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Abstract

Approximate mathematical form expressions were derived for the estimation of the average

(ergodic) capacity and the average bit error rate of a log-normal free space optical channel in the

cases of weak to moderate atmospheric turbulence conditions. We investigate the average capacity,

the average bit error rate and the outage probability of free space optical communication channels

using the frequentist and the Bayesian approach. Emphasis is given on the cases of weak to moderate

atmospheric turbulence leading to channels modeled by log-normal distributed intensity fading.

Furthermore, accurate approximate closed-form expressions and estimation procedures for their

achievable capacity as well as their bit error rate and the important parameters of interest are

derived. The derived approximate analytical expressions are verified by various numerical examples

and simulations. Moreover, each methodology is reviewed in terms of their analytic convenience and

their accuracy is also discussed.
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1. Introduction

Free space optical communications (FSO) is a potentially high capacity and cost-
effective technique that receives growing attention and commercial interest [1,2]. For an
outdoor line-of-sight optical channel link, atmospheric turbulence represents an important
capacity mitigation factor, in the sense that the received optical signal intensity fluctuates
due to variation of the refractive index along the propagation path [3–9]. Hence, it is
reasonable to expect that in a real FSO environment, optical channels will appear to have
randomly time-varying characteristics. Thus, channel capacity becomes random variable.
Moreover, the magnitudes that one should consider in order to design an FSO system are
the average capacity, which indicates the average best rate for error-free transmission,
[10–16], the average bit error rate (BER) [7,8], and the outage probability [16].
In this work, we examine the reliability and the performance of FSO channels, by

investigating their outage probability and average (ergodic) capacity and average BER,
respectively. We derive closed-form expressions for the estimation of the outage
probability, the average capacity and the average BER of such optical links over
atmospheric turbulence-induced fading channels as modeled by the log-normal distribu-
tion using the frequentist statistical approach. Furthermore, the Bayesian statistical
viewpoint is employed as an alternative mode of obtaining the outage probability and the
average capacity as well as the average BER, since in applications the parameters of
interest may not be regarded as unknown constants but rather as time-varying quantities.
Therefore, Bayesian statistical inference welcomes the use and application of the well-
known prior statistical distributions on these parameters to reflect their variability.
The remainder of the paper is organized as follows: In Section 2, the FSO channel model

is introduced while in Section 3 we present the mathematical expressions for the estimation
of the outage probability, the average channel capacity and the average BER of the log-
normal modeled FSO channels, using the frequentist statistical approach. In Section 4,
employing the Bayesian viewpoint, we set up the appropriate prior statistical distributions
and the resulting quantities that need to be estimated. Furthermore, in Section 5 numerical
results under the frequentist and the Bayesian approach are displayed and the capabilities
of the FSO systems are examined. Finally, concluding remarks are given in Section 6.

2. The channel model

We consider a binary input and continuous output FSO communication system using
intensity modulation/direct detection (IM/DD) with on-off keying (OOK). The laser
beams propagate along a horizontal path through a turbulent channel with additive white
Gaussian noise (AWGN). The channel is assumed to be memoryless, stationary and
ergodic, with independent and identically distributed (i.i.d.) intensity fast fading statistics.
We also consider that the channel state information (CSI) is available at both transmitter
and receiver. In this case, the statistical channel model is given by [7,9]

y ¼ sxþ n ¼ ZIxþ n (1)

where y is the signal at the receiver, s ¼ ZI is the instantaneous intensity gain, Z is the
effective photo-current conversion ratio of the receiver, I the normalized irradiance, x the
modulated signal which takes values ‘‘0’’ or ‘‘1’’, and n the AWGN with zero mean
and variance N0/2. For weak to moderate atmospheric turbulence conditions, the
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turbulence-induced fading can be assumed as a random process that follows the log-
normal distribution model which has the following probability density function (pdf) with
respect to I [3,17],

f I ðIÞ ¼
1

Is
ffiffiffiffiffiffi
2p
p exp �

ðlnðIÞ þ s2=2Þ2

2s2

� �
(2)

with s2 being the log-irradiance variance [17], which depends on the channel’s
characteristics and is given by the following expression:

s2 ¼ exp
0:49d2

ð1þ 0:18d2
þ 0:56d12=5Þ7=6

"
þ

0:51d2

ð1þ 0:9d2
þ 0:62d2d12=5Þ5=6

#
� 1 (3)

where d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD2=4L

q
, k ¼ 2p/l the optical wave number, L the length of the optical link, l

the operational wavelength and D the aperture diameter of the receiver. The parameter d2

is the Rytov variance for a plane wave in weak scintillation theory [6] and is given by

d2 ¼ 0:5C2
nk7=6L11=6 (4)

with Cn
2 being the atmospheric turbulence strength, which is altitude dependent and varies

from 10�17 to 10�13m�2/3 for weak to strong turbulence conditions, respectively [2]. By
integrating (2) we obtain the cumulative distribution function (cdf) with respect to I, which
has the form:

FI ðIÞ ¼
1

2
erfc �

lnðIÞ þ s2=2ffiffiffi
2
p

s

� �
(5)

where erfc( � ) is the complementary error function. The magnitude that can be easily
measured is the instantaneous electrical signal-to-noise ratio (SNR) at the receiver and can
be defined as m ¼ ðZIÞ2=N0 ¼ s2=N0 [6]. Moreover, the average electrical SNR is given by
m̄ ¼ ðZE½I �Þ2=N0 [6], where E[ � ] is the expected value. Taking into account that E[I] ¼ 1,
since I is normalized to unity, with a power transformation of the random variable I, from
(2) we obtain the following pdf for the instantaneous electrical SNR, m [18]:

f mðmÞ ¼
1

2m
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ðlnðm=m̄Þ þ s2Þ2

8s2

� �
(6)

By integrating (6), we obtain the following form for the cdf with respect to m:

FmðmÞ ¼
1

2
erfc

lnðm=m̄Þ � s2

2
ffiffiffiffiffiffiffi
2s2
p

� �
(7)

3. Frequentist statistical approach

The average (ergodic) capacity, /CS, represents the practical capacity of an FSO
channel with AWGN and it is a very significant metric for the evaluation of the
performance of the link. The average capacity, with perfect CSI, at both the transmitter
and the receiver of an FSO communication system is given by [16]

hCi ¼

Z 1
0

B log2 1þ
ðZIÞ2

N0

� �
f I ðIÞ dI (8)
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where B is the signal transmission bandwidth. From (6) to (8) we obtain the following
integral for the evaluation of the average capacity:

hCi ¼
B

2s
ffiffiffiffiffiffi
2p
p

lnð2Þ

Z þ1
0

lnð1þ mÞ
m

exp �
ðlnðm=m̄Þ þ s2Þ2

8s2

� �
dm (9)

Using the equality lnð1þ xÞ ¼
Pþ1

k¼1ð�1Þ
kþ1
ðxk=kÞ, for xA[0,1] and the scaled

complementary error function erfcxðxÞ ¼ exp ðx2ÞerfcðxÞ [14,15], the above integral can
be transformed to the following summation:

hCi ¼ BC0

X1
k¼1

ð�1Þkþ1

k
erfcx

ffiffiffi
2
p

sk þ
A

2
ffiffiffi
2
p

s

� �
þ erfcx

ffiffiffi
2
p

sk �
A

2
ffiffiffi
2
p

s

� �� �(

þ
4sffiffiffiffiffiffi
2p
p þ A exp

A2

8s2

� �
� erfc �

A

2
ffiffiffi
2
p

s

� ��
(10)

where A ¼ lnðm̄Þ � s2 and C0 ¼ expð�A2=8s2Þ=2 ln ð2Þ. In order to evaluate the result of
(11) we should calculate the infinitely sum over k. However, taking into account the first
twenty addends of the summation we obtain a very accurate approximation for the
evaluation of the average capacity [19], which has the form

hC̃i ¼ BC0

X20
k¼1

ð�1Þkþ1

k
erfcx

ffiffiffi
2
p

sk þ
A

2
ffiffiffi
2
p

s

� �
þ erfcx

ffiffiffi
2
p

sk �
A

2
ffiffiffi
2
p

s

� �� �(

þ
4sffiffiffiffiffiffi
2p
p þ A exp

A2

8s2

� �
� erfc �

A

2
ffiffiffi
2
p

s

� ��
(11)

Numerical evaluation of the estimation error jhC̃i � hCij=hCi is found to be of order of
10�9 for all the cases of weak turbulence conditions, that we present below. Thus, we
conclude that, for all practical purposes, (11) is a very accurate approximation [19], for the
evaluation of the average capacity of a log-normal modeled FSO channel. Consequently,
in practice, we consider hCi ffi hC̃i.
A very significant metric that describes the performance of an FSO communication

system is the average bit error rate (BER) [7,8,20]. The BER of IM/DD systems with OOK
in the presence of AWGN and perfect CSI at the receiver side is given by Sandalidis et al.
[7], Navidpour et al. [20] and Tsiftsis et al. [21], P ¼ p(0)P(e|0)+p(1)P(e|1), where p(0) and
p(1) are the probabilities of sending the bit ‘‘0’’ and ‘‘1’’, respectively, while P(e|0) and
P(e|1) are the conditional bit error probabilities when the transmitted bit is ‘‘0’’ or ‘‘1’’.
Taking into account that p(0) ¼ p(1) ¼ 0.5, and P(e|0) ¼ P(e|1) [7], we obtain the
following probabilities conditioned of the fading coefficient I [20]:

P ¼ Pðej0; IÞ ¼ Pðej1; IÞ ¼ P n4
ZI

2

� �
¼ P no�

ZI

2

� �
¼ Q

ZIffiffiffiffiffiffiffiffiffi
2N0

p

� �
(12)

where Q( � ) is the Gaussian Q-function. For the evaluation of the average BER by
averaging, (12) over I, yields the integral

Pav ¼

Z þ1
0

f I ðIÞQ
ZIffiffiffiffiffiffiffiffiffi
2N0

p

� �
dI (13)
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The integral (13) is very difficult, if not impossible, to be evaluated in closed
mathematical form expression. Thus, we approximate the Q-function as in [22],

QðxÞ �
1

12
exp

�x2

2

� �
þ

1

4
exp �

2x2

3

� �� �

and the above integral is taking the form

Pav � P̃av ¼
1

12

Z þ1
0

f I ðIÞ exp �
Z2I2

4N0

� �
dI þ

1

4

Z þ1
0

f I ðIÞ exp �
Z2I2

3N0

� �
dI (14)

Eq. (14), can be rewritten also in terms of the instantaneous electrical SNR, m, as

Pav � P̃av ¼
1

12

Z þ1
0

f mðmÞ exp �
m
4

� 	
dmþ

1

4

Z þ1
0

f mðmÞ � exp �
m
3

� 	
dm (15)

and from (15), using Eq. (6), we obtain

P̃av ¼
1

8s
ffiffiffiffiffiffi
2p
p

1

3

Z þ1
0

1

m
exp �

m
4
�
ðlnðmÞ � AÞ2

8s2

� �
dm

�

þ

Z þ1
0

1

m
exp �

m
3
�
ðlnðmÞ � AÞ2

8s2

� �
dm
�

(16)

where the parameters A and s2 are given above. For the evaluation of (16) we first
transform the integrals to the following form:

P̃av ¼
1

8s
ffiffiffiffiffiffi
2p
p

1

3

Z 0

�1

exp �
expðyÞ

4
�

y� Að Þ
2

8s2

� �
dy

�
þ

1

3

Z þ1
0

exp �
expðyÞ

4
�

y� Að Þ
2

8s2

� �
dy

þ

Z 0

�1

exp �
expðyÞ

3

�
�

y� Að Þ
2

8s2

�
dyþ

Z þ1
0

exp �
expðyÞ

3
�

y� Að Þ
2

8s2

� �
dy

�
(17)

Next, we approximate the first term of the exponential of each integral with another
exponential function and thus Eq. (17) is taking the following form [8]:

P̃av ¼
1

8s
ffiffiffiffiffiffi
2p
p

1

3

Z 0

�1

exp �
ðy� AÞ2

8s2

� �
dy�

A1

3

Z 0

�1

exp k1y�
ðy� AÞ2

8s2

� �
dy

�

þ
A2

3

Z þ1
0

exp �ðk2yÞ2 �
ðy� AÞ2

8s2

� �
dyþ

Z 0

�1

exp �
ðy� AÞ2

8s2

� �
dy

�A3

Z 0

�1

exp k3y�
ðy� AÞ2

8s2

� �
dyþ A4

Z þ1
0

exp �ðk4yÞ
2
�
ðy� AÞ2

8s2

� �
dy

�

(18)

where the parameters of (18) have been evaluated numerically and have the following
values:

A1 ¼ 0:22436; A2 ¼ 0:74698; A3 ¼ 0:28892; A4 ¼ 0:67361

k1 ¼ 0:94751; k2 ¼ 0:62532; k3 ¼ 0:93127; k4 ¼ 0:71433
(19)
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Now the integrals in (18) can be easily evaluated and, finally, will have the following
form:

P̃av ¼
1

8s
4s
3

erfc
A

ffiffiffi
2
p

4s

 !
þ

B2

3
erfc

�A

2s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k2

2 þ 2=s2
q

0
B@

1
CA

2
64

�
A1s
3

C1 erfc
ffiffiffi
2
p

s
A

4s2
þ k1

� �� �

þ B4 erfc
�A

2s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k2

4 þ 2=s2
q

0
B@

1
CA� A3sC3 erfc

ffiffiffi
2
p

s
A

4s2
þ k3

� �� �375 (20)

where

Bj ¼
Ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8k2
j þ1=s2

p exp A2

64s4 k2
j þ

1

8s2


 �� A2

8s2

� �
; j ¼ 2; 4

Ci ¼ Ais exp � A2

8s2 þ 2s2 A
4s2 þ ki


 �2� 	
; i ¼ 1; 3

(21)

Eq. (20) is an approximate closed mathematical form expression for the evaluation of
the average BER of an FSO channel with log-normal distribution. Numerical evaluation of
the estimation error jP̃av � Pavj=Pav is found to be of the order of 10�6 for all the cases that
we present below. Thus, (20) is an accurate approximate expression for the estimation of
the average BER and we consider Pav ffi P̃av.
Next, we evaluate the outage probability of an FSO channel, which is a critical metric

for the design of a free space optical communication system. It represents the probability
that the instantaneous electrical SNR falls below a critical threshold, mth, which, in
practice, is the sensitivity limit of the receiver and is given by the following form, using
Eq. (7):

Pout ¼ PrðmpmthÞ ¼

Z mth

0

f mðmÞ ¼ FmðmthÞ ¼
1

2
erfc

lnðm̄=mthÞ � s2

2
ffiffiffiffiffiffiffi
2s2
p

� �
(22)

4. Bayesian approach

In the analysis above, we considered all the parameters of the link to be invariable.
Nevertheless, in a real FSO communication system most of them are changing their values
according the atmospheric circumstances. Thus, in order to include the influence of the
fluctuations of these parameters in the evaluation of the significant metrics of the
performance of an FSO communication system studied above, we presume that
the average electrical SNR at the receiver, m̄, as well as the turbulence strength of the
atmosphere, Cn

2—and resulting the Rytov variance, d2—vary over time. More specifically,
these parameters can be viewed as fast varying with respect to time, allowing us to consider
them as random variables. Hence, we use the Bayesian approach to evaluate their outage
probability and average capacity. Taking into account the fluctuations of the values of Cn

2

[23] and m̄, the conditional prior distributions of the average electrical SNR and the Rytov
variance, are the normal and the inverse Gamma, respectively [24,25]. The former has
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the form

gðm̄jd2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ptd2

p exp �
ðm̄�mÞ2

2td2

� �
(23)

with parameters m and t, while the latter distribution is given by

hðd2Þ ¼
g

g1
2

Gðg1Þ
ðd2Þ�ðg1þ1Þ exp �

g2

d2

� �
(24)

with parameters g1 and g2. Thus, using (8), the average channel capacity with the Bayesian
approach is given by the following triple integral:

hCi ¼

Z þ1
0

Z þ1
0

Z þ1
0

B log2ð1þ mÞf mðmjm̄; d
2
Þgðm̄jd2Þhðd2Þ dm dm̄ dd2 (25)

where it is obvious that the pdf of Eq. (6), depends on the value of the Rytov variance
because s2 is a function of d2 [i.e. s2 ¼ s2(d2)]. Using (6), (23) and (24), the above integral is
taking the following form:

hCi ¼
Bg

g1
2

4pGðg1Þ
ffiffiffi
t
p

Z þ1
0

Z þ1
0

Z þ1
0

log2ð1þ mÞ

ms2ðd2Þg1þ3=2

� exp �
ðlnðm=m̄Þ þ s2Þ2

8s2
þ
ðm̄�mÞ2

2td2
þ

g2

d2

� �� �
dm dm̄ dd2 (26)

Solving numerically Eq. (26), using a Monte Carlo computational scheme [26,27], we
obtain the average capacity of the free space optical link using the Bayesian approach.

The BER of the FSO link, using (13), is obtained from the following integral:

Pav ¼

Z þ1
0

Z þ1
0

Z þ1
0

Q

ffiffiffi
m
2

r� �
f mðmjm̄; d

2
Þgðm̄jd2Þhðd2Þ dm dm̄ dd2 (27)

which using (6), (23), (24) and the expression erfcðxÞ ¼ 2Qð
ffiffiffi
2
p

xÞ, is taking the following
form:

Pav ¼
g

g1
2

8pGðg1Þ
ffiffiffi
t
p

Z þ1
0

Z þ1
0

Z þ1
0

1

ms2ðd2Þg1þ3=2

� exp �
ðlnðm=m̄Þ þ s2Þ2

8s2
þ

4ðm̄�mÞ2

2td2
þ

g2

d2

� �� �
dm dm̄ dd2 (28)

Moreover, the outage probability of the FSO link, using (22), can be evaluated from the
following mathematical expression:

Pout ¼ PrðmpmthÞ ¼

Z þ1
0

Z þ1
0

Z 1

0

f mnðmnjm̄n; d2Þgðm̄njd2Þhðd2Þ dmn dm̄n dd2 (29)
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where mn ¼ m=mth and m̄n ¼ m̄=mth are the normalized instantaneous and average electrical
SNR, respectively. The probability of (29), using (6), (23) and (24), is given by

Pout ¼
g

g1
2

4pGðg1Þ
ffiffiffi
t
p

Z þ1
0

Z þ1
0

Z 1

0

1

m�s2ðd2Þg1þ3=2

� exp �
ðlnðm�=m̄�Þ þ s2Þ2

8s2
þ
ðm̄� �m�Þ2

2t�d2
þ

g2

d2

� �� �
dm� dm̄� dd2 (30)

where m* and t* are the new parameters for the normal distribution for the normalized
average electrical SNR.

5. Numerical results

As mentioned above, the performance of an FSO link depends strongly on the
atmospheric conditions in the space between the transmitter and the receiver. We
investigate the performance of such a system and we present our results using the above-
mentioned statistical methods: the frequentist and the Bayesian approach. The results that
we present below have been taken by considering a link with length L ¼ 5000m, operation
wavelength l ¼ 1.55 mm, and aperture diameter of the receiver D ¼ 0.01m. It is clear that
similar results can be obtained for any other value of the above-mentioned parameters.
In the frequentist approximation, we suppose that the atmospheric turbulence strength

and the SNR at the receiver have steady values for long time. Thus, in order to evaluate the
average capacity, the average BER and the outage probability we use four values for Cn

2,
for weak to moderate turbulence conditions, for different values of the average electrical
SNR at the receiver. However, the atmospheric conditions in the space between the
transmitter and the receiver are constantly changing. As a result, the atmospheric
turbulence strength varies over time, as the average electrical SNR at the receiver. In order
to be more accurate in our estimations, we take into account these fluctuations around a
mean value; at the estimation of the average capacity, the average BER and the outage
probability we should use the Bayesian perspective.
In order to obtain the results that we present below we used experimental data [16], to

model the fluctuations of the atmospheric turbulence strength. We assume that the
distribution of the value of d2, which depends directly on Cn

2, follows an inverse gamma
distribution, Eq. (24). In order to estimate the parameters of the distribution, we consider
that the values of Cn

2, fluctuate 15% around the mean value which is in accordance with
the experimental results of Ref. [23]. It is clear that the value of this rate depends on the
atmospheric turbulence conditions in the space between the transmitter and the receiver of
the FSO link and it can be smaller or larger. The results that we present in this work
concern two values of Cn

2 for weak turbulence conditions [i.e. Cn
2
¼ 4.0� 10�15m�2/3,

Cn
2
¼ 8.0� 10�15m�2/3] and two for moderate [i.e. Cn

2
¼ 1.4� 10�14m�2/3, Cn

2
¼

1.8� 10�14m�2/3]. Thus, for Cn
2
¼ 4.0� 10�15m�2/3, the corresponding value of d2 is

0.619 and the parameters of the distribution are g1 ¼ 6.13 and g2 ¼ 3.17, for
Cn

2
¼ 8.0� 10�15m�2/3, d2 ¼ 1.238, g1 ¼ 10.25 and g2 ¼ 11.45, for Cn

2
¼ 1.4�

10�14m�2/3, d2
¼ 2.166, g1 ¼ 16.44 and g2 ¼ 33.45, and for Cn

2
¼ 1.8� 10�14m�2/3,

d2 ¼ 2.785, g1 ¼ 20.57 and g2 ¼ 54.51. For the variation of the average electrical SNR, m̄,
and the normalized average electrical SNR, m̄n, at the receiver we use a normal distribution
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and for the evaluation of the distribution’s parameter, t, we consider that the SNR at the
receiver fluctuates up to 1 dB, around the mean values m and m*, respectively. Thus, we
use a value of t so that the product td2 always is 1.245.

Using the above-mentioned parameters we evaluate the average capacity, the average
BER and the outage probability of an FSO channel, which are three significant metrics for
performance and reliability and we study their dependence on the atmospheric turbulence
conditions.

In Figs. 1 and 2, we present the normalized, average channel capacity, /CS/B, of the
FSO link, as a function of the average electrical SNR at the receiver, m̄, for the frequentist
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Fig. 2. Average channel capacity, /CS/B, for weak and moderate atmospheric turbulence conditions, versus the

mean average electrical SNR, m. These results have been obtained with the Bayesian approximation for

l ¼ 1.55mm, L ¼ 5000m, and D ¼ 0.01m. The capacity of the AWGN channel is plotted too.

Fig. 1. Average channel capacity, /CS/B, for weak and moderate atmospheric turbulence conditions, versus the

average electrical SNR, m̄. These results have been obtained with the frequentist approximation for l ¼ 1.55mm,

L ¼ 5000m, and D ¼ 0.01m. The capacity of the AWGN channel is plotted too.
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approximation case, and the mean average electrical SNR, m, for the Bayesian. For
example, for the case of weak turbulence (i.e. Cn

2
¼ 4.0� 10�15m�2/3), for (mean) average

electrical SNR 20 dB, the Bayesian estimation of the average capacity gives 2.1% smaller
result that this of the frequentist approximation, while for the case of moderate turbulence
(i.e. Cn

2
¼ 1.8� 10�14m�2/3), the respective rate is 8.2%. Moreover, in these figures, we

plotted the capacity of an AWGN channel, hCi=B ¼ log2 þ ð1þ m̄Þ, which represents the
capacity of the optical channel, without the influence of the atmospheric turbulence
conditions.
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Fig. 3. Average BER, Pav, for weak and moderate atmospheric turbulence conditions, versus the average

electrical SNR, m̄. These results have been obtained with the frequentist approximation for l ¼ 1.55mm,

L ¼ 5000m, and D ¼ 0.01m.

Fig. 4. Average BER, Pav, for weak and moderate atmospheric turbulence conditions, versus the mean average

electrical SNR, m. These results have been obtained with the Bayesian approximation for l ¼ 1.55mm,

L ¼ 5000m, and D ¼ 0.01m.
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In Figs. 3 and 4, the average BER of the FSO link is plotted as a function of the average
electrical SNR, m̄, and the mean average electrical SNR, m, for the cases of the frequentist
and Bayesian approximation, respectively. The results that obtained for invariable values
of turbulence strength and average electrical SNR have smaller values than those, which
have been evaluated with the Bayesian approximation. Thus, for weak turbulence
conditions (i.e. Cn

2
¼ 4.0� 10�15m�2/3) and m̄ ¼ m ¼ 20 dB, the Bayesian estimation of

the average BER gives 1.8% larger result than that of the frequentist approximation. On
the other hand, for the case of moderate turbulence (i.e. Cn

2
¼ 1.8� 10�14m�2/3), the

respective rate is 6.9%.
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Fig. 5. Outage probability, Pout, for weak and moderate atmospheric turbulence conditions, versus the

normalized average electrical SNR, m̄�. These results have been obtained with the frequentist approximation for

l ¼ 1.55mm, L ¼ 5000m, and D ¼ 0.01m.

Fig. 6. Outage probability, Pout, for weak and moderate atmospheric turbulence conditions, versus the mean

normalized average electrical SNR, m*. These results have been obtained with the Bayesian approximation for

l ¼ 1.55mm, L ¼ 5000m, and D ¼ 0.01m.
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In Figs. 5 and 6, the outage probability is plotted as a function of the normalized
electrical SNR, m̄n for the case of the frequentist estimation, and the mean normalized
electrical SNR, m*, for the Bayesian. This metric is less sensitive on the variation of the
atmospheric turbulence conditions and SNR fluctuations. As a result, for weak turbulence
conditions (i.e. Cn

2
¼ 4.0� 10�15m�2/3) and m̄n ¼ m� ¼ 20 dB, the frequentist estimation

gives only 1.3% smaller result than that of the Bayesian approximation. This happens in
the case of moderate turbulence conditions (i.e. Cn

2
¼ 1.8� 10�14m�2/3) too, where the

respective rate is 4.7%.
In all the cases presented above it is clear that with the frequentist approximation, the

performance and the reliability of the FSO systems is found to be higher than in the
Bayesian case. This result is due to the fact that with the Bayesian point of view,
the parameters of the system tend to replicate natural circumstances more accurately.
Thus, the system’s computed average capacity is lower in the Bayesian case, while the
average BER and the outage probability are higher.

6. Conclusions

In this work we derived accurate approximate closed-form expressions for the
estimation of the average capacity and the average BER of a log-normal FSO channel
in the cases of weak to moderate atmospheric turbulence conditions. We evaluate the
reliability and the performance of FSO communications systems by means of the
evaluation of the outage probability and the average channel capacity and average BER
under real circumstances. Taking into account that the turbulence strength and the average
electrical SNR at the receiver of a real optical channel cannot remain invariable for long
time, we model these parameters following the Bayesian point of view. Thus, evaluating
the outage probability, the average capacity and the average BER, using both statistical
approaches (frequentist and Bayesian) and quoting the results provides a broader
understanding of the evaluation of the performance and the reliability of the free space
optical link. Finally, it is worth mentioning that the above methodology can be extended to
many research areas besides optical communications such as social sciences and
economical modeling where the researcher wishes to estimate average quantities given
non-fixed parameters.
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