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Bayesian Animal Survival Estimation
S. P. Brooks, E. A. Catchpole and B. J. T. Morgan

Abstract. We present the Bayesian approach to estimating parameters
associated with animal survival on the basis of data arising from mark
recovery and recapture studies. We provide two examples, beginning with
a discussion of band-return models and examining data gathered from
observations of blue winged teal (Anas discors), ringed as nestlings. We
then look at open population recapture models, focusing on the Cormack–
Jolly–Seber model, and examine this model in the context of a data set on
European dippers (Cinclus cinclus). The Bayesian procedures are shown
to be straightforward and provide a convenient framework for model-
averaging, which incorporates the uncertainty due to model selection
into the inference process. Sufficient detail is provided so that readers
who wish to employ the Bayesian approach in this field can do so with
ease. An example of BUGS code is also provided.

Key words and phrases: Band-return, Bayesian analysis, BUGS,
capture–recapture, Cormack–Jolly–Seber, model averaging, product-
multinomial, ring-recovery.

1. INTRODUCTION

The estimation of animal abundance, survival and
capture–recovery parameters has attracted an enor-
mous literature over the last 200 years, with the
first such model being described in 1786 by Laplace,
who was interested in estimating the population of
France. Subsequently, models of this sort have found
application in a wide range of settings, from the esti-
mation of census undercount to the number of errors
in computer code. However, one of the largest fields
of application has been in the estimation of popula-
tion size and survival probability of animals found
in the wild. See, for example, the recent review by
Schwarz and Seber (1999).
We concentrate here on survival probabilities,

which are important demographic parameters, cru-
cial for understanding and modelling population
dynamics. Their behavior over time provides insight
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into the possible effects of changes in climate and/or
land-management practices.
Rather than adopting the classical maximum

likelihood method to fit these models, we discuss
how the Bayesian approach to model fitting may be
used. Related Bayesian work has mainly focused
on the estimation of population size; see, for exam-
ple, Castledine (1981), Underhill (1990), Bolfarine,
Leite and Rodriguez (1992), George and Robert
(1992), Garthwaite, Yu and Hope (1995), Madigan
and York (1997), and Lee and Chen (2000). Early
discussion with regard to survival was provided
by Janz (1980) and by Freeman (1990). Dupuis
(1995) focuses on multiple-site recapture analy-
sis, making use of data augmentation to account
for missing records, and employing Gibbs sam-
pling. Burnham (1999) provides an empirical Bayes
approach to survival estimation, where appropriate
parameters are regarded as random effects. Link
and Cam (1999) give an accessible introduction to
elementary Bayesian methods for mark-recapture
methods, which complements the material of this
paper. Finally, the paper by Vounatsou and Smith
(1995), discussed critically in Brooks, Catchpole and
Morgan (2000), compares Gibbs sampling with the
Metropolis–Hastings algorithm for a range of mod-
els for band-return data. Vounatsou and Smith give
little detail of the updating mechanisms needed for
the Markov chain Monte Carlo (MCMC) simula-
tion and no discussion of the more commonly used
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capture–recapture modelling. Their work is greatly
extended here.
We consider two common classes of models for

estimating animal survival and show how the
Bayesian approach may be applied in each case.
While the basic MCMC methods of Gibbs and
Metropolis–Hastings sampling need no descrip-
tion here (see, e.g., Besag, Green, Higdon and
Mengersen, 1995; Gelman, Carlin, Stern and Rubin
1995; Brooks, 1997), we provide in Appendix A
a description of some recent specific aspects of
Bayesian analysis that are important for the mod-
elling applications of this paper. The results which
follow were obtained using Gibbs sampling and
the ratio method for sampling from nonstandard
conditional distributions.

2. BAND-RETURN MODELS

Many wildlife studies involve the analysis of
band-return, also called ring-recovery, data. For
example, newborn animals might be marked and
released into the wild each year for a number
of years and a record kept of the recoveries of
marked animals that have died in each year. In this
section we demonstrate how a Bayesian analysis of
such data may be undertaken, focusing upon the
estimation of survival and recovery probabilities.

2.1 Model Specification

Let us assume that we have data of the form
mij, i = 1� � � � � I� j = 1� � � � � J� J ≥ I, where mij
denotes the number of animals released at the
beginning of year i and subsequently recovered
(dead) in the 12 months up to the end of year j. We
also have data Ri recording the number of animals
marked and released at the beginning of year i.
We assume a model with the following param-

eters. Let λj denote the probability of a particular
animal being recovered given that it died in the year
up to the end of year j (we assume that recovery is
immediate). Also let φi denote the probability that
the animal survives to age i, given that it is alive at
age i− 1. We allow for time-dependence in the sur-
vival rate of an animal in its first year of life and
denote the probability of a particular animal surviv-
ing its first year, given that it is born in year i, by
φ1� i.
This is known as the T/A/T model in the nota-

tion of Catchpole and Morgan (1996). Models are
described by the triple x/y/z, where x� y� z indi-
cate the modelling of first year survival probabili-
ties, adult survival probabilities and reporting prob-
abilities, respectively. Possible values for x, y and z
include C, for constant, T, for time-dependent and
A, for age-dependent.

We consider the T/A/T model initially. This is a
useful and flexible model for band-return data, since
many animals experience high first-year mortal-
ity which is influenced by time-varying conditions,
such as weather. Reporting probabilities can also
vary over time for similar reasons. Particular exam-
ples and data sets may require alternative models:
for example, we may require some age dependence
in the reporting probabilities to account for age-
dependent behavior, such as breeding. But in many
cases, simpler models, resulting from constraining
the T/A/T model, will suffice, as we shall see below.
Table 1 provides the expected and corresponding

observed values under the T/A/T model.
Given data �Ri�mij� i = 1� � � � � I� j = i� � � � � J�,

we obtain the product-multinomial likelihood

L��1����� R�m	 ∝ �
I∏
i=1

J∏
j=i
p
mij
ij �(1)

where � = �φl� 2 ≤ l ≤ J�, �1 = �φ1l� 1 ≤ l ≤ I�
and � = �λl� 1 ≤ l ≤ J�. Here

pij=



λiφ̃1�i� j=i,
λjφ1�iφ̃j−i+1

j−i∏
k=2
φk� j=i+1�����J

(2)

denotes the probability associated with an observa-
tion in entry �i� j	 of Table 1, where φ̃l = 1−φl, etc.,
and � denotes the likelihood term associated with
unrecovered animals. If we let qi = 1 −�J

j=i pij be
the probability of nonrecovery of an animal released
at the beginning of year i, either because it was still
alive at the end of the experiment or because it died
and was not found, and ui = Ri −

�J
j=i mij denote

the number of animals released at the beginning of
year i and never recovered, then � = �I

i=1 q
ui
i . Note

that � is a function of all of the model parameters.
Throughout this paper, we follow the convention

that a null sequence has sum 0 and product 1. Thus
in formula (2) for pij, the product term is 1 when
j = i+ 1.

Table 1
The data structure for the T/A/T recovery model for a limited

study of three years duration1

Never
j = 1 2 3 recovered

i = 1 R1 R1φ̃1�1λ1 R1φ1�1φ̃2λ2 R1φ1�1φ2φ̃3λ3 R1q1
(m11) (m12) (m13) �u1	

2 R2 R2φ̃1�2λ2 R2φ1�2φ̃2λ3 R2q2
(m22) (m23) �u2	

3 R3 R3φ̃1�3λ3 R3q3
(m33) �u3	

1The entries denote expected numbers recovered each year.
Below in parentheses are the observed values.
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Having obtained the likelihood for this model, we
now consider the prior distributions for the param-
eters. For simplicity, we take independent beta pri-
ors,

φ1� l ∼ beta �α1� β1	� l = 1� � � � � I�
φl ∼ beta �αφ�βφ	� l = 2� � � � � J�(3)

λl ∼ beta �αλ�βλ	� l = 1� � � � � J�
Note that none of these prior distributions depend
on l. With relevant expert information, other priors
might be more appropriate. For example, different
priors could be used for each individual parameter,
or we could impose some form of structure on the
variables by putting a prior probability of zero on
the event that φ1� i > φj for any i� j, for exam-
ple. This is an important possibility, as many ani-
mals are known to have higher mortality during
their first year of life. A simple way to achieve this
in MCMC simulations is to discard all outcomes of
the chain which do not satisfy the restrictions, thus
implicitly redefining the prior.
In choosing between models, we shall consider

submodels of the T/A/T model. In order to use
Gibbs sampling, we need to calculate the full condi-
tional posterior distributions for the cases in which
first-year survival and reporting probabilities are
time-varying or constant, and adult survival is age-
varying or constant. Note that naı̈ve use of the
likelihood in (1) to compute the conditional poste-
rior distributions commonly fails due to numerical
underflow. For this reason it is helpful to carry out
some of the calculation algebraically, reformulating
the conditional posterior distributions as a product
of a beta density and a nuisance term, as follows.
Given the likelihood function in (1) and the prior

distributions in (3), the full conditional posterior for
λl is given by

π�λl � ��l	��1���R�m	

∝ λαλ−1l λ̃
βλ−1
l �

I∏
i=1

J∏
j=i
p
mij
ij

∝ λαλ−1l λ̃
βλ−1
l � λ

�l∗
i=1mil

l

∝ �fbeta
(
λl� αλ +

l∗∑
i=1
mil� βλ

)
� l = 1� � � � � J�

where ��l	 denotes the vector � with the lth compo-
nent omitted, l∗ = min�l� I	, and
fbeta�x�α�β	 = xα−1�1− x	β−1� 0 ≤ x ≤ 1�

Note that for the submodel with λl = λ, for all l,

π�λ � �1���R�m	 ∝ �fbeta
(
λ� αλ +

I∑
i=1

J∑
j=i
mij� βλ

)
�

Similarly, the full conditional posterior for φl is
given by

π�φl � ��l	��1���R�m	 ∝ �fbeta�φl� αφ+r�βφ+s	�
l = 2� � � � � J�

where r = �l†
i=1

�J
j=i+l mij and s = �l‡

i=1mi� i+l−1,
with l† = min�I�J − l	 and l‡ = min�I�J − l + 1	�
For the submodel with φi = φ for all i,
π�φ � �1���R�m	

∝ �fbeta
(
φ� αφ +

I∗∑
i=1

J∑
j=i+2

�j− i− 1	mij�

βφ +
I†∑
i=1

J∑
j=i+1

mij

)
�

where I∗ = min�I�J − 2	 and I† = min�I�J − 1	.
Finally, the full posterior distribution for φ1� l is

π�φ1� l � �1� �l	�����R�m	

∝ �fbeta
(
φ1� l� α1 +

J∑
j=l+1

mlj� β1 +mll
)
�

and, for the submodel with φ1� i = φ1 for all i,
π�φ1 � ����R�m	

∝ �fbeta
(
φ1� α1 +

I∑
i=1

J∑
j=i+1

mij� β1 +
I∑
i=1
mii

)
�

Note that each of the conditional posterior dis-
tributions is nonstandard, because of the � term.
The formulation of the posterior conditionals as
being proportional to the product of a beta dis-
tribution and � has computational advantages,
since the product of the p

mij
ij in (1) is typically very

small, which can cause accuracy problems, whereas
the forms we have given for the posteriors are
much larger, because of the implicit inclusion of the
normalization constant of the beta density.

2.2 Example: Blue-Winged Teal

Brownie, Anderson, Burnham and Robson (1985)
describe a band-recovery study of blue-winged teal
(Anas discors) ringed as nestlings in Saskatchewan.
The data are given in Table 2. We use this data
set since it is sparse, and therefore provides a good
illustration of the influence of the prior for certain
models, as we shall see later. Freeman and Morgan
provide an analysis of these data, and give the max-
imum likelihood estimates of the parameters for a
number of different models.
Figure 1 provides an illustrative example of the

MCMC output for three parameters under the C/C/T
model. Here, we took independent uniform priors



360 S. P. BROOKS, E. A. CATCHPOLE AND B. J. T. MORGAN

Table 2
Recoveries of blue-winged teal marked as young from 1961 to 19731

Year of recovery (1961+)
Year of Number
ringing ringed 1 2 3 4 5 6 7 8 9 10 11 12

1961 910 6 2 1 1 0 2 1 0 0 0 0 0
1962 1157 11 5 6 1 1 1 1 0 0 0 1
1963 1394 19 4 4 4 0 0 1 1 0 0
1964 3554 65 25 8 4 2 4 4 1 0
1965 4849 65 17 2 1 6 2 3 1
1966 2555 52 9 8 3 4 2 1
1967 305 3 1 0 1 0 0

1Data from Brownie et al. (1985).

for all model parameters and, for illustration and
clarity, ran the Gibbs sampling algorithm for only
5000 iterations.
These plots appear to suggest that observations

generated at the beginning of the run have a similar
distribution to those at the end, indicating that the
Gibbs sampler has converged very quickly. In fact
this fast convergence seems to be a general property

Fig. 1. Raw trace plots �left	 and autocorrelation plots �right	 of the MCMC output for parameters λ12, φ1 and φA under the C/C/T
model for the teal data. Autocorrelations that lie outside of the dotted bands are significantly different from zero at the 5% level.

of band-return models. The diagnostic techniques
of Brooks and Gelman (1998) were applied to sev-
eral replications of the MCMC sampler for each of
our models and these confirm that convergence is
indeed rapid.
Additionally, the autocorrelation plots in Figure 1

illustrate the dependence between successive obser-
vations, which appears to die out well before lag
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Table 3
Posterior means and standard deviations (SDs) under independent uniform priors, for four models fitted to the Teal data set, from a
sample of 10,000 observations from the posterior distribution, together with the Bayesian p-values and posterior model probabilities,

Pr�M � x	, associated with each model

C/A/C T/A/C T/A/T C/C/T

Parameter Mean SD Mean SD Mean SD Mean SD

φ1�1 0.531 0.126 0.525 0.248
φ1�2 0.588 0.089 0.531 0.114
φ1�3 0.431 0.081 0.321 0.083
φ1�4 0.428 0.047 0.484 0.070
φ1�5 0.396 0.047 0.259 0.055
φ1�6 0.352 0.052 0.264 0.077
φ1�7 0.459 0.179 0.158 0.108
φ1 0.420 0.026 0.403 0.039
φ2 0.604 0.040 0.602 0.038 0.445 0.071
φ3 0.694 0.047 0.690 0.049 0.538 0.087
φ4 0.640 0.062 0.636 0.059 0.459 0.094
φ5 0.690 0.073 0.682 0.070 0.578 0.100
φ6 0.624 0.093 0.616 0.091 0.545 0.108
φ7 0.410 0.133 0.397 0.130 0.372 0.134
φ8 0.494 0.207 0.474 0.206 0.468 0.202
φ9 0.729 0.217 0.722 0.219 0.749 0.205
φ10 0.688 0.232 0.695 0.230 0.691 0.233
φ11 0.348 0.240 0.352 0.240 0.355 0.240
φ12 0.493 0.285 0.511 0.285 0.504 0.288
φA 0.598 0.053
λ1 0.058 0.137 0.013 0.005
λ2 0.017 0.008 0.017 0.005
λ3 0.018 0.005 0.024 0.005
λ4 0.035 0.006 0.031 0.004
λ5 0.019 0.003 0.026 0.003
λ6 0.028 0.004 0.031 0.004
λ7 0.019 0.005 0.016 0.004
λ8 0.056 0.022 0.031 0.008
λ9 0.078 0.040 0.035 0.011
λ10 0.140 0.096 0.051 0.020
λ11 0.149 0.123 0.048 0.025
λ12 0.196 0.181 0.047 0.034
λ 0.026 0.001 0.026 0.001

p-value 0.27 0.28 0.54 0.50
Pr�M � x	 0.009 0.054 0.000 0.937

20. This indicates fairly rapid mixing and thus good
coverage of the parameter space with a reasonably
small number of iterations.
The results obtained from a MCMC simulation of

10,000 iterations (after discarding the initial 1000
iterations) with independent uniform priors for each
model parameter, under four models, are provided
in Table 3. The models selected here are for illus-
trative purposes only. The Bayesian p-values (see
Appendix A.1) for goodness of fit are given in the
table, and the corresponding discrepancy plots are
in Figure 2. They show that models C/C/T and T/A/T
fit the data equally well and appreciably better than
the other two models.
Note that in Table 3 the parameters which appear

least often in the likelihood, such as φi for i close to
12, have posterior moments close to those expected

under the uniform�0�1	 prior. The posterior distri-
bution provides a balance between information pro-
vided by the prior and that provided by the like-
lihood. For parameters where little information is
gained from the likelihood, the posterior distribu-
tion is dominated by the prior, and hence we see a
number of parameters with mean around 0�5 and
standard deviation around

√
1/12. Note also that

the freedom allowed by the T/A/T model to choose
different values of λ for each year has resulted in
large changes in the means of some of the φ1� i as
compared with the T/A/C model. This is because a
large part of the information on φ1� i is contained in
the diagonal mii term.
For any Bayesian analysis, it is important to

check the sensitivity of the resulting inference upon
the choice of prior distribution (see, e.g., Rubin,
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Fig. 2. Discrepancy plots for the models �a	 C/A/C, �b	 T/A/C, �c	 T/A/T and �d	 C/C/T, from a sample of 2000 observations from
the posterior distribution corresponding to independent uniform priors on all parameters. Corresponding Bayesian p-values are 0�27,
0�28, 0�54 and 0�50, respectively.

1992). Figures 3 and 4 show histograms of posterior
samples of selected parameters from the C/C/T and
T/A/T models, under various prior distributions.
We can see from Figure 3 that the choice between

the beta �1�4	, uniform and beta �4�1	 priors has
little effect upon the posterior distributions for the
survival parameters of the C/C/T model, reflecting
the fact that the likelihood carries strong informa-
tion concerning these parameters. Note however
that an unrealistic beta(4,1) prior for the λ param-
eters, for many of which there is relatively little
information in the likelihood, results not only in a
large change in the λ posteriors but also a large
shift to the left in the posterior distributions of φ1
and φA. Exceptionally high values for λ parameters
need to be balanced by changes in survival proba-
bilities in order to match the data. If we take the
last column of Table 2, for example, each of the cells
in this column has a probability which is a multiple
of λ12. A large value of λ12 is balanced by making

φa, which appears raised to a power in all the cells
in the column, small.
Figure 4 shows that for model T/A/T, the posteri-

ors can be heavily influenced by the priors for the
survival parameters, even when the λ parameters
have uniform priors. In general, models which con-
tain parameters that are not supported by the data
will tend to have a high degree of posterior sensi-
tivity, so that the degree of sensitivity also provides
evidence in favor of one model over another.
Also shown in Table 3 are the posterior model

probabilities (see Appendix A.2) for the four mod-
els considered. These are based on samples of size
100,000 from the prior distribution. The very small
posterior probability for the T/A/T model, and the
large one for C/C/T, require some explanation in
view of the Bayesian p-values, which show both
models fitting the data quite well.
Note also that C/C/T is a submodel of T/A/T, and

so its maximized likelihood cannot be greater than
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Fig. 3. Histograms for posterior samples of parameters λ12, φ1 and φA under the C/C/T model, from a sample of 10�000 observations
from the posterior distribution, with corresponding prior densities superimposed. The top row corresponds to beta �1�4	 priors, the second
row to uniform and the bottom two rows to beta �4�1	 priors for the two φ parameters, whereas a uniform prior is adopted for all the λ
parameters in the first three rows and a beta �4�1	 prior for the bottom row.

that of T/A/T. Since, from Appendix A.2, the rela-
tive posterior probabilities of the two models are
given by a ratio of averaged likelihoods (given equal
prior probabilities), the reader might be surprised
that C/C/T ends up with a higher posterior prob-
ability than T/A/T. The reason for this is that the
averages are taken over the whole parameter space.
Depending on the prior, this may involve averag-
ing over some very unlikely regions. The posterior
model probabilities given in Table 3 are for inde-
pendent uniform priors over �0�1�. With different
priors, very different results could occur. If the pri-
ors were concentrated sufficiently close to the max-
imum likelihood estimates, for example, then the
T/A/T model would have a higher posterior proba-
bility than C/C/T. It is important therefore to com-
pare posterior model probabilities under a range of
prior distributions. We do this for the second data
set in the next section.

In general, a model with many parameters will
have the freedom to explore regions of very small
likelihood, and thus will tend to have low posterior
probability. Thus, although no explicit penalty for
overparameterization is built into the methodology,
there is an implicit penalty.
Note also that the discrepancy measure for good-

ness of fit is averaged over the posterior distribution
of theparameters,while theposteriormodelprobabil-
ities are averaged over the prior distribution. This is
why the T/A/T and C/C/T models fit the data equally
well, while the C/C/T model has much greater poste-
riorprobabilitythanT/A/T: theBayesianp-valuedoes
not penalize overparameterization.
Appendix A.2 also describes Bayesian model aver-

aging. In thepresentexample,with the relativeposte-
rior probabilities overwhelmingly favoring the C/C/T
model, there is little point in doing this. Had we cho-
sen a larger range of models for consideration, this
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Fig. 4. Histograms for posterior samples of parameters λ2, φ1�2 and φ2 under the T/A/T model, from a sample of 10�000 observations
from the posterior distribution, with corresponding prior densities superimposed. The top row corresponds to beta �1�4	 priors, the middle
row to uniform and the bottom row to beta �4�1	 priors for the survival parameters, whereas a uniform prior is adopted for the λ priors
throughout.

mightno longerhavebeen the case.However,weshall
applymodel averaging for theDipper data in the next
section.
We conclude that, of the models considered, the

C/C/T and T/A/T models provide the best fit to the
blue-wing teal data, and, on the grounds of prior sen-
sitivity, parsimony and posterior model probability,
C/C/T is best. This agrees with the classical analysis
of Freeman andMorgan (1992), who, using likelihood
ratio tests and starting from a submodel of T/A/T,
reached C/C/T as their final model. The posterior
means also broadly agree with the maximum likeli-
hood estimates from the classical analysis (not shown
here).
Note that a reasonable (but more complex) prior

mightconstrainthesurvivalparametersinsuchaway
that adult survival is always greater than first-year
survival. We considered this alternative prior for the
C/C/T model, where the restriction seems most plau-
sible. However, since the first-year survival probabil-
ities were always less than the adult survival proba-
bilities under the uniformprior, this newprior had no
effect on the resulting posterior samples.
In some cases, models for recovery data may need

elaboration to allow for different reporting proba-
bilities for young and adult birds, for example. For
further investigation of this issue see Freeman and

Morgan (1992) and Catchpole, Freeman and Morgan
(1995).
Finally, an interesting comparison between the

Bayesian and classical analyses of data of this sort
arises when we fit the C/A/C model. In this case, it is
well known that the likelihood has a completely flat
ridge (Catchpole and Morgan, 1994). Thus, unique
maximum likelihood parameter estimates are not
available.However, aswe see inTable 3, no suchprob-
lems are encountered in the Bayesian analysis, even
with flat priors. In our example, the Bayes estimates
for the model parameters are given as the posterior
means, which are unique whether or not the multi-
variate posterior distribution has a ridge. However,
Brooks, Catchpole and Morgan (2000), considering
this C/A/C model, point out that, since this model is
parameter redundant, there is some combination of
parameters about which the likelihood contains no
information, and the only information is contained in
the prior. In such circumstances, posterior inference
must proceed with extreme care.

3. OPEN POPULATION
CAPTURE–RECAPTURE MODELS

An alternative to the band-return study is the
capture–recapture study, which records resightings
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and/or recaptures of animals that have been previ-
ously marked. In these studies for birds at least, it
is quite common for the animals to be marked only
as adults; for instance, they may be initially cap-
tured when breeding. This is the case with the data
we consider, and we therefore describe models with
y/z notation, where y describes adult survival as
before, but now z refers to recapture rather than
reporting probabilities.
We assume that every animal in the population

has the same probability of survival between cap-
ture times and that they all have the same prob-
ability of capture. Here capture and survival rates
are of primary interest, but estimates of the popu-
lation size at the different sampling times can also
be obtained.
In this section, we look at the Cormack–Jolly–

Seber model, which is the T/T model in our nota-
tion, and discuss the Bayesian approach to fitting
this and submodels to data on European Dippers
(Cinclus cinclus).

3.1 The Cormack–Jolly–Seber Model

We observe data of the formmij, i = 1� � � � � I� j =
i + 1� � � � � J� J > I, where mij denotes the num-
ber of animals released at time ti and subsequently
recaptured for the first time at time tj. We also have
data Ri recording the number of marked animals
released into the population at time ti (these com-
prise newly marked animals and those recaptured
at time ti).
We let pi denote the probability of capturing a

particular animal at time ti, and let φi denote the
probability of the animal surviving the ith time
period, that is, the probability that the animal sur-
vives to time ti+1 given that it is alive at time ti.
Table 4 provides the expected and corresponding
observed values under the T/T model.
The resulting likelihood is given by
L���p� R�m	

∝ �
I∏
i=1

J∏
j=i+1

(
φipj

j−1∏
k=i+1

φkp̃k

)mij(4)

Table 4
The data structure for the T/T recapture model for a limited study1

j = 2 3 4 Never recaptured

i = 1 R1 R1p2φ1 R1p3p̃2φ1φ2 R1p4p̃3p̃2φ1φ2φ3 R1χ1
(m12) (m13) (m14) �v1	

2 R2 R2p3φ2 R2p4p̃3φ2φ3 R2χ2
(m23) (m24) �v2	

3 R3 R3p4φ3 R3χ3
(m34) �v3	

1The entries denote expected values; below in parentheses are the observed values.

where � = �I
i=1 χi

vi� with vi = Ri −
�J
j=i+1mij

being the number of animals never recaptured after
release at ti, and χi being the probability that an
animal, alive at time ti, is not subsequently cap-
tured. This can be calculated from the recursion
formula, χ

i
= 1 − φi�1 − p̃i+1χi+1	� with χJ = 1

(see, e.g., Lebreton, Burnham, Clobert and Ander-
son, 1992, page 71).
As before, we adopt independent beta priors for

the parameters φl and pl,
φl ∼ beta �αφ� βφ	� l = 1� � � � � J− 1�
pl ∼ beta �αp� βp	� l = 2� � � � � J�

The full conditional posterior for φl is then given by
π�φl � ��l	�p�R�m	

∝ φαφ−1l φ̃
βφ−1
l � φrl

∝ �fbeta
(
φl� αφ + r� βφ

)
�

l = 1� � � � � J− 1�
where r = �l∗

i=1
�J
j=l+1mij and l

∗ = min�l� I	. For
the submodel with φl = φ for all l,
π�φ � p�R�m	

∝ �fbeta
(
φ�αφ +

I∑
i=1

J∑
j=i+1

�j− i	mij� βφ
)
�

Similarly the full conditional posterior distribution
for pl is given by

π�pl � p�l	���R�m	 ∝ �fbeta
(
pl� αp + r� βp + s

)
�

l = 2� � � � � J�
where r = �l∗

i=1mil and s = �l∗
i=1

�J
j=l+1mij, with

l∗ = min�l− 1� I	. For the submodel with pl = p for
all l,

π�p � ��R�m	 ∝ �fbeta
(
p� αp +

I∑
i=1

J∑
j=i+1

mij�

βp +
I∑
i=1

J∑
j=i+1

�j− i− 1	mij
)
�

As in the band-return case, all these conditional pos-
terior distributions are nonstandard.
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3.2 Example: European Dippers

The data given in Table 5 describe the annual cap-
ture and recapture of European Dippers in eastern
France from 1981–1987. As in Section 2.2, we have
deliberately chosen a sparse data set for illustration
of how Bayesian methods combine prior information
and data. Lebreton et al. (1992) provide the maxi-
mum likelihood parameter estimates for a variety
of models for these data. These models are the full
model T/T and the submodels T/C, C/C and C2/C.
The C2/C model has constant recapture probability
but two survival rates,

φi =
{
φf� i = 2�3�
φn� i = 1�4�5�6

(Lebreton et al. 1992), to allow for possibly different
survival caused by a flood in 1983. We consider here
only these four models. Note that in the T/T model,
the parameters p7 and φ6 always appear together
in the likelihood; they are nonidentifiable, and only
their product is estimable via maximum likelihood.

Fig. 5. Raw trace plots �left	 and autocorrelation plots �right	 for parameters p, φf and φn under the C2/C model. Autocorrelations
that lie inside the dotted bands are not significantly different from zero at the 5% level.

Table 5
Capture–recapture data for European Dippers banded in

1981–1986

Year of Recapture (1981+)
Year of Number
release released 1 2 3 4 5 6

1981 22 11 2 0 0 0 0
1982 60 24 1 0 0 0
1983 78 34 2 0 0
1984 80 45 1 2
1985 88 51 0
1986 98 52

1From Lebreton et al. (1992).

In the submodels all parameters are estimable. A
Bayesian analysis for the model T/T can produce
estimates of all the model parameters. From the
symmetry with regard to φ6 and p7, their marginal
distributions are identical.
Figure 5 provides an illustrative example of the

MCMC output for the three parameters of the C2/C
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model. Here we took independent uniform priors for
all model parameters and ran the Gibbs sampler for
just 1000 iterations. As with the Teal example, con-
vergence appears to be rapid, but, unlike the Teal
example, the acf plots suggest that successive iter-
ations are uncorrelated. Thus, in this case, the raw
MCMC output may be taken as an approximately
independent sample from the posterior distribution
so that the usual Monte Carlo sample size deter-
mination methods may be applied (Brooks, 1997,
1999).
The results from a MCMC simulation of 10,000

iterations under standard uniform priors for all
parameters are provided in Table 6 for each of the
four models. Note that the standard maximum-
likelihood approach to the model T/T is to estimate
the product φ6p7. The posterior mean for this prod-
uct is 0.519, with standard deviation 0.050. We
naturally obtain a different result if we treat this
product as a single parameter, with a uniform prior
distribution.
Lebreton et al. (1992) analyze these data from the

classical maximum likelihood perspective, and con-
clude that the C2/C model provides the best fit to
the data. The Bayesian p-values for goodness of fit
shown in Table 7 are quite different from the clas-
sical p-values provided by Lebreton et al. (1992)
(0.30, 0.41, 0.30 and 0.67, respectively), but may
be interpreted similarly in that C2/C is clearly the
preferred model. We would argue that the Bayesian
p-values, which do not require an asymptotic nor-
mality argument, are more realistic. However, we
do note the very small p-values obtained. It may be

Table 6
Posterior means and standard deviations under independent uniform priors, for the Dipper data

T/T T/C C/C C2/C

Model Mean SD Mean SD Mean SD Mean SD

φ — — — — 0.561 0.025 — —
φ1 0.723 0.133 0.622 0.107 — — — —
φ2 0.450 0.071 0.458 0.065 — — — —
φ3 0.482 0.061 0.481 0.058 — — — —
φ4 0.626 0.060 0.623 0.056 — — — —
φ5 0.603 0.058 0.608 0.054 — — — —
φ6 0.728 0.143 0.587 0.057 — — — —
φf — — — — — — 0.472 0.043
φn — — — — — — 0.609 0.031
p — — 0.893 0.030 0.896 0.029 0.892 0.030
p2 0.666 0.134 — — — — — —
p3 0.867 0.082 — — — — — —
p4 0.879 0.064 — — — — — —
p5 0.875 0.058 — — — — — —
p6 0.904 0.052 — — — — — —
p7 0.737 0.143 — — — — — —

useful to recall that the Bayesian interpretation of
these p-values is as a measure of surprise at the
data under the assumption of each model. Thus, we
might infer that the data appear to be rather sur-
prising (though not significantly so) under all four
models under consideration, and might seek further
models.
As with the Teal example, we can examine the

prior sensitivity of the model parameters. Figure 6
provides the histogram plots corresponding to the
MCMC output for the C2/C model for parameters
p, φf and φn. Superimposed on the histograms
is the corresponding prior density. It is clear from
these plots that even a fairly strong prior has little
effect upon the marginal posterior distributions. In
this case the likelihood contains strong information
about the parameters so that the posterior is robust
to changes in the prior and bears little resemblance
to the two prior distributions selected here.
As we note in Appendix A.2, the p-value asso-

ciated with a model also depends on the prior. To
ensure that our p-values are robust, we consider
three sets of priors. Prior 1 is a uniform prior on all
parameters. Prior 2 puts a beta�1�9	 prior on the φ
parameters and a uniform prior on the p parame-
ters. Prior 3 is a beta�1�9	 for all parameters. We
then consider the four models, T/T, T/C, C/C and
C2/C, obtaining the p-values given in Table 7 for
each model–prior combination. The p-values change
quite substantially, although C2/C appears as the
best-fitting model whichever prior is chosen.
Thus, our Bayesian analysis concludes that the

C2/C model provides the best fit to the data, agree-
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Table 7
The p-values and posterior model probabilities associated with different model and prior combinations for the Dipper data1

p-values Pr(M�x)

Model Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

T/T 0.086 0.049 0.000 0.000 0.003 0.000
T/C 0.068 0.078 0.000 0.000 0.003 0.000
C/C 0.069 0.056 0.023 0.205 0.951 1.000
C2/C 0.125 0.153 0.050 0.795 0.004 0.000

1Prior 1 is a uniform prior on all model parameters. Prior 2 puts independent Beta(1, 9) distributions on the φ parameters and a
uniform prior on the p parameters. Prior 3 is a Beta(1, 9) for all model parameters.

ing with the classical analysis of Lebreton et al.
(1992). It is clear that the floods of 1983 had a
significant impact, dropping the survival rate from
around 0.61 to around 0.47. The decision to consider
the flood-based model was taken in the light of prior
(or data independent) information from the biolo-
gists gathering the data, and Lebreton et al. (1992)
discuss the usefulness of such information in the
classical analysis. However, the Bayesian approach
is even more flexible in this respect since other infor-
mation concerning the relationship between the sur-
vival rates in flood and nonflood years might also be
incorporated explicitly through the prior. For exam-
ple, information from previous studies concerning
the possibility of emigration during flood years could
be used to specify how the survival rate may be
altered by this behavior. Thus, the Bayesian anal-
ysis provides a more flexible approach to modeling
data of this sort, and essentially incorporates the
classical maximum likelihood analysis as a special
case.
We now consider the posterior model probabil-

ities of Table 7. As before, these are based on
samples of 100,000 from the prior distribution. Pri-
ors 2 and 3 have mean 0.1, in conflict with the
data. As discussed in the previous section, model
C2/C, which has one more parameter than model
C/C, is penalized more by this, resulting in C/C
being the favored model for these unrealistic priors.
For the more realistic prior 1, only C/C and C2/C
have nonnegligible posterior probabilities, and we
can use model averaging to obtain the means and
standard errors of parameters common to these
two models (see Appendix A.2). For example, the
model-averaged estimate of φn, the survival rate in
nonflood years, is, from (6),

φn = 0�205× 0�561+ 0�795× 0�609 = 0�599�
while, from (7),

φ2n = 0�205× �0�5612 + 0�0252	
+0�795× �0�6092 + 0�0312	

= 0�3603

and therefore SD�φn	 =
√
0�3603− 0�5992 = 0�038.

Note from Table 6 that this standard deviation is
larger than that for either of the models C/C or
C2/C. If a single model is selected, the standard
deviation of φn is underestimated.

4. DISCUSSION

4.1 Relative Merits of Bayesian and
Classical Procedures

There are advantages and disadvantages to the
modern Bayesian approach to modeling recovery
and recapture data.
Bayesian analysis provides a natural way to

include expert prior knowledge. In addition to the
discussion in the text above, we note that we may
wish to impose a bell shape for the relationship
between annual survival probabilities and age, to
account for the relatively high mortality of both
young and old animals, as observed for example in
Soay sheep; see Catchpole, Morgan, Freeman, Albon
and Coulson (1998). The necessity for prior distri-
butions, and the scope for disagreement amongst
experts as to what constitutes the correct prior,
could equally be seen as a disadvantage. Possible
approaches to this problem include noninformative
priors and empirical (data-based) priors (see, e.g.,
Carlin and Louis, 1996, Chapters 2 and 3), rather
than subjective priors. Whichever method is chosen,
it is important to check the robustness of the con-
clusions to the choice of prior. We speculate, on the
evidence of the examples of this paper, that prior
distributions will frequently have little effect for
recapture models, but that this will not be true of
recovery models. Relevant here are the findings of
Lebreton, Morgan, Pradel and Freeman (1995) and
Catchpole, Freeman, Morgan and Harris (1998),
who have considered the relative contributions of
the recovery and recapture parts of the likelihood
in studies involving both recovery and recapture.
Since the Bayesian paradigm stipulates that

model parameters are not themselves fixed, but
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Fig. 6. Histograms for posterior samples of parameters under the C2/C model, with corresponding prior densities superimposed. The
top row corresponds to uniform and the bottom row to beta �1�9	 priors for p, φf and φn.

have some unknown fixed distribution, it would be
useful to provide more detailed summaries of that
distribution than simply recording posterior means
and variances. When the posterior conditional dis-
tributions are of standard form the normalization
constants are necessarily known and Rao–Blackwell
density estimates (Casella and Robert, 1996) are
available, which provide unbiased estimates of
the marginal densities of the model parameters.
Unfortunately, none of our posterior conditional
distributions are of standard form and so this den-
sity estimation technique cannot be easily applied.
This problem may be overcome by using data aug-
mentation techniques (Tanner and Wong, 1987) to
obtain standard conditional posterior distributions,
at the cost of adding the complexity of the data
augmentation. This is the focus of current work.
In the Bayesian approach, unlike classical maxi-

mum likelihood, one does not need to use asymptotic
results to obtain standard errors, as one can esti-
mate marginal distributions by means of MCMC
procedures. This is important for sparse data sets

such as those of Tables 2 and 5, which are quite
common. In such cases classical inference can pro-
ceed via modern procedures such as bootstrapping
or Monte Carlo methods. See also Morgan and
Freeman (1989) and Cormack (1992), who advo-
cate using profile log-likelihoods for constructing
confidence intervals, rather than relying on the
asymptotic normality of estimators.
Computational overheads and programming com-

plexities have until recently been a great disin-
centive to the use of Bayesian methods. The first
problem has been greatly ameliorated by the
appearance of MCMC algorithms, although for sim-
ple models such as those considered here, Bayesian
methods still require much more computing power
than classical maximum likelihood. The second
problem is now being overcome through the appear-
ance of packages such as BUGS (see Appendix B).
For recovery and recapture data such as those in
this paper, a classical analysis by one of the special-
ized packages such as MARK (White and Burnham,
1999) is still much simpler to program than a
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Bayesian analysis. However, BUGS is relatively
simple to learn, and can handle a wide variety
of problems. The MCMC simulations performed
within this paper are very easily implemented
within the BUGS package. The code required for
the T/A/T model for the Teal data is provided in
Appendix B.1 as an illustration.
A standard problem with MCMC simulations for

Bayesian analysis is that it is very difficult to deter-
mine exactly the length of the burn-in period. This
problem is somewhat akin to the classical problem
of trying to determine whether or not an optimiza-
tion routine has found a global maximum in the
likelihood function. However, it should be noted that
the models that we discuss in this paper appear to
have very favorable convergence properties, mixing
well and converging rapidly, so that this appears to
be of little concern for models of this sort.
The Bayesian approach provides a simple frame-

work for model averaging, which incorporates the
uncertainty due to model selection into inferences
on model parameters. This is important as neglect-
ing this uncertainty can lead to spurious precision
in the parameter estimates. However, as we have
seen in the examples, posterior model probabilities,
and therefore model averaging, can be sensitive to
the choice of prior distribution.
It is well known that model probabilities can be

hard to estimate precisely, and in such cases, it is
sometimes necessary to use reversible jump MCMC
(Green, 1995). This has not been the case for the
examples of this paper. However, it has been true
for other examples considered elsewhere (see, e.g.,
Brooks, Catchpole and Morgan, 2000).
Finally, we note that the Bayesian approach pro-

vides a natural framework for modeling parameters
as random effects (cf. Burnham, 1999). This is an
area of current research.

4.2 Conclusion

Very useful results can be obtained by adopt-
ing the Bayesian paradigm. Schwarz and Seber
(1999) observe that “with the advent of the Gibbs
sampler � � � there will be an upsurge of interest in
Bayesian methods as more realistic priors can be
used and compared.” We have shown how the basic
computations can be carried out very simply, using
MCMC methods. The BUGS package provides a
very useful tool for getting simulations up and run-
ning quickly and is ideal for learning. However,
most problems require the speed and flexibility of
specially written (but still fairly simple) Fortran or
C code, for example. In any case, some computer
code will always need to be written to supplement
any BUGS code. An example of this is the code

required to calculate the Bayesian p-values that
we provide in this paper. In addition, many models
do not fit within the BUGS framework, for example
problems involving age dependence of parameters
in capture–recapture studies (see Catchpole, Free-
man, Morgan and Harris, 1998). In fact, many more
general models than those considered here can be
analyzed using straightforward extensions of the
Bayesian procedures of this paper. This is a topic of
current research.
For both the applications of this paper, we have

seen that certain parameters were extremely sen-
sitive to the choice of priors, for certain models.
This can be used to help choose between models.
For any model–data combination, parameter sensi-
tivity is going to occur to some degree. For the data
sets of this paper, the sparseness produced severe
examples of parameter sensitivity.
We conclude by noting that in this paper we have

not used basic classical tools such as information
criteria for model selection and residuals for check-
ing goodness-of-fit. In practice we would advocate
a catholic approach, which would employ these and
whatever other tools are judged to be useful.

APPENDIX

A. ASPECTS OF BAYESIAN MODELLING

Let � denote the full set of parameters in the
model that we choose to describe the data x. The
prior and posterior distributions are, respectively,
denoted by π��	 and π���x	, and L���x	 is the like-
lihood function. Throughout the paper we find it
convenient to adopt beta priors for probabilities.
Kadane and Wolfson (1998) and O’Hagan (1998)
discuss how to translate the beliefs of relevant
experts into the form of prior distributions for the
parameters.

A.1 Model Assessment

Our preferred criterion for model fit is the
Bayesian p-value (Gelman, Meng and Stern, 1996).
This assumes that goodness of fit is assessed by
some discrepancy measure between the observed
data x and expected values e. We use the Freeman–
Tukey statistic (Freeman and Tukey, 1950, Bishop,
Fienberg and Holland, 1975)

D�x��	 =∑
j

(√
xj − √

ej
)2
�

There are various alternatives to this discrepancy;
for example, Gelman, Meng and Stern (1996) sug-
gest Pearson’sX2. However, in our work, many cells
may contain few observations, and the Freeman–
Tukey measure removes the need to pool small cells
to avoid overweighting. The square root serves to
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stabilize the variance in the models we shall be con-
sidering.
Typically, the classical approach is to calculate the

discrepancy only once, with the parameters equal to
the maximum likelihood estimates. However, since,
from the Bayesian perspective, � has not a fixed
value but a distribution, an alternative approach is
required in which we obtain not a single discrepancy
value, but a sample from the posterior distribution
of discrepancy values. A similar classical approach
is to sample � values from the asymptotic normal
distribution of the maximum likelihood estimator.
Goodness of fit is thus measured by first obtain-

ing a sample �i� i = 1� � � � � n, of parameter values
from the posterior distribution using an appropri-
ate MCMC sampler. Then, for each �i, we calculate
D�x��i	 as a measure of the discrepancy between
the data and the corresponding model. For compar-
ison, we also generate a new set of data xi by sam-
pling from the model. For each new data set xi, we
then calculate D�xi��i	.
These discrepancy values can then be used to

obtain a Bayesian p-value, which essentially quan-
tifies the degree of “surprise” associated with the
observed data under the assumed model and prior.
If the model adequately describes the data, which
are themselves not at odds with the prior, then
observations sampled from the posterior predic-
tive distribution should be “similar” to the observed
data. Thus, the distributions of the discrepancy
measures for the observed and simulated data
should be similar (unless the data are surpris-
ing) and a p-value can be formed by recording
the proportion of times D�xi��i	 is greater than
D�x��i	.
Note that other definitions of a Bayesian p-value

exist. Bayarri and Berger (1999) compare the inter-
pretation of various definitions, based upon the
prior and predictive distributions, as well as a com-
promise between the two based upon the “partial”
posterior predictive distribution. Advantages and
disadvantages exist for each but they are likely to
lead to similar inference in most practical problems.
The Gelman and Meng p-value we use can

be illustrated graphically by plotting each of the
D�x��i	 against the corresponding D�xi��i	 value.
In practice, it is generally best to produce both
the graphical summary and Bayesian p-value,
since it is possible for the distributions of D�x��i	
and D�xi��i	 to differ, yet still provide an optimal
p-value of 0.5. This sort of behavior is easily spot-
ted in the graphical summary. These plots will also
reveal the distribution of D�x��i	, and a model with
a smaller mean discrepancy, for example, might be
preferred.

It is important to note that changing the prior can
have a large effect on the p-value, as in Table 7.

A.2 Model Probabilities and Averaging
Given a set of models M1� � � � �Mk� say, which a

priori we are willing to consider as realistic alter-
natives for describing a particular data set, it is
possible to derive probabilities associated with each
model, which may then be used to discriminate
between them.
We begin by assigning a prior probability pi =

Pr�Mi	 to each model. Commonly, these prior proba-
bilities are equal, representing the assumption that
each model is equally likely. Alternatively, the prior
probabilities may be some function of the number
of parameters in each model, so that models with
large numbers of parameters are explicitly penal-
ized. The choice of prior is entirely at the analyst’s
discretion, but should be based upon all available
information about the problem at hand before the
data were collected. For illustrative purposes, we
assume throughout the paper that all models under
consideration are equally likely a priori.
Once we have observed data x, we can calcu-

late the posterior probabilities associated with each
model. Clearly

Pr�Mi � x	 = f�x �Mi	pi
f�x	 �(5)

with obvious notation, and

f�x �Mi	 =
∫
Li���x	πi��	d� = ci�x	�

say. Dropping the notational dependence upon the
data x, ci is simply the normalization constant for
the posterior distribution of � under model Mi.
Hence, the posterior model probability is propor-
tional to the product of the prior probability pi
and the normalization constant ci for the model.
In practice, the denominator in (5) is unknown, so
that typically the posterior model probabilities are
known only up to a normalization constant.
The ci are commonly analytically intractable, but

they may be approximated by observing that ci
could be thought of as the expected value of the
likelihood under the prior distribution for �. Thus,
by simulating values �1� � � � ��n from the prior and
calculating the corresponding likelihood values, an
estimate for ci is given by

ĉi =
1
n

n∑
j=1
Li��j�x	�

Various alternative estimators are also available,
see Gamerman (1997, page 195).
To compare two competing models, M1 and M2,

say, we can compute the corresponding model proba-
bilities up to a normalization constant and calculate
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the ratio,
Pr�M1 � x	
Pr�M2 � x	 = p1c1

p2c2
�

If the prior probabilities are equal, this posterior
odds ratio is also known as the Bayes factor (Kass
and Raftery, 1995). In order to compare several mod-
els, the relative posterior model probabilities may be
calculated by dividing each by the sum of the prob-
abilities of all models under considerations. Thus,

Pr�Mi � x	 = pici
/ k∑
j=1
pjcj�

Note that the posterior model probabilities can be
quite sensitive to the priors used; see Table 7.
In many Bayesian applications, these model prob-

abilities are not used to discriminate between mod-
els, but to average over them. We write π�� �Mi�x	
to denote the posterior distribution for � under
modelMi. We can then form the averaged posterior
distribution π̄�� � x	 from

π̄�� � x	 =∑
i

Pr�Mi � x	π�� �Mi�x	

[Carlin and Louis, 1996, (2.28)]. It then follows that

E�� � x	 =∑
i

Pr�Mi � x	E�� �Mi�x	�(6)

E���T � x	 =∑
i

Pr�Mi � x	E���T �Mi�x	�(7)

from which it is simple to estimate the model-
averaged posterior means and standard deviations
of the parameters.

A.3 Sampling Strategies

The implementation of the two most common
MCMC samplers is reasonably straightforward.
Ideally, when the Gibbs sampler is used, each of the
conditionals will be of the form of a standard distri-
bution and suitable prior specification may ensure
that this is the case. However, in the cases where
one or more of the conditionals is nonstandard,
there are many ways to sample from univariate
conditionals. The problems commonly encountered
when studying data of the sort discussed in this
paper are often economically overcome by using
the ratio-of-uniforms method to sample from non-
standard conditional distributions; see Wakefield,
Gelfand and Smith (1991) or Ripley (1987, page 66).
An alternative to using univariate sampling

methods for nonstandard conditionals in the Gibbs
sampler is to use a single Metropolis–Hastings
accept–reject step instead. Thus, we form a hybrid
of the two common MCMC samplers, known as the
Metropolis-within-Gibbs sampler. Here, Metropolis–
Hastings steps are introduced into the Gibbs

sampler, so that components whose conditional dis-
tributions are of a standard form may be sampled
directly from the full conditional, while those with
nonstandard distributions are updated via a uni-
variate Metropolis–Hastings step, as discussed in
Tierney (1994). This is sometimes simpler to imple-
ment than rejection-based methods such as the
ratio method and will generally be quicker per
iteration, since only one accept–reject step is per-
formed. However, allowing Metropolis–Hastings
updates may sometimes result in a “slow” Markov
chain, due to the rejection of Metropolis propos-
als, restricting movement around the parameter
space in these directions. Thus, more iterations are
needed to overcome problems associated with strong
dependence between successive observations. This
is discussed further in Brooks (1999).
In this paper we use the Gibbs sampler, using the

ratio-of-uniforms method to sample from nonstan-
dard posterior conditional distributions. This avoids
pilot tuning of random walk proposals and appears
to be very efficient. Checking was done using the
Metropolis-within-Gibbs hybrid procedure provided
by BUGS, and identical results were obtained.

A.4 Implementation Issues

Vounatsou and Smith (1995) found, in a limited
study, that the Gibbs sampler and Metropolis–
Hastings methods had similar convergence rates.
This is disputed by Brooks (1999) who finds that
the convergence rate of the Gibbs sampler is much
faster than that of the Metropolis–Hastings algo-
rithm, though the latter is computationally much
faster to implement. Thus, in terms of effective sam-
ples per second, the two approaches are broadly
comparable. In general, we have found that MCMC
convergence appears to be very rapid for the simu-
lations that we have performed. This may be partly
due to the fact that the models we are using result
in posterior distributions that are unimodal (though
ridges do sometimes occur as we shall discuss in
the next section), so that the MCMC sampler does
not have to pass through regions of low density in
order to explore all regions of high posterior den-
sity in the parameter space. Such an occurrence
can slow convergence considerably, since the chain
tends to stick around a region of high posterior
density. In addition to this, our model parameters
are all probabilities and thus constrained to lie
between zero and one. This makes the MCMC algo-
rithm fairly robust against the choice of sampling
mechanism, since nearly any updating procedure
will work fairly well; see Brooks (1999) for example.
In general, a typical Bayesian analysis may be

performed in the following steps. Following selec-
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tion of a suitable prior in consultation with a rel-
evant expert, the form of the posterior distribution
should be examined to determine whether the Gibbs
or Metropolis–Hastings algorithms would be easier
to implement. The Gibbs sampler is generally pre-
ferred when the posterior conditionals are easy to
sample from exactly. Brooks (1999) provides further
discussion on this point.
We have found that plots of the sample autocor-

relation function from runs of the MCMC algorithm
provide a good indicator as to how well the sam-
pler is performing and give an idea of the strength
of the dependence between successive sampled
observations. There are a variety of more formal
convergence diagnostics (see Cowles and Carlin,
1996 and Brooks and Roberts 1999). However, the
convergence of our MCMC simulations appears
to be so rapid that the routine use of such meth-
ods seems unnecessary. In general, we have found
it necessary to run only a single MCMC replica-
tion for around 10000 iterations, discarding the
first 1000 or so as a rather gross overestimate of
the length of the burn-in period. Finally, since the
MCMC algorithms appear to have little difficulty
in traversing the parameter space fairly rapidly,
we have found that the choice of starting values
is fairly arbitrary. For the simulations reported in
this paper, we have started our chains at the mean
of the prior distribution.
For further discussion of implementation issues

see Kass, Carlin, Gelman and Neal (1998) and
Brooks (1997).

B. The BUGS Package

Many people prefer the flexibility of writing
their own code to implement MCMC algorithms.
However, a very powerful and versatile computer
package known as BUGS is also available and
can be used to perform the simulations discussed
in this paper. The BUGS package implements the
Gibbs sampler, see Gilks, Thomas and Spiegelhalter
(1992), Spiegelhalter, Thomas and Best (1996) and
Spiegelhalter, Thomas, Best and Gilkes (1996), and
has been widely adopted by statistical practitioners.
Once the command syntax has been understood,
the BUGS package is very easy to use and ideal for
models of the sort described in this paper.
In order to use the package to perform the sim-

ulations associated with any particular model, the
user must first define the model and prior structure,
using an Splus-type syntax. Typically, this is done
by creating a file of commands defining the model
structure.
There are a couple of disadvantages associated

with the use of BUGS over code written in C or

Fortran, for example. First, BUGS tends to be
somewhat slower (up to five times slower, depend-
ing upon the platform) than C or Fortran code.
Second, BUGS decides for itself how to perform
the MCMC updates (e.g., adaptive rejection sam-
pling or univariate Metropolis–Hastings steps), so
that there is no flexibility in choosing the updating
mechanism for the Markov chain. This prevents
the user from tailoring the updating mechanism
to overcome high serial correlations in the MCMC
output, for example. However, BUGS does provide
a very user-friendly interface, with the PC versions
having various pull-down menus and excellent
graphical facilities. Thus, BUGS is ideal for any
newcomer to MCMC methods and simulation.
It should be noted that the code shown below may

not work in early versions of the BUGS software
package, but it is known to work for the Windows
version of BUGS (WinBUGS), release 1.0 and later.
The WinBUGS package is presently available free of
charge from the BUGS website at http://www.mrc-
bsu.cam.ac.uk/bugs/.
In order to compile and run a model, the code

must be saved to a file. This file can then be read
into BUGS using the Open option on the File pull-
down menu. Next, the model must be “checked” by
using the Check Model option on the Model menu.
The data is read in by highlighting the relevant
lines in the code and choosing the Data option on
the Model menu. The code is then ready to be com-
piled. Once the model has been successfully com-
piled, the initial values can be read in, in the same
way as the data, and then the MCMC simulation
begins once the Updates option is selected.
Various options are available under the Statistics

pull-down menu, including real time trace plots of
the MCMC simulations, summary statistics and acf
plots.

B.1 The BUGS Code

The code shown below is for the T/A/T model
for the Teal data. Note that in order to specify the
desired model in the form required by BUGS, the
likelihood is specified as being the product of a
series of multinomial distributions on the rows of
the recovery table (given in Table 2.1). Thus, a final
column must be added to account for those animals
released but never subsequently recovered. Also,
since BUGS cannot calculate the product of vector
elements, the � term from equation (1) is specified
as the exponential of the sum of log terms. Beyond
that, the code should be self-explanatory.
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model teal;
# Define the data
list(ni = 7, nj = 12, m = structure(.Data = c(
6, 2, 1, 1, 0, 2,1,0,0,0,0,0, 897,
0,11, 5, 6, 1, 1,1,1,0,0,0,1,1130,
0, 0,19, 4, 4, 4,0,0,1,1,0,0,1361,
0, 0, 0,65,25, 8,4,2,4,4,1,0,3441,
0, 0, 0, 0,65,17,2,1,6,2,3,1,4752,
0, 0, 0, 0, 0,52,9,8,3,4,2,1,2476,
0, 0, 0, 0, 0, 0,3,1,0,1,0,0, 300), .Dim = c(7,13)))

# Define the initial parameter values
list(lambda = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
phi = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
phi1 = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5))

# Define the variables
var
m[ni,nj+ 1], # Observations
r[ni], # Release data
lambda[nj], # Recovery probs
phi[nj− 1], # Survival probs
wp[nj,ni,nj], # Workspace
p[ni,nj+ 1]; # Cell probabilities
phi1[ni]; # 1st year survival probs

# Begin the model definition
�
# Define the priors
for (i in 1:(nj− 1))�phi[i] ∼ dbeta(1,1);�
for (i in 1:nj)�lambda[i] ∼ dbeta(1,1);�
for (i in 1:ni)�phi1[i] ∼ dbeta(1,1);�
tt
# Define the likelihood
for(i in 1:ni)�m[i, 1:(nj+ 1)] ∼ dmulti(p[i, ], r[i]);�

# Calculate the no. of birds released each year
for(i in 1 : ni)�
r[i] <- sum(m[i, ])

�
# Calculate the cell probabilities
for(i in 1:ni)�
# main diagonal
p[i, i] <- lambda[i] * (1− phi1[i]);
# above main diagonal
p[i,i+ 1] <- lambda[i+ 1]*phi1[i]*(1− phi[1])
# further above
for(j in (i+ 2):nj)�
for(k in 1:(j− i− 1))�
wp[i, j, k] <- log(phi[k])
�
p[i, j] <- lambda[j] * phi1[i]*(1− phi[j− i]) *
exp(sum(wp[i, j, 1: (j− i− 1)]));
�
# below main diagonal
for(j in 1:(i− 1))�
p[i, j] <- 0;
�
# last column: probability of non-recovery
p[i, nj+ 1] <- 1− sum(p[i, 1:nj])
�
�
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