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Abstract

In this paper, the statistical inference of the unknown parameters of a two-
parameter inverse Weibull (IW) distribution based on the progressive Type-II
censored sample has been considered. The maximum likelihood estimators
cannot be obtained in explicit forms, hence the approximate maximum like-
lihood estimators are proposed, which are in explicit forms. The Bayes and
generalized Bayes estimators for the IW parameters and the reliability function
based on the squared error and Linex loss functions are provided. The Bayes
and generalized Bayes estimators cannot be obtained explicitly, hence Lindley’s
approximation is used to obtain the Bayes and generalized Bayes estimators.
Further the highest posterior density credible intervals of the unknown parame-
ters based on Gibbs sampling technique are computed, and using an optimality
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criterion the optimal censoring scheme has been suggested. Simulation exper-
iments are performed to see the effectiveness of the different estimators, and
two data sets have been analyzed for illustrative purposes.

Keywords: Bayes estimation; Lindley approximation; maximum likelihood estima-
tion; reliability function; squared error and Linex loss function, estimated risk and
Monte Carlo simulation; Gibbs samples.

1 INTRODUCTION

The Weibull distribution has been used quite extensively to analyze lifetime data.
The main reason of its popularity is due to wide variety of shapes it can assume by
varying its shape parameter. Weibull distribution was introduced by Weibull in 1935,
and since then extensive work has been done both from the frequentist and Bayesian
point of view on this distribution, see for example the excellent review by Johnson
et al. (1995). Although, the Weibull distribution can have increasing, decreasing
or constant hazard function depending on the shape parameter, it cannot have non-
monotone hazard function. In many practical situations it is known that the data
are coming from a distribution which cannot have a non-monotone hazard function,
and in that case it is not possible to use the Weibull distribution to analyze those
data. Therefore, if the empirical study indicates that the hazard function of the
underlying distribution is not monotone, and it is unimodal, then inverse Weibull
(IW) distribution may be used to analyze such data set. A brief description of a
IW distribution is presented in Section 2. Extensive work has been done on the ITW
distribution, see for example Keller and Kamath (1982), Calabria and Pulcini (1989,
1990, 1992, 1994), Etro (1989), Jiang, Ji and Xiao (2003) Mahmoud, Sultan and
Amer (2003) Maswadah (2003) Kundu and Howlader (2010) and the references cited
therein.

Type-I and Type-II censoring schemes are the two most popular censoring schemes
which have been used in practice. Unfortunately, none of these censoring schemes
allow the removal of any experimental units during the experiment. Type-I and
Type-II progressive censoring schemes allow the removal of experimental units during
the experiment. Due to this flexibility progressive censoring scheme has received
considerable attention in the applied statistics literature for the last 10-12 years. A
Type-II progressively censored experiment can be briefly described as follows. For
m < n, choose Ry, ..., R,,, m non-negative integers such that

Ri+...+Ryp=n—m. (1.1)



Consider an experiment, in which n identical units are put on a test. It is assumed
that the lifetime distribution of the n units are independent and identically distributed
random variables with the common distribution function F'. At the time of the first
failure, say x1.,.,, R1 surviving units are chosen at random to be removed. Similarly,
at the time of the second failure, say xs.,,.,, R2 surviving units are removed and so on.
Finally, at the time of the m-th failure, say ..., all the remaining units are removed.
Therefore, for a given Type-II progressive censoring scheme, (n,m, Ry, ..., R,,), one
observes the following sample;

Timn < TL2mm < -+ < Tpemen- (12)

In the last few years, progressive censoring scheme has received considerable atten-
tion, see for example the book by Balakrishnan and Aggarwala (2000) and also the
relatively recent review article by Balakrishnan (2007) in this respect.

Although, extensive work has been done on the statistical inference of the unknown
parameters of different parametric models based on progressively censored observation
in the frequentist setup, not that much work has been done in the Bayesian inference.
Kundu (2008) considered the Bayesian inference of the unknown parameters of a two-
parameter Weibull model based on progressively censored data. It is observed that
the Bayes estimates and the associated credible intervals cannot be obtained in closed
form, and he proposed to use the Markov Chain Monte Carlo (MCMC) technique to
compute the Bayes estimates of the unknown parameters and also to construct the
associated credible intervals. Kim, Jung and Kim (2009) considered the Bayesian
inference of the unknown parameters of a three-parameter exponentiated Weibull
distribution, based on Type-II progressively censored sample. They computed the
Bayes estimates under various loss functions such as squared error and Linex loss
functions, and compared their performances with the maximum likelihood estimators
(MLEs). It is observed that the performance of Bayes estimators are better than
the MLEs in many situations. Kundu and Pradhan (2009) considered the Bayesian
inference of the unknown parameters for a two-parameter generalized exponential
distribution based on importance sampling technique.

The main aim of this paper is to consider the frequentist and Bayesian inference
of the unknown parameters of a two-parameter IW distribution under Type-II pro-
gressively censoring. It is observed that the MLEs of the unknown parameters cannot
be obtained in closed form, as expected, and they have to obtained by solving two
non-linear equations simultaneously. To avoid that problem, we propose to use the
approximate MLEs, by making the Taylor series approximation of the normal equa-
tions, and they can be obtained in explicit forms. We further consider the Bayesian
inference of the unknown parameters based on fairly flexible priors. It is observed
that the Bayes estimators cannot be obtained in closed form, and we provide the
Lindley’s approximation of the Bayes estimates. Although, Lindleys’ approximation



can be used to compute approximate Bayes estimates, it cannot be used to construct
associated highest posterior density credible intervals. We propose to use importance
sampling technique to compute Bayes estimates and also to construct the associated
highest posterior density credible intervals. Monte Carlo simulations are conducted
to compare the performances among different methods considered, and two data sets
under different progressive censoring schemes are analyzed for illustrative purposes.

The rest of the article is organized as follows: In Section 2, we provide the model
assumptions and derive MLEs and the approximate MLEs. In Section 3, we develop
the Bayesian inference. Monte Carlo simulation results and the analysis of data sets
are presented in Section 4. An optimal criterion was presented in Section 5, and
finally in Section 6, we conclude the paper.

2 MODEL ASSUMPTIONS AND ESTIMATION

2.1 MODEL ASSUMPTIONS

A random variable X is said to have a two-parameter IW distribution if it has the
following probability density function (PDF);

adr~@tDe= 22" >0, a0, A > 0,

fz) = (2.1)

0, otherwise.

From now on it will be denoted by IW(«, \). Here a and A are the shape and scale
parameters respectively. If X ~ IW(a, \), then the cumulative distribution function
(CDF), reliability function and hazard function are

e 2 >0,a,) >0,

F(r) = (2.2)
0, otherwise,
Rx)=1—e™" 2>0a\>0, (2.3)
and
a\gp (@t e—Az™e
h(z) = oo @ >0,a,\ > 0. (2.4)
respectively.

It is assumed that n identical units are placed on a test and each of them has
IW(a, A) lifetime distribution. Based on a Type-II progressive censoring scheme
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(n,m, Ry, ..., Ry,), we have the following observations; Xi.,.n, Xoumm, -y Xmemem- Lhen
the joint probability density function of T1.,.m, T2:mn, -+ Timemen 18

fXI:m:n7X2:m:n7~-~7Xm:m:n (x:l? 1'27 t xm) = C H f(a:l)[]‘ - F(ml)]Rl7
=1
0<m < ... < Ty <00, (2.5)

where f(.) and F'(.) are, respectively, the PDF and CDF given in (2.1) and (2.2) and

For more details, see Balakrishnan and Aggarwala (2000). Throughout this article it
is assumed that n, m and Ry,..., R,, are fixed in advance, and
D= (xl:m:m o 7xm:m:n)~ (27)

2.2 MAXIMUM LIKELIHOOD ESTIMATION

Based on the observations D as given in (2.7), the likelihood functions of & and A can
be written as

L(Oé, >\) oc ™A™ H ‘r;r(nail) exp{_/\x;r?;n} [1 - eXp{—)\I;ﬁan} 17 (28)

=1

hence, the log likelihood function I(a, A) = log L(«, A) becomes

l(a,\) x mloga + mlogA — (a+1) Zlogxi:m:n
i=1

Y SPNS oI I "
=1

i=1

Differentiating the log-likelihood function I(«, A) partially with respect to o and A
and then equating to zero we have

ol m
— = — = 108 Tiwmmn
Oa a =

m —Q

+ /\Z (z;%n log Limen — Lo Og:ﬁ ;ae ) = 0, (210)

i=1

and
ol m U M ey T® o AT,
_— = — — x;ﬁ;.n + L — =0. 2.11
(9)\ )\ ; o ; []_ — e_Axi:m:n] ( )
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The maximum likelihood estimates (MLEs) of « and A, say & and \ respectively, are
the solution of the equations (2.10) and (2.11). Unfortunately, analytic solutions for
«a and A are not available. We propose to use the Newton Raphson algorithm to solve
the equations (2.10) and (2.11), simultaneously, to get the desired MLEs of o and \.
Now, let us consider

ol - 2
W - a2 )\Z‘rzmn logxlmn)
— A Z Tz‘l'i:m:n(log xi:m:n) e~ i (7)\1"2 mn + e e — 1) ) (212)
i1 [1 — e mzmn]z
aZl —m m TZ _a )267>\x;70rin
_ izmin , 2.13
a>\2 ’L:ZI 1 — e x;m n]z ( )
0?1
= Z x;ﬁ;n 10g Lizm:n
OO\ pa
n anzmnlog%mne Az;g“"(e Tiiman +)\x;1%n _Azlgln B 1> (214)

The elements of the Fisher information matrix can be obtained from (2.12), (2.13)
and (2.14). Using invariance property of MLEs, the MLEs of R(t) and h(t) can be
easily obtained by replacing the parameters with the corresponding MLEs.

2.3 APPROXIMATE MLES

The likelihood equations based on progressively Type-II censored samples, as dis-
cussed in the previous section, do not provide explicit estimators for the parameters.
Hence, it may be desirable to develop approximations to the likelihood equations
which provide us with explicit estimators of the unknown parameters. These explicit
estimators may also provide us with an excellent starting value for the iterative solu-
tion of the likelihood equations. The idea of approximating the likelihood equations
is certainly not new, there have been several solutions discussed in the book by Tiku
et al (1986).
Let T ~ IW(a, 3) with pdf

f(t) = palt=PY exp {— (?)6} A4>0, a, 8>0,

and



Let Y = log(T"), then

-3
Fly) = F(Y <) = F(log(T) < y) = exp {— (<) } |

By setting o = exp(u), 5 = 1/0, then

ro) - - (452)])

It implies that Y ~ Extreme value distribution with (u, o).
Balakrishnan et al. (2004) have calculated the approximate maximum estimators
of the extreme value parameters under progressive Type-II censoring as follows: Let

m

JHL+rmji+ o+ 1

Qjonin = 1 — 1=1,....m

j=m—it+1
Viimin = log[—ZOQ(l - ai:m:n)]
;= el’i:m:n(l - Vi:m:n) and ﬁz = e > 0,

then the approximate maximum estimators of the Extreme value parameters under
progressive Type-II censoring are given by

=K+ Lo,
where
K — ity (i + 1) By [ — S+ Da; —m 5 A+ VA2 +4mB
(i +1)6; ma(ri+ 1B 2m ’
and

i=1 i=1
Using the relationship between T" and Y, we can substitute Y = log(7") in the previous
equations and hence get the approximate maximum estimators of the IW parameters
under progressive Type-II censoring as follows

a=exp(g) and f=

Q|



3 BAYESIAN INFERENCE

3.1 PRIOR ASSUMPTIONS

Observe that if the shape parameter a is known then the scale parameter A has a
conjugate prior, which is a gamma prior. When both the parameters are unknown
clearly they do not have conjugate priors. So we consider the following priors on A
and «. m(A) has a gamma prior with the scale parameter a and shape parameter b,
Gamma(a, b), i.e. it has the PDF

b
m(A) = a—)\b_le_a’\,a >0,\>0,a>0,b>0.

['(b)
It is further assumed that « has a non-informative prior mo (), namely
(@=2, a>0
(o) =—, a>0,
a

and consider the priors of A and « are independent. Therefore, the joint prior distri-
bution on v and A can be written as

b

(A a) = oJ‘a(b) MNtem a0 > 0,0 > 0,a > 0,b> 0. (3.1)

3.2 POSTERIOR ANALYSIS

Based on the observed sample D and using the prior assumption as stated above, the
joint posterior density function of @ and A\ can be obtained as

(A, a)L(a, \)
107 S m(As ) L, \)dad A’

where L(a, A) is same as defined in (2.8). Hence

(A, o|D) x

m—l)\m+b 1 i —(at1) —a
7T()\, CY‘D) = T _)‘(a+21 1 Tiomen) H Z;. man — e_Axi:m:n]Ri’ (32)
where the normalizing constant
k= [T [T amame e :mH 57O e R,

Now, we derive the Bayes estimators and generalized Bayes estimator, respectively,
for the unknown parameter o and A\ under the square error loss function and Linex
loss function.



If 11 is the parameter to be estimated by an estimator ji then the square error loss
function is defined as:

Ls(:ua ﬂ) = (IEL - M)Qa
and the Linex loss function is defined by

LN([%[L) = a(ecw—u) - C([L - H’) - 1)7 a>0,c 7£ 0,

where a and ¢ are shape and scale parameters of the loss function Ly. For detail
exposition on the loss function Ly one may refer to the paper by Zellner (1986).
Without loss of generality, we take a to be 1. It is well known that under the loss
function L the Bayes estimator of p is the posterior mean of y. However, in case of
the loss function Ly the Bayes estimator ji of p is given by the expression

1
f=—log{E"P)(e= D)},
C

here expectation is taken with respect to the posterior distribution of x. Thus, under
the loss function L the Bayes estimator of A and the generalized Bayes estimator of
« are, respectively,

A = E\D) = k/ / D UT S YCED DU

x H:ﬁ@“’p e Mimn] i dovd )\,

im:n
=1

and
&. = Oé|D / / m)\erb 1 f/\ a+zl L Tomn)
° k

x [l — e imn)fidad.

i=1

Under Linex loss function Ly, the Bayes estimator of \ is
~ 1
A = — log{ E¥P)(e=D)},
c
where
E’(MD) —cA D — / / o™ 1)\m+b 1 _)\ C+“+ZZ z; 2 n
D) = 3 1

x a0 — e imn] P dad,

min
i=1



and the generalized Bayes estimator of « is
~ 1 (a|D) [ ,—ca
n = ——log{EC/P) (¢ *|D)},
where
E(a|D) —ca|p — / / o™ 1)\m+b 1 e 7)\(a+2 )
) = -

X H.CE (D[] — e Momn ) B dad A,

mmn
i=1

Proceeding as above, the Bayes estimator of R(t) for the loss function Ly is obtained
as

és(t) = FE(R( k/ / QM \mAb =1 =M e+ Zmn( —)\ra)

% H Oé+1 _ Am;rortzn]RldO{dA

7, m:mn
Under loss function Ly it is given by

- 1
Ry(t) = —=log{E(e""|D)}, ¢ #0,
c
where
BeO) = o [T [T amtamit oo e N K )
kJo Jo

X JJanetV 1 — e Mima ) Ridad.

wmmn
i=1
In the next section all estimators considered in this section are obtained using the
well known approximation method.

3.3 LINDLEY APPROXIMATION

In the previous section, we have obtained Bayes and generalized Bayes estimators
of X\ and « under various loss functions such as squared error and Linex. Note that
these estimators are of the form of ratio of two integrals which can not be simplified
in to a closed form. However, using the approach developed by Lindley (1980), one
can approximate these Bayes estimators in to a form containing no integrals. This
method provides a simplified form of Bayes estimator which is easy to use in practice.
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Consider the ratio of integral 1(X), where

Jony U, a)eECedteead(y o)

I(X) = f()\ )eL()\ )t d( X, o) ’

where U(A, «) is function of A and « only and L(A,«) is the log-likelihood and
p(\, @) = logm(A, ). Let (A &) denote the MLE of (X, ). For sufficiently large
sample size n, using the approach developed in Lindley (1980), the ratio of integral
I(X) as defined in (5.1) can be written as

A\ &)
{(UM +205p2)0x + (Uar + 2Uapp)0ar + (Una + 2Urpa)F2a

I(X) =
+
+ (Usa +2Unpo)00n
+ {(ﬁ,\fm + Uabra) (Laardar + Lanardra + Laardar + LaarGaa)
+ (Un6ar + Uabaa) (Laardsn + LraaGra + LaraGar + LacaGaa) |
where Uy denoted the second derivative of the function U(A, a) with respect to A and

U represents the same expression evaluated at A = X and @ = &. All other quantities
appearing in the above expression of I(X) have the following representations:

N 1
O\ — —=7
L
A —m m TZ(ZE_OC )267Ax;7i:n
L " imin -
A 22 Z:ZI [1 _ B—Ami:mm]Q
R 1
Oqae = — %
Lo
A~ m 2
Lopo = —% e (log Timm)
1l (108 Timen )26 imin (Az 2, + € Mimin — 1
+ z.m.n( g Ti:m: ) A( iimin )}
[1 — e ‘Zz m: n]2
a'oz)\ = (5')\& =0
A PlogL 2m Rix Z‘i‘”nefj‘xﬁim 36~ Mimm — 1
L = "5 —f—Z 12 )
a)\ [1 — e_Ami:m:n]S
T 83 log L R x;%ane_j\ ismen lo Tizm:n
Lo = 7g2 => ———= s
daO\ pr [1 — e~ @imn]3
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x {- )\x e Timin — Qe Mimin Az, o+ 2}

< 8310gL m " Rz d e i log 12
Loy = ——2e=—> a;% loga? —+ S s e
T DS & 2 [l — e i ?
x N, + Awm + 3o imn — 4)64“551:” — A+ 1)
~ 83 IOg L 2m L _& " R; 331_% n€ _S\z’_;" (log xi:m:n)g
X (2)\2 Li: gzan + )\xz men T 3675@:&“ o 4)67)\ i — )\x;mn + 1}
PN a) = b 1)log(A) — a — log(a),
. —1) . 1
= —Q o ESEunive
P )\ » P &

Now the Bayes estimate of A under loss function L, is obtained as
U()\,Oé) :)\, U)\Zl U)\,\:Ua:Uaa: a)\:U)\a:(),

b—1 1. .
E\D) = A+ 6 (()\ a)+2(LAAAUAA+LaaAUaa)>-

Also the generalized Bayes estimates of a under loss function L, is obtained as
UNa)=a,U, =1,Uy, =Uy=Uxr =Uyr = Uy, =0,
E(a|D) =a+ %a[—é + ;(EaMffM + Loaabaa)l-
Next, the Bayes estimates of A against the loss function Ly is obtained as

U()\,a) = 6_05\ U, = —CG_CS\, Uy = 626_65\, Uy =Uspo = Uy = Uy =0,

) 1 g L 0—1 o
E(e™D) = e~ 4 20,\ e — cem A 2( 3 @) + Lo

~

+ Loza)\é—aa)]-
So,

- 1
Ay = —Elog{E(’\|D)(e_c’\|D)},

Finally, the generalized Bayes estimates of « is given by

UM a) = e Uy=—ce Uy = e Uy =Usnr = Upr = Uy = 0,

X | 5 b -1
E(e D) = e “+ §6w[c26_“" —ce™(2(

) 4 Laxada

~

+ Laaa&aa)] .
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Hence,
~ 1 & —c&
ay = —Elog{E( P)(e=e4|D)}.

Proceeding similarly the Bayes estimates for the reliability function can be evaluated
under both loss functions.

3.4 HPD CREDIBLE INTERVALS

In the previous section we consider the Bayes estimates of the unknown parameters
using Lindley’s approximation. Although, Lindley’s approximation provides approx-
imate Bayes estimates of the unknown parameters, it cannot be used to construct
highest posterior density (HPD) credible intervals of the unknown parameters. We
propose to use the importance sampling technique similarly as Kundu and Pradhan
(2009) to compute simulation consistent Bayes estimates of the unknown parameters,
and also to construct associated HPD credible intervals.

Under the prior assumptions mentioned in Section 3.1, the posterior density func-
tion of the unknown parameters has been provided in (3.2). Note that 7(\, a|D) can
be written as

W()\,Ojﬂ)) & fl(/\|Oé,D)f2(OZ|D>h(OZ, )\)7 (33)
where fi1(A|a, D) is a gamma density function with the shape parameter m + b, and
scale parameter (a + Z Timen), G.€.,

=1

(a+ 30 T, )m+ b=1,-Aa+) [
A D 7 min /\m-i— (a+ ie1 Tiomm: n)
fi(Ae D) L'(m+0b) 1 ’

and

m—11m
& 1Izmn

(CL+Z zmn)m_‘—b.

Here K is the normalizing constant, such that / fo(a|D)da = 1, and
0

fo(a|D) = K

Let us denote the right hand side of (3.3) as mn (A, «|D), and it is clear that
(A, D) and 7wy (A, «|D) differ only by the proportionality constant. The Bayes
estimate of any function of o and A say g(«, A) can be obtained as

Jo” JoT gla, N)mn (A, | D)dad\

gu(e A) = 12 1 T (A, | D)dad)

(3.4)
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It is clear from (3.4) that to approximate gp(a, A) using the importance sampling
technique it is not needed to compute the normalizing constant. Note that to use
the importance sampling procedure we need to generate samples from f;(\|a, D)
and fo(a|D). It is straight forward to generate samples from fi(A|a, D), as it is a
gamma density function. Using Lemma 2 of Kundu (2008), it can be shown that the
fa(«|D) is log-concave. Therefore, using the method of Devroye (1984), it is possible
to generate samples from fy(c|D).

We propose the following algorithm along the line of Kundu and Pradhan (2009)
to compute the Bayes estimate of g(a, \) and also to construct the associated HPD
credible interval.

Step 1: Generate
a~ fo(a|D) and Aa ~ fi(Aa, D).

Step 2: Repeat this procedure to obtain (ay, A1), ..., (anr, Ayr)
Step 3: A simulation consistent estimate of (3.4) can be obtained as

S g(au, Ai)h(a\;)
Zi]\il h(aia )\Z) ‘

Now to compute the HPD credible interval of g(«, A), we propose the following
procedure. Suppose for 0 < p < 1, g, is such that P(g(o, A) < g,|D) = p. For a given
p, first we provide a method to estimate g,, and that can be used to construct HPD
credible intervals of g(a, \).

Let us denote for simplicity, g; = g(c;, A;);i =1,..., M, and suppose

h(OéZ', )\1)

w; = Qb)) gy
M by, \y)

Arrange {(g1,w1), ..., (9m,wa)}, as {(9ay, wpp), - - -, (g, wpr) } where gy < ... <
gy, and wy; is associated with ggy for ¢ = 1,..., M. Then a simulation consistent
Bayes estimate of g, is g, = g(u,), where M), is the integer satisfying

M, My+1

dwy <p< Y wp.

=1 i=1

Now using the above procedure a 100(1 — v)% credible interval of g(«, A) can be
obtained as (s, §s+1—), for 6 = wp), wp) + wy, - . -, Zf\fﬁ wy. Therefore, a 100(1 —
v)% HPD credible interval of g(«, A) can be obtained as (gs+, gs++1-~), where 0* is

§6*+17'y - §5* < /g\5+17'y - §57 for all o.
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4 MONTE CARLO SIMULATIONS AND DATA ANALYSIS

4.1 SIMULATIONS

In this section, we compare the performance of all the estimates proposed in the
previous sections, in terms of their mean squared errors. In Tables 1 and 2, the
estimated risk of estimates &, )\ g, )\S, oy and A ~ are tabulated for various choices
of ao, A\, m and n. All these results are based on 1000 replications. In Tables 3 and 4
the estimated risk of the estimates Ry;px(t), Ry(t) and Ry(t) of reliability function
R(t) are tabulated for different choices of t. Again the estimated risk values are
simulated by using Monte Carlo technique. From the results of Tables 1 to 4, the
following conclusions can be made:

It is clear from the Tables 1 and 2 that the performance of Bayes estimate ay of
« is better than that of its MLE a. It is also observed that the generalized Bayes
estimates A\; and Ay of A performs worse than its MLE ) in terms of their estimated
risk values. The risk performance of the Bayes estimates shows that in most cases
the performance of ay under the loss f;unction L is better than a, under the loss
function L,, while the performance of Ay under the loss function Ly is worse than
Xs under the loss function L.

In term of consistency, it is clear from Table 1 and 2 that the consistency is
incomparable since the risk function is depending on the scheme, but in cases where
R;s = 0 the consistency is clear for different n. It is also observed that as the values of
« and )\ increase, the performances of & and & become worse, and the corresponding
performances of A and Ay become better, in terms of their risk values.

From the risk values tabulated in Tables 3 and 4, it is observed that the perfor-
mance of Bayes estimate R,(t) of the reliability function R(t) is better than that of its
MLE Ry 5(t) and the Bayes estimate Ry (t), and that Ry (t) is worse than Rypp(t),
in terms of their risk values.
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Table 1: The estimated risk values of all estimates for different choices of n and m
a=2,A=025a=11,b=0.275,c=1

n m | Scheme & (g anN A 5\3 S\N
20 10 (0,2,1,0*%2,(2,1)*2,1) | 0.007612 0.014687 0.007142 | 0.000924 0.000954 0.001659
15 | (2,2,0*%12,1) 0.004057 0.007477 0.003816 | 0.000539 0.000551 0.000891
20 | (0*20) 0.003220 0.036017 0.002708 | 0.003011 0.003410 0.003312
30 10 | ((2,0,4)*3,2) 0.001767 0.003757 0.001660 | 0.000377 0.000384 0.000486
15 | (1*15) 0.000175 0.003567 0.000150 | 0.000145 0.000155 0.000399
20 | ((0,1)*10) 0.000740 0.003705 0.000691 | 0.000218 0.000226 0.000429
30 | (0*30) 0.005900 0.007710 0.005717 | 0.000647 0.000652 0.000933
50 10 | ((4,8)*3,4,0,0,0) 0.005838 0.007651 0.005684 | 0.000889 0.000894 0.001013
15 | ((0,3,4,0,4,3)*2,0,3,4) | 0.002195 0.010979 0.002082 | 0.000618 0.000632 0.001228
20 | (3*10,0*10) 0.000293 0.007137 0.000260 | 0.000245 0.000256 0.000773
30 | ((0,2)*10,0*20) 0.003547 0.025489 0.003413 | 0.000135 0.000137 0.002808
40 | (0*30,1*10) 0.002977 0.014689 0.002888 | 0.000562 0.000577 0.001551
50 | (0*50) 0.00111 0.003781 0.001083 | 0.000199 0.000201 0.000419
Table 2: The estimated risk values of all estimates for different choices of n and m
a=3,2=05,a=15b=0.75,c=1 ] )
n m | Scheme & Qg an A A AN
20 10 | (0,2,1,0%2,(2,1)*2,1) | 0.030138 0.044216 0.027934 | 0.000441 0.000455 0.000511
15 | (2,2,0*%12,1) 0.019518 0.017894 0.018351 | 0.000213 0.000215 0.000236
20 | (0*20) 0.021618 0.062249 0.019809 | 0.000437 0.000438 0.000543
30 10| ((2,0,4)*3,2) 0.015738 0.017883 0.014660 | 0.000187 0.000192 0.000216
15 | (1*15) 0.003810 0.017702 0.003458 | 0.000105 0.000108 0.000135
20 | ((0,1)*10) 0.014840 0.035662 0.013869 | 0.000273 0.000332 0.000332
30 | (0*30) 0.014875 0.017858 0.013838 | 0.000228 0.000228 0.000269
50 10 | ((4,8)*3,4,0,0,0) 0.004878 0.008936 0.004373 | 0.000127 0.000129 0.000136
15 | ((0,3,4,0,4,3)*2,0,3,4) | 0.015310 0.043862 0.014658 | 0.000350 0.000357 0.000424
20 | (3*10,0*10) 0.006635 0.017813 0.006299 | 0.000219 0.000221 0.000240
30 | ((0,2)*10,0*20) 0.031784 0.035786 0.030894 | 0.000409 0.000411 0.000447
40 | (0*30,1*10) 0.007480 0.017880 0.007087 | 0.000068 0.000070 0.000107
50 | (0*50) 0.002642 0.017773 0.002512 | 0.000111 0.000112 0.000144
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Table 3: The estimated risk values of all estimates for different choices of n and m
a=2A=025a=11b=0275c=1

R(0.5) R(1)
n m | scheme Ryre(t) Rs(t) RN(t) Ryrre(t) Rs(t) RN(t)
20 10| (0,2,1,0%2,(2,1)*2,1) 0.000283 0.000247 0.000365 | 0.000464 0.000424 0.000878
15 | (2,2,0*%12,1) 0.001167 0.000817 0.001009 | 0.001029 0.001007 0.001738
20 | (0*20) 0.002105 0.004297 0.154180 | 0.005045 0.000503 0.002867
30 10 | ((2,0,4)*3,2) 0.001218 0.001095 0.001999 | 0.000263 0.000245 0.004344
15 | (1*15) 0.003044 0.002776 0.002970 | 0.000152 0.000143 0.007118
20 | ((0,1)*10) 0.000218 0.000202 0.000405 | 0.000435 0.000414 0.000879
30 | (0*30) 0.000483 0.000178 0.000503 0.001 0.001 0.000135
50 10 | ((4,8)*3,4,0,0,0) 0.001109 0.001024 0.002089 | 0.000664 0.000631 0.004096
151 ((0,3,4,0,4,3)*2,0,3,4) | 0.007704 0.007209 0.010016 | 0.000510 0.000487 0.021722
20 | (3*10,0*10) 0.000964 0.000876 0.000149 0.001 0.000999 0.000135
30 | ((0,2)*10,0*20) 0.002838 0.002712 0.003488 | 0.000141 0.000137 0.007893
40 | (0*30,1*10) 0.000542 0.000876 0.000406 0.001 0.001 0.000135
50 | (0*50) 0.000353 0.000342 0.000308 | 0.000133 0.000132 0.000795
Table 4: The estimated risk values of all estimates for different choices of n and m
a=3,2=05,a=15b=0.75,c=1
R(0.5) R(1)
n m | scheme Rure(t)  Rs(t) Rn(t) | Rure(t)  Rs(t) Ry (t)
20 10 | (0,2,1,0%2,(2,1)*2,1) 0.000401 0.000361 0.000872 | 0.000321 0.000303 0.001597
15 | (2,2,0*%12,1) 0.001313 0.001110 0.001869 | 0.001073 0.001072 0.002391
20 | (0*20) 0.006024 0.005906 0.008079 | 0.000999 0.000988 0.001065
30 10| ((2,0,4)*3,2) 0.006540 0.005996 0.008889 | 0.00442  0.000418 0.019229
15 | (1*15) 0.000284 0.000264 0.000354 | 0.000289 0.000278 0.000716
20 | ((0,1)*10) 0.002006 0.001893 0.002476 | 0.000853 0.000832 0.005726
30 | (0*30) 0.004186 0.004067 0.004511 | 0.000110 0.000110 0.000810
50 10 | ((4,8)*3,4,0,0,0) 0.000980 0.000950 0.001344 | 0.000288 0.000282 0.001956
151 ((0,3,4,0,4,3)*2,0,3,4) | 0.003791 0.003593 0.004579 | 0.000308 0.000298 0.009944
20 | (3*10,0*10) 0.000339 0.000327 0.000889 | 0.000291 0.000289 0.001852
30 | ((0,2)*10,0*20) 0.000246 0.000238 0.000375 | 0.000171 0.000169 0.000771
40 | (0*30,1*10) 0.000213 0.000207 0.000401 | 0.000158 0.000156 0.000779
50 | (0*50) 0.001120 0.000623 0.001779 | 0.000201 0.000200 0.000198
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4.2 DATA ANALYSIS

ExAMPLE 1:
We generate three different progressively type-II censored samples from the IW(a =

3, = 0.5) distribution of sample size n =

50 and m = 30, namely: r;=(0%29,20),

ro=(0*27,5%2,10) and r3=(0*26,5*4), we obtained the following data sets

n m

Scheme

Simulated data

50 30

(0%29,20)

0.4819231, 0.5323240, 0.5494268, 0.5859643, 0.5868108, 0.5961870,
0.6106631, 0.6260398, 0.6289551, 0.6306613, 0.6914318, 0.7260768,
0.7373865, 0.7381686, 0.7610778, 0.7611810, 0.7711611, 0.7726352,
0.7792885, 0.7803440, 0.7889365, 0.7905907, 0.7935983, 0.7955530,
0.7960173, 0.8059086, 0.8288102, 0.8341882, 0.8424389, 0.8478130

50 30

(0%27,5%2,10)

0.4528989, 0.5233849, 0.5771970, 0.5971890, 0.6216006, 0.6283978,
0.6509377, 0.6555913, 0.6693977, 0.6843925, 0.6932899, 0.6981735,
0.7077837, 0.7185488, 0.7371240, 0.7409210, 0.7479689, 0.7579143,
0.7691301, 0.7872442, 0.7986704, 0.8021387, 0.8050323, 0.8052003,
0.8202584, 0.8375498, 0.8377457, 0.8419965, 0.8637634, 0.8664239

50 30

(0%26,5%4)

0.5061006, 0.5698172, 0.5776521, 0.5817129, 0.5875164, 0.5928514,
0.6053401, 0.6254125, 0.6294302, 0.6483531, 0.6697083, 0.6739602,
0.6778033, 0.6787557, 0.6990153, 0.7159138, 0.7198770, 0.7224557,
0.7528722, 0.7537209, 0.7593391, 0.7665029, 0.7788091, 0.8091189,
0.8097992, 0.8149457, 0.8153077, 0.8356457, 0.8402571, 0.8861024

The corresponding estimates are summarized as follows:

n  m | scheme & Qg an A 5\5 S\N
50 30 | (0*29,20) 3.405503 3.374701 3.039060 | 0.288318  0.284208 0.753233
(0*%27,5%2,10) | 3.326512 3.294541 3.042312 | 0.331219 0.326268 0.722401
(0*26,5*4) 3.220688 2.989171 3.057058 | 0.4017295 0.394935 0.674800
The associated 95% HPD credible intervals are as follows:
n m | scheme « A
50 30 | (0*29,20) (2.1327, 4.5321) | (0.1523, 0.5234)
(0*27,5%2,10) | (2.1054, 4.5523) | (0.1235, 0.5199)
(0*26,5*4) (2.1167, 4.5881) | (0.1397, 0.5343)

From the above table, we can see that, for the shape parameter «, the Bayes
estimate under the Linex loss function ay is better in terms of the Bayesian crite-
rion, than the MLE & and the Bayes estimate under the squared error loss function
as. For the scale parameter A\, the MLE A\ is marginally better "according to the
Bayesian criterion” than the Bayes estimate under the squared error loss function A,
and significantly better than the Bayes estimate under the Linex loss function AN
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EXAMPLE 2:

In this example, we consider a real life data set and illustrate the methods proposed
in the previous sections. The data set is given by Dumonceaux and Antle (1973), and
it represents the maximum flood levels (in millions of cubic feet per second) of the
Susquehenna River at Harrisburg, Pennsylvania over 20 four-year periods (1890-1969)
as:

0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379,0.324, 0.269, 0.740, 0.418,
0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265.

It may be mentioned that Maswadah (2003) performed the goodness of fit test of the
IW distribution to the above flood data set, and found that the IW fits the data very
well. We generate artificially progressively Type-II censored data from the above
data set, and compute the estimates of the different unknown parameters and the
associated confidence and credible intervals. The results are reported below.

It is clear that the estimates of the scale parameters are quite close in all the
cases. In case of the shape parameter, the MLE and the Bayes estimates based on
squared error loss function are quite close, but the Bayes estimates based on Linex
loss function are slightly different.

n  m | scheme censored data

20 20 | (0*20) 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324,
0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265

20 15| (0*14,5) 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324,
0.269, 0.740, 0.418, 0.412, 0.494

20 15| (0*10,1*5) | 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324,
0.269, 0.418, 0.494, 0.338, 0.484

20 10 | (0*9,10) 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324,

The corresponding estimates are summarized as follows:

n m | scheme & Qg aN A 5\5 S\N

20 20 | (0*20) 4.3139 4.2849 3.8073 | 0.0119 0.0121 0.0121
20 15| (0*14,5) 3.3685 3.3313 3.0958 | 0.0465 0.0459 0.0459
20 15 | (0*10,1*5) | 4.0717 4.0348 3.6266 | 0.0192 0.0191 0.0191
20 10| (0*9,10) 5.2895 5.2348 4.2586 | 0.0059 0.0059 0.0059

The associated 95% HPD credible intervals are as follows:

n m | scheme o A

20 20 | (0*20) (2.1053, 6.2111) | (0.0048, 0.0235)
20 15 | (0*14,5) (2.0123, 6.2786) | (0.0037, 0.0270)
20 15| (0*10,1*5) | (2.0128, 6.2867) | (0.0031, 0.0267)
20 10 | (0*9,10) (1.9954, 7.2134) | (0.0025, 0.0289)
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5 OPTIMAL PROGRESSIVE CENSORING SCHEME

5.1 ESTIMATING OF QUANTILES:

In a reliability context, we often may be interested in estimating the pth quintile of
the population. The MLE of the pth quintile is given by

Qp =i +6F ' (p). (5.1)
Where F'~!(p) is the inverse cdf of the standard inverse Weibull distribution, that is ,

L))t (5.2)

In this case optimality can be simply defined in terms of minimizing the variance of
the estimate of the pth quantile or, equivalently,

V(@) = Vi (0) + [F 1 (p)]*Vaa (0) + 2F (1 — p)Via(6). (5.3)

In the finite sample situation, we can list all possible choices of censoring plans and
compute the corresponding objective functions, then determine the optimal censoring
plan through an extensive search.

We illustrate this approach of optimality in the following example.

5.2 ILLUSTRATIVE EXAMPLE:

Using the previous example of Dumonceaux and Antle (1973) (Example 2), we il-
lustrate how we can find the corresponding optimal censoring plans subject to the
optimality criterion described earlier.

The following four Tables 5-8 present comparisons of different optimal censoring
schemes by estimating the variance of the 5th and 95th quantiles as an optimal-
ity criterion used by Ng et al. (2004) for n = 20 and m = 15,10. It is observed that,
the results based on negative values of ¢ are smaller than the ones based on positive
value of c¢. It is clear from these values that the optimal censoring plan is the one
with the minimum quantiles variance.
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Table 5: Comparison of different censoring plans for n = 20 and m = 15
a=15b=0.75,c=1

scheme a Qg an A As Ay V(Q%) V(Q%)
(0*14,5) 3.3686 3.3338 3.3590 | 0.0465 0.0461 0.0465 | 0.5199  0.5562
(0*13,1,4) 3.8696 3.8381 3.8701 | 0.0258 0.0257 0.0255 | 0.6571  0.3473
(0*13,2,3) 4.1868 4.1578 4.1711 | 0.0166 0.0167 0.0164 | 0.8706  0.6029
(0*12,1,1,3) 3.9283 3.8982 3.9020 | 0.0227 0.0227 0.0224 | 0.7142  0.4132
(1*¥12,1,2,2) 3.6556 3.6230 3.6565 | 0.0330 0.0329 0.0328 | 0.5878  0.2335
(0*12,1,3,1) 3.3848 3.3506 3.3754 | 0.0462 0.0459 0.0461 | 0.5168  0.0926
(0*12,3,1,1) 3.7835 3.7520 3.7915 | 0.0273 0.0272 0.0271 | 0.6470  0.3208
(0*10,1%*5) 4.0717 4.0397 4.0690 | 0.0192 0.0191 0.0190 | 0.7518  0.4854
(0*8,1,0*5,4) 3.8237 3.7922 3.8401 | 0.0293 0.0292 0.0290 | 0.6040  0.2835
(0*8,1,0*3,2,0,2) | 4.0316 4.0011 4.0277 | 0.0215 0.0214 0.0212 | 0.7276  0.4422
Table 6: Comparison of different censoring plans for n = 20 and m = 10
a=15b=07,c=1 _ )
scheme a O~és O~éN A /\s )\N V(Q%) V<Q05)
(0*8,5,5) 3.4919 3.4576 3.4890 | 0.0576 0.0569 0.0576 | 0.8264  0.0455
(0*8,1,9) 4.3783 4.3538 4.3775 | 0.0119 0.0122 0.0114 | 1.5354  1.1788
(0*8,3,7) 4.0761 4.0456 4.0675 | 0.0301 0.0299 0.0299 | 1.0589  0.5093
(0%7,1,2,7) 3.8934 3.8625 3.8832 | 0.0332 0.0329 0.0330 | 0.9957 0.4138
(1*7,1,4,5) 3.3879 3.3539 3.3875 | 0.0577 0.0571 0.0576 | 0.8013  0.0240
(0%6,1,1,1,7) 3.3271 3.2956  3.3290 | 0.0517 0.0511 0.0516 | 0.7449  0.0586
(0%6,2,2,3,3) 4.3956 4.3682 4.3787 | 0.0170 0.0169 0.0167 | 1.6141  1.1225
(0%6,5,0%2,5) 3.5050 3.4706 3.4899 | 0.0580 0.0573 0.0580 | 0.8175  0.0428
(0%4,1,0%4,9) 4.7072 4.6856 4.6989 | 0.0073 0.0076 0.0070 | 4.0238  3.4425
(0%2,2,0*5,4,4) | 3.9532 3.9233 3.9447 | 0.0237 0.0238 0.0233 | 0.9861  0.5462
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Table 7: Comparison of different censoring plans for n = 20 and m = 15
a=15b=0.75c=—1

scheme a Qg an A As Ay V(Q%) V(Q%)
(0*14,5) 3.3686 3.3338 3.0624 | 0.0465 0.0461 0.0461 | 0.5199  0.5562
(0*13,1,4) 3.8696 3.8381 3.2965 | 0.0258 0.0257 0.0257 | 0.6571  0.3473
(0*13,2,3) 4.1868 4.1578 3.1554 | 0.0166 0.0167 0.0167 | 0.8706  0.6029
(0*12,1,1,3) 3.9283 3.8982 3.2654 | 0.0227 0.0227 0.0227 | 0.7142  0.4132
(1*¥12,1,2,2) 3.6556  3.6230 3.2235 | 0.0330 0.0329 0.0329 | 0.5878  0.2335
(0*12,1,3,1) 3.3848 3.3506 3.0767 | 0.0462 0.0459 0.0459 | 0.5168  0.0926
(0*12,3,1,1) 3.7835 3.7520 3.2556 | 0.0273 0.0272 0.0272 | 0.6470  0.3208
(0*10,1%*5) 4.0717 4.0397 3.2138 | 0.0192 0.0191 0.0191 | 0.7518  0.4854
(0*8,1,0*5,4) 3.8237 3.7922 3.3164 | 0.0293 0.0292 0.0293 | 0.6040  0.2835
(0%8,1,0%3,2,0,2) | 4.0316 4.0011 3.3051 | 0.0215 0.0214 0.0214 | 0.7276  0.4422
Table 8: Comparison of different censoring plans for n = 20 and m = 10
a=15b=075c=-1_ )
scheme a O~és O~éN A /\s )\N V(Q%) V<Q05)
(0*8,5,5) 3.4919 3.4576 3.1788 | 0.0576 0.0569 0.0569 | 0.8264  0.0455
(0*8,1,9) 4.3783 4.3538 3.9909 | 0.0119 0.0122 0.0122 | 1.5354  1.1788
(0*8,3,7) 4.0761 4.0456 3.4668 | 0.0301 0.0299 0.0299 | 1.0589  0.5093
(0%7,1,2,7) 3.8934 3.8625 3.3678 | 0.0332 0.0329 0.0330 | 0.9957  0.4138
(1*7,1,4,5) 3.3879 3.3539 3.0830 | 0.0577 0.0571 0.0571 | 0.8013  0.0240
(0%6,1,1,1,7) 3.3271 3.2956 3.0327 | 0.0517 0.0511 0.0511 | 0.7449  0.0586
(0%6,2,2,3,3) 4.3956 4.3682 3.0836 | 0.0170 0.0169 0.0170 | 1.6141  1.1225
(0%6,5,0%2,5) 3.5050 3.4706 3.1907 | 0.0580 0.0573 0.0574 | 0.8175  0.0428
(0%4,1,0%4,9) 4.7072 4.6856 4.0136 | 0.0073 0.0076 0.0076 | 4.0238  3.4425
(0%2,2,0*5,4,4) | 3.9532 3.9233 3.1533 | 0.0237 0.0238 0.0238 | 0.9861  0.5462

6 CONCLUSIONS

In this paper the statistical inference of the unknown parameters of a two-parameter
IW distribution under Type-II progressively censoring has been considered. Both
the classical and Bayesian inference of the unknown parameters are provided. It is
observed that the MLEs of the unknown parameters cannot be obtained in closed
form, hence approximate MLEs have been proposed, which can be obtained in ex-
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plicit forms. The performance of the MLEs and the approximate MLEs are very close
to each other. We consider the Bayes estimates of the unknown parameters based on
different loss functions, and it is observed that they cannot be obtained in explicit
forms, hence Lindley’s approximation has been incorporated. Gibbs sampling tech-
nique has been used to compute HPD credible intervals, and it is observed that the
implementation of the Gibbs sampling procedure is very simple in this case. In this
paper although we have mainly considered Type-II progressive censoring case, the
same method can be extended for other censoring schemes also. More work is needed
along that direction.
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