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Summary - The Gibbs sampling is a Monte-Carlo procedure for generating random sam-
ples from joint distributions through sampling from and updating conditional distribu-
tions. Inferences about unknown parameters are made by: 1) computing directly sum-
mary statistics from the samples; or 2) estimating the marginal density of an unknown,
and then obtaining summary statistics from the density. All conditional distributions
needed to implement the Gibbs sampling in a univariate Gaussian mixed linear model
are presented in scalar algebra, so no matrix inversion is needed in the computations. For
location parameters, all conditional distributions are univariate normal, whereas those for
variance components are scaled inverted chi-squares. The procedure was applied to solve
a Gaussian animal model for litter size in the Gamito strain of Iberian pigs. Data were
1 213 records from 426 dams. The model had farrowing season (72 levels) and parity (4)
as fixed effects; breeding values (597), permanent environmental effects (426) and resid-
uals were random. In CASE I, variances were assumed known, with REML (restricted
maximum likelihood) estimates used as true parameter values. Here, means and variances
of the posterior distributions of all effects were obtained, by inversion, from the mixed
model equations. These exact solutions were used to check the Monte-Carlo estimates
given by Gibbs, using 120 000 samples. Linear regression slopes of true posterior means
on Gibbs means were almost exactly 1 for fixed, additive genetic and permanent environ-
mental effects. Regression slopes of true posterior variances on Gibbs variances were 1.00,
1.01 and 0.96, respectively. In CASE II, variances were treated as unknown, with a flat
prior assigned to these. Posterior densities of selected location parameters, variance com-
ponents, heritability and repeatability were estimated. Marginal posterior distributions
of dispersion parameters were skewed, save the residual variance; the means, modes and
medians of these distributions differed from the REML estimates, as expected from theory.
The conclusions are: 1) the Gibbs sampler converged to the true posterior distributions,
as suggested by CASE I; 2) it provides a richer description of uncertainty about genetic
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parameters than REML; 3) it can be used successfully to study quantitative genetic varia-
tion taking into account uncertainty about all nuisance parameters, at least in moderately
sized data sets. Hence, it should be useful in the analysis of experimental data.
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Résumé - Analyse bayésienne de modèles linéaires mixtes à l’aide de l’échantillon-

nage de Gibbs avec une application à la taille de portée de porcs ibériques.
L’échantillonnage de Gibbs est une procédure de Monte-Carlo pour engendrer des échan-
tillons aléatoires à partir de distributions conjointes, par échantillonnage dans des dis-
tributions conditionnelles réajustées itérativement. Les inférences relatives aux paramètres
inconnus sont obtenues en calculant directement des statistiques récapitulatives à partir des
échantillons générés, ou en estimant la densité marginale d’une inconnue, et en calculant
des statistiques récapitulatives à partir de cette densité. Toutes les distributions condi-
tionnelles nécessaires pour mettre en ceuvre l’échantillonnage de Gibbs dans un modèle
univarié linéaire mixte gaussien sont présentées en algèbre scalaire, si bien qu’aucune in-
version matricielle n’est requise dans les calculs. Pour les paramètres de position, toutes
les distributions conditionnelles sont normales univariées, alors que celles des composantes
de variance sont des x2 inverses dimensionnés. La procédure a été appliquée à un modèle
individuel gaussien de taille de portée dans la souche porcine ibérique Gamito. Les données
représentaient 1 21,i observations sur 426 mères. Le modèle incluait les effets fixés de la
saison de mise bas (72 niveaux) et de la parité (4 niveaux) ; les valeurs génétiques in-
dividuelles (597), les effets de milieu permanent (426) et les résidus étaient aléatoires.
Dans le CAS I, les variances étaient supposées connues, les estimées REML (maximum
de vraisemblance restreinte) étant considérées comme les valeurs vraies des paramètres.
Les moyennes et les variances des distributions a posteriori de tous les effets étaient alors
obtenues par la résolution du système d’équations du modèle mixte. Ces solutions ex-

actes étaient utilisées pour vérifier les estimées Monte-Carlo données par le Gibbs, en
utilisant 120 000 échantillons. Les coefficients de régression linéaire des vraies moyennes
a posteriori en fonction des moyennes de Gibbs étaient presque exactement de 1, pour
les effets fixés, génétiques additifs et de milieu permanent. Les coeff cients de régression
des variances vraies a posteriori en fonction des variances de Gibbs étaient 1,00, 1,01, et
0, 96 respectivement. Dans le CAS II, les variances étaient traitées comme des inconnues,
avec une distribution a priori uniforme. Les densités a posteriori de paramètres de position
choisis, des composantes de variance, de l’héritabilité et de la répétabilité ont été estimées.
Les distributions a posteriori des paramètres de dispersion étaient dissymétriques, sauf la
variance résiduelle; les moyennes, modes et médianes de ces distributions différaient des
estimées REML, comme prévu d’après la théorie. On conclut que : i) l’échantillonneur
de Gibbs converge vers les vraies distributions a posteriori, comme le suggère le CAS I,
ii) il fournit une description de l’incertitude sur les paramètres génétiques plus riche que
REML ; iii) il peut être utilisé avec succès pour étudier la variation génétique quantita-
tive avec prise en compte de l’incertitude sur tous les paramètres de nuisance, du moins
avec un nombre de données modéré. Il devrait donc être utile dans l’analyse de données
expérimentales.
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INTRODUCTION

Prediction of merit or, equivalently, deriving a criterion for selection is an important
theme in animal breeding. Cochran (1951), under certain assumptions, showed that
the selection criterion that maximized the expected merit of the selected animals
was the mean of the conditional distribution of merit given the data. The conditional
mean is known as best predictor, or BP (Henderson, 1973), because it minimizes
mean square error of prediction among all predictors. Computing BP requires
knowing the joint distribution of predictands and data, which can seldom be met
in practice. To simplify, attention may be restricted to linear predictors.

Henderson (1963, 1973) and Henderson et al (1959) developed the best linear
unbiased prediction (BLUP), which removed the requirement of knowing the first
moments of the distributions. BLUP is the linear function of the data that minimizes
mean square error of prediction in the class of linear unbiased predictors.

Bulmer (1980), Gianola and Goffinet (1982), Goffinet (1983) and Fernando and
Gianola (1986) showed that under multivariate normality, BLUP is the conditional
mean of merit given a set of linearly independent error contrasts. This holds if
the second moments of the joint distribution of the data and of the predictand
are known. However, second moments are rarely known in practice, and must be
estimated from the data at hand. If estimated dispersion parameters are used in
lieu of the true values, the resulting predictors of merit are no longer BLUP.

In animal breeding, dispersion components are most often estimated using re-
stricted maximum likelihood, or REML (Patterson and Thompson, 1971). Theo-
retical arguments (eg, Gianola et al, 1989; Im et al, 1989) and simulations (eg,
Rothschild et al, 1979) suggest that likelihood-based methods have ability to ac-
count for some forms of nonrandom selection, which makes the procedure appealing
in animal breeding. Thus, 2-stage predictors are constructed by, first, estimating
variance and covariance components, and then obtaining BLUE and BLUP of fixed
and random effects, respectively, with parameter values replaced by likelihood-
based estimates. Under random selection, this 2-stage procedure should converge
in probability to BLUE and BLUP as the information in the sample about variance
components increases; however, its frequentist properties under nonrandom selec-
tion are unknown. One deficiency of this BLUE and BLUP procedure is that errors
of estimation of dispersion components are not taken into account when predicting
breeding values.

Gianola and Fernando (1986), Gianola et al (1986) and Gianola et al (1990a, b,
1992) advocate the use of Bayesian methods in animal breeding. The associated
probability theory dictates that inferences should be based on marginal posterior
distributions of parameters of interest, such that uncertainty about the remaining
parameters is fully taken into account. The starting point is the joint posterior den-
sity of all unknowns. From the joint distribution, the marginal posterior distribution
of a parameter, say the breeding value of an animal, is obtained by successively in-
tegrating out all nuisance parameters, these being the fixed effects, all the random
effects other than the one of interest, and the variance and covariance components.
This integration is difficult by analytical or numerical means, so approximations
are usually sought (Gianola and Fernando, 1986; Gianola et al, 1986; Gianola et
al, 1990a, b).



The posterior distributions are so complex that an analytical approach is often
impossible, so attention has concentrated on numerical procedures (eg, Cantet et al,
1992). Recent breakthroughs are related to Monte-Carlo Markov chain procedures
for multidimensional integrations and for sampling from joint distributions (Geman
and Geman, 1984; Gelfand and Smith, 1990; Gelfand et al, 1990). One of these
procedures, Gibbs sampling, has been studied extensively in statistics (Gelfand
and Smith, 1990; Gelfand et al, 1990; Besag and Cliford, 1991; Gelfand and Carlin,
1991; Geyer and Thompson, 1992).
Wang et al (1993) described the Gibbs sampler for a univariate mixed lin-

ear model in an animal breeding context. They used simulated data to construct
marginal densities of variance components, variance ratios and intraclass correla-
tions, and noted that the marginal distributions of fixed and random effects could
also be obtained.

However, their implementation was in matrix form. Clearly, some matrix com-
putations are not feasible in many animal breeding data sets because inversion of
large matrices is needed repeatedly.

In this paper, we consider Bayesian marginal inferences about fixed and random
effects, variance components and functions of variance components in a univariate
Gaussian mixed linear model. Here, marginal inferences are obtained, in contrast
to Wang et al (1993) through a scalar version of the Gibbs sampler, so inversion of
matrices is not needed. Our implementation was applied to and validated with a
data set on litter size of Iberian pigs.

THE GIBBS SAMPLER FOR THE GAUSSIAN MIXED LINEAR
MODEL

Model

We consider a univariate mixed linear model with several independent random
factors as in Henderson (1984), Macedo and Gianola (1987) and Gianola et al

(1990a, b):

where: y: data vector of order n x 1; X: known incidence matrix of order n x p ;
Zi: known matrix of order n x qi ; (3: p x 1 vector of uniquely defined ’fixed effects’
(so that X has full column rank); ui: qi x 1 random vector; and e: n x 1 vector of
random residuals.

The conditional distribution that generates the data is:

where I is an n x n identity matrix, and Qe is the variance of the random residuals.



Prior Distributions

An integral part of Bayesian analysis is the assignment of prior distributions to all
unknowns in the model; here, these are 13, Ui (i = 1, 2, ... , c) and the c + 1 variance
components (one for each of the random vectors, plus the error). Usually, a flat or
uniform prior distribution is assigned to 0, so as to represent lack of prior knowledge
about this vector, so:

Further, it is assumed that:

where Gi is a known matrix and cr! is the variance of the prior distribution of
ui. In a genetic context, Gi matrices can contain functions of known coefficients
of coancestry. All ui’s are assumed to be mutually independent a priori, as well as
independent of j3. Note that the priors for ui correspond to the assumptions made
about these random vectors in the classical linear model.

Independent scaled inverted chi-square distributions are used as priors for
variance components, so that:

and

Above, ve(v&dquo;!) is a ’degree of belief’ parameter, and s!(s!) can be thought of as a
prior value of the appropriate variance.

Joint posterior density

be 0’ without 0z. Further, let

be the vector of variance components other than the residual;



and

be the sets of all prior variances and degrees of belief, respectively. As shown, for
example, by Macedo and Gianola (1987) and Gianola et al (1990a, b), the joint
posterior density is in the normal-gamma form:

Inferences about each of the unknowns (9, v, !e ) are based on their respective
marginal densities. Conceptually, each of the marginal densities is obtained by
successive integration of the joint density [7] with respect to parameters other than
the one of interest. For example, the marginal density of a£ is

It is difficult to carry out the needed integration analytically. Gibbs sampling is a
Monte-Carlo procedure to overcome such difficulties.

liblly conditional posterior densities (Gibbs sampler)

The fully conditional posterior densities of all unknowns are needed for implement-
ing the Gibbs sampling. Each of the full conditional densities can be obtained by
regarding all other parameters in [7] as known. Let W = f wij 1, i, j = 1, 2, ... , N,
and b = {bi}, i = 1, 2, ... , N be the coefficient matrix and the right hand side of
the mixed model equations, respectively. As proved in the APpendix, the conditional
posterior distribution of each of the location parameters in 0 is normal, with mean
and variance !i and Ez :

because all computations needed to implement Gibbs sampling are scalar, without
any required inversion of matrices. This is in contrast with the matrix version of
the conditional posterior distributions for the location parameters given by Wang
et al (1993). It should be noted that distributions [8] do not depend on s and v,
because v is known in [8]. ..



The conditional posterior density of o,2 is in the scaled inverted chi-square form:

It can be readily seen that

with parameters

Each condition posterior density of a u! 2 is also in the scaled inverted chi-square
form:

A set of the N + c + 1 conditional posterior distributions [8]-[10] is called the
Gibbs sampler for our problem.

FULL CONDITIONAL POSTERIOR DENSITIES UNDER SPECIAL
PRIORS

The Gibbs sampler with ’naive’ priors for all variance components

The Gibbs sampler [8]-[10] given above is based on scaled inverted chi-squares
used as priors for the variance components. These priors are proper and, therefore,
informative, about the variance. A possible way of representing prior ignorance
about variances would be to set the degree of belief parameters of the prior
distributions for all the variance components to zero ie, ve = vu, = 0, for all i.

These priors have been used, inter alia, by Gelfand et al (1990) and Gianola et
al (1990a, b). In this case, the conditional posterior distributions of the location
parameters are as in !8!:

because the distributions do not depend on s and v.
However, the conditional posterior distributions of the variance components no

longer depend on hyper-parameters s and v. The conditional posterior distribution
of the residual variance remains in the scaled inverted chi-square form:



but now with parameters

Each conditional posterior density of a), is again in the scaled inverted

chi-square form:

with parameters v&dquo;! = qi and Vui = u§Gy lui/v&dquo;!.
It has been noted recently (Besag et al, 1991; Raftery and Banfield, 1991) that

under these priors, the joint posterior density [7] is improper because it does not
integrate to 1. In the light of this, we do not recommend these ’naive’ priors for
variance component models.

The Gibbs sampler with flat priors for all variance components

Under flat priors for all variance components, ie p(v, (J’!) oc constant, the Gibbs
sampler is as in !11!-!13!, except that ve = n - 2 and Vu, = qi - 2 for i = 1,2,..., c.
This version of the sampler can also be obtained by setting V, = -2 in [9] and
v = (-2, -2, ... , -2)’ and s = (0, 0, ... , 0)’ in [10]. With flat priors, the joint
posterior density [7] is proper.

The Gibbs sampler when all variance components are known

When variances are assumed known, the only conditional distributions needed are
those for the location parameters, and these are as in [8] or !11!.

INFERENCES ABOUT THE MARGINAL DISTRIBUTIONS
THROUGH GIBBS SAMPLING

Gibbs sampling: an overview

The Gibbs sampler was used first in spatial statistics and presented formally by
Geman and Geman (1984) in an image restoration context. Applications to Bayesian
inference were described by Gelfand and Smith (1990) and Gelfand et al (1990).
Since then, it has received extensive attention, as evidenced by recent discussion
papers (Gelman and Rubin, 1992; Geyer, 1992; Besag and Green, 1993; Gilks et
al, 1993; Smith and Roberts, 1993). Its power and usefulness as a general statistical
tool to generate samples from complex distributions arising in some particular
problems is unquestioned.

Our purpose is to generate random samples from the joint posterior distribu-
tion !7!, through successively drawing samples from and updating the Gibbs sam-
pler !8!-!10!. Formally, Gibbs sampling works as follows:

(i) set arbitrary initial values for e, v and a e 2
(ii) generate Oi from [8] and update Bi, i = 1, 2, ... , N ;



(iii) generate u2 from [9] and update Qe ;
(iv) generate u2i from [10] and update a-!i’ i = 1,2,..., c;
(v) repeat (ii)-(iv) k (length of the chain) times.

As k - oo, this creates a Markov chain with an equilibrium distribution that has
[7] as its density. We shall call this procedure a single long-chain algorithm.

In practice, there are at least 2 ways of running the Gibbs sampler: a single long
chain and multiple short chains. The multiple short-chain algorithm repeats steps
(i)-(v) m times and saves only the kth iteration as sample (Gelfand and Smith,
1990; Gelfand et al, 1990). Based on theoretical arguments (Geyer, 1992) and on
our experience, we used the single long-chain method in the present study.

Initial iterations are usually not stored as samples on grounds that the chain may
not yet have reached the equilibrium distribution; this is called ’warm-up’. After
the warm-up, samples are stored every d iterations, where d is a small positive
integer. Let the total number of samples saved be m, the sample size.

If the Gibbs sampler converges to the equilibrium distribution, the m samples
are random drawings from the joint posterior distribution with density !7!. The ith
sample

joi,vi and (!)J,z=l,2,...,! [14]
is then an N + c + 1 vector, and each of the elements of this vector is a drawing
from the appropriate marginal distribution. Note that the m samples in [14] are
identically but not independently distributed (eg, Geyer, 1992). We call m samples
in [14] as Gibbs samples for reference.

Density estimation and Bayesian inference based on the Gibbs samples

Suppose xi, i = 1, 2, ... , m is one of the components [14], ie a realization from

running the Gibbs sampler of variable x. The m (dependent) samples can be used
to compute features of the posterior distribution P(x) by Monte-Carlo integration.
An intevral

! 

u = J g(x)dP(x) [15]

can be approximated by

where g(x) can be any feature of P(x), such as its mean or variance. As m - 00, u
converges almost surely to u (Geyer, 1992).

Another way to compute features of P(x) is by first estimating the density
p(x), and then obtaining summary statistics from the estimated density using 1-
dimensional numerical procedures. If Yi(i = 1, 2, ... , m) is another component of

(14!, an estimator of p(x) is given by the average of the m conditional densities
p(xlyi) (Gelfand and Smith, 1990):



Note that this estimator does not use the samples xi, i = 1, 2, ... , m; instead,
it uses the samples of variable y through the conditional density p(x!y). This
procedure, though developed primarily for identically and independently distributed
(iid) data, can also be used for dependent samples, as noted by Liu et al (1991) and
Diebolt and Robert (1993).
An alternative form of estimating p(x) is to use samples xi(i = 1,2,..., m) only.

For example, a kernel density estimator is defined (Silverman, 1986) as:

where j!(z) is the estimated density at point z, K(.) is a ’kernel function’, and h is
a fixed constant called window width; the latter determines the smoothness of the
estimated curve. For example, if a normal density is chosen as kernel function, then
[18] becomes:

Again, though the kernel density estimator was developed for iid data, the work of
Yu (1991) indicates that the method is valid for dependent data as well.

Once the density of p(x) is estimated by either [17] or !19!, summary statistics
(eg, mean and variance) can be computed by a 1-dimensional numerical integration
procedure, such as Simpson’s rules. Probability statements about x can also be
made, thus providing a full Bayesian solution to inferences about the distribution x.

Bayesian inference about functions of the original parameters

Suppose we want to make inference about the function:

The quantity

is a random (dependent) sample of size m from a distribution with density p(z).
Formulae !16!, [18] and [19] using such samples can also be used to make inferences
about z.
An alternative is to use standard techniques to transform from either the

conditional densities p(x!y) or p(y!x), to p(z!y) or p(z!x). Let the transformation
be from xly to z!y; the Jacobian of the transformation is lyl, so the conditional
density of zly is:

An estimator of p(z), obtained by averaging m conditional densities of p(zly), is



APPLICATION OF GIBBS SAMPLING TO LITTER SIZE IN PIGS

Data

Records were from the Gamito strain of Iberian pigs, Spain. The trait considered
was number of pigs born alive per litter. Details about this strain and the data are
in Dobao et al (1983) and Toro et al (1988); Perez-Enciso and Gianola (1992) gave
REML estimates of genetic parameters. Briefly, the data were 1213 records from
426 dams (including 68 crossfostered females). There were 72 farrowing seasons and
4 parity classes as defined by Perez-Enciso and Gianola (1992).

Model

A mixed linear model similar to that of Perez-Enciso and Gianola (1992) was:

where y is a vector of observations (number of pigs born alive per litter); X, Zi
and Z2 are known incidence matrices relating (3, u and c, respectively, to y; 13 is

a vector of fixed effects, including a mean, farrowing season (72 levels) and parity
(4 levels) ; u is a random vector of additive genetic effects (597 levels) ; c is a random
vector of permanent environmental effects (426 levels) ; and e is a random vector
of residuals. Distributional assumptions were:

where Qu, a! and cr! are variance components and A is the numerator of Wright’s
relationship matrix; the vectors u, c and e were assumed to be pairwise indepen-
dent. After reparameterization, the rank (p) of X was 1 + 71 + 3 = 75; the rank of
the mixed model equations was then: N = 75 + 597 + 426 = 1 098.

Gibbs sampling

We ran 2 separate Gibbs samplers with this data set, and we refer to these analyses
as CASES I and II. In CASE I, the 3 variance components were assumed known,
with REML estimates (Meyer, 1988) used as true parameter values. In CASE II,
the variance components were unknown, and flat priors were assigned to them. For
each of the 2 cases, a single chain of size 1 205 000 was run. After discarding the
first 5 000 iterations, samples were saved every 10 iterations (d = 10), so the total
number of samples (m) saved was 120 000. This specification (mainly the length of
a chain) of running the Gibbs sampler was based on our own experience with this
data and with others. It may be different for other problems.

Due to computer storage limitation, not all Gibbs samples and conditional
means and variances could be saved for all location parameters. Instead, for
further analysis and illustration, we selected 4 location parameters arbitrarily,
one from each of the 4 factors (farrowing season, parity, additive genetic effect
and permanent environmental effect). For each of these 4 location parameters, the
following quantities were stored:



where xi is a Gibbs sample from an appropriate marginal distribution, and 01 and

vi are the mean and variance of the conditional distribution, [8] or !11J, used for
generating xi at each of the Gibbs steps.

In CASE II, we also saved the m Gibbs samples for each of the variance

components, and

where si is the scale parameter appearing in the conditional density [9] or [10] at
each of the Gibbs iterations.
A FORTRAN program was written to generate the samples, with IMSL subrou-

tines used for drawing random numbers (IMSL, INC, 1989).

Density estimation and inferences

For each of the 4 selected location parameters (CASES I and II) and the 3 variance
components, we estimated the marginal posterior with estimators [17] and !19!, ie
by averaging m conditional densities and by the normal kernel density estimation
method, respectively. Estimator [17] of the density of a location parameter was
explicitly:

where 0j and 11j are the conditional mean and variance of the conditional posterior
density of z. For each of the variance components, the estimator was:

where v is the degree of belief, sj is the scale parameter of the conditional posterior
distribution of the variance of interest, and r(.) is the gamma function. The normal
kernel estimator [19] was applied directly to the samples for location and dispersion
parameters.

To estimate the densities, we divided the ’effective domain’ of each parameter
into 100 equally spaced intervals; the effective domain contained at least 99.5%
of the density mass. Running through the effective domain, a sequence of pairs
(p(zi), zi), i = 1, 2, ... ,101, was generated. Densities were displayed graphically by
plotting (p(zi), zi) pairs. For the normal kernel density estimator (19!, window width
was specified as: h = (range of effective domain)/75.

For the 4 selected location parameters, the mean, mode, median and variance of
each of the marginal distributions were computed as summary features. The mean,



median and variance were obtained with Simpson’s integration rules by further
dividing the effective domain into 1 000 equally spaced intervals, and using a cubic
spline technique (IMSL, INC, 1989); the mode was located through a grid search.
For location parameters other than the 4 selected ones, the posterior means and
variances were computed directly from the Gibbs samples.

Density estimation for functions of variance components

As mentioned previously, the posterior density of any function of the original
parameters can be made through transformation of random variables without
rerunning the Gibbs sampler, provided appropriate samples are saved. In this

section, we summarize methods for density estimation of functions of variance
components; see also Wang et al (1993).

Let the Gibbs samples for or2,a2 and or2 , be respectively:

Also, let the scale parameters of the corresponding densities be:

and

Consider first estimating the marginal posterior density of the total variance:

QP = a2 + a§ c 2+U2 . e Let the transformation be from the conditional posterior density,
(0,2 e 1 y, e, s, v) to ( 01; 2 1 y, 0, v, s, v). The Jacobian of the transformation is 1. Thus,
using !17!, the estimator of the marginal posterior density of or; is:

where v = ve. Further, zpi = Xui + x!i + xei, (i = 1, 2, ... , m), is a sample from the
marginal distribution’ of o-!.

Similarly, the estimator of the marginal posterior density of h2 = C2/ u 01; is
obtained by using the transformation afl - h2 in the conditional posterior density
of a2. One obtains



where v = iu and

For repeatability, r = (Qu + 0,2)/U,2, we used the transformation o! &mdash;! r in the
conditional posterior density of Qe to obtain

where c is as in [33] but with v = ve.
If one wishes to make inferences about the variance ratio, !y = (]&dquo;!/(]&dquo;!, the

trasnformation u2 -> q yields the estimator of the marginal posterior density of !.

where v = vu. The variance ratio, 6 = or2/or2, is estimated in the same mammer as
for q in [35] with the samples Scj substituted in place of s!! and v = using the
transformation o,2 c 6.

RESULTS

When variance components are known (CASE I), the marginal posterior distribu-
tions of all location parameters are normal (Gianola and Fernando, 1986). The mean
(mode or median) of the marginal distribution of a location parameter is given by
the corresponding component of the solution vector of the mixed model equations,
and the variance of the distribution is equal to the corresponding diagonal element
of the inverted mixed model coefficient matrix, multiplied by the residual variance.
These are mathematical facts, and do not relate in any way to the Gibbs sampler.
We used this knowledge to assess the convergence of the Gibbs sampler, which gives
Monte-Carlo estimates of the posterior means and variances. In CASE I, for the
data at hand, the posterior distributions can be arrived at more efficiently by direct
inversion or iterative methods than via the Gibbs sampler.

Table I contains results of a comparison between the posterior means and
variances estimated by Gibbs sampling (GIBBS) with the exact values found by
solving directly the mixed model equations (TRUE). Several criteria were used
to compare the 2 sets of results: absolute difference (bias) between TRUE and
GIBBS; absolute relative bias (RB) defined as bias divided by TRUE; the slopes
of the linear regression of TRUE on GIBBS, and vice versa; and the correlation
between TRUE and GIBBS. Of course, GIBBS and TRUE were not exactly the
same because GIBBS is subject to Monte-Carlo sampling errors; as m(k) goes to
infinity, GIBBS is expected to converge to TRUE. We found excellent agreement



between TRUE and GIBBS for all these criteria. The average absolute RB did
not exceed 1%, except for the posterior means of additive genetic and permanent
environmental effects. For these effects, the RB criterion can be misleading, because
the true posterior means were very small in value, so that even small biases made
the RB very large. The regressions and correlation coefficients between GIBBS and
TRUE were all close to 1.0 for both means and variances. All these results indicate
that the Gibbs sampler converged in this application.

The true and estimated posterior distributions of the 4 selected location parame-
ters are depicted in figure 1. The true densities are simply normal density plots
with means and variances from the TRUE analysis. The estimated densities
were obtained with [17] and [19]. The 3 curves overlapped perfectly, indicating
convergence of the Gibbs sampler to the true posterior distributions.

Figure 2 depicts the marginal posterior densities of the same 4 selected location
parameters for CASE II, ie with unknown variances. For the 2 fixed effects, the
distributions were essentially symmetric, and similar to those found for CASE I
(fig 1). This indicated, for this application, that replacing the unknown variances
by REML estimates, and then completing a Bayesian analysis of fixed effects as if
variances were known (Gianola et al, 1986), would give a good approximation to
inferences about fixed effects in the absence of knowledge about variances. Note that
the variances of the posterior distributions of the fixed effects shown in figures 1 and
2 are similar. In theory, one would expect the posterior variances to be somewhat
larger in CASE II. However, it should be borne in mind that the Gibbs variances
are Monte-Carlo estimates, therefore subject to sampling error.
A noteworthy feature of figure 2 was that densities of the additive genetic

and permanent environmental effects were skewed, in contrast to the normal
distributions found in CASE I. Further, the posterior densities were sharply peaked
in the neighborhood of 0, the prior mean; this is consistent with the fact (as
discussed later) that in this data there was considerable density near 0 for the
additive genetic and permanent environmental components of variance. For these
2 parameters, an analysis using REML estimates would tend to give misleading







probability statements and posterior confidence intervals. In particular, in CASE I,
the posterior mean (variance) of the selected permanent environmental effect was
0.106 (0.0566); in CASE II, the corresponding figure was 0.22 (0.140). The data
contained little information about the permanent environmental effect of this

animal, and this is proportional to the number of litters produced by the sow
in question. It is precisely in these instances that ’errors’ in variance component
estimates are crucial. The posterior variance of the permanent environmental effect
in CASE II was almost twice as large as in CASE I, illustrating the impact of
errors in estimating variance components on inferences. The point is that variances,
interval estimates and probability statements about location parameters based on
normal approximations, with variance components assumed known in the mixed
model equations, can be misleading when information about location parameters
and variances is scant in the data. The more information one has about a location

parameter, the less influential are the assumed values for the variance components.
The problem could be serious if the number of location parameters is large relative
to the number of observations, eg, in an animal model, and if the data do not contain
sufficient information about the variance parameters. An exact Bayesian analysis
such as the one conducted here for CASE II would correct all these problems.

Estimated densities for variance components and their functions are presented
in figure 3. REML estimates (Meyer, 1988) are also included for comparison
purposes. The striking feature was that all distributions, with the exception of
those of the residual and phenotypic variances, were skewed. Hence, the mean,
mode and median tended to differ from each other. Consider, for example, the
posterior distribution of the additive genetic variance; the REML estimate was
0.206, identical to the estimated posterior mean, but quite different from the
marginal mode (0.165). For o, c 2, the REML estimate was closer to the marginal mode
than to the mean or median. A naive 95% ’confidence interval’ for U2 based on the
mean and variance of the posterior distribution and asymptotic theory would be
(-0.052, 0.309) ; inference of this type is typical in likelihood based analyses. In the
light of the Bayesian analysis depicted in figure 3, the hypothesis that the permanent
environmental variance is zero could not be rejected, although there is considerable
posterior probability that Q! > 0.04. Further, whereas any reasonable Bayesian
confidence interval would be in the permissible parameter space, an REML interval
would not in this case. For this data set, 95% asymptotic confidence intervals for
a2 and a§ based on the REML analysis were (-0.971, 1.356) and (-0.267, 0.384),
respectively.

The estimated densities using [17] were less smooth than those based on !19).
This was due to Monte-Carlo sampling errors; the curves can be smoothed by
increasing the length of the chain.

DISCUSSION

A Gibbs sampling scheme was developed for a univariate Gaussian mixed linear
model with correlated observations, such as those arising in quantitative genetics.
With this implementation, a full Bayesian analysis of the location and dispersion
parameters, or of their functions, in a real-life mixed linear model was possible.
The Gibbs sampler made feasible integration of all nuisance parameters, and gave





a Monte-Carlo estimate of the marginal posterior distribution of the parameter of
interest. In the classical sense, this is equivalent to taking into account errors in
estimation of all other parameters in the model when inferences about a parameter
of interest are made. This is precisely why REML was advanced over maximum
likelihood: errors in estimating fixed effects are taken into account in REML. In
this sense, a marginal Bayesian analysis with flat priors can be thought of as an
analysis of a marginal likelihood, with additional richness brought by the probability
calculus on which Bayesian inference is based.

Bayesian analysis via Gibbs sampling provides the complete marginal posterior
distribution of an unknown. Any features of this distribution can be computed,
including probability statements. Because Bayes theorem operates within the space
in which parameters are defined, all statistics fall in the permissible parameter
space. This is a serious problem of frequentist procedures such as REML. Although
the REML estimates are defined within the permissible parameter space, interval
estimates based on asymptotic theory can include values outside its boundaries, as
illustrated previously.

Unfortunately, a richer analysis requires more intensive computations. For the
problem studied in this paper, it took about 14.5 and 23 hours of CPU for CASES I
and II, respectively, on a HP9000/827 running HPUX 8.02, with a Gibbs chain
length of 1205 000. This certainly limits the applicability of the procedure to large
problems, at least at present. Our experience suggests that the procedure is feasible
with as many as 10 000 location parameters; hence, analysis of data from designed
experiments would be feasible. With the fast advances in computing technology, it
is likely that much larger models could be handled efficiently in the near future. We
do not advocate at this time Gibbs sampling as a computing method for routine
genetic evaluation. However, it is appealing for scientific purposes, eg, when many
simplifying assumptions must be relaxed, or when model flexibility is needed.

The chain length of 1 205 000 was deliberately long. Summary statistics of a
marginal distribution can be computed from a much shorter chain in practice, with
relatively high precision. This, of course, would reduce computing cost.

Theoretical results guarantee that an irreducible Markov chain converges to its
equilibrium distribution (Kipnis and Varadhan, 1986; Tierney, 1991). However,
this does not translate easily into practical guidelines for convergence checking.
Our heuristic convergence checking procedure was to run chains under different
specifications (starting values, chain length and number of samples saved) of the
sampler. If they produced similar results, convergence was assumed. Our experience
suggested that if one can obtain a smooth density curve by averaging conditionals,
as in [17], the sampler has converged. In CASE II, a smooth curve using [17]
was much harder to obtain for dispersion than for location parameters; with !17!,
very long chains were needed to obtain smooth estimated densities. In CASE I,
convergence was sure, because the estimated densities were almost identical to
those derived by analytical means. At any rate, checking for convergence is a

difficult problem in most areas of numerical analysis, and Gibbs sampling is no

exception. Here, there are additional complications stemming from Monte-Carlo
errors and from convergence in probability to the true distributions. In the process
of monitoring convergence, we observed that this was slower for or and a§ than for
other parameters.



We used 2 density estimators: averaging conditionals [17] and the normal

density estimation [19]. Theoretically, [17] is expected to be more efficient than
its counterpart because of the use of conditional information (Gelfand and Smith,
1990). However, we did not observe sizable differences in our analysis, as can be
ascertained from figures 1-3. In fact, we found that similar density estimates could
be obtained with [19], but using much fewer samples than 120000. This would
favor [19] over (17!, in this situation. The naive fixed window length used in [19]
throughout performed well in all cases.

The procedure can be divided into 2 stages: Gibbs sampling and post-Gibbs
analysis. In our case, because sample size was large (m = 120 000), the post
Gibbs analysis was onerous. In general, large sample sizes are needed because
of high serial correlations between consecutive samples. The effective sample size,
perhaps measured as m(1 - p)!(1 + p) (Tierney, 1991), where p is the lag-one
serial correlation, could be much smaller than m. For example, if p = 0.9, the
effective sample size would be 6 316, or 5.26% of 120 000. In our study, we monitored
serial correlations between consecutive drawings for the variance components. The
estimated lag-300 correlations for Qu and a§ were 0.6 and 0.3, respectively, while
the lag-one correlation for a£ was almost 0. This is why the chains were so long,
and so many samples were saved.

One possible way to reduce dependence between samples would be to embed a
Hasting or Metropolis updating step in the basic Gibbs sampling scheme, as used,
for example, in pedigree analysis (Lin and Thompson, 1993). Further research is
needed in this area for the type of models applied in animal breeding.
We have demonstrated in this paper that the Gibbs sampling scheme can be

used successfully to carry out an exact Bayesian analysis of all parameters in
a general univariate mixed linear model. The method, however, could also be
used in classical situations for problems where analytical integration is intractable.
Examples are Besag and Cliford (1989, 1991) on Monte-Carlo tests, and Geyer
and Thompson (1992) or Gelfand and Carlin (1991) on Monte-Carlo maximum
likelihood. Extensions to multivariate problems, eg, genetic maternal effects, are in
progress (Jensen et al, 1994). An application of Gibbs sampling to the analysis of
selection experiment is given by Wang et al (1994).
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APPENDIX

Derivation of conditional posterior distributions of location parameters

Consider model !1!, and write Henderson’s mixed model equations as:

It is well known (eg, Gianola and Fernando, 1986) that the posterior distribution
of 0 given the variance components v is multivariate normal with mean 0 and
variance-covariance matrix V, ie

where ê = W!! b and V = W-1a-!.
Now, partition the location parameter vector into 2 parts: 0 = ((}1, 0[ 1’, where

(}1 is a scalar, and express the mixed model equations above as:

Note that

also

and



Using standard theory, the conditional posterior distribution of 01 given 82 is

also normal with parameters !l and Ei :

Now,

Expressing 01 and 02 as in [A4], and using Schur complements, we have

Likewise, from [A5]

Since the matrix partition in [A2] is arbitrary, we have

conditional distributions in [A10] are independent of the priors used for the variance
components.


