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Abstract

Evaluation of agreement among multiple methods of clinical measurement is a topic

of considerable interest in health sciences. As in an analysis of variance comparing

more than two treatment means, when more than two measurement methods are com-

pared, performing multiple comparisons and ranking pairs of methods on the basis of

their extent of agreement are of primary concern. This article develops frequentist

and Bayesian methodologies for this purpose. In particular, simultaneous confidence

bounds and simultaneous credible bounds are developed for multiple comparisons.

Moreover, two approaches are described for ranking method pairs — one based on

simultaneous bounds and the other based on posterior probabilities of possible order-

ings. The proposed methodologies can be used with any scalar measure of agreement.

Their small-sample performance is evaluated using simulation. Extension of the basic

methodologies to incorporate covariates is illustrated using a blood pressure data set.
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1 Introduction

Measurement of clinically important continuous variables, such as blood pressure, heart rate,

cholesterol level, etc., is key to management of health. As the technology advances, new

measurement methods become available that may be cheaper, easier to use or less invasive

than the established ones. But before new methods are adopted for general use, they are

validated by comparing them with established methods in method comparison studies. Such

studies are quite common in health sciences research. This is evident from the fact that

Bland and Altman (1986) who proposed the limits of agreement approach for evaluation of

agreement between two methods currently has over 13,000 citations in the Web of Science

— a citation database of the ISI Web of Knowledge.

In studies comparing two methods, generally the main objective is to quantify the extent

of agreement between the methods and determine if they agree sufficiently well to justify

their interchangeable use. In addition to the aforementioned limits of agreement approach,

there are several other approaches for evaluating agreement between two methods, including

concordance correlation coefficient (CCC, Lin, 1989), mean squared deviation (Lin, 2000),

coverage probability and total deviation index (TDI) or tolerance interval (Lin, 2000, Lin et

al., 2002, Choudhary and Nagaraja, 2007), and coefficient of individual agreement (Barnhart,

Kosinski and Haber, 2007). See Barnhart, Haber and Lin (2007) for a recent comparative

review of the statistical literature on this topic.

The focus of this article is on method comparison studies involving more than two meth-

ods. Such studies are also common in practice. Consider, e.g., Moura et al. (2009) who com-

pare three methods — tissue Doppler imaging, pulsed-wave Doppler imaging and M-mode

echocardiography, for measuring myocardial performance index. Another recent example is

Welinder et al. (2009) who compare standard and EASI-derived 12-lead electrocardiogram

with cardiac magnetic resonance imaging as gold standard for measuring Selvester score
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for chronic myocardial infarction. An additional example involving measurement of blood

pressure is provided later in this article.

As in an analysis of variance (ANOVA) comparing more than two treatments (Hsu, 1996),

when more than two measurement methods are compared, the interest lies in performing

multiple comparisons, i.e., simultaneously comparing the extent of agreement between all

pairs of methods of concern, and ranking them on the basis of their extent of agreement.

Our set-up, however, differs with ANOVA in two crucial respects. Firstly, in ANOVA, one

is mainly interested in treatment means. But in method comparison studies, an agreement

measure that quantifies the extent of agreement between two methods is the parameter of

main concern. Generally it is a function of not just the means of the methods but also

their variances and correlation. Secondly, in ANOVA, ranking typically refers to ordering

treatments on the basis of their means. In contrast, in method comparison studies, we rank

pairs of methods on the basis of their extent of agreement.

The ANOVA analogy implies that for multiple comparisons and ranking, we need method-

ologies for simultaneous inference on measures of agreement between the pairs of methods

of interest. They, however, are not available in the literature. One can, of course, apply the

Bonferroni inequality method to derive a simultaneous inference procedure from the pair-

wise inference procedures. But such a procedure is well-known to be conservative (Hsu, 1996,

chapter 1). To the best of our knowledge, there have been only two lines of work on the topic

of comparing multiple methods. The first summarizes the overall level of agreement among

all methods in a single index by taking a weighted average of the pairwise agreement mea-

sures. The articles of King and Chinchilli (2001) and Barnhart, Haber and Song (2002) fall

in this category. Although these articles focus only on the concordance correlation, similar

ideas can be used for other scalar measures of agreement. The second line of work assumes a

gold standard method in the comparison that serves as a reference, and considers the problem

of finding the method that agrees most with it. The articles of St. Laurent (1998), Hutson,
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Wilson and Geiser (1998) and Choudhary and Nagaraja (2005a, b) fall in this category. In

the first, an intraclass correlation, and in the rest, the mean squared deviation serve as the

measure of agreement.

This article attempts to fulfill the aforementioned need by developing frequentist and

Bayesian methodologies for multiple comparisons and ranking in method comparison stud-

ies. The frequentist paradigm offers an approach based on simultaneous confidence bounds,

whereas the Bayesian paradigm offers two approaches — one based on simultaneous credi-

ble bounds and the other based on posterior probabilities. The methodologies only require

an agreement measure to be scalar. So they can be used with all the measures currently

available in the literature except the limits of agreement, which uses two limits to quantify

agreement. Incorporating covariates in the analysis is also straightforward.

The rest of this article is organized as follows. In Section 2, we assume a basic model

for method comparison data and describe the methodologies for multiple comparisons and

ranking of method pairs using an arbitrary scalar measure of agreement. Their properties

are examined in Section 3 via simulation. In Section 4, we extend these methodologies to

incorporate covariates in the analysis and apply them to a blood pressure data set from the

literature. Section 5 concludes with a discussion.

2 Methodology for multiple comparisons and ranking

2.1 A basic model for the data

Suppose there are J (≥ 2) methods under comparison and we have m individuals in the

study. Let Yijk, k = 1, . . . , nij, denote the kth replicate measurement from the jth method

on the ith individual. To simplify the presentation of the key ideas, in this section we assume

that these data can be modeled as

Yijk = βj + bij + εijk, k = 1, . . . , nij, j = 1, . . . J, i = 1, . . . ,m, (1)
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where βj is the fixed effect of the jth method; bij is the random effect of the ith individual

on the jth method, i.e., the individual × method interaction; and εijk is the random error.

Further, the vector (bi1, . . . , biJ)|Ψ ∼ independent J-variate normal distribution with mean

zero and an arbitrary covariance matrix Ψ, εijk|σ2
j ∼ independent N (0, σ2

j ) and are mutually

independent of the interaction terms. (All vectors in this article are column vectors unless

specified otherwise.) When the measurements are not replicated, the interaction term bij

in (1) is replaced by a random individual effect bi, where bi|ψ2 ∼ independent N (0, ψ2),

otherwise the model is not identifiable. Extensions of this model is discussed in Section 4.

2.2 Measuring agreement

Let the random vector (Y1, . . . , YJ) represent the population of measurements from J meth-

ods. In essence, this vector denotes the measurements from J methods on a randomly

selected individual from the population, measured once by each method. Also let γ be the

vector of parameters in the model (1). It follows from the assumptions of this model that

the joint distribution of (Y1, . . . , YJ)|γ is J-variate normal with

E(Yj) = βj, var(Yj) = ψjj + σ2
j , cov(Yj, Yl) = ψjl, j 6= l = 1, . . . , J, (2)

where ψrs is the (r, s)th element of the matrix Ψ. This distribution is well-defined irrespective

of the values of the number of replicates nij.

Let θ be an arbitrary scalar measure of agreement between two methods whose either

large or small values indicate good agreement. When referring specifically to the agree-

ment between methods (j, l), θ will be denoted as θjl. By definition it is a function of the

parameters (2) of the bivariate normal distribution of (Yj, Yl).

Consider, for example, the popular agreement measure CCC (Lin, 1989). It is defined as

θjl ≡ ρjl =
2cov(Yj, Yl)

(E(Yj − Yl))2 + var(Yj − Yl) + 2cov(Yj, Yl)
=

2ψjl
µ2
jl + τ 2

jl + 2ψjl
, (3)
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where µjl = E(Yj − Yl) = βj − βl and τ 2
jl = var(Yj − Yl) = ψjj + ψll − 2ψjl + σ2

j + σ2
l . It is

basically a measure of the mean squared difference between Yj and Yl, E(Yj − Yl)2, which

is scaled to lie between (0, 1) (Lin, 1989). A large value for CCC indicates good agreement

between the two methods. The methods have perfect agreement — i.e., µjl = 0 = τ 2
jl or

equivalently Pr(Yj = Yl) = 1, in the limiting case when ρjl = 1.

The TDI (Lin, 2000) is another agreement measure, which is defined as

θjl ≡ qjl = p0th quantile of |Yj − Yl| for a specified p0 = τjl
{
χ2

1(p0, µ
2
jl/τ

2
jl)

}1/2
, (4)

where χ2
1(p0,∆) represents the p0th quantile of a chi-squared distribution with one degree

of freedom and noncentrality parameter ∆. Generally p0 is large (≥ 0.80) in applications.

So the TDI measures how large the absolute difference between Yj and Yl can be in a large

proportion of population. This measure is positive and a small value for it indicates good

agreement between the methods. Perfect agreement results when qjl = 0. Expressions for

other measures of agreement can be derived in a similar manner.

2.3 Multiple comparisons of method pairs

The goal of multiple comparisons inference is to get simultaneous bounds for all θs of interest

with probability, say, (1 − α). In the frequentist approach, these bounds are simultaneous

confidence bounds with (1−α) coverage probability, whereas in the Bayesian approach, they

are simultaneous credible bounds with (1 − α) posterior probability. The bounds are used

to compare the extent of agreement among the method pairs, and also to infer which pairs,

if any, have sufficient agreement for their interchangeable use. When there is a reference

method (say, method 1), we would like to compare the extent of agreement of the other

methods with the reference. This leads to a total of (J − 1) comparisons involving θ1j, j =

2, . . . , J . On the other hand, when there is no reference, we are interested in all-pairwise

comparisons. In this case, we have a total of
(
J
2

)
comparisons involving θjl, j < l = 1, . . . , J .
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If the agreement measure θ is such that its small value implies good agreement (e.g., TDI),

we compute simultaneous upper bounds, say, {U1j, j = 2, . . . , J} for multiple comparisons

with a reference, and {Ujl, j < l = 1, . . . , J} for all-pairwise comparisons. Conversely, if θ is

such that its large value implies good agreement (e.g., CCC), we compute simultaneous lower

bounds, say, {L1j, j = 2, . . . , J} for multiple comparisons with a reference, and {Ljl, j < l =

1, . . . , J} for all-pairwise comparisons.

We now consider how to compute these bounds. For convenience, we label the method

pairs of interest as 1, . . . , K; the associated θs as θ1, . . . , θK ; their upper bounds as U1, . . . , UK ;

and their lower bounds as L1, . . . , LK . In particular, K = J − 1 for comparisons with a

reference and K =
(
J
2

)
for all-pairwise comparisons. Also, let the vector θ denote (θ1, . . . , θK).

2.3.1 The frequentist approach

Let θ̂ be the maximum likelihood estimator (MLE) of θ obtained by fitting model (1) to the

observed data. When the number of individuals m is large, the distribution of θ̂ is approxi-

mately normal with mean θ. This suggests the following confidence bounds for θ1, . . . , θK :

Lk = θ̂k − c1−α,K v1/2
kk , Uk = θ̂k − dα,K v1/2

kk , k = 1, . . . , K, (5)

where vkk is the asymptotic variance of θ̂k, and c1−α,K and dα,K are critical points that ensure

(1−α) coverage probability in the limit as m tends to infinity for each simultaneous bound.

Appendix A provides formulas for vkk and discuss two methods — a “standard” approach

and a bootstrap approach — for computing the critical points.

2.3.2 The Bayesian approach

We now present a Bayesian method for computing simultaneous credible bounds for θ. Al-

though this procedure can be used with any appropriate choice of prior distributions for the

parameters in model (1), nevertheless we assume the following priors as they have become
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quite common in practice (see, e.g., Spiegelhalter et al., 2003, Carlin, 1996):

βj ∼ N (0, V 2
j ), 1/σ2

j ∼ Gamma(Aj, Bj), j = 1, . . . , J, Ψ−1 ∼Wishart(ν0, R). (6)

These distributions are mutually independent and their parameters need to be specified.

See Carlin (1996) for an example of how to elicit them. The joint posterior distribution of

parameters in (1) with priors (6) is not available in a closed-form. Therefore, a Markov chain

Monte Carlo (MCMC) approach is needed to simulate draws from the joint posterior. For

this purpose, one can employ a Gibbs sampler algorithm (Gelman et al., 2003, chapter 11)

or use the WinBUGS package of Spiegelhalter et al. (2003). Furthermore, instead of the

inverse gamma distributions as priors for error variances in (6), one can also use the recent

alternatives of Brown and Draper (2006) and Gelman (2006).

Let γ
1
, . . . , γ

M
denote a large number of draws from the joint posterior of the model pa-

rameter vector γ. The corresponding draws from the posterior of θk, say {θ1
k, . . . , θ

M
k }, are ob-

tained by using the fact that θk is a function of γ, k = 1, . . . , K. Next, let {θ(1)
k , . . . , θ

(M)
k } de-

note the ordered values of {θ1
k, . . . , θ

M
k } and {r1

k, . . . , r
M
k } be their ranks. When upper bounds

are desired, define u1−α as the (1−α)th sample quantile of {maxKk=1 r
1
k, . . . ,maxKk=1 r

M
k }. Since

M is large, the posterior probability of the simultaneous event {θk ≤ θ
(u1−α)
k , k = 1, . . . , K} is

approximately (1− α) (Besag et al., 1995). Hence we can take {Uk = θ
(u1−α)
k , k = 1, . . . , K}

as the simultaneous upper credible bound. Analogously, when lower bounds are desired,

define lα as the αth sample quantile of {minKk=1 r
1
k, . . . ,minKk=1 r

M
k }, and take {Lk = θ

(lα)
k , k =

1, . . . , K} as the simultaneous lower credible bound.

2.4 Ranking of method pairs

We now describe two approaches for ranking the method pairs {1, . . . , K}, say, in decreasing

order of agreement. The first is based on the simultaneous bounds of the previous section.

Both frequentist and Bayesian bounds can be used. Specifically, when upper bounds are of
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interest, the ranks of {U1, . . . , UK} in ascending order, and when lower bounds are of interest,

the ranks of {L1, . . . , LK} in descending order can be taken as the inferred ranks. We refer

to this induced ordering as the bound-based ordering. There are, however, two flaws in this

procedure. Firstly, it is rather ad hoc and provides no control over the probability of correct

inference, i.e., inference that the induced ordering of θs matches with their true unknown

ordering. This probability may be low or high depending upon whether the bivariate distri-

butions of the measurement pairs are similar or not and whether the sample is small or large.

In particular, this probability is 1/K! in the extreme case when the measurements from dif-

ferent methods have exchangeable distributions and hence all the θs are equal. Secondly,

this procedure does not directly convey how uncertain the induced ordering is. Although

we expect the uncertainty to be high if some of the bounds have similar magnitudes, it is

helpful to have an explicit knowledge of this uncertainty.

The uncertainty issue can be resolved by using the posterior probabilities of all possibleK!

orderings. The posterior probability of an ordering is simply the proportion of posterior draws

of θ that satisfy the given ordering. The ordering with the highest posterior probability can

be inferred as the induced ordering of the K method pairs. We refer to it as the probability-

based ordering. The uncertainty in the inferred ordering is small if its probability is near

one. On the other hand, if two or more orderings have similar posterior probabilities, some

method pairs probably have similar extent of agreement.

3 Monte Carlo Simulation study

In this section we describe the results of a simulation study to evaluate the performance of

the inference procedures discussed in the previous section. Since these procedures can be

used with any scalar measure of agreement, we also compare the results for two popular

measures, CCC and TDI.
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To keep the computations manageable, we restrict attention to a special case of model

(1), wherein the random individual × method interaction bij is written as bij = bi + b∗ij,

j = 1, . . . , J , i = 1, . . . ,m. Here bi|ψ2 ∼ independent N (0, ψ2), b∗ij|φ2 ∼ independent

N (0, φ2), and the two are mutually independent. This structure of bij implies that the

diagonal elements of Ψ equal ψ2 + φ2 and its off-diagonal elements equal ψ2. When all

nij = 1, b∗ij is dropped from the model as it gets confounded with the error term. Further, in

the Bayesian case, Gamma(Aψ, Bψ) and Gamma(Aφ, Bφ) distributions are adopted as priors

for 1/ψ2 and 1/φ2, respectively.

This simulation study assumes the following: number of methods J = 3, number of com-

parisonsK = 3 (i.e., all-pairwise comparisons), 1−α = 0.95, p0 for TDI = 0.80, m ∈ {30, 60},

n ∈ {1, 2, 3}, and three settings of model parameters, which are summarized in Table 1. Set-

ting 1 has exactly the same extent of agreement between the method pairs. In settings 2

and 3, the method pairs have differing extent of agreement, with the differences being more

substantial in setting 3 than setting 2. Further, in the Bayesian case, “noninformative”

values are assigned to the parameters of the prior distributions. In particular, the variances

of βjs are taken to be ∞, and the parameters As and Bs of the variance components are

given a common value of 0.001. The details of the simulation procedure are provided in

Appendix B. Here we only summarize the results.

Table 2 presents the estimated simultaneous coverage probabilities of the bounds for

TDI and CCC computed using two frequentist approaches (standard and bootstrap) and a

Bayesian approach. The coverage probabilities observed with the bootstrap approach are

generally close to the nominal 0.95 level for both TDI and CCC, even with m = 30. These

probabilities do not seem to depend on the parameter setting. The coverage probabilities of

the Bayesian bounds range between 0.95-0.98. Thus, these bounds appear conservative and

the TDI bounds seem more conservative than the CCC bounds. Both become more accurate

as the methods become more dissimilar or as m increases. The coverage probabilities of
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the standard frequentist bounds mostly lie between 0.91-0.94 in case of TDI and between

0.95-0.97 in case of CCC. Thus, the bounds appear anticonservative in the TDI case and

conservative in the CCC case. These probabilities do not seem to be impacted by the

parameter settings. There does not seem to be any marked effect of n on the coverage

probabilities with any method. Overall, the bootstrap bounds appear the best as confidence

bounds, albeit they also take the most time to compute. The Bayesian bounds are the next

best except only in the case of CCC with n = 1, when the standard bounds appear a bit less

conservative than them. In the light of this result, we only consider the bootstrap and the

Bayesian bounds in the remainder of this section.

Table 3 reports the probability of correct inference for the three ranking procedures — two

based on bounds and one based on posterior probabilities. The results are presented only for

settings 2 and 3 since there is no “correct” ordering in case of setting 1. The probabilities for

CCCs tend to be a bit higher than those for TDIs. The Bayesian procedures have somewhat

higher probabilities than the bootstrap procedure for n = 2, 3 and the converse is true for

n = 1. Between the two Bayesian procedures, the probability-based procedure has slightly

higher probabilities than the bound-based procedure. The probabilities are practically one

in case of setting 3. In case of setting 2 with m = 30, the probabilities for TDIs lie between

0.72-0.83 for the bootstrap procedure. Further, as expected, the probabilities increase until

they reach one as m or n increase or methods become more dissimilar.

We next consider the probability that the two Bayesian procedures, one based on credible

bounds and the other based on posterior probabilities, lead to the same ordering. The

estimates of this probability, not presented, are practically identical for TDI and CCC.

They are fairly high — between 0.82-0.86 for setting 1, between 0.92-0.96 for setting 2, and

practically one in case of setting 3. Setting 1 has the smallest probabilities, possibly because

there is no correct ordering to agree upon in this case. The probabilities increase until they

reach one as m increases or as the methods become more dissimilar. As for n, they increase
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from n = 1 to n = 2 and then remain practically constant.

Table 4 presents the estimated probabilities that TDI and CCC lead to the same order-

ing. In general, these results suggest that, except when the methods have similar pairwise

agreement, it does not matter much whether TDI or CCC is used for ordering method pairs

as they are likely to produce the same inference. The probabilities are almost one for the

posterior probability-based procedure, no matter what m, n or the parameter settings are.

Among the bound-based procedures, the bootstrap tends to have higher probabilities than

the Bayesian procedure. Here also setting 1 with m = 30 has the smallest probabilities —

ranging between 0.90-0.98 for the bootstrap procedure and 0.84-0.88 for the Bayesian pro-

cedure. The other two settings have probabilities of 0.94 or more. Further, the probabilities

for n = 2 and n = 3 seem similar. But they tend to be less than those for n = 1 in case of

setting 1 and at least as large as those in case of settings 2,3. As expected, the probabilities

increase with m or as the methods become more dissimilar, until they reach one.

4 Extension and application

The model (1) assumed in Section 2 is quite basic. Its extensions are needed to incorporate

covariate effects and complex data structures. A general mixed-model framework for data

from J = 2 methods and how to express θ — the measure of agreement between them —

as a function of the model parameter vector γ have been discussed in Choudhary (2008).

It is straightforward to extend this modeling approach for data from J > 2 methods and

to express θ1, . . . , θK — the values of θ for all pairs of methods of interest — as functions

of γ. Once these expressions are available, the frequentist and Bayesian methodologies

developed in Section 2 can be employed by replacing the model (1) with the new model.

This is illustrated below using an example. We will focus only on TDI and CCC. The other
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agreement measures can be handled analogously.

Example (Blood pressure study): In this study (Torun et al., 1998, Barnhart and

Williamson, 2001, Barnhart et al., 2002), systolic blood pressure (SBP) and diastolic blood

pressure (DBP) are measured using four methods — three observers using a mercury sphyg-

momanometer (MS), say, methods 1, 2, 3, and one observer using an inexpensive digital

sphygmomanometer (DS), say, method 4. The DS method is easier to use than the MS

method. All four methods are used once on each of 228 individuals. Thus, we have 8 mea-

surements (4 SBP and 4 DBP) from every individual. They range between 82-236 mmHg

for SBP, and between 50-148 mmHg for DBP. These data have been analyzed in the above

articles using pairwise and overall CCCs. Here we compare the extent of agreement between

the three MS observers, and the agreement between the MS observers and the DS observer.

Let Yijt be the BP measurement of the tth type (type 1 = SBP, type 2 = DBP) from the

jth method on the ith individual. After a preliminary analysis, we model these data as

Yijt = βjt + bi + b∗ij + bit + εijt, i = 1, . . . , 228, j = 1, . . . , 4, t = 1, 2, (7)

where βjt is the fixed mean for the jth method and tth type; bi is the random effect of ith

individual; b∗ij is the random individual × method interaction; bit is the random individual ×

type interaction; and εijt is the random error. Here bi|ψ2 ∼ independent N (0, ψ2), b∗ij|φ2 ∼

independent N (0, φ2), bit|ξ2 ∼ independent N (0, ξ2), εijt|σ2
jt ∼ independent N (0, σ2

jt), and

the random variables are mutually independent. We now proceed along the lines of Sec-

tion 2.2 to deduce that the CCC and the TDI for evaluating agreement between methods

(j, l) for measuring tth type of BP can be expressed as

ρjlt =
2(ψ2 + ξ2)

µ2
jlt + τ 2

jlt + 2(ψ2 + ξ2)
, qjlt = τjlt

{
χ2

1(p0, µ
2
jlt/τ

2
jlt)

}1/2
, (8)

respectively, where µjlt = βjt − βlt and τ 2
jlt = 2φ2 + σ2

jt + σ2
lt, j < l = 1, . . . , 4, t = 1, 2.

Next, we obtain maximum likelihood and Bayesian fits of this model. The nlme package

(Pinheiro et al., 2006) in R (R Development Core Team, 2007) is used for the former. For
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the latter, we use WinBUGS by calling it in R through the R2WinBUGS package of Sturtz,

Ligges and Gelman (2005), and assume the following mutually independent vague priors —

N (0, 104) for βs and Gamma(10−3, 10−3) for reciprocals of each of the variance components.

Table 5 presents the MLEs and posterior means of 12 TDIs (with p0 = 0.80) and 12 CCCs,

as defined in (8), and their respective simultaneous bounds with 1 − α = 0.95. The two

sets of point estimates are very similar. Moreover, the bounds from the three methods —

standard, bootstrap and Bayesian — are remarkably identical. Further, since all the lower

bounds for CCC are near one, the four methods have sufficiently high agreement for their

interchangeable use. The same inference is reached on the basis of TDI upper bounds as it

appears from White et al. (1993) that differences in BP measurements of about 10 mmHg

is considered clinically acceptable.

The bounds also reveal that the methods tend to agree more in case of DBP (t = 2)

than SBP (t = 1). The posterior probability of this event, i.e., {ρjl2 > ρjl1, for all j <

l = 1, . . . , 4} or {qjl2 < qjl1, for all j < l = 1, . . . , 4}, approximately equals 0.96 in both

cases. Moreover, the agreement between any two of the three MS observers (i.e., methods

1, 2, 3) tends to be higher than the agreement between an MS observer and the DS ob-

server. This event, i.e., {min(ρ12t, ρ13t, ρ23t) > max(ρ14t, ρ24t, ρ34t)} or {max(q12t, q13t, q23t) <

min(q14t, q24t, q34t)}, has posterior probability 1 for SBP and 0.74 for DBP.

We now consider ordering the method pairs. Among the MS observers, both TDI and

CCC bounds are practically identical for all three pairs of observers, suggesting that it

is difficult to accurately rank the method pairs. In fact, in case of SBP, the two most

probable orderings are {(1, 3) � (1, 2) � (2, 3)} and {(1, 3) � (2, 3) � (1, 2)}, with respective

posterior probabilities 0.54 and 0.33. (Here “�” means “is better than.”) For DBP, they

are {(2, 3) � (1, 3) � (1, 2)} and {(1, 3) � (2, 3) � (1, 2)}, with respective probabilities 0.41

and 0.36. Since none of these probabilities is near one, the uncertainty in these orderings is

rather large. A closer examination reveals that, among the three pairs, the observers (1, 3)
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for SBP agree the most while the observers (1, 2) for DBP agree the least. These events

have fairly high posterior probabilities — 0.87 and 0.77, respectively. Thus, it is clear that

the uncertainty in the orderings is due to similar extent of agreement in the remaining MS

observer pairs, namely (1, 2) and (2, 3) for SBP, and (1, 3) and (2, 3) for DBP.

When the DS observer is compared with the MS observers, the orderings induced by

both TDI and CCC bounds are {(DS,MS3) � (DS,MS1) � (DS,MS2)} for SBP and

{(DS,MS3) � (DS,MS2) � (DS,MS1)} for DBP. The probability-based orderings concur

with these bound-based orderings. Moreover, since their posterior probabilities — 0.85 in

case of SBP and 0.70 in case of DBP — are high, these inferences are fairly precise.

5 Discussion

In this article, we discussed frequentist and Bayesian methodologies for multiple comparisons

and ranking of method pairs on the basis of their extent of agreement. For ranking, we

discovered that it does not matter whether a TDI or a CCC is used to measure agreement

since they normally produce the same ordering. We also discovered that, from a frequentist

viewpoint, the bootstrap procedure is somewhat better than a Bayesian procedure with

noninformative priors for producing simultaneous bounds with coverage probabilities close

to the nominal level in samples of moderate sizes, and both are generally better than the

standard frequentist procedure.

The Bayesian paradigm, on the other hand, has two advantages over a bootstrap proce-

dure — it additionally offers an inference procedure based on posterior probabilities, which

is especially useful for ordering method pairs, and there is also the flexibility of being able to

take into account of any available prior information. The Bayesian procedure also takes less

time to implement than the bootstrap procedure. Nevertheless, to use the Bayesian approach

one has to consider issues such as prior specification and sensitivity, and implementing an
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MCMC algorithm and diagnosing its convergence. But there are standard ways to deal with

them for the models discussed in this article (see Gelman et al., 2003, chapter 11).

We have assumed normality for the data as the measurements in method comparison

studies tend to be highly dependent and it is difficult to model them flexibly outside the

framework of mixed models. However, the methodologies described here can be used with

other parametric models as well by appropriately modifying the model specification. Some

authors (e.g., Barnhart and Williamson, 2001, and Barnhart, Song and Haber, 2005) have

used a semiparametric GEE approach to model method comparison data. But since in this

case one models the moments of the distribution, it is useful only for performing inference

on agreement measures that are defined in terms of moments (e.g., a CCC), and not on a

measure such as a TDI, which is a quantile.

A limitation of the proposed methodologies is that they are not reliable for very small

sample sizes, unless a Bayesian approach is used with informative priors. They do, however,

seem to work well when 30 or more individuals are in the sample. Finally, our focus here

has been only on the analysis of method comparison studies involving multiple methods. We

do not consider how to design such studies, in particular, how to compute sample sizes for

planning such studies. This issue is currently under investigation.

Appendix A: Computation of the simultaneous confidence bounds

Let L(γ) be the likelihood function of the parameter vector γ assuming model (1) for the

observed data. Further, let γ̂ be the MLE of γ. When m is large, it is well-known that

the approximate distribution of γ̂ is N
(
γ, I−1

)
, where I = −(∂2 logL(γ)/∂γ2)|γ=γ̂ is the

observed Fisher information matrix (Lehmann, 1999, chapter 7). Assuming that θ is a

differentiable function of γ, it follows from the delta method (Lehmann, 1999, chapter 5)

that the approximate distribution of θ̂ is N (θ,GI−1G′), where G = (∂θ/∂γ)|γ=γ̂ is the

Jacobian matrix and G′ is the transpose of G.
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Thus, the asymptotic variance vkk that appears in the confidence bounds (5) is the kth

diagonal element ofGI−1G′. Moreover, it can be easily seen that the critical points c1−α,K and

dα,K in (5) are the (1 − α)th quantile of Zmax = maxKk=1 Zk and the αth quantile of Zmin =

minKk=1 Zk, respectively, where Zk = (θ̂k − θk)/v
1/2
kk , and the distribution of (Z1, . . . , ZK)

is multivariate normal with mean zero and covariance matrix obtained by pre- and post-

multiplying GI−1G′ with a diagonal matrix diag
{
v
−1/2
11 , . . . , v

−1/2
KK

}
.

One way to compute the critical points is to directly use their definitions and apply the

method of Hothorn, Bretz and Westfall (2008), which uses an algorithm of Genz (1992)

for efficient computation of multivariate normal probabilities. We call it the “standard”

approach. It is expected to work well when the normal approximation for θ̂ is good, but

it may require m to be quite large. A better alternative for moderate m is to employ the

studentized bootstrap method (Davison and Hinkley, 1997). It consists of the following steps:

(i) Simulate resampled data Y ∗ijk, k = 1, . . . , nij, j = 1, . . . , J , i = 1, . . . ,m, from model

(1) taking γ = γ̂.

(ii) Fit model (1) to the resampled data using maximum likelihood. Let γ̂∗ be the resulting

MLE of γ and θ̂
∗

= (θ̂∗1, . . . , θ̂
∗
K) be the MLE of θ. Also, let v∗kk be the asymptotic

variance of θ̂∗k. Compute Z∗k = (θ̂∗k − θ̂k)/v
∗1/2
kk , k = 1, . . . , K.

(iii) If lower bounds are desired, compute Z∗max = maxKk=1 Z
∗
k , and if upper bounds are

desired, compute Z∗min = minKk=1 Z
∗
k .

(iv) Repeat the steps (i)-(iii) a large number of times, say B, to get B draws of Z∗max or

Z∗min. Take the (1 − α)th sample quantile of the draws of Z∗max as the critical point

c1−α,K , and the αth sample quantile of the draws of Z∗min as the critical point dα,K .

Since the confidence bounds in (5) are large-sample approximations, their accuracy can

generally be improved by first applying a normalizing transformation to the agreement mea-
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sure, computing the bounds on the transformed scale, and then applying the inverse trans-

formation to get the bounds on the original scale. In particular, the log transformation in

case of TDI (Lin, 2000) and the Fisher’s-z transformation in case of CCC (Lin, 1989) are

known to produce more accurate bounds than their original scale counterparts.

Appendix B: Details of the Monte Carlo simulation procedure

The probability estimates reported in Section 3 are computed using the following steps at

each combination of settings: (a) simulate data from the assumed model; (b) fit it to the sim-

ulated data using maximum likelihood or the Bayesian approach; (c) compute simultaneous

upper bounds (U12, U13, U23) for the three TDIs (q12, q13, q23) and simultaneous lower bounds

(L12, L13, L23) for the three CCCs (ρ12, ρ13, ρ23); (d) deduce the bound-based ordering in case

of the frequentist approach, and both the bound-based and the probability-based orderings

in case of the Bayesian approach; (e) check whether the event of interest happens; (f) repeat

steps (a)-(e) 1,000 times in case of the bootstrap approach and 2,000 times in case of others,

and calculate the proportion of times the event of interest happens. This proportion is the

desired estimated probability. For posterior simulation in (b), an adaptation of the Gibbs

sampler algorithm in Yin et al. (2008) is employed. The Gibbs sampler is run for 2,000

iterations and the first 500 iterations are discarded as burn-in. Moreover, 500 resamples are

used for the computation of bootstrap critical points in (c). Finally, for frequentist bounds

in (c), we apply the log transformation of TDI and the Fisher’s-z transformation of CCC.

The computations are programmed in R (R Development Core Team, 2007). We use the

nlme package (Pinheiro et al., 2006) to get MLEs, the numDeriv package (Gilbert, 2006)

to get the derivatives needed for their asymptotic variances, and the multcomp package

(Hothorn et al., 2008) to get standard critical points in (5). Analysis of one simulated data

set with (m,n) = (60, 3), on a Linux machine with 2.33 GHz processor and 2 GB RAM,

takes about 17 seconds for the standard approach, 4 minutes for the Bayesian approach and
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21 minutes for the bootstrap approach.
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Setting (β1, β2, β3) (σ1, σ2, σ3) (ψ, φ) (q12, q13, q23) (ρ12, ρ13, ρ23)

1 (0, 0, 0) (1, 1, 1) (4, 0.5) (2.03, 2.03, 2.03) (0.93, 0.93, 0.93)

2 (0, 0.5, 1) (1, 0.75, 1.25) (4, 0.5) (1.95, 2.60, 2.18) (0.93, 0.89, 0.92)

3 (0, 1, 2) (1, 0.5, 2) (4, 0.5) (2.15, 4.02, 3.08) (0.92, 0.77, 0.85)

Table 1: Parameter settings used in the simulation study and the resulting true values of

pairwise TDIs (qs) and CCCs (ρs).
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Standard Bootstrap Bayesian

n n n

Setting 1 2 3 1 2 3 1 2 3

Total deviation index (m = 30)

1 92.0 93.7 93.3 95.5 95.1 94.6 98.0 98.1 97.8

2 90.6 93.2 92.4 95.8 93.4 95.3 97.1 96.6 96.7

3 91.6 92.2 92.4 95.1 93.9 94.7 96.5 95.7 95.7

Total deviation index (m = 60)

1 91.5 94.6 94.3 94.8 96.2 96.0 96.4 96.7 96.8

2 92.5 92.4 92.8 95.2 94.5 95.0 97.2 96.0 95.7

3 92.0 94.2 93.0 95.7 95.1 96.6 96.2 95.1 95.4

Concordance correlation coefficient (m = 30)

1 95.4 96.2 97.2 94.5 95.8 95.9 97.0 96.7 96.8

2 94.9 96.8 97.2 95.4 94.9 94.7 96.5 96.7 96.2

3 95.8 96.0 96.9 95.4 94.5 94.0 95.5 96.5 95.6

Concordance correlation coefficient (m = 60)

1 94.6 96.6 96.0 94.4 95.6 94.4 96.9 95.7 95.6

2 95.0 96.2 96.4 95.6 95.2 94.6 96.3 95.4 95.0

3 95.8 96.4 97.0 95.7 94.8 95.3 96.2 95.1 95.0

Table 2: Estimated coverage probabilities (%) of simultaneous bounds with 1 − α = 0.95.

Here “m” and “n” respectively stand for number of individuals and number of replicate

measurements per individual. The parameter settings are defined in Table 1.

24



Bootstrap Bayesian

bound-based bound-based prob.-based

n n n

m Setting 1 2 3 1 2 3 1 2 3

Total deviation index

30 2 72 81 83 69 83 86 69 84 89

30 3 99 100 100 99 100 100 99 100 100

60 2 83 90 94 84 91 94 84 92 96

60 3 100 100 100 100 100 100 100 100 100

Concordance correlation coefficient

30 2 73 84 88 69 84 89 69 85 89

30 3 99 100 100 99 100 100 99 100 100

60 2 84 92 95 84 93 95 84 93 96

60 3 100 100 100 100 100 100 100 100 100

Table 3: Estimated probabilities (%) of inferring the correct ordering, which is q12 < q23 < q13

for TDIs and ρ12 > ρ23 > ρ13 for CCCs. Here “m” and “n” respectively stand for number of

individuals and number of replicate measurements per individual.
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Bootstrap Bayesian

bound-based bound-based prob.-based

n n n

Setting 1 2 3 1 2 3 1 2 3

m = 30

1 98 90 91 88 84 84 99 99 99

2 97 97 95 94 96 96 99 99 100

3 100 100 100 99 100 100 100 100 100

m = 60

1 98 93 96 90 87 85 100 100 100

2 99 98 99 97 98 99 99 99 100

3 100 100 100 100 100 100 100 100 100

Table 4: Estimated probabilities (%) that the orderings induced using TDI and CCC are

the same. Here “m” and “n” respectively stand for number of individuals and number of

replicate measurements per individual.
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TDI CCC

(q12, q13, q23, q14, q24, q34) (ρ12, ρ13, ρ23, ρ14, ρ24, ρ34)

Systolic blood pressure

Point estimates

MLE (6.29, 5.88, 6.39, 8.97, 9.24, 8.32) (0.980, 0.982, 0.979, 0.960, 0.957, 0.965)

Bayesian (6.36, 5.93, 6.44, 9.05, 9.32, 8.39) (0.979, 0.982, 0.979, 0.960, 0.957, 0.965)

Simultaneous bounds

Standard (7.07, 6.61, 7.18, 10.05, 10.27, 9.32) (0.973, 0.976, 0.972, 0.947, 0.945, 0.954)

Bootstrap (7.11, 6.65, 7.22, 10.10, 10.33, 9.37) (0.973, 0.977, 0.973, 0.948, 0.945, 0.955)

Bayesian (7.07, 6.62, 7.24, 10.13, 10.48, 9.37) (0.973, 0.976, 0.973, 0.948, 0.944, 0.955)

Diastolic blood pressure

Point estimates

MLE (5.43, 5.17, 5.11, 6.43, 6.29, 5.66) (0.985, 0.986, 0.986, 0.979, 0.980, 0.984)

Bayesian (5.48, 5.21, 5.15, 6.50, 6.35, 5.72) (0.985, 0.986, 0.986, 0.979, 0.980, 0.983)

Simultaneous bounds

Standard (6.05, 5.85, 5.72, 7.18, 7.03, 6.30) (0.980, 0.982, 0.982, 0.972, 0.973, 0.978)

Bootstrap (6.09, 5.89, 5.75, 7.22, 7.07, 6.34) (0.980, 0.982, 0.982, 0.973, 0.974, 0.979)

Bayesian (6.15, 5.93, 5.81, 7.25, 7.10, 6.32) (0.980, 0.982, 0.982, 0.973, 0.974, 0.978)

Table 5: MLEs and posterior means of 12 TDIs and 12 CCCs (6 for systolic and 6 for

diastolic BP) and their respective simultaneous bounds with 1 − α = 0.95 in case of blood

pressure study. The bounds are upper bounds in case of TDI and are lower bounds in case

of CCC.
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