and Shabbir [12] under the same values 

of parameters in the estimators at different sample sizes. In order to overcome the computational difficulties and generate 
these results, we have written computer programs using R-statistical software. To save spaces, we present few results in 
tables and figures as follows: 

Table 4.1a.  Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

𝜋𝜋 MSE BETA MSE KUMA MSE GLS 

0.1 1.049992E-10 5.061297E-09 1.761953E-08 
0.2 7.629774E-10 2.993967E-10 3.936878E-09 
0.3 1.951074E-09 1.581123E-10 3.758000E-10 
0.4 2.073713E-09 6.080834E-10 1.253651E-11 
0.5 1.410892E-09 6.195110E-10 1.457447E-10 
0.6 6.495136E-10 3.491115E-10 1.393658E-10 
0.7 1.854809E-10 1.126355E-10 5.733950E-11 
0.8 2.456579E-11 1.618939E-11 9.487008E-12 
0.9 5.536666E-13 3.869328E-13 2.485900E-13 
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Table 4.1b.  Table showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

𝜋𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.02148717 0.14918224 0.27834495 
0.2 0.07851283 0.04918224 0.17834495 
0.3 0.17851283 0.05081776 0.07834495 
0.4 0.27851283 0.15081776 0.02165505 
0.5 0.37851283 0.25081776 0.12165505 
0.6 0.47851283 0.35081776 0.22165505 
0.7 0.57851283 0.45081776 0.32165505 
0.8 0.67851283 0.55081776 0.42165505 
0.9 0.77851283 0.65081776 0.52165505 

 

Figure 4.1a.  Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

 

Figure 4.1b.  Graph showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

-2.00E-09 

0.00E+00 

2.00E-09 

4.00E-09 

6.00E-09 

8.00E-09 

1.00E-08 

1.20E-08 

1.40E-08 

1.60E-08 

1.80E-08 

2.00E-08 

0 0.2 0.4 0.6 0.8 1 

M
ea

n 
Sq

ua
re

 E
rr

or
 (M

SE
) 

pi 

MSE BETA 
MSE KUMA 
MSE GLS 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 0.2 0.4 0.6 0.8 1 

A
bs

ol
ut

e 
Bi

as
 

pi 

|BIAS|BETA 
|BIAS| KUMA 
|BIAS| GLS 



 American Journal of Computational and Applied Mathematics 2014, 4(4): 130-140 135 
 

 

 

Figure 4.2a.  Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.4 

 

Figure 4.2b.  Graph showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.4 

Table 4.2a.  Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.4 

𝜋𝜋 MSE BETA MSE KUMA MSE GLS 

0.1 2.939763E-07 8.727082E-07 3.038096E-06 

0.2 6.007747E-09 8.074149E-08 1.061700E-06 

0.3 3.223202E-07 6.471004E-08 1.538022E-07 

0.4 7.362797E-07 3.677009E-07 7.580682E-09 

0.5 8.437845E-07 5.403889E-07 1.271306E-07 

0.6 5.970457E-07 4.299289E-07 1.716282E-07 

0.7 2.490978E-07 1.920585E-07 9.777150E-08 

0.8 4.657365E-08 3.755314E-08 2.200620E-08 

0.9 1.443732E-09 1.201489E-09 7.719122E-10 
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Table 4.2b.  Table showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 15, 𝑥𝑥 = 9, 𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.4 

𝜋𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.08658422 0.14918224 0.27834495 
0.2 0.01341578 0.04918224 0.17834495 
0.3 0.11341578 0.05081776 0.07834495 
0.4 0.21341578 0.15081776 0.02165505 
0.5 0.31341578 0.25081776 0.12165505 
0.6 0.41341578 0.35081776 0.22165505 
0.7 0.51341578 0.45081776 0.32165505 
0.8 0.61341578 0.55081776 0.42165505 
0.9 0.71341578 0.65081776 0.52165505 

Table 4.3a.  Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 25, 𝑥𝑥 = 15,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

𝜋𝜋 MSE BETA MSE KUMA MSE GLS 

0.1 1.642680E-15 3.765088E-14 2.574744E-13 
0.2 3.989745E-14 3.417051E-15 1.697907E-14 
0.3 4.352535E-14 1.691010E-14 6.272743E-16 
0.4 2.355475E-14 1.301395E-14 3.775473E-15 
0.5 7.751658E-15 5.027236E-15 2.304332E-15 
0.6 1.501294E-15 1.067398E-15 6.029121E-16 
0.7 1.409345E-16 1.063646E-16 6.775754E-17 
0.8 3.854736E-18 3.033647E-18 2.089951E-18 
0.9 5.697643E-21 4.625288E-21 3.366931E-21 

Table 4.3b.  Table showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 25, 𝑥𝑥 = 15,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇 = 0.1 

𝜋𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 
0.1 0.01392366 0.06665989 0.17431873 
0.2 0.11392366 0.03334011 0.07431873 
0.3 0.21392366 0.13334011 0.02568127 
0.4 0.31392366 0.23334011 0.12568127 
0.5 0.41392366 0.33334011 0.22568127 
0.6 0.51392366 0.43334011 0.32568127 
0.7 0.61392366 0.53334011 0.42568127 
0.8 0.71392366 0.63334011 0.52568127 
0.9 0.81392366 0.73334011 0.62568127 

 

 

Figure 4.3a.  Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 25, 𝑥𝑥 = 15,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.1 
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Figure 4.3b.  Graph showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 25, 𝑥𝑥 = 15,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.1 

From the results presented in the above tables and figures 4.1a to 4.3b, we can deduce that the proposed Bayesian 
estimators obtained using alternative priors are more efficient than the usual Bayesian estimator when a simple beta prior is 
used for obtaining high response from respondents with respect to the stigmatized attribute for small as well as moderate 
sample sizes respectively. 

Table 4.4a.  Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 150, 𝑥𝑥 = 90,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

𝜋𝜋 MSE BETA MSE KUMA MSE GLS 

0.1 1.971166E-48 1.792857E-49 5.739803E-50 

0.2 3.205850E-47 5.808426E-47 3.950071E-47 

0.3 7.691577E-48 9.097240E-46 7.208294E-46 

0.4 4.885086E-47 1.162610E-45 9.840733E-46 

0.5 1.493015E-47 1.061968E-46 9.326105E-47 

0.6 9.242000E-50 3.928256E-49 3.531784E-49 

0.7 5.111422E-54 1.617388E-53 1.478042E-53 

0.8 1.283509E-61 3.347694E-61 3.096105E-61 

0.9 6.172953E-77 1.403987E-76 1.310423E-76 

Table 4.4b.  Table showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 150, 𝑥𝑥 = 90,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

𝜋𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.22461894 0.06774194 0.03832951 

0.2 0.12461894 0.16774194 0.13832951 

0.3 0.02461894 0.26774194 0.23832951 

0.4 0.07538106 0.36774194 0.33832951 

0.5 0.17538106 0.46774194 0.43832951 

0.6 0.27538106 0.56774194 0.53832951 

0.7 0.37538106 0.66774194 0.63832951 

0.8 0.47538106 0.76774194 0.73832951 

0.9 0.57538106 0.86774194 0.83832951 
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Figure 4.4a.  Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 150, 𝑥𝑥 = 90,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

 

Figure 4.4b.  Graph showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 150, 𝑥𝑥 = 90,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

Table 4.5a.  Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 250, 𝑥𝑥 = 150,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

𝜋𝜋 MSE BETA MSE KUMA MSE GLS 

0.1 2.339706E-79 2.907221E-80 1.722040E-80 

0.2 5.488760E-77 1.089082E-76 8.769410E-77 

0.3 5.437556E-77 5.428249E-75 4.734861E-75 

0.4 1.867015E-76 5.220466E-75 4.724511E-75 

0.5 8.862759E-78 6.918681E-77 6.395512E-77 

0.6 1.028250E-81 4.683883E-81 4.389735E-81 

0.7 5.498783E-89 1.840123E-88 1.741313E-88 

0.8 8.675471E-102 2.372200E-101 2.260944E-101 

0.9 1.990669E-127 4.716886E-127 4.520526E-127 
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Table 4.5b.  Table showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 250, 𝑥𝑥 = 150,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

𝜋𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.22806324 0.08039216 0.06187230 
0.2 0.12806324 0.18039216 0.16187230 
0.3 0.02806324 0.28039216 0.26187230 
0.4 0.07193676 0.38039216 0.36187230 
0.5 0.17193676 0.48039216 0.46187230 
0.6 0.27193676 0.58039216 0.56187230 
0.7 0.37193676 0.68039216 0.66187230 
0.8 0.47193676 0.78039216 0.76187230 
0.9 0.57193676 0.88039216 0.86187230 

 

 
Figure 4.5a.  Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at 𝑛𝑛 = 250, 𝑥𝑥 = 150,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 

 
Figure 4.5b.  Graph showing the Absolute Bias for Kim and Warde [15] RRT at 𝑛𝑛 = 250, 𝑥𝑥 = 150,𝑎𝑎 = 1, 𝑏𝑏 = 2, 𝑐𝑐 = 4,𝑇𝑇1 = 0.6 
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From the results of tables and figures 4.4a to 4.5b, we 
observed the reverse case for the performances of the 
proposed Bayesian estimators in obtaining response from 
respondents possessing stigmatized attribute for large 
sample sizes. Hence, the proposed Bayesian estimators were 
not suitable in this case. 

5. Conclusions 
We have presented the Bayesian estimation of the 

population proportion when the data were gathered through 
the Kim and Warde [15] Randomized Response Technique 
using both Kumaraswamy (KUMA) and Generalised (GLS) 
Beta priors as our alternative prior distributions in addition to 
simple Beta prior distribution used by Hussain and Shabbir 
[12]. We presented our results in tables and figures for some 
selected values of the design parameters and population 
proportion. We observed that for relatively small sample as 
well as moderate sample size, the proposed Bayesian 
estimators performed significantly better than that of 
Hussain and Shabbir [12]. However, the reverse was the case 
for very large sample sizes. 
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