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Abstract In this paper, we developed the Bayesian estimators of the population proportion of a stigmatized attribute
using Kumaraswamy and Generalised Beta prior distributions when data were obtained through the Randomized Response
Technique (RRT) proposed by Kim and Warde [15]. We validated our newly developed Bayesian estimators for a wide range
of the designed values of the population proportion at varying sample sizes. It was observed that our newly developed
Bayesian estimators performed significantly better than the Bayesian estimator developed by Hussain and Shabbir [12] for
relatively small as well as moderate sample sizes. However, the reverse was the case for very large sample sizes.
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1. Introduction

Obtaining information about a stigmatized (induced
abortion, use of drugs, tax evasion, etc.) attribute rampant in
a human population is a complicated issue. Direct
interrogating approach generally lead to doctoring of the true
answers. The reason may be fear of social disgrace or
counter attacks. But due to socioeconomic reasons,
information about prevalence of such attributes in the
population becomes essential. Warner [22] introduced an
ingenious method of survey to obtain information about
stigmatized attributes by guaranteeing confidentiality to the
respondents. Numerous developments and improvements on
Warner’s Randomized Response Technique have been
suggested by many researchers. Greenberg et al. [9], Folsom
et al. [8], Christofides [7], Mangat [16], Kim and Warde [15],
Adebola and Adepetun [1], Adebola and Adepetun [2],
Adebola and Adepetun [3], Adepetun and Adebola [4] are
some of the many to be mentioned.

At times, prior information about the unknown parameter
may be available and can be used along with the sample
information for the determination of that unknown parameter.
This is called the Bayesian approach of estimation. The work
on Bayesian analysis of randomized response techniques is
not very enormous. Nonetheless, attempts have been made
on the Bayesian analysis of randomized response techniques.
Winkler and Franklin [23], Spurrier and Padgett [20],
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O’Hagan [18], Oh [19], Migon and Tachibana [17], and
Unnikrishnan and Kunte [21], Barabesi and Marcheselli [5,
6], Hussain and Shabbir [10, 11], Hussain et al [13], Hussain
and Shabbir [12] and Kim et al. [14] are the major references
on the Bayesian analysis of the Randomized Response
Techniques.

2. Presentation of the Existing
Technique

Hussain and Shabbir [12] in their paper presented a
Bayesian analysis to the Randomized Response Technique
(RRT) proposed by Kim and Warde [15] using a simple beta
prior distribution to estimate the population proportion of
respondents possessing stigmatized attribute.

Let the simple beta prior be defined as follows

f(n):ﬁﬂ“_l(l—n)b_l ;0<m<1l (21

where (a,b) are the shape parameters of the distribution
and m is the population proportion of respondents
possessing the stigmatized attribute.

By letting X = ), x; denotes the total number of the yes
response in a sample of size n drawn from the population
with simple random sampling with replacement (srswr). The
conditional distribution of X given m is

f&Im) = (e (1 — )"

where ¢ = Tm+ 1 — T is the probability of “yes response”
in a sample of size n and T and 1 — T are the pre-assigned
probabilities respectively.

Then

2.2)
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Using binomial series expansion
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_( )Tn ( )n.jdx—j(l_n.)n x

The joint density function of 7 and X was derived as follows

fX,m) = %(Z) ™ ZO (f) W d* (1 — )"
=

x x—j ra—1+j _ n—x+b—1
(.)d s 1-m

f&X,m) = B(a 5
The marginal probability density function was found using
1 & 1
n x . .
— — x—j — g \yn—x+b—-1 —a—1+j
£ f remdn = (1) w2, (j d f 1-m) 71 d
0 j=

—()B(ab) ()d"JB(a+], —x+b)

Thus, the posterior distribution of 7 given X was
(m)rm , ,
X x X x—j —a—1 n—x+b—1
oy < L _B@ny o (e et A —mr
T[ = =
N x (% gr_i .
feO (X)mzjzo(j)d ’B(a+j,n—x+b)

i 0( )dx—]na 1+](1_n.)n —x+b—1

X|m) =
fXlm) = 0( )dx ~JB(a+jn—x+b)

Under the Square error loss, the Bayes estimator i.e the posterior mean was found using
1
i 0( )dx—} f (1_n)n —x+b—-1 a+]dn.

ﬁH:!nf(ﬂlX)dﬂ: o ()dX—JB(a+j n—x+b)

= 0( )dx_fB(a+]+1n x+b)

A

Ty = ,zo(j)dX—JB(a+],n—x+b)
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2.3)

(2.4)

2.5)

2.6)

.7)

The bias as well as the Mean Square Error (MSE) of 5 corresponding to the sample of size n was given by
(2.8)

B(ﬁ'H) = ﬁH - T



132 Adepetun A. O. et al.: Bayesian Analysis of Kim and Warde Randomized
Response Technique Using Alternative Priors

MSE(#ty) = Xioo(fty — 1) ¢* (1 — )"

3. Presentation of the Proposed Techniques

2.9)

In this section, we present a Bayesian analysis to Kim and Warde [15] Randomized Response Technique using both
Kumaraswamy and Generalised Beta prior distributions as our alternative prior distributions in addition to the simple Beta

prior distribution used by Hussain and Shabbir [12].

3.1. Estimation of m Using Kumaraswamy Prior
The Kumaraswamy prior distribution of m is given as
f(m) = abr? (1 = n®)* ;a,b >0
The joint density function of 7 and X with Kumaraswamy Prior is as follows

fOGm = ab()T i () W d* T (1 = myrF mb i (1 - mh) !

The marginal probability density function is found using

1
FOX) = f F(X,m) dn
0

Recall that
a—1
(1—mbye-t = Z(_l)k (a ; 1) bk
k=0
Then
x a-1 1
f(X) — (Z) T"ab Z Z(_l)k <;C) ax f(l _ T[)n—x ﬂbk+b+j—1d1t
j=0 k=0 0

f&X) = ()T ab X Zi=5(-D* (7) d*ITB(bk+b+jn—x+1)
The posterior distribution is
-0 20 (j) (—D)kdx— ghk+b+i=1(1 — g)n—=
*o 34t (7) (FFdx T Bk + b+ jyn—x + 1)

f(@lX) =

Thus the posterior mean is
- X 2ESo(5) (=D d* T B(ble+b+j +1n—x+1)
propl = yx 3 sd(F)(~1)kdr i B(bk +b+j,n—x+1)

The bias as well as Mean Square Error (MSE) of ,,,,, 1 is computed as
B(fprop1) = Rprop1 — T
. o 2 _
MSE(T[ZJTDP 1) = chl=0(7tprop 1 T[) ¢x(1 - ¢)n *

3.2. Estimation of  Using Generalised Beta Prior

The Generalised Beta prior is defined as

f(m) = B(:b)n‘”_l(l -7 a,b,c>0

where a, b, ¢ are the shape parameters of the prior distribution as given in formula (3.7)
We recall from Binomial series expansion that

EE Y (" oy
k=0

3.1)

(3.2)

(3.3)

3.4

3.5)

(3.6)

3.7)
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So that

fm) = ﬁbj(_nk (b . 1) Letkra)-1
"7 k=0

The joint density function of 7 and X with generalized beta prior is
X

FOGm) == (; 5 O (j) 7 ¥ 91 (1 — )P (1 — )

which simplify to
FOX,m) = AT3 o Thob(— 1k (1) (P dr meeti ek (1 — myn (338)

where A = B(Z,b) (Z)T”

The marginal probability density function is

FO0 = AT D=1k (¥) (P )axT Blac +j + ck,n—x + 1) (3.9)
Thus, the posterior distribution of m given X is
FOm) _ Emo BRI () (e me e -

FO) 5 2030 () (7 )d I Blac +) +ckon —x + 1)

f@mlX) =

The posterior mean which is the Bayes estimator is found by using
1

7,-Z-propZ = fﬂf(ﬂ'lX)dT[
0

3 };022;5(;)(—1)kdx—13(ck+c+j+1,n—x+1)

s = : 3.10
prop 2 Zioo Zi;é(}‘)(—l)kd"_/ B(ck+c+jn—x+1) (3.10)
The bias of 7,y 2 18
B(ﬁprop 2) = ﬁpropZ - (311)
The Mean Square Error (MSE) of T, is
~ ~ 2 _
MSE(TEPTOP 2) = Zg:O(n’prOp 2 T[) ¢X(1 - ¢)n * (312)

4. Presentation and Comparison of Results

In this section, we present as well as compare our results with the existing Hussain and Shabbir [12] under the same values
of parameters in the estimators at different sample sizes. In order to overcome the computational difficulties and generate
these results, we have written computer programs using R-statistical software. To save spaces, we present few results in
tables and figures as follows:

Table 4.1a. Table showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRTat n =15,x =9,a=1,b=2,c =4,T =0.1

s MSE BETA MSE KUMA MSE GLS

0.1 1.049992E-10 5.061297E-09 1.761953E-08
0.2 7.629774E-10 2.993967E-10 3.936878E-09
0.3 1.951074E-09 1.581123E-10 3.758000E-10
0.4 2.073713E-09 6.080834E-10 1.253651E-11
0.5 1.410892E-09 6.195110E-10 1.457447E-10
0.6 6.495136E-10 3.491115E-10 1.393658E-10
0.7 1.854809E-10 1.126355E-10 5.733950E-11
0.8 2.456579E-11 1.618939E-11 9.487008E-12
0.9 5.536666E-13 3.869328E-13 2.485900E-13
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Table 4.1b. Table showing the Absolute Bias for Kim and Warde [15] RRTat n =15,x =9,a=1,b=2,c =4,T =0.1

T IBIASBETA |BIAS| KUMA IBIAS| GLS
0.1 0.02148717 0.14918224 0.27834495
0.2 0.07851283 0.04918224 0.17834495
0.3 0.17851283 0.05081776 0.07834495
0.4 0.27851283 0.15081776 0.02165505
0.5 0.37851283 0.25081776 0.12165505
0.6 0.47851283 0.35081776 0.22165505
0.7 0.57851283 0.45081776 0.32165505
0.8 0.67851283 0.55081776 0.42165505
0.9 0.77851283 0.65081776 0.52165505
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Figure 4.1a. Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRTat n =15,x =9,a=1,b=2,c=4,T =0.1
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Figure 4.1b. Graph showing the Absolute Bias for Kim and Warde [I5]RRTat n =15,x =9,a=1,b=2,c=4,T =0.1
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Figure 4.2a. Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRTat n =15,x =9,a=1,b=2,c=4,T =04
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Figure 4.2b. Graph showing the Absolute Bias for Kim and Warde [I5] RRTat n =15,x =9,a=1,b =2,c =4,T =04

Table 4.2a. Table showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRTat n = 15,x =9,a=1,b=2,c =4,T =04

MSE BETA

MSE KUMA

MSE GLS

0.1

2.939763E-07

8.727082E-07

3.038096E-06

0.2

6.007747E-09

8.074149E-08

1.061700E-06

0.3

3.223202E-07

6.471004E-08

1.538022E-07

0.4

7.362797E-07

3.677009E-07

7.580682E-09

0.5

8.437845E-07

5.403889E-07

1.271306E-07

0.6

5.970457E-07

4.299289E-07

1.716282E-07

0.7

2.490978E-07

1.920585E-07

9.777150E-08

0.8

4.657365E-08

3.755314E-08

2.200620E-08

0.9

1.443732E-09

1.201489E-09

7.719122E-10
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Table 4.2b. Table showing the Absolute Bias for Kim and Warde [15]RRTat n =15,x =9,a=1,b=2,c =4,T =04

Table 4.3a. Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at n = 25,x =15,a=1,b=2,c =4,T = 0.1

T [BIAS/BETA IBIAS| KUMA IBIAS| GLS
0.1 0.08658422 0.14918224 0.27834495
0.2 0.01341578 0.04918224 0.17834495
0.3 0.11341578 0.05081776 0.07834495
0.4 0.21341578 0.15081776 0.02165505
05 0.31341578 0.25081776 0.12165505
0.6 041341578 0.35081776 0.22165505
0.7 0.51341578 0.45081776 0.32165505
0.8 0.61341578 0.55081776 0.42165505
0.9 0.71341578 0.65081776 0.52165505

T MSE BETA MSE KUMA MSE GLS
0.1 1.642680E-15 3.765088E-14 2.574744E-13
0.2 3.989745E-14 3.417051E-15 1.697907E-14
0.3 4.352535E-14 1.691010E-14 6.272743E-16
0.4 2.355475E-14 1.301395E-14 3.775473E-15
0.5 7.751658E-15 5.027236E-15 2.304332E-15
0.6 1.501294E-15 1.067398E-15 6.029121E-16
0.7 1.409345E-16 1.063646E-16 6.775754E-17
0.8 3.854736E-18 3.033647E-18 2.089951E-18
0.9 5.697643E-21 4.625288E-21 3.366931E-21

Table 4.3b. Table showing the Absolute Bias for Kim and Warde [15] RRT at n = 25,x =15,a=1,b=2,c=4,T = 0.1

T |BIAS|BETA IBIAS| KUMA IBIAS| GLS
0.1 0.01392366 0.06665989 0.17431873
0.2 0.11392366 0.03334011 0.07431873
0.3 0.21392366 0.13334011 0.02568127
0.4 0.31392366 0.23334011 0.12568127
0.5 0.41392366 0.33334011 0.22568127
0.6 0.51392366 0.43334011 0.32568127
0.7 0.61392366 0.53334011 0.42568127
0.8 0.71392366 0.63334011 0.52568127
0.9 0.81392366 0.73334011 0.62568127
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Figure 4.3a. Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRT at n = 25,x =15,a=1,b=2,c =4,T; = 0.1
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Figure 4.3b. Graph showing the Absolute Bias for Kim and Warde [I5] RRT at n = 25,x =15,a=1,b =2,c =4,T; = 0.1
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From the results presented in the above tables and figures 4.1a to 4.3b, we can deduce that the proposed Bayesian
estimators obtained using alternative priors are more efficient than the usual Bayesian estimator when a simple beta prior is
used for obtaining high response from respondents with respect to the stigmatized attribute for small as well as moderate

sample sizes respectively.

Table 4.4a. Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at n = 150,x = 90,a =1,b = 2,c = 4,T; = 0.6

m

MSE BETA

MSE KUMA

MSE GLS

0.1

1.971166E-48

1.792857E-49

5.739803E-50

0.2

3.205850E-47

5.808426E-47

3.950071E-47

0.3

7.691577E-48

9.097240E-46

7.208294E-46

0.4

4.885086E-47

1.162610E-45

9.840733E-46

0.5

1.493015E-47

1.061968E-46

9.326105E-47

0.6

9.242000E-50

3.928256E-49

3.531784E-49

0.7

5.111422E-54

1.617388E-53

1.478042E-53

0.8

1.283509E-61

3.347694E-61

3.096105E-61

0.9

6.172953E-77

1.403987E-76

1.310423E-76

Table 4.4b. Table showing the Absolute Bias for Kim and Warde [15] RRT at n = 150,x =90,a =1,b =2,c =4,T; = 0.6

T [BIAS|BETA [BIAS| KUMA [BIAS| GLS
0.1 0.22461894 0.06774194 0.03832951
0.2 0.12461894 0.16774194 0.13832951
0.3 0.02461894 0.26774194 0.23832951
0.4 0.07538106 0.36774194 0.33832951
0.5 0.17538106 0.46774194 0.43832951
0.6 0.27538106 0.56774194 0.53832951
0.7 0.37538106 0.66774194 0.63832951
0.8 0.47538106 0.76774194 0.73832951
0.9 0.57538106 0.86774194 0.83832951
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Figure 4.4a. Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15]RRT at n = 150,x =90,a=1,b = 2,c = 4,T; = 0.6
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Figure 4.4b. Graph showing the Absolute Bias for Kim and Warde [15] RRT at n = 150,x =90,a =1,b = 2,c = 4,T; = 0.6

Table 4.5a. Table showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at n = 250,x = 150,a =1,b =2,c =4,T; = 0.6

MSE BETA

MSE KUMA

MSE GLS

0.1

2.339706E-79

2.907221E-80

1.722040E-80

0.2

5.488760E-77

1.089082E-76

8.769410E-77

0.3

5.437556E-77

5.428249E-75

4.734861E-75

0.4

1.867015E-76

5.220466E-75

4.724511E-75

0.5

8.862759E-78

6.918681E-77

6.395512E-77

0.6

1.028250E-81

4.683883E-81

4.389735E-81

0.7

5.498783E-89

1.840123E-88

1.741313E-88

0.8

8.675471E-102

2.372200E-101

2.260944E-101

0.9

1.990669E-127

4.716886E-127

4.520526E-127
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Table 4.5b. Table showing the Absolute Bias for Kim and Warde [15] RRT at n = 250,x = 150,a=1,b =2,c =4,T; = 0.6

s |BIAS|BETA [BIAS| KUMA IBIAS| GLS
0.1 0.22806324 0.08039216 0.06187230
0.2 0.12806324 0.18039216 0.16187230
0.3 0.02806324 0.28039216 0.26187230
0.4 0.07193676 0.38039216 0.36187230
0.5 0.17193676 0.48039216 0.46187230
0.6 0.27193676 0.58039216 0.56187230
0.7 0.37193676 0.68039216 0.66187230
0.8 0.47193676 0.78039216 0.76187230
0.9 0.57193676 0.88039216 0.86187230
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Figure 4.5a. Graph showing the Mean Square Errors (MSEs) for Kim and Warde [15] RRT at n = 250,x = 150,a=1,b =2,c =4,T; = 0.6
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Figure 4.5b. Graph showing the Absolute Bias for Kim and Warde [15] RRT at n = 250,x = 150,a=1,b =2,c =4,T; = 0.6
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From the results of tables and figures 4.4a to 4.5b, we
observed the reverse case for the performances of the
proposed Bayesian estimators in obtaining response from
respondents possessing stigmatized attribute for large
sample sizes. Hence, the proposed Bayesian estimators were
not suitable in this case.

5. Conclusions

We have presented the Bayesian estimation of the
population proportion when the data were gathered through
the Kim and Warde [15] Randomized Response Technique
using both Kumaraswamy (KUMA) and Generalised (GLS)
Beta priors as our alternative prior distributions in addition to
simple Beta prior distribution used by Hussain and Shabbir
[12]. We presented our results in tables and figures for some
selected values of the design parameters and population
proportion. We observed that for relatively small sample as
well as moderate sample size, the proposed Bayesian
estimators performed significantly better than that of
Hussain and Shabbir [12]. However, the reverse was the case
for very large sample sizes.
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