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We present an efficient, principled, and interpretable technique for inferring module assignments and
for identifying the optimal number of modules in a given network. We show how several existing methods
for finding modules can be described as variant, special, or limiting cases of our work, and how the
method overcomes the resolution limit problem, accurately recovering the true number of modules. Our
approach is based on Bayesian methods for model selection which have been used with success for almost
a century, implemented using a variational technique developed only in the past decade. We apply the
technique to synthetic and real networks and outline how the method naturally allows selection among
competing models.
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Large-scale networks describing complex interactions
among a multitude of objects have found application in a
wide array of fields, from biology to social science to
information technology [1,2]. In these applications one
often wishes to model networks, suppressing the complex-
ity of the full description while retaining relevant informa-
tion about the structure of the interactions [3]. One such
network model groups nodes into modules, or ‘‘commun-
ities,’’ with different densities of intra- and interconnectiv-
ity for nodes in the same or different modules. We present
here a computationally efficient Bayesian framework for
inferring the number of modules, model parameters, and
module assignments for such a model.

The problem of finding modules in networks (or ‘‘com-
munity detection’’) has received much attention in the
physics literature, wherein many approaches [4,5] focus
on optimizing an energy-based cost function with fixed
parameters over possible assignments of nodes into mod-
ules. The particular cost functions vary, but most compare
a given node partitioning to an implicit null model, the two
most popular being the configuration model and a limited
version of the stochastic block model (SBM) [6,7]. While
much effort has gone into how to optimize these cost
functions, less attention has been paid to what is to be
optimized. In recent studies which emphasize the impor-
tance of the latter question it was shown that there are
inherent problems with existing approaches regardless of
how optimization is performed, wherein parameter choice
sets a lower limit on the size of detected modules, referred
to as the ‘‘resolution limit’’ problem [8,9]. We extend
recent probabilistic treatments of modular networks
[10,11] to develop a solution to this problem that relies
on inferring distributions over the model parameters, as
opposed to asserting parameter values a priori, to deter-
mine the modular structure of a given network. The devel-
oped techniques are principled, interpretable, compu-

tationally efficient, and can be shown to generalize several
previous studies on module detection.

We specify an N-node network by its adjacency matrix
A, where Aij � 1 if there is an edge between nodes i and j
and Aij � 0 otherwise, and define �i 2 f1; . . . ; Kg to be
the unobserved module membership of the ith node. We
use a constrained SBM, which consists of a multinomial
distribution over module assignments with weights �� �
p��i � �j ~�� and Bernoulli distributions over edges con-
tained within and between modules with weights #c �

p�Aij � 1j�i � �j; ~#� and #d � p�Aij � 1j�i � �j; ~#�,
respectively. In short, to generate a random undirected
graph under this model we roll a K-sided die (biased by
~�) N times to determine module assignments for each of
theN nodes; we then flip one of two biased coins (for either
intra- or intermodule connection, biased by #c, #d, respec-
tively) for each of the N�N � 1�=2 pairs of nodes to
determine if the pair is connected. The extension to di-
rected graphs is straightforward.

Using this model, we write the joint probability
p�A; ~�j ~�; ~#; K� � p�Aj ~�; ~#�p� ~�j ~�� (conditional depen-
dence on K has been suppressed below for brevity) as

 p�A; ~�j ~�; ~#� � #c�c �1� #c�
c�#d�d �1� #d�

d�
YK
��1

�
n�
� ;

(1)

where c� �
P
i>jAij��i;�j is the number of edges con-

tained within communities, c� �
P
i>j�1� Aij���i;�j is

the number of nonedges contained within communities,
d� �

P
i>jAij�1� ��i;�j� is the number of edges between

different communities, d� �
P
i>j�1� Aij��1� ��i;�j� is

the number of nonedges between different communities,
and n� �

PN
i�1 ��i;� is the occupation number of the �th
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module. Defining H � � lnp�A; ~�j ~�; ~#� and regrouping
terms by local and global counts, we recover (up to additive
constants) a generalized version of [10]:

 H � �
X
i>j

�JLAij � JG���i;�j �
XK
��1

h�
XN
i�1

��i;�; (2)

a Potts model Hamiltonian with unknown coupling con-
stants JG � ln�1� #d�=�1� #c�, JL � ln#c=#d � JG,
and chemical potentials h� � � ln��. (Note that many
previous methods omit a chemical potential term, implic-
itly assuming equally sized groups.)

While previous approaches [4,10] minimize related
Hamiltonians as a function of ~�, these methods require
that the user specifies values for these unknown constants,
which gives rise to the resolution limit problem [8,9]. Our
approach, however, uses a disorder-averaged calculation to
infer distributions over these parameters, avoiding this
issue. To do so, we take beta �B� and Dirichlet �D� dis-
tributions over ~# and ~�, respectively:

 p� ~#�p� ~�� � B�#c; ~c�0
; ~c�0
�B�#d; ~d�0

; ~d�0
�D� ~�; ~~n0�:

(3)

These conjugate prior distributions are defined on the full
range of ~# and ~�, respectively, and their functional forms
are preserved when integrated against the model to obtain
updated parameter distributions. Their hyperparameters
f~c�0

; ~c�0
; ~d�0

; ~d�0
; ~~n0g act as pseudocounts that augment

observed edge counts and occupation numbers.
In this framework the problem of module detection can

be stated as follows: given an adjacency matrix A, deter-
mine the most probable number of modules (i.e., occupied
spin states) K� � argmaxKp�KjA� and infer posterior dis-
tributions over the model parameters (i.e., coupling con-
stants and chemical potentials) p� ~�; ~#jA� and the latent
module assignments (i.e., spin states) p� ~�jA�. In the ab-
sence of a priori belief about the number of modules, we
demand that p�K� is sufficiently weak that maximizing
p�KjA� / p�AjK�p�K� is equivalent to maximizing
p�AjK�, referred to as the evidence. This approach to
model selection [12] proposed by the statistical physicist
Jeffreys in 1935 [13] balances model fidelity and complex-
ity to determine, in this context, the number of modules.

A more physically intuitive interpretation of the evi-
dence is as the disorder-averaged partition function of a
spin glass, calculated by marginalizing over the possible
quenched values of the parameters ~# and ~� as well as the
spin configurations ~�:

 Z � p�AjK� �
X
~�

Z
d ~#

Z
d ~�p�A; ~�j ~�; ~#�p� ~#�p� ~��

(4)

 �
X
~�

Z
d ~#

Z
d ~�e�Hp� ~#�p� ~��: (5)

While the ~# and ~� integrals in Eq. (4) can be performed
analytically, the remaining sum over module assignments
~� scales as KN and becomes computationally intractable
for networks of even modest sizes. To accommodate large-
scale networks we use a variational approach that is
well known to the statistical physics community [14] and
has recently found application in the statistics and machine
learning literature, commonly termed variational Bayes
(VB) [15]. We proceed by taking the negative logarithm
of Z and using Gibbs’s inequality:

 � lnZ � � ln
X
~�

Z
d ~#

Z
d ~�q� ~�; ~�; ~#�

p�A; ~�; ~�; ~#jK�

q� ~�; ~�; ~#�

 � �
X
~�

Z
d ~#

Z
d ~�q� ~�; ~�; ~#� ln

p�A; ~�; ~�; ~#jK�

q� ~�; ~�; ~#�
: (6)

That is, we first multiply and divide by an arbitrary ap-
proximating distribution q� ~�; ~�; ~#� and then upper-bound
the log of the expectation by the expectation of the log. We
define the quantity to be minimized—the expression in
Eq. (6)—as the variational free energy Ffq; Ag, a func-
tional of q� ~�; ~�; ~#�. (Note that the negative log of
q� ~�; ~�; ~#� plays the role of a test Hamiltonian in varia-
tional approaches in statistical mechanics.)

We next choose a factorized approximating distribution
q� ~�; ~�; ~#��q ~�� ~��q ~�� ~��q ~#�

~#� with q ~�� ~���D� ~�; ~n� and

q ~#�
~#� � qc�#c�qd�#d� � B�#c; ~c�; ~c��B�#d; ~d�; ~d��;

as in mean field theory, we factorize q ~�� ~�� as q��i �
�� � Qi�, an N-by-K matrix which gives the probability
that the ith node belongs to the �th module. Evaluating
Ffq; Ag with this functional form for q� ~�; ~�; ~#� gives a
function of the variational parameters f~c�; ~c�; ~d�; ~d�; ~~ng
and matrix elements Qi� which can subsequently be mini-
mized by taking the appropriate derivatives.

We summarize the resulting iterative algorithm, which
provably converges to a local minimum of Ffq; Ag and
provides controlled approximations to the evidence
p�AjK� as well as the posteriors p� ~�; ~#jA� and p� ~�jA�:

Initialization.—Initialize the N-by-K matrix Q � Q0

and set pseudocounts ~c� � ~c�0
, ~c� � ~c�0

, ~d� � ~d�0
,

~d� � ~d�0
, and ~n� � ~n�0

.
Main loop.—Until convergence in Ffq; Ag:
(i) Update the expected value of the coupling constants

and chemical potentials

 hJLi �  �~c�� �  �~c�� �  �~d�� �  �~d�� (7)

 hJGi� �~d��� �~d�� ~d��� �~c��� �~c��~c�� (8)

 hh�i �  
�X
�

~n�

�
�  �~n��; (9)

where  �x� is the digamma function;
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(ii) Update the variational distribution over each spin �i

 Qi� / exp
�X
j�i

	hJLiAij � hJGi
Qj� � hh�i
�

(10)

normalized such that
P
�Qi� � 1, for all i;

(iii) Update the variational distribution over parameters
from the expected counts and pseudocounts

 ~n � � hn�i � ~n�0
�
XN
i�1

Qi� � ~n�0
(11)

 ~c� � hc�i � ~c�0
� 1

2 Tr�QTAQ� � ~c�0
(12)

 ~c� � hc�i� ~c�0
� 1

2Tr�QT� ~uh ~niT�Q���hc�i� ~c�0

(13)

 

~d� � hd�i � ~d�0
� M� hc�i � ~d�0

(14)

 

~d� � hd�i � ~d�0
� C�M� hc�i � ~d�0

; (15)

where C � N�N � 1�=2, M �
P
i>jAij, and ~u is a N-by-1

vector of 1’s;
(iv) Calculate the updated optimized free energy

 Ffq; Ag � � ln
ZcZdZ ~�

~Zc
~Zd

~Z ~�

�
XK
��1

XN
i�1

Qi� lnQi�; (16)

where Z ~� � B�~~n� is the beta function with a vector-valued
argument, the partition function for the Dirichlet distribu-
tion q ~�� ~�� [likewise for qc�#c�, qd�#d�]. As this provably
converges to a local optimum, VB is best implemented
with multiple randomly chosen initializations of Q0 to find
the global minimum of Ffq; Ag.

Convergence of the above algorithm provides the ap-
proximate posterior distributions q ~�� ~��, q ~�� ~��, and q ~#�

~#�
and simultaneously returns K�, the number of nonempty
modules that maximizes the evidence. As such, one needs
only to specify a maximum number of allowed modules
and run VB; the probability of occupation for extraneous
modules converges to zero as the algorithm runs and the
most probable number of occupied modules remains.

This is significantly more accurate than other approxi-
mate methods, such as Bayesian information criterion
(BIC) [16] and integrated classification likelihood (ICL)
[17,18], and is less computationally expensive than em-
pirical methods such as cross-validation (CV) [19,20] in
which one must perform the associated procedure after
fitting the model for each considered value of K.
Specifically, BIC and ICL are suggested for single-peaked
likelihood functions well approximated by Laplace inte-
gration and studied in the large-N limit. For a SBM the first
assumption of a single-peaked function is invalidated by
the underlying symmetries of the latent variables; i.e.,
nodes are distinguishable and modules indistinguishable.
See Fig. 1 for a comparison of our method with the Girvan-

Newman modularity [5] in the resolution limit test [8,9],
where VB consistently identifies the correct number of
modules. [Note that VB is both accurate and fast: it per-
forms competitively in the ‘‘four groups’’ test [21] and
scales as O�MK�. Runtime for the main loop in MATLAB

on a 2 GHz laptop is �6 min for N � 106 nodes with
average degree 16 and K � 4.]

Furthermore, we note that previous methods in which
parameter inference is performed by optimizing a like-
lihood function via expectation maximization (EM)
[11,18] are also special cases of the framework presented
here. EM is a limiting case of VB in which one collapses
the distributions over parameters to point estimates at the
mode of each distribution; however EM is prone to over-
fitting and cannot be used to determine the appropriate
number of modules, as the likelihood of observed data
increases with the number of modules in the model. As
such, VB performs at least as well as EM while simulta-
neously providing complexity control [22,23].

In addition to validating the method on synthetic net-
works, we apply VB to the 2000 NCAA American football
schedule shown in Fig. 2 [24]. Each of the 115 nodes
represents an individual team and each of the 613 edges
represents a game played between the nodes joined. The
algorithm correctly identifies the presence of the 12 confer-
ences which comprise the schedule, where teams tend to
play more games within than between conferences, making
most modules assortative. Of the 115 teams, 105 teams are
assigned to their corresponding conferences, with the ma-
jority of exceptions belonging to the frequently misclassi-
fied independent teams [25]—the only disassortative

FIG. 1 (color). Results for the resolution limit test suggested in
[8,9]. Shapes and colors correspond to the inferred modules.
(Left) Our method, variational Bayes, in which all 15 modules
are correctly identified (each clique is assigned a unique color/
shape). (Right) GN modularity optimization, where failure due
to the resolution limit is observed—neighboring cliques are
incorrectly grouped together. (Bottom) The results of this test
implemented for a range of true number of modules, Ktrue, the
number of 4-node cliques in the ringlike graph. Note that our
method correctly infers the number of communities KVB over the
entire range of Ktrue, while GN modularity initially finds the
correct number of communities but fails for Ktrue � 15 as shown
analytically in [9].
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group in the network. We emphasize that, unlike other
methods in which the number of conferences must be
asserted, VB determines 12 as the most probable number
of conferences automatically.

Posing module detection as inference of a latent variable
within a probabilistic model has a number of advantages. It
clarifies what precisely is to be optimized and suggests a
principled and efficient procedure for how to perform this
optimization. Inferring distributions over model parame-
ters reveals the natural scale of a given modular network,
avoiding resolution limit problems. This method allows us
to view a number of approaches to the problem by physi-
cists, applied mathematicians, social scientists, and com-
puter scientists as related subparts of a larger problem. In
short, it suggests how a number of seemingly disparate
methods may be recast and united. A second advantage of
this work is its generalization to other models, including
those designed to reveal structural features other than
modularity. Finally, use of the evidence allows model
selection not only among nested models, e.g., models
differing only in the number of parameters, but even
among models of different parametric families. The last
strikes us as a natural area for progress in the statistical
study of real-world networks.
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FIG. 2 (color). Each of the 115 nodes represents a NCAA team
and each of the 613 edges a game played in 2000 between two
teams it joins. The inferred module assignments (designated by
color) on the football network which recover the 12 NCAA
conferences (designated by shape). Nodes 29, 43, 59, 60, 64, 81,
83, 91, 98, and 111 are misclassified and are mostly independent
teams, represented by parallelograms.
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