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Bayesian analysis of tests with unknown specificity and sensitivity∗

Andrew Gelman† and Bob Carpenter‡

1 July 2020

Abstract

When testing for a rare disease, prevalence estimates can be highly sensitive to un-
certainty in the specificity and sensitivity of the test. Bayesian inference is a natural
way to propagate these uncertainties, with hierarchical modeling capturing variation
in these parameters across experiments. Another concern is the people in the sample
not being representative of the general population. Statistical adjustment cannot with-
out strong assumptions correct for selection bias in an opt-in sample, but multilevel
regression and poststratification can at least adjust for known differences between the
sample and the population. We demonstrate hierarchical regression and poststratifica-
tion models with code in Stan and discuss their application to a controversial recent
study of SARS-CoV-2 antibodies in a sample of people from the Stanford University
area. Wide posterior intervals make it impossible to evaluate the quantitative claims
of that study regarding the number of unreported infections. For future studies, the
methods described here should facilitate more accurate estimates of disease prevalence
from imperfect tests performed on non-representative samples.

1. Background

Correction of diagnostic tests for false positives and false negatives is a well-known proba-
bility problem. When the base rate is low, estimates become critically sensitive to misclas-
sifications (Hemenway, 1997). This issue hit the news recently (Lee, 2020), with a study of
coronavirus antibodies in a population with a low incidence rate.

This is a problem where not fully accounting for uncertainty can make a big difference in
scientific conclusions and potential policy recommendations. In early April, 2020, Bendavid
et al. (2020a) recruited 3330 residents of Santa Clara County, California and tested them
for SARS-CoV-2 antibodies. 50 people tested positive, yielding a raw estimate of 1.5%.
After adjusting for differences between sample and population in sex, ethnicity, and zip
code distributions, Bendavid et al. (2020a) reported an uncertainty range of 2.5% to 4.2%,
implying that the number of infections in the county was between 50 and 85 times the
count of cases reported at the time. Using an estimate of the number of coronavirus deaths
in the county up to that time, they computed an implied infection fatality rate (IFR) of
0.12–0.2%, much lower than IFRs in the range of 0.5%–1% that had been estimated from
areas with outbreaks of the disease.

The estimates from Bendavid et al. (2020a) were controversial, and it turned out
that they did not correctly account for uncertainty in the specificity (true negative rate)
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of the test. There was also concern about the adjustment they performed for non-
representativeness of their sample. Thus, the controversy arose from statistical adjustment
and assessment of uncertainty. A revised preprint (Bendavid et al., 2020b) addressed some
but not all of the problems with the analysis. It is possible that the authors of that study
will prepare another analysis for eventual publication.

In the present article we set up a Bayesian framework to clarify these issues, specifying
and fitting models using the probabilistic programming language Stan (Carpenter et al.,
2017; Stan Development Team, 2020). There is a long literature on Bayesian measurement-
error models (see Gustafson, 2003) and their application to diagnostic testing (Greenland,
2009); our contribution here is to set up the model, supply code, and consider multilevel
regression and poststratification, influence of hyperpriors, and other challenges that arise in
the problem of estimating population prevalence using test data from a sample of people.

2. Modeling a test with uncertain sensitivity and specificity

Testing for a rare disease is a standard textbook example of conditional probability, famous
for the following counterintuitive result. Suppose a person tests positive for a disease, based
on a test that has a 95% accuracy rate, and further suppose that this person is sampled at
random from a population with a 1% prevalence rate. Then what is the probability that he
or she actually has the disease? The usual intuition suggests that the conditional probability
should be approximately 95%, but it is actually much lower, as can be seen from a simple
calculation of base rates, as suggested by Gigerenzer et al. (2007). Imagine you test 1000
people. With a 1% prevalence rate, we can expect that 10 have the disease and 990 do not.
Then, with a 95% accuracy rate (assuming this applies to both specificity and sensitivity
of the test), we would expect 0.95 × 10 = 9.5 true positives and 0.05 × 990 = 49.5 false
positives; thus, the proportion of positive tests that are true positives (i.e., the positive
predictive value) is 9.5/(9.5 + 49.5) = 0.16, a number that is difficult to make sense of
without visualizing the hypothetical populations of true positive and false positive tests.

A related problem is to estimate the prevalence of the disease given the rate of positive
tests. If the population prevalence is π and the test has a specificity of γ and a sensitivity
of δ, then the expected frequency of positive tests p is

p = πδ + (1− π)(1− γ)

Given known γ, δ and p, we can solve for the prevalence,

π = (p+ γ − 1)/(δ + γ − 1). (1)

If the properties of the test are known, but p is estimated from a random sample, we can
obtain a simple classical estimate by starting with a confidence interval for p and then
propagating it through the formula. For example, Bendavid et al. (2020) report 50 positive
tests out of 3330, which corresponds to an estimate p̂ = 50/3330 = 0.015 with standard error
√

0.015(1− 0.015)/3330 = 0.002. Supposing that their test had a specificity of γ = 0.995
and a sensitivity of δ = 0.80, this yields an estimate of (0.015+0.995−1)/(0.80+0.995−1) =
0.013 with standard error 0.002/(0.80 + 0.995− 1) = 0.003.

Two immediate difficulties arise with the classical approach. First, if the observed rate
p̂ is less than 1− γ, the false positive rate of the test, then the estimate from (1) becomes
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meaninglessly negative. Second, if there is uncertainty in the specificity and sensitivity
parameters, it becomes challenging to propagate uncertainty through the nonlinear expres-
sion (1).

We can resolve both these problems with a simple Bayesian analysis (Gelman, 2020).
First, suppose that priors for sensitivity and specificity have been externally supplied. The
model is then

y ∼ binomial(n, p)

p = (1− γ)(1− π) + δπ, (2)

along with the specified prior distribution, p(γ, δ). In this model, the parameters π, γ, and
δ must be constrained to be between 0 and 1, and π must be given a prior distribution
too. A natural starting point would be π ∼ uniform(0, 1). In this case, previously existing
knowledge of the population prevalence was weak enough that a reasonable prior on π should
not have much impact on the posterior. The three parameters π, γ, and δ, are not jointly
identified from only the number of positive test cases, hence the need for an informative
prior on γ and δ. This can be seen as a generalization of the usual approach of assuming
that these parameters are known exactly.

In the example of Bendavid (2020a), prior information on specificity and sensitivity was
given in the form of previous trials, specifically yγ negative results in nγ tests of known
negative subjects and yδ positive results from nδ tests of known positive subjects. This
yields the model,

y ∼ Binomial(n, p)

p = (1− γ)(1− π) + δπ

yγ ∼ Binomial(nγ , γ)

yδ ∼ Binomial(nδ, δ).

We use uniform(0, 1) priors on prevalence π, specificity γ, and sensitivity δ, with the un-
derstanding that they represent placeholders and could be augmented to include additional
information. Stan code is in Appendix A.1.

We fit the model using the data reported in Bendavid et al. (2020a):

y/n = 50/3330, yγ/nγ = 399/401, yδ/nδ = 103/122.

This results in high posterior uncertainty for the prevalence, π. Figure 1a shows the joint
posterior simulations for π and γ: uncertainty in the population prevalence is in large part
driven by uncertainty in the specificity. Figure 1b shows the posterior distribution for π,
which reveals that the data and model are consistent with prevalences as low as 0% and as
high as 2%.

The asymmetric posterior distribution with its hard bound at zero suggests that the
usual central 95% interval will not be a good inferential summary. Instead we the use the
shortest posterior interval1 for reasons discussed in Liu, Gelman, and Zheng (2015). The

1The shortest posterior interval is equivalent to the highest posterior density interval for unimodal pos-
teriors as we have here.
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Figure 1: Summary of inference from model with unknown specificity, sensitivity, and preva-
lence, based on data from Bendavid et al. (2020a): (a) scatterplot of posterior simulations
of prevalence, π, and specificity, γ; (b) histogram of posterior simulations of γ. This model
assumes the testing sites are identical and thus pools all data.

resulting 95% interval for π is (0, 1.8%), which is much different from the intervals reported
by Bendavid et al. (2020a,b), with or without their correction for nonrepresentativeness
of the sample. As a result, the substantive conclusion from that earlier report has been
overturned. From the given data, the uncertainty in the specificity is large enough that the
data do not supply strong evidence of a substantial prevalence.

3. Hierarchical model for varying testing conditions

The above analysis reveals that inference about specificity is key to precise estimation of
low prevalence rates. In the second version of their report, Bendavid et al. (2020b) include
data from 13 specificity studies and 3 sensitivity studies. Sensitivity and specificity can vary
across experiments, so it is not appropriate to simply pool the data from these separate
studies; indeed, these particular data are not consistent with constant error rates (Fithian,
2020). We allow the parameters to vary according to a hierarchical model where, for any
study j, the specificity γj and sensitivity δj are drawn from normal distributions on the log
odds (or logistic) scale,2

logit(γj) ∼ normal(µγ , σγ)

logit(δj) ∼ normal(µδ, σδ),

with the hyperparameters µ and σ can be estimated from the data. Stan code is given in
Appendix A.2. In general it could make sense to allow correlation between γj and δj (Guo,
Riebler, and Rue, 2017), but the way the data are currently available to us, specificity and
sensitivity are estimated from separate studies and so there is no information about such
a correlation. When coding the model, we use the convention that j = 1 corresponds to
the study of interest, with other j > 1 representing studies of specificity or sensitivity given

2The log odds function is defined by logit(p) = log(p/(1− p)).
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(a) Posterior inference (b) Posterior inference
with weak prior with stronger prior

Parameter median (95% interval) median (95% interval)
Prevalence, π 0.016 (0.000, 0.160) 0.016 (0.001, 0.021)
Specificity, γ1 0.997 (0.987, 1.000) 0.995 (0.987, 0.999)
Sensitivity, δ1 0.797 (0.065, 1.000) 0.821 (0.622, 0.959)
µγ 5.54 (4.43, 6.72) 5.234 (4.60, 5.91)
µδ 1.54 (0.24, 2.89) 1.54 (0.90, 2.22)
σγ 1.62 (0.82, 2.61) 0.72 (0.26, 1.15)
σδ 0.87 (0.11, 2.16) 0.39 (0.00, 0.73)

Figure 2: Summary of inferences (posterior median and shortest 95% posterior interval)
for the prevalence, specificity, and sensitivity of the Bendavid et al. (2020b) study, along
with inferences for the hyperparameters characterizing the distribution of specificity and
sensitivity on the logistic scale. (a) For the model with weak priors for σγ and σδ, the
posterior inference for the prevalence, π, is highly uncertain. This is driven by uncertainty
in the sensitivity, which in turn is driven by uncertainty in the hyperparameters for the
sensitivity distribution. (b) Stronger priors on σγ and σδ have the effect of regularizing the
specificity and sensitivity parameters, leading to narrower intervals for π, the parameter of
interest in this study. The hyperparameters µ and σ are on the logistic scale and thus are
difficult to interpret without transformation.

known samples. The parameters γ1 and δ1 represent the specificity and sensitivity for the
site performing the prevalence study (the 50/3330 positive tests of patients with unknown
status).

One could also consider alternatives to the logistic transform, which allows the un-
bounded normal distribution to map to the unit interval but might not be appropriate for
tests where the specificity can actually reach the value of 1.

We fit the above hierarchical model to the data from Bendavid et al. (2020b), assigning
a uniform prior to π and weak normal+(0, 1) priors to σγ , σδ (using the notation normal+

for the truncated normal distribution constrained to be positive). We often use half-normal
or half-t priors for variance parameters when we want to constrain them at the high end
but allow them to be arbitrarily close to zero if the data support such inferences (Gelman,
2006). Setting the scale of these half-normals to 1 makes the prior weak for this particular
application, in the following sense. A shift of 1 on the logit scale represents a pretty big
change in sensitivity or specificity. For example, logit(0.8) = 1.4, so if 0.8 is a typical
value of sensitivity, and if σδ = 1, then we would expect sensitivities to vary by roughly
±1 standard deviation, or 0.4 to 2.4 on the logit scale, which corresponds to a probability
range from 0.60 to 0.92. The normal+(0, 1) hyperpriors weakly pull the specificities and
sensitivities from different studies toward each other, while allowing for a large variation if
required by the data.

The resulting posterior inference is shown in Figure 2a. The 95% posterior interval
for the prevalence is now (0.000, 0.160). Where does that upper bound come from: how
could an underlying prevalence of 16% be plausible, given that only 1.5% of the people
in the sample tested positive? The answer can be seen from the large uncertainty in the
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sensitivity parameter, which in turn comes from the possibility that σδ is very large. The
trouble is that the sensitivity information in these data comes from only three experiments,
which is not enough to get a good estimate of the underlying distribution. This problem is
discussed by Guo, Riebler, and Rue (2017).

The only way to make progress here is to constrain the sensitivity parameters in some
way. One possible strong assumption is to assume that σδ is some small value. This could
make sense in the current context, as we can consider it as a relaxation of the assumption
of Bendavid et al. (2020b) that σδ = 0. We also have reason to believe that specificity will
not vary much between experiments, so we will apply a soft constraint to the variation in
specificities as well.

Instead of specifying σδ, we give it an informative prior distribution. In particular,
we replace the weakly informative normal+(0, 1) priors on σγ , σδ with something stronger,
σγ , σδ ∼ normal+(0, 0.3). To get a sense of what this means, start with the point estimate
from Figure 2a of µδ, which is 1.58. If σδ were 0.3, then there would be a roughly 2/3
chance that the sensitivity of in a new experiment is in the range logit−1(1.58± 0.3), which
is (0.78, 0.87). This seems reasonable.

Figure 2b shows the results. Our 95% interval for π is now (0.001, 0.021); that is, the
infection rate is estimated to be somewhere between 0.1% and 2.1%.

4. Prior sensitivity analysis

To assess the sensitivity of the above prevalence estimate to the priors placed on σγ and σδ,
we consider the family of prior distributions,

σγ ∼ normal+(0, τγ)

σδ ∼ normal+(0, τδ),

where τδ and τγ are user-specified hyperparameters. Setting τδ and τγ to zero would force
σδ and σγ to be zero and would enforce complete pooling, corresponding to Bendavid et
al.’s (2020b) assumption that each test site has identical specificity and sensitivity. As the
hyperparameters are increased, the scales of variation of σγ and σδ are allowed to vary
more, and setting τγ and τδ to infinity would typically be considered noninformative in the
sense of providing the least amount of constraint on the sensitivities and specificities. In
practice, we often use normal+(0, 1) priors for hierarchical scale parameters, on the default
assumption that the underlying parameters (in this case, the specificities) will probably
vary by less than 1 on the logit scale.

For this problem, however, a weak prior does not work: as shown in the left panel
of Figure 2, the resulting inferences for the sensitivities are hopelessly wide. We do not
believe these tests have specificities below 50%, yet such a possibility is included in the
posterior distribution, and this in turn propagates to inappropriately wide intervals for the
prevalence, π. As explained in the previous section, that is why we assigned a stronger
prior, using hyperprior parameters τγ = τδ = 0.2.

Figure 3 shows how these hyperprior parameters τγ and τδ affect inferences for the
prevalence, π. The posterior median of π is not sensitive to the scales τγ and τδ of the
hyperpriors, but the uncertainty in that estimate, as indicated by the central posterior 90%
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Figure 3: Each panel shows a plot of the posterior median and central 90% posterior interval
of the prevalence, π, as a function of τγ and τδ, the prior scales for the specificity and
sensitivity hyperparameters, σγ and σδ. The posterior median of prevalence is not sensitive
to τγ and τδ, but the endpoints of the 90% interval show some sensitivity. It is possible
to use a weak hyperprior on the scale of the specificity distribution, σγ: this makes sense
given that there are 13 prior specificity studies in the data. For the scale of the sensitivity
distribution, σδ, it is necessary to use a prior scale of 0.5 or less to effectively rule out the
possibility of extremely high prevalence corresponding to an unrealistic sensitivity parameter
γ. The noise in the rightmost graph represents Monte Carlo error that is a consequence of
the weakly specified model.

intervals, is influenced by these settings. In particular, in the graphs on the right, when the
sensitivity hyperprior parameter τδ is given a high value, the upper end of the interval is
barely constrained. The lower end of the interval is fairly stable, as long as the specificity
hyperprior parameter τγ is not given an artificially low value. Here we are using central
rather than shortest posterior intervals because we are displaying inference on the log scale
and so there is no boundary.

When τγ and τδ are too low, the variation in specificity and sensitivity are constrained
to be nearly zero, all values are pooled, and uncertainty is artificially deflated. As the
hyperprior parameters are increased, the uncertainty in prevalence increases. This gets out
of hand when the hyperprior for sensitivity is increased, because there are only three data
points to inform the distribution it controls. This is an example of the general principle
that wide hyperpriors on hierarchical scale parameters can pull most of the probability mass
into areas of wide variation and dominate the data, leading to inflated uncertainty. Around
the middle of these ranges, the posterior intervals are not as sensitive to variation in the
hyperpriors. We would consider values τγ = τδ = 0.5 to be weakly informative for this
example, in that they are roughly consistent with inter-site variation in specificity in the
range 73% to 99.3% and of specificity in the range 88% to 99.75%.

In addition we need priors on µγ and µδ. In this particular example, once we have
constrained the variation in the specificities and sensitivities, enough data are available to
estimate these population means with uniform priors on these parameters, but in general
it is best to use prior information to at least roughly constrain them. For this example, we
assign independent normal(4, 2) priors, a distribution that puts 2/3 of its mass in the range
4± 2, which, after undoing the logistic transformation, corresponds to (0.881, 0.997) on the
probability scale, which seem like a suitably broad range for the mean of the population
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distribution of specificity and sensitivity of these tests.
The complexity of this sensitivity analysis might seem intimidating: if Bayesian inference

is this difficult and this dependent on priors, maybe it is not a good idea?
We would argue that the problem is not as difficult as it might look. The steps taken

in Sections 2 and 3 show the basic workflow: We start with a simple model, then add hier-
archical structure. For the hierarchical model we started with weak priors on the hyperpa-
rameters and examined the inferences, which made us realize that we had prior information
(that specificities and sensitivities of the tests should not be so variable), which we then
incorporated into the next iteration of the model. Performing the sensitivity analysis was
fine—it helped us understand the inferences better—but it was not necessary for us to get
reasonable inferences.

Conversely, non-Bayesian analyses would not be immune from this sensitivity to model
choices, as is illustrated by the mistakes made by Bendavid et al. (2020b) to treat specificity
and sensitivity as not varying at all, to set σγ = σδ = 0 in our notation. An alternative could
be to use the calibration studies to get point estimates of σγ and σδ, but then there would
still be the problem of accounting for uncertainty in these estimates, which would return
the researchers to the need for some sort of external constraint or bound on the distribution
of the sensitivity parameters δj , given that only three calibration studies are available here
to estimate these. This in turn suggests the need for more data or modeling of the factors
that influence the test’s specificity and sensitivity. In short, the analysis shown in Figure
3 formalizes a dependence on prior information that would arise, explicitly or implicitly, in
any reasonable analysis of these data.

5. Extensions of the model

5.1. Multilevel regression and poststratification (MRP) to adjust for differences be-
tween sample and population

Bendavid et al. (2020a,b) compared demographics on 3330 people they tested, and they
found differences in the distributions of sex, age, ethnicity, and zip code of residence com-
pared to the general population of Santa Clara County. It would be impossible to post-
stratify the raw data on 2 sexes, 4 ethnicity categories, 4 age categories, and 58 zip codes,
as the resulting 1856 cells would greatly outnumber the positive tests in the data. They
obtained population estimates by adjusting for sex × ethnicity × zip code, but their anal-
ysis is questionable, first because they did not adjust for age, and second because of noisy
weights arising from the variables they did adjust for. To obtain stable estimates while
adjusting for all these variables, we would recommend applying a multilevel model to the
exposure probability, thus replacing the constant π in the above models with something like
the following logistic regression.3

πi = logit−1(β1 + β2 ·malei + β3 · x
zip
zip[i] + αeth

eth[i] + αage
age[i] + αzip

zip[i]), (3)

where male is a variable that takes on the value 0 for women and 1 for men; xzip is a
relevant predictor at the zip code level; eth[i], age[i], and zip[i] are index variables for survey

3x[i] and xi are used interchangeably to improve readability.
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respondent i; the β parameters are logistic regression coefficients; and the α parameters are
vectors of varying intercepts. These varying intercepts have hierarchical priors

αname ∼ normal(0, σname), for name ∈ {eth, age, zip}.

In the regression model (3), it is important to include the predictor xzip, which in this
example might be percent Latino or average income in the zip code. Otherwise, with so
many zip codes, the multilevel model will just partially pool most of the zip code adjustments
to zero, and not much will be gained from the geographic poststratification. The importance
of geographic predictors is well known in the MRP literature; see, for example, (Caughey
and Warshaw 2019).

In addition, priors are needed for σeth, σage, σzip, and β, along with the hierarchical
specificity and sensitivity parameters from the earlier model. For these hyperparameters,
we assign normal+(0, 0.5) priors for σeth, σage, and σzip. These priors allow the prevalence
to vary moderately by these poststratification factors.

We use a unit logistic prior for the centered intercept β1 + β2 ·male + β3 · x
zip (corre-

sponding to a uniform(0, 1) prior distribution for the probability that an average person in
the sample has the antibody), a normal(0, 0.5) prior for β2, and a normal(0, 0.5/szip) for β3,
where szip is the standard deviation of xzip in the data.

The point of the scaling of β2 and β3 is to give some prior regularization on the con-
tribution of each predictor in the data. Regarding the prior on the intercept: Stan allows
direct assignment of distributions to transformed parameters; in this particular case, the
transform is affine and thus does not require a Jacobian adjustment. By assigning prior dis-
tributions to the centered intercept and two other regression coefficients, we have implicitly
assigned a prior distribution to the three parameters, (β1, β2, β3).

We code the model in Stan; see Appendix A.3. Unfortunately the raw data from Ben-
david et al. are not currently available, so we fit the model to simulated data to check the
stability of the computation.

The above model is a start; it could be improved by including interactions, following
the general ideas of Ghitza and Gelman (2013). In any case, once this model has been fit,
it can be used to make inferences for disease prevalence for all cells in the population. As
discussed by Johnson (2020), these cell estimates can then be summed, weighting by known
population totals (in this case, the number of people in each sex × ethnicity × age × zip
code category in the population) to get inferences for the prevalence in the county,

pavg =

∑

j Njπj
∑

j Nj
,

where Nj is the number of people in cell j in the general population, and πj is the prevalence
in cell j as computed from the logistic model. We perform this summation in the generated
quantities block of the Stan model in Appendix A.3.

5.2. Variation across location and over time

The aforementioned Santa Clara County study is just one of many recent SARS-CoV-2
antibody surveys. Other early studies were conducted in Boston, New York, Los Angeles,
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and Miami, and in various places outside the United States, and we can expect many more
in the future. If the raw data from these studies were combined, it should be possible
to estimate the underlying prevalences from all these studies using a hierarchical model,
allowing specificity, sensitivity, and prevalence to vary by location, and adjusting for non-
sampling error where possible. Such an analysis is performed by Levesque and Maybury
(2020) using detailed information on the different tests used in different studies.

We will also be seeing more studies of changing infection rates over time. Stringhini et
al. (2020) perform such an analysis of weekly surveys in Geneva, Switzerland, accounting
for specificity and sensitivity and poststratifying by sex and age.

5.3. Including additional diagnostic data

We have so far assumed that test results are binary, but additional information can be
gained from continuous measurements that make use of partial information when data are
near detection limits (Gelman, Chew, and Shnaidman, 2004; Bouman, Bonhoeffer, and
Regoes, 2020). Further progress can be made by performing different sorts of tests on study
participants or retesting observed positive results.

Another promising direction is to include additional information on people in the study,
for example from self-reported symptoms. Some such data are reported in Bendavid et al.
(2020b), although not at the individual level. With individual-level symptom and test data,
a model with multiple outcomes could yield substantial gains in efficiency compared to the
existing analysis using only a single positive/negative test result on each participant.

A third direction would be to acquire test results from sites testing both known positive
and known negative cases. With such tests, bivariate priors for sensitivity and specificity
could be formulated as suggested by Guo, Riebler, and Rue (2017). Simple multivariate
normal priors are possible, but the situation is complicated because, in general, sensitivity is
negatively correlated with specificity in diagnostic tests, but above or below average testing
quality at the sites will provide positive correlation. Thus it may be better to formulate
priors in terms of bias (trading sensitivity for specificity) and accuracy instead of directly
in terms of sensitivity and specificity.

6. Non-Bayesian approaches

As with any statistical analysis, alternative approaches are possible that would use the same
information and give similar results.

In Section 2, it was necessary to account for uncertainty in all three parameters, while
respecting the constraint that all three probabilities had to be between 0 and 1. We assume
that both these aspects of the model could be incorporated into a non-Bayesian approach
by working out the region in the space of (π, γ, δ) that is consistent with the data and then
constructing a family of tests which could be inverted to create confidence regions.

This could be expanded into a multilevel model as in Section 3 by considering the speci-
ficities and sensitivities of the different experiments as missing data and averaging over
their distribution, but still applying non-Bayesian inference to the resulting hyperparam-
eters. The wide uncertainty intervals from the analysis in Section 3 suggest that some
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constraints or regularization or additional information on the hyperparameters would be
necessary to get stable inferences here, no matter what statistical approach is used.

Fithian (2020) performs a non-Bayesian analysis of the data from Bendavid et al.
(2020b), coming to the same basic conclusion that we do, demonstrating that the calibration
data are incompatible with a model of constant specificity and that, once the specificity is
allowed to vary, the observed rate of positive tests in the Santa Clara study does not allow
rejection of the null hypothesis of zero infection rate. Had it been possible to reject zero,
this would not be the end of the story: at that point one could invert a family of tests to
obtain a confidence region, as noted above.

Finally, some rough equivalent to the poststratification adjustment in Section 5.1 could
be performed using a non-Bayesian weighting approach, using some smoothing to avoid the
noisiness of raw poststratification weights. Similarly, non-Bayesian methods could be used
to fit regressions allowing prevalence to vary over location and time.

7. Discussion

7.1. Limitations of the statistical analysis

Epidemiology in general, and disease testing in particular, feature latent parameters with
high levels of uncertainty, difficulty in measurement, and uncertainty about the measure-
ment process as well. This is the sort of setting where it makes sense to combine information
from multiple studies, using Bayesian inference and hierarchical models, and where infer-
ences can be sensitive to assumptions.

The biggest assumptions in this analysis are, first, that the historical specificity and
sensitivity data are relevant to the current experiment; and, second, that the people in the
study are a representative sample of the general population. We addressed the first con-
cern with a hierarchical model of varying sensitivities and specificities, and we addressed
the second concern with multilevel regression and poststratification on demographics and
geography. But this modeling can take us only so far. If there is hope or concern that the
current experiment has unusual measurement properties, or that the sample is unrepresen-
tative in ways not accounted for in the regression, then more information or assumptions
need to be included in the model, as described by Campbell et al. (2020).

The other issue is that there are choices of models, and tuning parameters within each
model. Sensitivity to the model is apparent in Bayesian inference, but it would arise with any
other statistical method as well. For example, Bendavid et al. (2020a) used an (incorrectly
applied) delta method to propagate uncertainty, but this is problematic when sample size
is low and probabilities are near 0 or 1. Bendavid et al. (2020b) completely pooled their
specificity and sensitivity experiments, which is equivalent to setting σγ and σδ to zero.
And their weighting adjustment has many arbitrary choices. We note these not to single
out these particular authors but rather to emphasize that, at least for this problem, all
statistical inferences involve user-defined settings.

For the models in the present article, the most important user choices are: (a) what
data to include in the analysis, (b) prior distributions for the hyperparameters, and (c) the
structure and interactions to include in the MRP model. For these reasons, it would be
difficult to set up the model as a plug-and-play system where users can just enter their
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data, push a button, and get inferences. Some active participation in the modeling process
is required, which makes sense given the sparseness of the data. When studying populations
with higher prevalences and with data that are closer to random samples, more automatic
approaches might be possible.

7.2. Santa Clara study

Section 3 shows our inferences given the summary data in Bendavid et al. (2020b). The
inference depends strongly on the priors on the distributions of sensitivity and specificity,
but that is unavoidable: the only way to avoid this influence of the prior would be to sweep
it under the rug, for example by just assuming a zero variation in the test parameters.

What about the claims regarding the rate of coronavirus exposure and implications for
the infection fatality rate? It is hard to say from this one study: the numbers in the data
are consistent with zero infection rate and a wide variation in specificity and sensitivity
across tests, and the numbers are also consistent with the claims made in Bendavid et
al. (2020a,b). That does not mean anyone thinks the true infection rate is zero. It just
means that more data, assumptions, and subject-matter knowledge are required. That is to
be expected—people usually make lots of assumptions in analyzing this sort of laboratory
assay. It is common practice to use the manufacturer’s numbers on specificity, sensitivity,
detection limit, and so forth, and not worry about that level of variation. Only when
estimating a very low underlying rate do the statistical challenges become so severe. This
is an example of the general phenomenon in statistics that the severity of identification
problems can depend on the data.

For now, we do not think the data support the claim that the number of infections in
Santa Clara County was between 50 and 85 times the count of cases reported at the time, or
the implied interval for the IFR of 0.12–0.2%. These numbers are consistent with the data,
but the data are also consistent with a near-zero infection rate in the county. The data
of Bendavid et al. (2020a,b) do not provide strong evidence about the number of people
infected or the infection fatality ratio; the number of positive tests in the data is just too
small, given uncertainty in the specificity of the test.

The analyses in this article suggest that future studies should be conducted with full
awareness of the challenges of measuring specificity and sensitivity, that relevant variables
be collected on study participants to facilitate inference for the general population, and
that (de-identified) data be made accessible to external researchers.
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A. Stan programs

A.1. Model with binomial data on specificity and sensitivity

data {

int<lower = 0> y_sample;

int<lower = 0> n_sample;

int<lower = 0> y_spec;

int<lower = 0> n_spec;

int<lower = 0> y_sens;

int<lower = 0> n_sens;

}

parameters {

real<lower=0, upper = 1> p;

real<lower=0, upper = 1> spec;

real<lower=0, upper = 1> sens;

}

model {

real p_sample = p * sens + (1 - p) * (1 - spec);

y_sample ~ binomial(n_sample, p_sample);

y_spec ~ binomial(n_spec, spec);

y_sens ~ binomial(n_sens, sens);

}

A.2. Hierarchical model for specificities and sensitivities

data {

int<lower = 0> y_sample;

int<lower = 0> n_sample;

int<lower = 0> J_spec;

int<lower = 0> y_spec[J_spec];

int<lower = 0> n_spec[J_spec];

int<lower = 0> J_sens;

int<lower = 0> y_sens[J_sens];

int<lower = 0> n_sens[J_sens];

real<lower = 0> logit_spec_prior_scale;

real<lower = 0> logit_sens_prior_scale;

}

parameters {

real<lower = 0, upper = 1> p;

real mu_logit_spec;

real mu_logit_sens;

real<lower = 0> sigma_logit_spec;

real<lower = 0> sigma_logit_sens;

vector<offset = mu_logit_spec, multiplier = sigma_logit_spec>[J_spec] logit_spec;

vector<offset = mu_logit_sens, multiplier = sigma_logit_sens>[J_sens] logit_sens;

}

transformed parameters {

vector[J_spec] spec = inv_logit(logit_spec);

vector[J_sens] sens = inv_logit(logit_sens);

}
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model {

real p_sample = p * sens[1] + (1 - p) * (1 - spec[1]);

y_sample ~ binomial(n_sample, p_sample);

y_spec ~ binomial(n_spec, spec);

y_sens ~ binomial(n_sens, sens);

logit_spec ~ normal(mu_logit_spec, sigma_logit_spec);

logit_sens ~ normal(mu_logit_sens, sigma_logit_sens);

sigma_logit_spec ~ normal(0, logit_spec_prior_scale);

sigma_logit_sens ~ normal(0, logit_sens_prior_scale);

mu_logit_spec ~ normal(4, 2); // weak prior on mean of distribution of spec

mu_logit_sens ~ normal(4, 2); // weak prior on mean of distribution of sens

}

A.3. Multilevel regression and poststratification

data {

int<lower = 0> N; // number of tests in the sample (3330 for Santa Clara)

int<lower = 0, upper = 1> y[N]; // 1 if positive, 0 if negative

vector<lower = 0, upper = 1>[N] male; // 0 if female, 1 if male

int<lower = 1, upper = 4> eth[N]; // 1=white, 2=asian, 3=hispanic, 4=other

int<lower = 1, upper = 4> age[N]; // 1=0-4, 2=5-18, 3=19-64, 4=65+

int<lower = 0> N_zip; // number of zip codes (58 in this case)

int<lower = 1, upper = N_zip> zip[N]; // zip codes 1 through 58

vector[N_zip] x_zip; // predictors at the zip code level

int<lower = 0> J_spec;

int<lower = 0> y_spec [J_spec];

int<lower = 0> n_spec [J_spec];

int<lower = 0> J_sens;

int<lower = 0> y_sens [J_sens];

int<lower = 0> n_sens [J_sens];

int<lower = 0> J; // number of population cells, J = 2*4*4*58

vector<lower = 0>[J] N_pop; // population sizes for poststratification

real<lower = 0> coef_prior_scale;

real<lower = 0> logit_spec_prior_scale;

real<lower = 0> logit_sens_prior_scale;

}

parameters {

real mu_logit_spec;

real mu_logit_sens;

real<lower = 0> sigma_logit_spec;

real<lower = 0> sigma_logit_sens;

vector<offset = mu_logit_spec, multiplier = sigma_logit_spec>[J_spec] logit_spec;

vector<offset = mu_logit_sens, multiplier = sigma_logit_sens>[J_sens] logit_sens;

vector[3] b; // intercept, coef for male, and coef for x_zip

real<lower = 0> sigma_eth;

real<lower = 0> sigma_age;

real<lower = 0> sigma_zip;

vector<multiplier = sigma_eth>[4] a_eth; // varying intercepts for ethnicity

vector<multiplier = sigma_age>[4] a_age; // varying intercepts for age category

vector<multiplier = sigma_zip>[N_zip] a_zip; // varying intercepts for zip code

}
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transformed parameters {

vector[J_spec] spec = inv_logit(logit_spec);

vector[J_sens] sens = inv_logit(logit_sens);

}

model {

vector[N] p = inv_logit(b[1]

+ b[2] * male

+ b[3] * x_zip[zip]

+ a_eth[eth]

+ a_age[age]

+ a_zip[zip]);

vector[N] p_sample = p * sens[1] + (1 - p) * (1 - spec[1]);

y ~ bernoulli(p_sample);

y_spec ~ binomial(n_spec, spec);

y_sens ~ binomial(n_sens, sens);

logit_spec ~ normal(mu_logit_spec, sigma_logit_spec);

logit_sens ~ normal(mu_logit_sens, sigma_logit_sens);

sigma_logit_spec ~ normal(0, logit_spec_prior_scale);

sigma_logit_sens ~ normal(0, logit_sens_prior_scale);

mu_logit_spec ~ normal(4, 2); // weak prior on mean of distribution of spec

mu_logit_sens ~ normal(4, 2); // weak prior on mean of distribution of sens

a_eth ~ normal(0, sigma_eth);

a_age ~ normal(0, sigma_age);

a_zip ~ normal(0, sigma_zip);

// prior on centered intercept

b[1] + b[2] * mean(male) + b[3] * mean(x_zip[zip]) ~ logistic(0, 1);

b[2] ~ normal(0, coef_prior_scale);

b[3] ~ normal(0, coef_prior_scale / sd(x_zip[zip])); // prior on scaled coef

sigma_eth ~ normal(0, coef_prior_scale);

sigma_age ~ normal(0, coef_prior_scale);

sigma_zip ~ normal(0, coef_prior_scale);

}

generated quantities {

real p_avg;

vector[J] p_pop; // population prevalence in the J poststratification cells

int count;

count = 1;

for (i_zip in 1:N_zip) {

for (i_age in 1:4) {

for (i_eth in 1:4) {

for (i_male in 0:1) {

p_pop[count] = inv_logit(b[1]

+ b[2] * i_male

+ b[3] * x_zip[i_zip]

+ a_eth[i_eth]

+ a_age[i_age]

+ a_zip[i_zip]);

count += 1;

}

}

}
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}

p_avg = sum(N_pop .* p_pop) / sum(N_pop);

}
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