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Abstract

In this paper, we analyze MALDI-TOF mass spectrometry proteomic data using Bayesian wavelet-
based functional mixed models. By modeling mass spectra as functions, this approach avoids reliance
on peak detection methods. The flexibility of this framework in modeling non-parametric fixed and
random effect functions enables it to model the effects of multiple factors simultaneously, allowing
one to perform inference on multiple factors of interest using the same model fit, while adjusting for
clinical or experimental covariates that may affect both the intensities and locations of peaks in the
spectra. From the model output, we identify spectral regions that are differentially expressed across
experimental conditions, while controlling the Bayesian FDR, in a way that takes both statistical and
clinical significance into account. We apply this method to two cancer studies.
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1 Introduction

Proteomic methods simultaneously detect and measure the expression of hundreds or thousands
of proteins present in a biological sample, and are gaining increased attention in biomedical
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research. One popular proteomic method is matrix assisted laser desorption and ionization,
time-of-flight mass spectrometry (MALDI-TOF).

In a MALDI-TOF experiment, a biological sample of interest is first mixed with an energy-
absorbing matrix substance, and the mixture is placed on a steel plate. A commonly used variant
of MALDI-TOF, called surface enhanced laser desorption and ionization (SELDI-TOF),
incorporates additional chemistry on the surface of the metal plate to bind specific classes of
proteins. The plate is then placed into a vacuum chamber, where a laser strikes the plate,
desorbing ionized peptides from the sample. An electric field accelerates the particles into a
potential free flight tube through which they travel at a constant velocity until striking a detector
plate.

The detector plate records the abundance of particles striking it over a series of short, fixed
intervals of time indexed by t = (t1,…,tT), yielding the proteomic spectrum y(t). Using basic
physics principles, a quadratic transformation can be used to map the time axis t to a set of
corresponding mass-to-charge ratios (m/z) x. Each spectrum is characterized by numerous
peaks, which correspond to proteins or protein fragments (polypeptides) present in the sample.
Depending on the proteomic makeup of the sample, proteins may also be manifest as infection
points on the shoulders of large peaks. Since most ions have equal charges (+1), the value of
spectrum y(x) at a peak is a rough measure of the abundance of some molecule in the sample
having a molecular mass of x Daltons. The first column of Figure 1 contains two raw spectra
from a MALDI-TOF instrument. In this paper, we consider two example data sets from cancer
studies conducted at the University of Texas MD Anderson Cancer Center.

Pancreatic Cancer Experiment

In this study, blood serum was taken from 139 pancreatic cancer patients and 117 healthy
controls. The blood serum was fractionated using 25% acetonitrile elutions optimized using
myoglobin, then run on a MALDI-TOF instrument to obtain a proteomic spectrum for each
sample. For this analysis, we consider the region of the spectra between x = 4,000 and 40,000
Daltons, containing 12,096 observations per spectrum. These 256 samples were run in four
different blocks over a period of several months. More specifics of the experiment can be found
in Koomen, et al. (2005). Our primary goal is to identify regions of the spectra that are
differentially expressed between pancreatic cancer patients and healthy controls, regions
corresponding to proteins that may serve as blood serum biomarkers of pancreatic cancer.

Some recent case studies (Baggerly et al. 2003, 2004, Sorace and Zhan 2004, Hu, et al. 2005,
Coombes, et al. 2005a, Villanueva, et al. 2005, Conrads and Veenstra 2005) have demonstrated
that MALDI-TOF instruments can be very sensitive to experimental conditions, even varying
over time within the same laboratory. These differences can manifest in systematic changes in
both the intensities and locations of the peaks (i.e. both the y and x axes), and are sometimes
larger in magnitude than the biological effects of interest. Thus, it is important for us to
adequately model the block effects if we are to properly analyze these data.

Organ-by-Cell Line Experiment

In this study, a tumor from one of two cancer cell lines was implanted into either the brain or
lungs of 16 nude mice. The cell lines were A375P, a human melanoma cancer cell line with
low metastatic potential, and PC3MM2, a highly metastatic human prostate cancer cell line.
After a period of time, blood serum was extracted and then placed on a SELDI chip. This chip
was run on the SELDI-TOF instrument twice, once using a low laser intensity and the other
using a high laser intensity. This resulted in a total of 32 spectra, two per mouse. Here, we
considered the part of the spectrum between x = 2,000 and 14,000 Daltons, a range that included
7,985 observations per spectrum.
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Our primary goals are to assess whether differential protein expression, if present, is more
tightly coupled to the host organ site or to the donor cell line type, and to identify regions of
the spectra differentially expressed by organ site, by cell line, and/or their interaction.
Typically, spectra from different laser intensities are analyzed separately, which is inefficient
since spectra from both laser intensities contain information on the same proteins. We want to
perform these analyses combining information across the two laser intensities, requiring us to
model an effect of laser intensity on both the location (x axis) and intensity (y axis) of the peaks,
and to account for correlation between spectra obtained from the same mouse.

It is common to use a two-step approach to analyze mass spectrometry data (Baggerly, et al.
2003, Yasui, et al. 2003, Coombes, et al. 2003, 2005b, Morris, et al. 2005c). First, some type
of feature detection algorithm is applied to identify peaks in the spectra. A quantification is
then obtained for each peak and each spectrum, e.g., by taking the intensity at a local maximum
or computing the area under the peak. Assuming there are p peaks and N spectra, this results
in a p × N matrix of protein expression levels that is somewhat analogous to the matrix of
mRNA expression levels obtained after preprocessing microarray data. Second, this matrix is
analyzed using methods similar to those used for microarrays to identify peaks differentially
expressed across experimental conditions.

This two-step approach is intuitive since it focuses on the peaks, the most scientifically relevant
features of the spectra, and convenient, since it can borrow from a wide array of available
methods developed for microarrays. However, it also has disadvantages. First, important
information can be lost in the reduction from the full spectrum to the set of detected peaks.
Since group comparisons are only performed after peak detection, this approach will miss
important differences in low intensity peaks or on shoulders of peaks whenever the peak
detection algorithm fails to detect them. Second, this approach affords no natural way to
account for experimental effects that impact both the x and y axes of the spectra.

An alternative to the two-step approach described above is to model the spectra as functions,
in the spirit of functional data analysis (Ramsay and Silverman 1997). Billheimer (2005) took
this approach, and this is the approach we take in this paper. Mass spectra are irregular functions
with many peaks, and so require flexible modeling and spatially adaptive regularization to
represent accurately. Our work is based on the Bayesian implementation of the wavelet-based
functional mixed model introduced by Morris and Carroll (2006), which involves a
generalization of the linear mixed model equation to the setting of potentially irregular
functional data. In modeling the entire spectrum, this method has the potential to identify
differences at locations missed by peak detection algorithms. Further, the method's flexible
nonparametric representation of the fixed and random effects allows it to model the functional
effects of a number of factors simultaneously, including factors of interest as well as nuisance
factors related to the experimental design. As we will demonstrate, these nonparametrically
modeled effects can account for differences on both the x and y axes of the spectra, allowing
data to be combined across laser intensities, blocks, or other experimental factors. The output
of the method can be used to compute posterior probabilities to identify regions of interest
within the spectra that take both statistical and practical significance into account, while
controlling the Bayesian false discovery rate (FDR) at a specified level.

The remainder of the paper is organized as follows. In Section 2, we describe some
preprocessing steps that must be performed before analyzing MALDI-TOF data. Section 3
describes the functional mixed model upon which our method is based, and explains how model
specification should proceed for MALDI-TOF data. In Section 4, we introduce wavelets,
describe our Bayesian wavelet-based method for fitting the functional mixed model, and
explain how to use its output to identify significant regions of the spectra. We present results
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from analysis of the example data sets in Section 5, and conclude with a discussion of the
strengths and weaknesses of this approach in Section 6.

2 Preprocessing MALDI-TOF Data

A number of preprocessing steps must be performed before modeling MALDI-TOF or SELDI-
TOF data, regardless of the ultimate approach used for inference. It has been shown that
inadequate or ineffective preprocessing can make it difficult to extract meaningful biological
information from the data (Sorace and Zhan, 2003; Baggerly et al., 2003, 2004). These steps
include baseline correction, normalization, denoising, and transformation. The baseline,
frequently seen in MALDI-TOF and SELDI-TOF spectra, is a smooth underlying function that
is thought to be largely due to a large cloud of particles striking the detector in the early part
of the experiment (Malyarenko, et al. 2004). This baseline artifact must be removed.
Normalization refers to a constant multiplicative factor that is used to adjust for spectrum-
specific factors, for example to adjust for different amounts of total protein ionized and
desorbed from the sample. Denoising is used to remove white noise, which is largely due to
electronic noise from the detector, from the spectrum. In recent years, various methods have
been proposed to deal with these issues. Here, we use the methods described by Coombes, et
al. (2005b). The first two columns of Figure 1 contain a raw spectrum and corresponding
preprocessed MALDI spectrum from a cancer sample and a control sample, and demonstrate
the effects of preprocessing.

It is often useful to transform the spectral intensities in order to reduce the skewness in their
distribution. Some options that appear to work well include the log transformation and the cube
root transformation (Coombes, et al. 2005b, Billheimer 2005). Here, we choose the log2
transformation since it leads to nice interpretations in terms of fold change. For example, a
difference of one in this scale corresponds to a two-fold increase in intensity.

The presence of zero intensities makes it necessary to add a small positive constant ∈ to each
intensity before taking the log. This constant shrinks any fold-change estimates towards 1, with
stronger shrinkage at lower intensities. See the unpublished document at
http://biostatistics.mdanderson.org/Morris/papers.html for details of this shrinkage and an
elicitation procedure for ∈. Using this procedure, we choose ∈ = 0.25, which guarantees that
given a fold-change difference of 2 at spectral locations with intensities of at least 0.10, the
fold-change estimate will be no less than 1.8, and at spectral intensities of 1.00 or more, the
fold-change estimate will be no less than 1.975. Effectively, this choice leads to very little
shrinkage in regions of the spectra surrounding the true protein peaks, but reduces the
possibility that spurious differences will be detected at very low intensities because of the log
scale.

3 Functional Mixed Models

Suppose we observe N functions Yi(t),i = 1,…,n, all defined on the closed interval Ƭ ∈ ℜ1. In
MALDI-TOF data, these functions are the preprocessed, log-transformed spectra on the time
axis t. A functional mixed model for these data is given by

(1)

where Xij are covariates, Bj(t) are functional fixed effects, Zik are elements of the design matrix
for functional random effects Uk(t), and Ei(t) are residual error processes. We assume that
Uk(t) are independent and identically distributed (iid) mean-zero Gaussian processes with
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covariance surface Q(t1, t2), and Ei(t) are iid mean-zero Gaussian processes with covariance
surface S(t1, t2), with Uk(t) and Ei(t) assumed to be independent. The matrix Q is the covariance
function for the random effect functions Uk(t),k = 1,…,m, and S is the covariance function for
the residual error processes for the N curves, after conditioning on the fixed and random effects.
One may allow different strata h = 1,…,H to have their own covariance matrices Qh and Sh by
splitting the random effect functions and residual error processes into blocks. This model is a
special case of the one discussed by Morris and Carroll (2006), and is also like the functional
mixed model introduced by Guo (2002).

Covariates {X.j,j = 1,…,p}, discrete or continuous, are specified for any factors we want to
model. Each functional coefficient βj(t) describes the effect of the corresponding factor at
location t of the spectrum. The covariates can include a column of 1's for an overall mean
spectrum, continuous or discrete variables of interest, clinical or experimental covariates for
which one would like to adjust, and any interactions among these factors. As in linear mixed
models, absent constraints one must take care in parameterizing the X.j so the resulting design
matrix X = (X.1,…,X.p) has full column rank.

When the spectra are not iid, functional random effects provide a flexible mechanism for
modeling correlation among spectra. For example, individual-level random effect functions
can be specified when multiple spectra are obtained from the same individual, and additional
random effect functions can be specified for other clustering units such as blocks or laboratories
when the spectra are obtained over a long period of time or at many different locations. The
covariance matrices Q and S can be allowed to vary by some stratification factor, for example
to allow the spectra from pancreatic cancer patients and healthy controls to have different
covariance structures.

Suppose all observed functions are sampled on the same equally spaced grid t = (tl; l = 1,
…,T) of length T. Let Y be the n × T matrix containing the observed functions on the grid, with
each row containing one observed spectrum on the grid t. A discrete, matrix-based version of
this mixed model can be written as

(2)

The matrix X is an n × p design matrix of covariates; B is a p × T matrix whose rows contain
the corresponding fixed effect functions on the grid t. Bjl denotes the effect of the covariate in
column j of X on the response at time tl. The matrix U is an m × T matrix whose rows contain
random effect functions on the grid t, and Z is the corresponding n × m design matrix. Each
row of the n × T matrix E contains the residual error process for the corresponding observed
spectrum. We assume that the rows of U are iid MVN(0,Q) and the rows of E are iid MVN
(0, S), independent of U, with Q and S being T × T covariance matrices that are discrete
evaluations of the covariance surfaces in (1) on the grid.

Note that this model places no restrictions on the form of the fixed or random effect functions,
which is important for MALDI-TOF data since we expect their true form should be very
irregular and spiky. Although their high dimensionality precludes unstructured representation,
it is also important to allow flexibility in the forms of Q and S, since irregular and spiky curve-
to-curve deviations imply irregularity in these matrices, as well.

Guo (2002) introduced a smoothing spline representation of this model in which the matrices
Q and S are assumed to follow a particular fixed covariance structure based on the reproducing
kernel for the spline. Smoothing splines are better suited to smoother functions than those
encountered in MALDI-TOF. Also, Guo (2002) makes assumptions on the Q and S matrices
that are not flexible enough to accommodate the complex types of curve-to-curve deviations

Morris et al. Page 5

Biometrics. Author manuscript; available in PMC 2009 March 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



encountered for spiky, irregular MALDI-TOF data. Morris and Carroll (2006) introduced a
Bayesian wavelet-based method for fitting this model which uses wavelet shrinkage for
regularization and allows more flexible structures for Q and S, and thus is better suited for these
data. The third column of Figure 1 contains spectra randomly generated from the posterior
predictive distribution of this model fit to the pancreatic cancer example data set, and illustrates
that the model is flexible enough to generate functional data characteristic of MALDI-TOF.

4 Analysis of MALDI-TOF Data Using Wavelet-Based Functional Mixed

Models

Wavelets are useful for modeling spiky functional data as encountered in MALDI-TOF. We
briefly overview wavelets and wavelet regression, describe the Bayesian wavelet-based
approach for fitting the functional mixed model introduced by Morris and Carroll (2006), which
extended the work of Morris, et al. (2003), and describe how to use this method to analyze
MALDI-TOF data.

Wavelets and Wavelet Regression

Wavelets are families of basis functions that can be used to represent other functions, often
very parsimoniously. A wavelet series approximation for a function y(t) is given by

 where J is the number of scales, and k ranges from 1
to Kj , the number of coefficients at scale j. We define the scale index j such that higher j refers
to a coarser level of detail. The functions ϕJ,k(t) and ψj,k(t) are father and mother wavelet basis
functions that are dilations and translations of a father and mother wavelet function, ϕ(t) and
ψ(t), respectively, with ϕj,k (t) = 2−j/2 ϕ(2−jt – k) and ψj,k(t) = 2−j/2ψ(2−jt – k. These wavelet
coefficients comprise a location-scale decomposition of the curve, with j indexing the scales
and k indexing the locations within each scale. The coefficients cJ,k,dJ,k,…,d1,k are the wavelet
coefficients. The cJ,k are called the smooth coefficients, and represent smooth behavior of the
function at coarse scale J, and the dj,k are called the detail coefficients, representing deviations
of the function at scale j, where a smaller j corresponds to a finer scale. The wavelet coefficients
at scale j essentially correspond to the differences of averages of 2j−1 time units, spaced 2j units
apart. In addition, by examining the phase properties of the wavelet bases, we can associate
each wavelet coefficient on each scale with a specific set of time points.

Theoretically, each coefficient can be computed by taking the inner product of the function
and the corresponding wavelet basis function, although in practice more efficient approaches
are used. If the function is sampled on an equally spaced grid of length T, then the coefficients
may be computed using a pyramid-based algorithm implementing the discrete wavelet
transform (DWT) in just O(T) operations. Applying the DWT to a row vector of observations
y produces a row vector of wavelet coefficients d = (cJ,1,…,cJ,KJ, dJ,1,…,dJ,KJ, dJ-1,1,
…,d1,K1 ). This transformation is a linear projection, so it may also be represented by matrix
multiplication, d = yW′, with W′ being the DWT projection matrix. Similarly, the inverse
discrete wavelet transform (IDWT) may be used to project wavelet coefficients back into the
data space, and can also be represented by matrix multiplication by the IDWT projection matrix
W, the transpose of the DWT projection matrix. We use the method implemented in the Matlab
Wavelet Toolbox (Misiti, et al. 2000) for computing the DWT; other implementations could
be used as well.

Wavelets can be used to perform nonparametric regression using the following three-step
procedure. Assume yl = f(tl) + el, for an equally spaced grid {tl, l = 1,…,T}. First, noisy data
y are projected into the wavelet domain using the DWT, yielding empirical wavelet coefficients
d. The coefficients are then thresholded by setting to zero any coefficients smaller in magnitude
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than a specified threshold, and/or nonlinearly shrunken towards zero using one of a number of
possible frequentist or Bayesian approaches. This yields estimates of the true wavelet
coefficients, which would be the wavelet coefficients for the regression mean function f if there
were no noise. Finally, these estimates are projected back to the original data domain using the
IDWT, yielding a denoised nonparametric estimate of the true function. Since most signals
may be represented by a small number of wavelet coefficients, yet white noise is distributed
equally among all wavelet coefficients, this procedure yields denoised function estimates that
tend to retain dominant local features of the function. We refer to this property as adaptive
regularization, since the function is regularized (i.e., denoised or smoothed) in a way that
adapts to the characteristics of the function. This property makes the procedure useful for
modeling spatially heterogeneous functions like MALDI-TOF spectra with many local features
like peaks.

Wavelet-Based Modeling of Functional Mixed Model

Morris and Carroll (2006) introduced a similar three-step procedure to fit the functional mixed
model discussed in Section 3. First, the DWT is used to compute the wavelet coefficients for
the N spectra, effectively projecting the spectra into the wavelet space. Second, a Markov chain
Monte Carlo simulation is performed to obtain posterior samples of the model parameters in
a wavelet-space version of the functional mixed model. Third, the IDWT is applied to the
posterior samples, yielding posterior samples of the parameters in the data-space functional
mixed model (2), which are then used to perform Bayesian inference. The wavelet space
modeling allows parsimonious yet flexible modeling of the covariance matrices Q and S,
leading to computationally efficient code and providing a natural mechanism for adaptively
regularizing the random and fixed effect functions.

The projection in the first step is accomplished by applying the discrete wavelet transform
(DWT) to each row of Y , yielding a matrix of wavelet coefficients D = YW′, where W′ is the
DWT projection matrix. Row i of D contains the wavelet coefficients for spectrum i, with the
columns corresponding to individual wavelet coefficients and double-indexed by scale j and
location k. It is easy to show that the wavelet-space version of model (2) is

(3)

where each row of B* = BW′ contains the wavelet coefficients corresponding to one of the
fixed effect functions, each row of U* = UW′ contains the wavelet coefficients for a random
effect function, and E* = EW′ contains the wavelet-space residuals. The rows of U* and E*
remain independent mean-zero Gaussian distributions, but with covariance matrices Q* =
WQW′ and S* = WSW′.

Motivated by the whitening property of the wavelet transform, many wavelet regression
methods in the single-function setting assume that the wavelet coefficients for a given function
are mutually independent. In this context, this corresponds to making Q* and S* diagonal
matrices. Allowing the variance components to differ across both wavelet scale j and location
k yields Q* = diag(qjk) and S* = diag(sjk). This assumption reduces the dimensionality of Q
and S from T(T + 1)/2 to T, while still accommodating a reasonably wide range of nonstationary
within-profile covariance structures for both the random effects and residual error processes.
For example, it allows heteroscedasticity and differing degrees of smoothness for different
regions of the curves, which are important characteristics of these matrices for MALDI-TOF
spectra. Figure 1 in Morris and Carroll (2006) illustrates this point.
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MCMC For Fitting the Model

Next, a Markov chain Monte Carlo scheme is used to generate posterior samples for quantities
of model (3). We use vague proper priors for the variance components and independent mixture

priors for the elements of B*. Specifically, the prior for , the wavelet coefficient at scale

j and location k for fixed effect function i, is a spike-slab prior given by  Normal(0,
τij)+(1−γijk)δ0, with γijk ~ Bernoulli(πij) and δ0 being a point mass at zero. This prior is
commonly used in Bayesian implementations of wavelet regression, including those by Clyde,
Parmigiani and Vidakovic (1998) and Abramovich, Sapatinas, and Silverman (1998). Use of

this mixture prior causes the posterior mean estimates of the  to be nonlinearly shrunken
towards zero, which results in adaptively regularized estimates of the fixed effect functions.
The parameters τij and πij are regularization parameters that determine the relative trade-off
of variance and bias in the nonparametric estimation. They may either be prespecified or
estimated from the data using an empirical Bayes method; see Morris and Carroll (2006) for
details.

There are three major steps in the MCMC scheme. Let Ω be the set of all covariance parameters
indexing the matrices Q* and S*. The first step is a series of Gibbs steps to sample from the
distribution of the fixed effect functions' wavelet coefficients conditional on the variance
components and the data, f(B*|Ω,D), which is a mixture of a point mass at zero and a Gaussian
distribution. See Morris and Carroll (2006) for the expressions for the mixing parameters,
means, and variances of these distributions. The second step is to sample from the distribution
of the variance components conditional on the fixed effects and data, f(Ω|B*,D). We accomplish
this using a series of random walk Metropolis-Hastings steps, one for every combination of
(j, k). We estimate each proposal variance from the data by multiplying an estimate of the
variance of the MLE by 1.5. An automatic procedure for selecting the proposal variances was
necessary in order for our MCMC scheme to be automated and thus computationally feasible
to implement in this very high-dimensional, highly-parameterized setting. Note that we work
with the marginalized likelihood with the random effects U* integrated out when we update
the fixed effects B* and variance components Ω. This greatly improves the computational
efficiency and convergence properties of the sampler over a simple Gibbs sampler that also
conditions on the random effects. The stationary distribution for these first two steps is f(B*,Ω|
D). The third step is a series of Gibbs steps to update the random effects' wavelet coefficients
from their complete conditional distribution, f(U*|B*,Ω,D), which is a Gaussian distribution.
Note that this step is optional, and only necessary if one is specifically interested in estimating
the random effect functions.

Posterior samples for each fixed effect function, , on the grid t are then obtained
by applying the IDWT to the posterior samples of the corresponding complete set of wavelet

coefficients . A similar approach can be used for the random effects Ui

and the covariance matrices Q and S, if desired. Code to fit the wavelet-based functional mixed
model is freely available at the following URL:
http://biostatistics.mdanderson.org/Morris/papers.html.

Identifying Significant Regions of Spectra

Our primary goal is to identify regions of the spectra that are differentially expressed across
factors of interest, which can subsequently be mapped to proteins that may serve as useful
biomarkers. In microarrays, two classical approaches for handling differential expression are
(i) identify all genes with a fold-change difference of at least δ and (ii) identify genes that differ
significantly across treatment groups according to a statistical hypothesis test. Option (i) is
intuitive to many researchers but lacks statistical rigor since it ignores the variability in the

Morris et al. Page 8

Biometrics. Author manuscript; available in PMC 2009 March 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://biostatistics.mdanderson.org/Morris/papers.html


data, and option (ii) only focuses on statistical significance, ignoring practical significance,
since it is typically based on a null hypothesis of equality. In the present MALDI-TOF context,
we identify differentially expressed regions of the spectra in a way that considers both statistical
and practical significance.

Suppose we are interested in identifying biomarkers that have at least a δ-fold intensity change
between treatment groups. Given posterior samples of the corresponding fixed effect function

 , we compute the pointwise posterior probabilities of at least a δ-fold intensity

change as  for (tl, l = 1,…,T). We
replace any pil = 1 with 1−(2*G)−1. These posterior probabilities can be also computed for any

contrast involving the fixed effect functions, , or similar posterior
probabilities can be computed for linear combinations of spectral locations, e.g. if one wanted
to detect peaks and look at areas under peaks.

Given a choice of α, we then flag the set of locations ψi = {tl : pil > ϕα} as significant spectral
regions for factor i. In order to obtain ϕα;, we first sort {pil, l = 1,…,T} in descending order to

obtain {p(l),l = 1,…,T}. Then ϕα = p(λ), where . The threshold
ϕα is a cutpoint on the posterior probabilities that controls the expected Bayesian FDR at level
α, in the sense that on average we expect ≤ 100α% of the locations in the set ψi to have a true
δ-fold difference in expression, as estimated by the wavelet-based functional mixed model.
That is, if L=length(ψi), then L−1 Σtl∈ψi Pr{|Bi(tl)| ≤ log2(δ)|Y } ≤ α. If p* factors are to be
investigated simultaneously, it is possible to either use one common threshold ϕα or separate
thresholds for each factor, {ϕI,α, i = 1,…,p*}. This use of Bayesian FDR is similar in spirit to
the approach used by Newton, et al. (2004).

Peak Detection

While it is unnecessary to perform peak detection in this context, some people may want to
restrict attention to the peaks in the data. Morris, et al. (2005) describe a peak detection approach
and demonstrate that performing peak detection on the mean spectrum results in greater
sensitivity and specificity than the usual approach of performing peak detection on the
individual spectra. Since the mean spectrum is easily obtainable from the functional mixed
model either as a fixed effect function or a linear combination of fixed effect functions, it is
easy to adapt the procedure described in that paper to detect and quantify peaks in this setting,
if desired. This peak detection can be done as a postprocessing step after the functional mixed
modeling. The posterior probabilities of differential expression can then be computed for each
peak, and a threshold of significance determined using the procedure described above.

5 Analysis of Example Data

For both examples, we modeled the spectra on the time scale t but plotted results on the
biologically meaningful mass-per-unit-charge scale (m/z, x). In our wavelet-space modeling,
we chose the Daubechies wavelet with vanishing 4th moments and performed the DWT down
to J = 10 and J = 9 levels for two examples, respectively. Other wavelet bases were examined
and yielded equivalent results. We used a modified empirical Bayes procedure (Morris and
Carroll, 2006) to estimate the shrinkage hyperparameters πij and τij,i = 1,…,5,j = 1,…,10,
constraining τ ≥ 10 so there would be less bias in the estimation of peak heights, which we
believed to be important in this context. We did almost no shrinkage (π ≈ 1, τ = 1000) for the
highest wavelet level or the scaling coefficients. For each example, we ran 10 parallel chains,
each consisting of 1000 iterations after a burn-in of 1000, and we kept every 5 for a total of
G = 2000 MCMC samples for our analyses. All chains appear to have converged, as indicated
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by the trace plots available as supplementary material on
http://biostatistics.mdanderson.org/Morris/papers.html. In the pancreatic cancer example, the
median and 99% credible interval for the Metropolis Hastings acceptance probabilities across
the roughly 12,000 covariance parameters were 0.22 and (0.11,0.31), respectively, and for the
organ-by-cell line example with roughly 8,000 covariance parameters, they were 0.17 and
(0.05, 0.51), respectively.

We explored the possible identities of the flagged peaks by running the estimated m/z values
of the corresponding peaks through TagIdent, a searchable database (available at
http://us.expasy.org/tools/tagident.html) that contains the molecular masses and pH for
proteins observed in various species. For the organ by cell line example, we searched for
proteins emanating from both the source (human) and the host (mouse) whose molecular
masses were within the estimated mass accuracy (0.3%) of the instrument from the nearest
peak or most significant location of each flagged region. This only gives an educated guess at
what the protein identity of the peak could be; it is necessary to perform an additional MS/MS
experiment in order to rigorously validate the protein identity.

Pancreatic Cancer Example

The design matrix for this data set of N = 256 spectra was chosen to have p = 5 columns, the
first column indicating cancer (=1) or normal (= −1) status, and corresponding to a functional
cancer main effect B1(t) describing the difference between the mean log2 intensities of cancer
and normal spectra at time t. The final four columns indicate the time blocks, and correspond
to mean spectra for the respective time blocks (Bi(t),i = 2,…,5). The block effects between
block i and i′ can be constructed by Bi(t) − Bi′(t). No functional random effects were specified.
The residual covariance matrix S was allowed to vary across cancer status.

The top two panels of Figure 2 contain posterior means and 95% credible intervals for the
cancer main effect function and the corresponding pointwise posterior probabilities of at least
1.5-fold expression. The dots in the plots correspond to the 227 peaks detected on the posterior

mean for the overall mean spectrum . The horizontal line
indicates the threshold on the posterior probabilities ϕ10 = 0.595 corresponding to an expected
Bayesian FDR at 0.10. There were a total of 506 spectral locations contained within 16
contiguous regions that were flagged as significant. Analyzing the peaks, we find 26/227 were
flagged as significant. A list containing the significant regions and peaks, and a plot of the
overall mean spectrum with detected peaks are available as supplementary material at
http://biostatistics.mdanderson.org/Morris/papers.html.

The most significant effects were observed in the regions (i) (17230D, 17311D), (ii) (8730D,
8787D), (iii) (11314D, 12037D), with maximum posterior mean fold-change differences of
1/2.46, 1/2.20, 2.77, respectively, between cancers and normals. The maximum fold-change
differences for all three of these regions were located at peaks. These were also all identified
in Koomen, et al. (2005). In that paper, they reported MS/MS results confirming the identity
of (i) as a fragment of apolipoprotein A-I or apolipoprotein glutamine-I, and the cluster of 7
peaks in (iii) as serum amyloid A. Based on TagIdent, region (ii) may correspond to
complement C4-A or C4-B(precursor), 8764.07D, mediators of inflammatory processes that
circulate in the blood.

One peak (4284D) found to be statistically significant and highlighted by Koomen, et al.
(2005) had a very small fold-change estimate (1.22), and was not flagged by our analysis. Also
interesting was the region (8671D, 8684D) that was on the upslope of a very abundant peak at
8688D. The peak itself was not flagged (p=0.186), but this region was, with a a maximum fold-
change of 1/1.70 at 8679 (p=0.968). It is possible that this result is driven by protein at 8679D
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whose peak is not visible because of its proximity to the extremely abundant peak at 8688D.
An MS/MS experiment would have to be done to investigate this possibility.

Plots of the block effects (in supplementary material) demonstrate that they affect both the
location and intensity of peaks, and are of similar magnitude to the cancer main effect. Figure
3 illustrates the block effect (block 1 – block 2) in the neighborhood of some prominent peaks.
The nonparametrically modeled block effects were able to capture both shifts in intensity
{Figure 3(a)} and shifts in location {Figure 3(b)}. Note that changes in the x axis appear as
pulses in the nonparametric block effects. These features served to calibrate the x and y axes
across blocks so they were comparable, allowing spectra from different blocks to be pooled
for a combined analysis.

Organ-by-Cell-Line Example

The design matrix for this set of N = 32 spectra had p = 5 columns. We used a cell means model
for the factorial design, so the first four columns contained indicators of the 4 organ-by-cell-
line groups with corresponding mean functions Bi(t), i = 1,…,4, ordered brain-A375P, brain-
PC3MM2, lung-A375P, and lung-PC3MM2. From these, the overall mean spectrum 0.25

, the organ main effect function B1(t) + B2(t) − B3(t) − B4(t), cell-line main effect
function B1(t)−B2(t)+B3(t)−B4(t), and the organ-by-cell line interaction function Bt(t) − B2(t)
− B3(t) + B4(t) were constructed. Column 5 indicated whether a low (−1) or high (1) laser
intensity setting was used in generating the given spectrum. The Z matrix had m = 16 columns,
with Zij = 1 if spectrum i came from animal j, with corresponding mouse-level random effect
functions Uk(t), k = 1,…,16.

The bottom two panels of Figure 2 contain the posterior means and 95% credible intervals for
the organ main effect function and corresponding pointwise posterior probabilities of at least
2-fold difference, respectively. The threshold on the posterior probabilities based on setting
the expected Bayesian FDR of 0.05 was ϕ05 = 0.874. Equivalent plots for the cell line and
interaction effects are available as supplementary material. We flagged 1393/7985 of the
spectral locations in 41 contiguous regions for the organ main effect, 798/7985 in 25 contiguous
regions for the cell line main effect, and 594/7985 in 18 contiguous regions for the organ-by-
cell line interaction effect. Of the 101 detected peaks, we flagged 40 as significant, 13 for organ
alone, 13 for cell-line, 1 for both organ and cell-line, and 13 for the interaction. Table 1 contains
information for the top 10 most significant regions, all of which contained locations with
posterior probabilities pl > 0.9995. The complete list of significant regions and peaks is
available as supplementary material.

The strongest differences observed were between organ groups. The largest estimated fold
changes were observed in the regions [3658.3, 3739] and [3866.3, 3971.3]. These regions each
contain a peak that is strongly present in all mice with tumors injected into their brains, but
absent from those injected in their lungs. The region [3866.3, 3971.3] is represented in figure
4(a) and (c). This region may correspond to a calcitonin gene-related peptide II precursor
(CGRP-II, 3882.34 D), a peptide in the mouse proteome that dilates blood vessels in the brain
and has been observed to be abundant in the central nervous system
(http://www.expasy.org/uniprot/Q99MP3). The region [3658.3, 3739.0] may correspond to a
precursor of amyloid beta A4 protein in the mouse proteome (3717.10 D) that "functions as a
cell surface receptor and performs physiological functions on the surface of neurons relevant
to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and
transcription regulation through protein-protein interactions
" (http://www.expasy.org/uniprot/P12023). Another flagged region [10912,11269] may also
correspond to a precursor of the same protein (11050.64 D). These results may represent
important responses within the hosts to the tumor implantation in their brains.
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There were some significant effects that would not have been detected had we restricted our
attention to the peaks. The significant organ effect in the region [3993.4, 4061.3], with
maximum fold change difference of 21.0, is on the upslope of a peak, but the peak value itself
was not significant. Also, the region [7618.3, 7650.5] was flagged for an organ effect, being
specific to brain-injected mice.

Inspection of the overall mean spectrum (see black line in Figure 4(b)) reveals that this region
contains an inflection point near 7620 on the overall mean spectrum near a larger peak at
7580.1, and the peak is not differentially expressed. The protein neurogranin in the human
proteome, with a molecular weight of 7618.47 Daltons, is active in synaptic development and
remodeling in the brain. No peak was detected in the region [7618.3, 7650.5], so this potential
discovery would not have been made had we restricted attention to the peaks.

Of the 25 regions flagged as significantly different across cell lines, 22 of them were
overexpressed in the metastatic PC3MM2 cell line relative to the non-metastatic A375P cell
line. Plots of the laser intensity effect (in supplementary material) reveal systematic differences
between the low and high laser intensity spectra that affect both the locations and intensities
of peaks. Our nonparametric laser intensity effect was able to model this difference, allowing
us to pool data from both laser intensities for this analysis.

6 Discussion

We have demonstrated how to use the Bayesian wavelet-based functional mixed model to
model MALDI-TOF proteomics data. This method appears well suited to this context, for
several reasons: the functional mixed model is very flexible; it is able to simultaneously model
nonparametric functional effects for many covariates simultaneously, both factors of interest
and nuisance factors such as block effects. The nonparametric functional effects for nuisance
factors are flexible enough to account for systematic changes in both the location and intensity
of peaks in the spectra. Further, the random effect functions can be used to model correlation
among spectra that might be induced by the experimental design. The wavelet-based modeling
approach works well for modeling functional data with many local features like MALDI-TOF
peaks since it results in adaptive regularization of the fixed effect functions, avoids attenuation
of the effects at the peaks, and is reasonably flexible in modeling the between-curve covariance
structures, accommodating autocovariance structures induced by peaks and heteroscedasticity
allowing different between-spectrum variances for different peaks.

We applied this method to two cancer proteomic studies, and identified spectral regions that
were differentially expressed and may correspond to potential biomarkers. Many of these
regions contained peaks, but several would not have been found had attention been restricted
to peaks alone. Another benefit of our approach is that both statistical and practical significance
were considered in identifying potential biomarkers.

In the pancreatic cancer example, this method was able to model nonparametric block effects
that served to calibrate the x and y axes across blocks, making spectra from the different time
blocks comparable and enabling them to be pooled for a common analysis. In a similar fashion,
the incorporation of the nonparametric laser intensity effect in the organ-by-cell line example
allowed us to account for systematic differences in spectral intensity and peak locations
between the high and low laser intensity spectra. Along with the nonparametric random effects
accounting for the correlation between spectra from the same animal, this allowed us to pool
data across laser intensities for a common analysis, potentially increasing our power for
detecting differentially expressed proteins.

While the method is complex, it is relatively straightforward to implement using the code freely
available at http://biostatistics.mdanderson.org/Morris/papers.html. The user only needs to

Morris et al. Page 12

Biometrics. Author manuscript; available in PMC 2009 March 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://biostatistics.mdanderson.org/Morris/papers.html


construct a matrix Y containing the preprocessed spectral intensities for the N spectra in the
study and specify the design matrices X and Z. Starting values, empirical Bayes and vague
proper priors, and proposal variances are all automatically computed by the program and can
be used without any user input. Default choices for wavelet basis and levels of decomposition
are also automatically computed and can be used, if desired. The code provides posterior
samples and summary statistics for all quantities in the functional mixed model, from which
Bayesian inference can be done in a straightforward fashion. The method is computationally
intensive, but the code has been optimized to be able to handle very large data sets, and parallel
processing can further speed the computations when it is available. For example, on average
each chain of 2000 MCMC iterations for our pancreatic cancer example with 256 spectra and
12,096 observations per spectra took under an hour to run. In our analysis, we ran 10 of these
chains in parallel using Condor (http://www.cs.wisc.edu/condor), parallel processing freeware
that shared the job among roughly 10 Pentium IV computers in a Windows network.

Wavelet-based functional mixed models show great promise for the analysis of MALDI-TOF
proteomic data. This approach may also prove useful for analyzing data from other biomedical
platforms that generate irregular functional data.
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Figure 1. Sample Spectra

The first column contains raw MALDI-TOF spectra from normal and pancreatic cancer
patients, respectively, from the example data set. The second column shows the same spectra
after preprocessing by baseline correction, normalization, and denoising. The final column
contains normal and pancreatic cancer spectra randomly drawn from the posterior predictive
distribution based on fitting the wavelet-based functional mixed model to the example data set.
Note that the model does a good job of generating MALDI-TOF-like functions.
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Figure 2. Fixed Effect Curves

(a) and (c): Posterior mean and 95% pointwise posterior credible bands for cancer main effect,
pancreatic cancer example, and organ main effect, organ-by-cell-line example, respectively.
The green lines indicate 1.5-fold and 2.0-fold differences in the two examples, respectively,
and the dots indicate peaks detected using the average spectrum. (b) and (d): Pointwise posterior
probabilities of (b) 1.5-fold difference in cancer/normal in pancreatic cancer example and (d)
2.0-fold difference in brain/lung in organ-by-cell-line example. The red dots indicate detected
peaks, and the green lines mark the flagged regions. The yellow dotted lines indicate the
threshold for flagging a location as significant, controlling the expected Bayesian FDR to be
less than 0.10 and 0.05 in the two examples, respectively.
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Figure 3. Block Effects

Plot of the mean spectra for blocks 1 (green line) and 2 (red line), along with the posterior mean
and 95% pointwise posterior bounds for the block 1 – block 2 effect (blue and black lines) near
(a) the peak at 33,482 and (b) the twin peaks at 17,245 and 17,376. (a) illustrates that the
nonparametric functional effect can model changes in intensity, and (b) shows that the pulse-
like features of the nonparametric effect account for systematic shifts in location.
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Figure 4. Select Results

(a) and (b) Plot of organ main effect function in selected regions. The green and red lines are
the organ-specific mean spectra on the untransformed intensity scale, the blue and black lines
are the posterior mean and pointwise 95% posterior bounds for the organ main effect on the
log2 intensity scale. The yellow dotted line at 0 and the cyan dotted lines at +/−1 are provided
for reference. (c) and (d) Pointwise posterior probabilities of 2-fold difference in intensity. The
red dots indicate peaks detected in the mean spectrum, and the yellow dotted line indicates the
threshold on pointwise posterior probabilities chosen so the expected Bayesian FDR<0.05. The
green lines in the plot indicate regions flagged as significant.
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Table 1

Selected flagged regions from organ by cell line example. Location of selected region (in Daltons per coulomb) is
given, along with which effect was deemed significant, estimated maximum fold change difference within the region,
and a description of the effect. These effects comprise all those with pl > 0.9995.

Region Effect type max FC Comment

3866.3–3971.3 organ 1/93.9 Only in brain-injected mice

3658.3–3739.0 organ 1/118.5 Only in brain-injected mice

9902.6–10044.0 organ 46.1 Only in lung-injected mice

4762.2–4874.8 interaction 1/13.7 PC3MM2>A375P, especially brain

4748.2–4868.3 cell-line 1/39.7 PC3MM2>A375P

3743.4-3565.3 organ 1/35.0 Brain>Lung

4952.6–5008.2 organ 1/32.8 Brain>Lung

4519.9–4697.5 organ 27.5 Lung>Brain

5051.3–5093.3 cell-line 1/23.5 PC3MM2>A375P

3993.4–4061.3 organ 21.0 Lung>Brain (on upslope of peak)

10912–11269 interaction 1/16.4 Brain>Lung for A375P only
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