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Bayesian Approaches for Missing Not at
Random Outcome Data: The Role of
Identifying Restrictions
Antonio R. Linero and Michael J. Daniels

Abstract. Missing data is almost always present in real datasets, and intro-
duces several statistical issues. One fundamental issue is that, in the absence
of strong uncheckable assumptions, effects of interest are typically not non-
parametrically identified. In this article, we review the generic approach of
the use of identifying restrictions from a likelihood-based perspective, and
provide points of contact for several recently proposed methods. An empha-
sis of this review is on restrictions for nonmonotone missingness, a subject
that has been treated sparingly in the literature. We also present a general,
fully Bayesian, approach which is widely applicable and capable of handling
a variety of identifying restrictions in a uniform manner.
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1. INTRODUCTION

Missing data is highly prevalent in real datasets.
Within a likelihood-based framework, missing data can
best be categorized as either ignorable or nonignorable
(Rubin, 1976); the former does not require a model for
the missingness process, while the latter does. Non-
ignorable missingness introduces fundamental identi-
fiability issues because, by virtue of the fact that we
did not observe the missing data, we have no data with
which to estimate its distribution.

The literature is filled with approaches which resolve
identifiability issues by making parametric modeling
assumptions (see Section 2 for a review). Following
Cox and Donnelly (2011), page 96, however, we be-
lieve that if an issue cannot be resolved nonparametri-
cally given an infinite sample then it is “usually dan-
gerous to resolve it parametrically.” While paramet-
ric approaches are useful, we argue that they should
not indirectly resolve identifiability issues. An alterna-
tive approach is to incorporate nonidentifiability into
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the analysis. The full-data distribution can be factored
into two components: (1) the observed-data distribu-
tion, which is identified by the observed data; and
(2) the conditional distribution of the missing data
given the observed data, sometimes called the extrapo-
lation distribution, which is not identified (Daniels and
Hogan, 2008, Section 8.2, Little, 1995). Different as-
sumptions about the missing data can be expressed in
terms of identifying restrictions which allow the ana-
lyst to recover the full-data distribution from the ob-
served data distribution. The most well-known identi-
fying restriction is the missing at random (MAR) as-
sumption (Rubin, 1976), but many alternatives exist.

The National Research Council (2010) recommends
the routine use of sensitivity analysis to assess the im-
pact of assumptions about the missing data on infer-
ence. Two approaches to sensitivity analysis are to first
consider many different identifying restrictions (Thijs
et al., 2002) and second (in the spirit of Rotnitzky,
Robins and Scharfstein, 1998, and Daniels and Hogan,
2008, Chapter 9) to introduce an unidentified sensitiv-
ity parameter ξ which represents an interpretable de-
viation from a benchmark identifying restriction. The
sensitivity parameter ξ should be such that (1) there is
no information in the data to inform ξ and (2) upon
specification of ξ , the effects of interest are identified.
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Concerns about parametric assumptions have moti-
vated frequentist semiparametric approaches (Robins,
Rotnitzky and Zhao, 1995, Scharfstein, Rotnitzky and
Robins, 1999) which make minimal assumptions about
the full-data distribution. These approaches posit a
parametric model for the missing data mechanism and
a semiparametric model for the outcome distribution,
and produce estimates by solving inverse-probability-
weighted (IPW) estimating equations. These proce-
dures are frequently doubly robust, requiring the an-
alyst to specify one of the two models correctly to
attain consistent estimation (Scharfstein, Rotnitzky
and Robins, 1999, Rotnitzky, Robins and Scharfstein,
1998, Tsiatis, 2007). Recently, there have been vari-
ous likelihood-based approaches proposed which have
the flexibility of semiparametric approaches and al-
low a flexible sensitivity analysis (Wang et al., 2010,
Linero and Daniels, 2015, Linero, 2017). An advantage
of the Bayesian approach is that it allows for uncer-
tainty about the unidentified components of the model
to be encoded in an informative prior, allowing the an-
alyst to incorporate subject-matter expertise formally
into the analysis.

This article has three goals. First, we provide a re-
view of model-based approaches to nonignorable miss-
ingness, including parametric approaches which iden-
tify the full-data distribution (see National Research
Council, 2010, and Ibrahim and Molenberghs, 2009 for
additional reviews of MNAR modeling strategies). Our
second goal is to summarize and review existing iden-
tifying restrictions in the literature. A special emphasis
is given to recent proposals for nonmonotone missing-
ness, as this subject has received a sparser treatment in
the literature. We highlight several recently proposed
identifying restrictions and characterize them as gener-
alizations of monotone restrictions.

Our third goal is to propose a flexible, fully Bay-
esian, framework for incomplete outcome data. First,
a flexible Bayesian nonparametric model is chosen for
the observed data distribution. Second, we use an iden-
tifying restriction to identify the extrapolation distri-
bution. The framework allows for many different re-
strictions to be used without needing to change the
model used for the observed data, can accommodate
both monotone and nonmonotone missingness, and al-
lows for the introduction of sensitivity parameters. The
proposed approach might be perceived as a competi-
tor to the IPW approaches which are prevalent in the
literature. However, it has several features which IPW
approaches do not. First, the Bayesian framework al-
lows for expert knowledge to be formally incorporated

into the analysis by eliciting informative priors on sen-
sitivity parameters. Second, the approach allows for si-
multaneous inference about functionals of the full-data
distribution, rather than just a specifically chosen func-
tional such as the mean; for example, it is possible to
make inferences about means and quantiles simultane-
ously. Third, we are not required to fit different models
depending on the choice of identifying restriction, al-
lowing for a more principled comparison of different
restrictions.

To illustrate the necessity of conducting a principled
sensitivity analysis, we analyze data from the Breast
Cancer Prevention Trial (BCPT). A concern in this
study was that the treatment tamoxifen might cause de-
pression. We show that the evidence for this hypothesis
is strongly influenced by the assumptions made about
the missingness, and that seemingly similar assump-
tions can yield dramatically different results. This un-
derscores the need for statisticians and subject-matter
experts to work together in determining which assump-
tions about the missing data are most appropriate for a
particular problem.

1.1 Notation

Let Y
(i)
j denote the measurement of variable j in-

tended to be collected on subject i for i = 1, . . . ,N ,
and let Y (i) = (Y

(i)
1 , . . . , Y

(i)
J ). Let R(i) = (R

(i)
1 , . . . ,

R
(i)
J ) be a vector of missingness indicators such that

R
(i)
j = 1 or 0 according to whether Y

(i)
j is observed or

not. For a given binary vector r ∈ {0,1}J , let yr = (yj :
rj = 1) and y−r = (yj : rj = 0). The observed data on

subject i is then given by Y
(i)

R(i) , and the missing data is

given by Y
(i)

−R(i) .

We assume the pairs (Y (i),R(i)) are i.i.d. with den-
sity p(y, r) with respect to some measure; implicitly,
p(y, r) may depend on a parameter vector θ . We refer
to p(y, r) as the full-data distribution. To lighten no-
tation, we will often work with an i.i.d. copy (Y,R) of
(Y (1),R(1)). For simplicity, we omit covariates; in prin-
ciple all distributions we discuss can be defined condi-
tional on fully observed covariates X = x.

We will abuse notation, for example, writing p(y)

for the marginal density of Y or p(r | y) for the prob-
ability of R = r given Y = y; it will always be clear
from context what density is being referred. When spe-
cific arguments are required, we will write for example
p(Rj = 1 | Y = y) for the probability of Rj = 1 given
Y = y.

For a fixed r , let p(y, r) = p(yr, r)p(y−r | yr, r)

denote the extrapolation factorization (Daniels and
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Hogan, 2008, Section 8.2) of p(y, r). This factors
p(y, r) into the product of a term which is identified
and a term which is unidentified. Note that p(yr, r) is
the density of the observed data (YR,R) while p(y−r |
yr, r) is the conditional density of the missing data
Y−R . We refer to p(yr, r) as the observed-data distri-
bution and to p(y−r | yr, r) as the extrapolation distri-
bution.

Missingness is said to be monotone if Rj = 0 implies
Rj+1 = 0. This commonly occurs in longitudinal trials
when missingness is due to dropout. Missingness can
then be summarized by the last time at which a subect
is measured S(i) = max{j : R

(i)
j = 1}, which we refer

to as the (index of the) dropout time. For longitudinal
studies it is also useful to let Ȳ

(i)
j = (Y

(i)
1 , . . . , Y

(i)
j )

denote the history of the response up to time j , and
let Ỹ

(i)
j = (Y

(i)
j+1, . . . , Y

(i)
J ) denote the future of the re-

sponse strictly after time j . Thus, Y (i) = (Ȳ
(i)
j , Ỹ

(i)
j ).

We similarly define R̄
(i)
j and R̃

(i)
j .

1.2 Running Example: The Breast Cancer
Prevention Trial

To make the concepts presented concrete, we will
focus on applications to the Breast Cancer Prevention
Trial (BCPT), a clinical trial which assigned women at
high-risk of developing breast cancer to either a pre-
ventative drug, tamoxifen, or to a placebo. One aim
of this study was to determine if tamoxifen causes
depression. The response Y

(i)
j is 1 or 0 according to

whether subject i is depressed or not at time j . Roughly
N = 5000 subjects were assigned to each of tamox-
ifen (Z = 1) and control (Z = 0). Measurements were
scheduled to be taken at baseline and 3, 6, 12, 18,
24, 30 and 36 months from baseline, for J = 8 in-
tended measurements. There was a substantial amount
of missingness at all time points, and missingness was
highly nonmonotone. A concern is that depression at
time j might be associated with missingness at time j ,
even after conditioning on other observables, resulting
in MNAR missingness. Our primary interest is in the
intention-to-treat effect ψ = E(YJ | Z = 1) − E(YJ |
Z = 0).

To help illustrate concepts, we will also consider a
simplified setting in which J = 2. We refer to this
setting as the reduced Breast Cancer Prevention Trial
(RBCPT). We assume that (Y1, Y2) represent continu-
ous, rather than binary, measures of depression level
(the actual binary responses were created from di-
chotomizing a quantitative score) to create more gen-
erality in the development.

2. BASIC MNAR MODELING STRATEGIES

We divide strategies for modeling p(y, r) into three
categories: (1) selection models; (2) pattern mixture
models; and (3) shared parameter models. In Sec-
tion 2.4, we describe how any of these three approaches
can be used to obtain a model for the observed data,
without modeling the missing data.

2.1 Selection Models

The selection modeling approach (Heckman, 1979)
is based on the factorization p(y, r) = p(y) · p(r | y).
The term p(r | y) is referred to as the missing data
mechanism.

EXAMPLE 1. Consider the RBCPT. With mono-
tone missingness and Y1 always observed, following
Diggle and Kenward (1994), we set

Y ∼ Normal(μ,�),

p(R2 = 1 | y1, y2,R1 = 1)

= expit(φ0 + φ1y1 + φ2y2).

(1)

Selection models are attractive for their conceptual
simplicity. In the context of the BCPT, the selection
factorization suggests a causal mechanism in which de-
pression causes missingness to occur. As p(y) is di-
rectly available, inference is usually straightforward.

One drawback of parametric selection models is that
they may “identify away” the missing data problem.
Observe that φ2 = 0 corresponds to an MAR miss-
ing data mechanism in (1). One may be tempted to
test for MNAR missingness by testing φ2 = 0. As we
have stressed, testing for MAR cannot be done with-
out recourse to parametric assumptions. As illustrated
by Kenward (1998), inferences about MAR in this
setup are extremely sensitive to parametric assump-
tions. When p(y) is a Gaussian density, (φ1, φ2) func-
tion as skewness parameters for p(y2 | y1, r) and can
be estimated from the observed data. Hence, there are
no sensitivity parameters which can be used as a basis
of a sensitivity analysis. In practice, the likelihood of
φ2 may be flat enough that it can be used as an approx-
imate sensitivity parameter (Carpenter, Pocock and Jo-
han Lamm, 2002). This problem is mitigated to some
extent when semiparametric or nonparametric models
for Y are used, although this becomes more difficult as
the dimension of the response increases. Note also that
p(y−r | yr, r) is not available in closed form; conse-
quently, it is difficult to describe on a conceptual level
how missing values are imputed relative to the other
approaches we describe.
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2.2 Pattern Mixture Models

The pattern mixture approach (Little, 1994, 1993,
Hogan and Laird, 1997) is based on the factorization
p(y, r) = p(y | r)p(r). This characterizes p(y) as a
mixture over missingness patterns

∑
r p(y | r)p(r).

The pattern mixture factorization is closely related to
the extrapolation factorization, with p(yr, r) = p(yr |
r) ·p(r). This makes the pattern mixture approach con-
ducive to sensitivity analysis.

EXAMPLE 2. Consider the RBCPT and assume
monotone missingness with Y1 always observed. We
set φ = p(R2 = 1), (Y1 | R2 = r) ∼ Normal(μ(r),

σ
(r)
1 ), and (Y2 | Y1 = y1,R2 = r) ∼ Normal(α(r) +

β(r)y1, σ
(r)
2 ). The parameters (α(0), β(0), σ

(0)
2 ) are un-

identified. One approach to identifying these parame-
ters is to link them to the R2 = 1 pattern, setting, for ex-
ample, (β(0), σ

(0)
2 ) = (β(1), σ

(1)
2 ) and α(0) = α(1) + ξ .

This implies that the influence of Y1 on Y2 and the con-
ditional spread of Y2 do not depend on R2, while the
conditional mean of Y2 is shifted by a fixed amount ξ .
The parameter ξ is a sensitivity parameter, and can be
varied as part of a sensitivity analysis.

Characteristic of pattern mixture models, the above
model allows an interpretable sensitivity analysis and
is transparent in how it imputes missing values on a
conceptual level. There are several shortcomings of the
pattern mixture approach. Conceptually, it is typically
not easy to interpret how the response Y influences the
probability of missingness at time j . In the BCPT, a
pattern mixture model suggests that those with miss-
ing values come from a distinct subpopulation; an ar-
guably more natural way to capture this intuition is
through the use of latent class models (Roy, 2003)
(though as constructed there, they do not allow sen-
sitivity parameters). Pattern mixture models often pos-
sess a large number of unidentified parameters that the
analyst must specify, with the situation becoming un-
wieldy in higher dimensions. Additionally, sparsity in
the observed missing data patterns R(i) may necessi-
tate further modeling of p(y | r) to share information
across times.

2.3 Shared Parameter Approaches

The shared parameter approach captures dependence
between Y (i) and R(i) through shared random effects
(Wu and Carroll, 1988, Henderson, Diggle and Dob-
son, 2000), setting p(y, r) = ∫

p(y | b)p(r | b)G(db).
The random effect distribution G(·) can be specified
parametrically, usually as a multivariate Gaussian dis-
tribution, or nonparametrically.

EXAMPLE 3. Consider the BCPT. We set (b1,

b2) ∼ Normal(μb,�b) and assume that, conditional on
b, all components of (Y,R) are mutually independent
with logitp(Yj = 1 | b) = Z�

j b1 and logitp(Rj = 1 |
b) = W�

j b2. For example, to get a random quadratic

trend over time, we might set Z�
j = W�

j = (1, tj , t
2
j )

where tj is the time of measurement j . This type of
shared parameter model is referred to as a correlated
random effects model (Lin, Liu and Zhou, 2010).

The shared parameter approach provides a highly
flexible framework for analyzing nonignorable miss-
ingness, and is particularly effective for modeling com-
plex data structures (Dunson and Perreault, 2001).
Shared parameter models appeal strongly to intuition,
suggesting that Y and R have a shared, unobserved,
common cause. A drawback of the shared parameter
approach is that it is difficult to separate p(yr, r) from
p(y−r | yr, r), making it difficult to anchor a sensitivity
analysis to an interpretable identifying restriction (see
Section 3). Generally, it is not easy to see what assump-
tions about the missing data mechanism are encoded in
a shared parameter model.

Methods for implementing a sensitivity analysis
for shared parameter models have been developed by
Creemers et al. (2010, 2011). In our example, one

might set logit(p(Yj = 1 | b,R = r)) = Z�
j (b

(i)
1 + rj δ)

which gives an adjustment to the random effect b1 at
the times for which rj = 0. One may then set, for ex-
ample, δ ∼ Normal(μδ,�δ), with ξ = (μδ,�δ) a sen-
sitivity parameter. We feel that this is somewhat against
the spirit of the shared parameter model, as Y and R

are no longer conditionally independent; additionally,
this weakens the causal appeal of the model.

2.4 Observed Data Modeling

The models in Sections 2.1–2.3 have been presented
as models for the joint density p(y, r). An alterna-
tive strategy is to model the observed data distribution
p(yr, r) and leave the extrapolation distribution distri-
bution p(y−r | yr, r) unspecified. One can then fit a
model for p(yr, r) to the data and complete the model
using one of the identifying restrictions described in
Section 3.

Directly modeling p(yr, r) can be challenging to
do in practice, as it requires a model for Yr for ev-
ery pattern r . When missingness is monotone, one ap-
proach is to specify models for p(yj | S ≥ j, ȳj−1) and
p(S = j | S ≥ j, ȳj ). For examples of this approach,
see Scharfstein et al. (2014) and Wang et al. (2010).
Other approaches to directly modeling p(yr, r) often
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use the pattern mixture approach, specifying models
for p(yr | r) while leaving p(y−r | yr, r) unspecified.
See, for example, Little (1994) and Thijs et al. (2002).

A generic approach to modeling the observed data
is to specify a working model (Linero, 2017, Linero
and Daniels, 2015, Daniels and Linero, 2015). One
then implicitly obtains a model for the observed data
p(yr, r) = ∫

p�(y, r) dy−r . In principle, p�(y, r) may
be a selection model, pattern mixture model, or shared
parameter model. In Section 5, we will apply this ap-
proach using a nonparametrically modeled shared pa-
rameter to obtain a highly flexible model of the ob-
served data.

A benefit of the working model approach is that it
allows models which share information across miss-
ingness patterns and time, without identifying the ex-
trapolation distribution. This allows one to avoid a
common pitfall of pattern-mixture models; we can esti-
mate p(yr, r) even when we do not observe some pat-
terns or the amount of data in some patterns is sparse.
Because the model p�(y, r) is used only to obtain a
model for p(yr, r), and is not used as a basis for in-
ference, we are allowed complete freedom in how to
identify the extrapolation distribution. Conveniently,
p�(y, r) can also be used as a basis for Markov chain
Monte Carlo algorithms.

In practice, the working model framework has the
drawback of being somewhat difficult to implement, in
that one must be able to derive the conditional distribu-
tions p�(yr | R = r ′). This places restrictions on which
models can be tractably used; in particular, selection
models and parametric shared parameter models are
difficult to use. Fortunately, there are very flexible
models that are tractable. An additional concern is that,
when p(yr, r) is modeled parametrically, p(y, r) will
usually fall outside of this parametric family. For ex-
ample, when using identifying restrictions, if p(yr | r)

is modeled with a Gaussian distribution, it will not typ-
ically be the case that p(y | r) is Gaussian (Wang and
Daniels, 2011). Consequently, the joint model p(y, r)

may not be easily interpretable, although causal effects
may still be computed using MC integration (see Sec-
tion 4).

3. IDENTIFYING RESTRICTIONS

Identifying restrictions provide a useful starting
point for identifying the extrapolation distribution and
conducting a sensitivity analysis. Informally, an identi-
fying restriction is an assumption about p(y, r) which
links the observed data distribution p(yr, r) to the ex-
trapolation distribution p(y−r | yr, r).

We remark that identifying assumptions differ sub-
tlely throughout the literature; for example, Seaman
et al. (2013) give several nonequivalent definitions of
MAR. All restrictions we consider will be phrased
in the form of conditional independencies, with (e.g.)
MAR corresponding to the conditional independence

statement (Y−r | Yr,R = r)
d= (Y−r | Yr) for all pat-

terns r .
The goal of specifying an identifying restriction is to

nonparametrically identify the parameters of interest.

DEFINITION 3.1. Let Q denote the set of observed
data distributions q(yr, r), and let P be some family
of full-data distributions p(y, r). The family P is said
to nonparametrically identify a parameter ψ(p) if:

1. For every q ∈ Q, there exists a p ∈ P such that
q is the associated observed data density of p.

2. For every q ∈ Q, if p,p′ ∈ P both marginalize
to q , then ψ(p) = ψ(p′).

The family P is said to be nonparametrically sat-
urated (Robins, 1997, Vansteelandt et al., 2006) if,
for each q ∈ Q, there exists a unique p ∈ P which
marginalizes to q .

In the absence of strong subject-matter knowledge,
it is unwise to assume that a particular identifying re-
striction holds. Nevertheless, in practice it can be use-
ful to specify a single identifying restriction as a bench-
mark assumption, and consider interpretable deviations
from that benchmark. For example, one might “an-
chor” an analysis to MAR and consider smooth devia-
tions from MAR. Considering several anchors, and de-
viations from these anchors, provides insight into how
inferences are driven by our assumptions.

We differentiate three different types of identify-
ing restrictions. Joint restrictions completely identify
p(y, r); that is, they lead to nonparametrically sat-
urated models. Marginal restrictions do not identify
p(y, r), but identify the marginals p(yj ); an example is
the sequential explainability assumption (Vansteelandt,
Rotnitzky and Robins, 2007) discussed later. Marginal
restrictions do not lead to nonparametrically saturated
models, but are sufficient to nonparametrically identify
all marginal effects. Marginal restrictions can be use-
ful because (i) they may be more readily interpretable
than joint restrictions, and (ii) they may encode weaker
assumptions. Marginal restrictions are special cases of
partial restrictions, which are any restrictions which do
not identify p(y, r).
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3.1 Identifying Restrictions under Monotone
Missingness

The missing data problem becomes much simpler
when missingness is monotone. In this case, the miss-
ing data pattern can be summarized by the dropout time
S = max{j : Rj = 1}. Monotonicity occurs naturally
when missingness is due to dropout in a longitudinal
study. Techniques for monotone missingness can also
be applied if there is a method of ordering the compo-
nents of Y which makes missingness monotone.

EXAMPLE 4 (NCMV). Consider the BCPT, and
assume that missingness is monotone. We conjecture
that, if a subject drops out at time k < j , then their
missing response at time j can reasonably be approxi-
mated using an equivalent individual who instead drops

out at time j ; so, we set (Yj | Ȳj−1, S = k)
d= (Yj |

Ȳj−1, S = j). Thijs et al. (2002) refer to this as the
neighboring case missing value (NCMV) restriction.

EXAMPLE 5 (ACMV). Consider again the BCPT
with monotone missingness. We conjecture that, if a
subject drops out at time k < j , then their response at
time j can reasonably be approximated by using an
equivalent subject who dropped out after time j ; so,

we set (Yj | Ȳj−1, S = k)
d= (Yj | Ȳj−1, S ≥ j). Little

(1993) refers to this as the available case missing value
(ACMV) restriction.

EXAMPLE 6 (CCMV). In the BCPT, we decide to
use the observations of those who complete the study
to estimate the conditional distribution of the miss-
ing observations; so, we set (Yj | Ȳj−1, S = k)

d= (Yj |
Ȳj−1, S = J ); Little (1993) refers to that as the com-
plete case missing value (CCMV) restriction.

The goal of using these restrictions is to provide
a starting point for a sensitivity analysis. In prac-
tice, when missingness is MNAR, none of the con-
ditional independencies asserted above is realistic; in
fact, ACMV is itself equivalent to MAR (Molenberghs
et al., 1998)! In the BCPT, if the depression status of an
individual at time j is a strong predictor of Rj = 0 then
one may expect the conditional distribution of Yj to be
stochastically larger than what is implied by ACMV,
NCMV, or CCMV.

Under monotone missingness, ACMV is equivalent
to MAR. This suggests that missingness at time j +1 is
causally linked only to the past values of Ȳj . The NFD
restriction (Kenward, Molenberghs and Thijs, 2003)
generalizes this idea.

EXAMPLE 7 (NFD). We posit that missingness at
time j + 1 is causally due to the past and present val-
ues of Y , so that p(S = j | Y) = p(S = j | Ȳj+1), or

equivalently (Yj+1 | S = k, Ȳj )
d= (Yj+1 | S ≥ j, Ȳj ).

This is referred to as the nonfuture dependence (NFD)
assumption.

Despite its causal motivation, we note that NFD is
not a causal law; for example, if (Y,R) share an unob-
served common cause, NFD will usually be violated.
Given that MAR implies NFD, but not vice versa, NFD
leads to an under-identified model (and thus is a par-
tial restriction); in particular, the distribution (Yj | S =
j − 1, Ȳj−1) is unidentified for j > 2. This is conve-
nient, as it allows the analyst to consider families of
restrictions, all of which satisfy the NFD restriction.
For example, Linero and Daniels (2015) centers a sen-
sitivity analysis on the MAR assumption by setting

(Yj | Ȳj−1, S = j − 1)
d= (Yj + ξ | Ȳj−1, S ≥ j), with

ξ = 0 corresponding to MAR.
The ACMV, NCMV and CCMV restrictions are all

joint restrictions. Birmingham, Rotnitzky and Fitzmau-
rice (2003) consider several partial restrictions, includ-
ing the following marginal restriction which is implied
by CCMV.

EXAMPLE 8 (Last-occasion pattern mixture). We
posit that the conditional distribution of YJ at the end
of study, given Ȳj and S = j , can reasonably ap-
proximated by the distribution of those who complete

the study; hence, we set (YJ | Ȳj , S = j)
d= (YJ | Ȳj ,

S = J ).

A general tool for extending the restrictions above
to the nonmonotone settings is to assume that missing-
ness is partially ignorable given S (Harel and Schafer,
2009). This sets p(R = r | Y = y,S = s) = p(R = r |
Yr = yr, S = s), and assumes the parameters of p(r |
y, s) are independent of the parameters of p(y, s).
Analogously to ignorability, partial ignorability en-
sures that likelihood-based inferences for p(y, s) do
not depend on how p(r | y, s) is modeled. See Wang
et al. (2010) for an application of this assumption to
the BCPT data.

3.2 Identifying Restrictions for Nonmonotone
Missingness

The topic of identifying restrictions under nonmono-
tone missingness was initiated by Robins (1997), who
proposed the class of permutation missingness (PM)
models. Let Ōj denote the observed data (including the
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Rj ’s) up to and including time j , and Õj the data ob-
served strictly after time j . The PM restriction assumes

(2) (Rj | Y, R̃j )
d= (Rj | Ȳj−1, Õj )

possibly after applying an a-priori known permutation
to Y . In words, (2) states that missingness at time j can
depend on the “past” and the “observed future,” but not
on the present, where the notion of time is determined
by the given permutation. For longitudinal data, one
can use (2) without a permutation, or use the reverse

permutation to get (Rj | Y, R̄j−1)
d= (Rj | Ōj−1, Ỹj )

which states that missingness depends on the “future”
and the “observed past.”

Our opinion is that PM models are difficult to explain
to practitioners. We review several alternative assump-
tions which have been introduced relatively recently.

EXAMPLE 9 (Sequential explainability). For the
BCPT, we believe that the observed depression levels
prior to time j are sufficient to predict whether or not a
subject will be measured at time j , while the outcome
at time j is not predictive. We therefore impose the se-
quential explainability restriction (Vansteelandt, Rot-

nitzky and Robins, 2007) (Yj | Ōj−1,Rj = 0)
d= (Yj |

Ōj−1,Rj = 1).

EXAMPLE 10 (NIP). For the BCPT, we believe
that, all other observed quantities being equal, missing-
ness at time j is not predictive of depression at time j .
We therefore posit the nearest identified pattern (NIP)

(Linero, 2017) restriction, (Yj | R = r, Yr)
d= (Yj | R =

r�
j , Yr), where r�

j is equal to r , but with j th component
fixed at 1.

Both NIP and sequential explainability are marginal
restrictions. NIP appears similar to NCMV. A more
direct analog is the itemwise conditional indepen-
dence (ICIN) assumption, introduced independently by
Sadinle and Reiter (2017a) and Shpitser (2016).

EXAMPLE 11 (ICIN). For the BCPT, we believe
that all other quantities (both observed and unob-
served) being equal, missingness at time j is not pre-
dictive of depression at time j . We therefore posit
the ICIN restriction (Yj | Rj = 0,R−j , Y−j )

d= (Yj |
Rj = 1,R−j , Y−j ) where R−j = (Rk : k �= j) and
Y−j = (Yk : k �= j) denote R and Y with the j th com-
ponent removed.

ICIN and NIP differ in that (i) NIP conditions only
on the observed components of Y and (ii) ICIN is
a joint restriction. To the extent that conditioning on

additional variables makes conditional independence
more tenable, ICIN is very attractive. To our knowl-
edge, practical algorithms for conducting inference un-
der ICIN are lacking when J is moderately large. Re-
sults of Sadinle and Reiter (2017a) imply that ICIN is
equivalent to NCMV when missingness is monotone.
A proof of the following proposition is deferred to the
Supplementary Material (Linero and Daniels, 2017).

PROPOSITION 3.2. ICIN is an extension of NCMV
to nonmonotone missingness.

Tchetgen Tchetgen, Wang and Sun (2016) intro-
duced the pairwise missing at random assumption. The
name is motivated by the observation that it corre-
sponds to MAR when, for fixed r , we assume R ∈
{r,1}, where 1 = (1, . . . ,1).

EXAMPLE 12 (PMAR). For the BCPT, we believe
that the distribution of the missing values of a sub-
ject can reasonably be approximated using an equiv-
alent subject who was observed at all measurement
times. We therefore posit the pairwise missing at ran-

dom (PMAR) restriction, (Y−r | R = r, Yr)
d= (Y−r |

R = 1, Yr).

Just as ICIN is a joint restriction which generalizes
NCMV, PMAR is a joint restriction which generalizes
CCMV; the following proposition is immediate from
the definition.

PROPOSITION 3.3. PMAR is an extension of
CCMV to nonmonotone missingness.

3.3 Sensitivity Parameters for Identifying
Restrictions

The identifying restrictions in Section 3.1 and Sec-
tion 3.2 are phrased in terms of conditional indepen-
dence relationships which, as we have noted, are not
themselves particularly plausible when Yj is thought to
directly influence Rj . We consider these assumptions
not because we believe the conditional independencies
they suggest, but rather to use as benchmark assump-
tions. These assumptions can be embedded in a family
of restrictions indexed by a sensitivity parameter ξ ∈ �

such that (1) there is no information in the data to iden-
tify ξ and (2) upon specifying ξ , the effects of interest
are identified. It is essential that the sensitivity param-
eter ξ be interpretable; our convention will be to asso-
ciate the benchmark assumption with ξ = 0. The index
ξ can then be thought of as a smooth deviation from
our benchmark assumption.



BAYESIAN APPROACHES FOR MISSING NOT AT RANDOM OUTCOME DATA 205

EXAMPLE 13. For the BCPT, we believe the NIP
restriction is unreasonable because depression at time
J should increase the risk of missingness, even after
accounting for the observed data. We instead assume

p(yJ | yr,R = r) = p(yJ | yr,R = r�
J )eγyJ

E(eγYJ | Yr = yr,R = r�
J )

.

Let A = {r, r�
J }; using Bayes theorem it can be shown

that

log
Odds(RJ = 0 | Yr, YJ = 1,R ∈ A)

Odds(RJ = 0, | Yr, YJ = 0′,R ∈ A)
= γ,

so that γ denotes the effect, on the log-odds scale, of
YJ = 1 on missingness.

The exponential tilting strategy is very widely appli-
cable, and we now outline it in a general form. Exam-
ples of works using this strategy include Birmingham,
Rotnitzky and Fitzmaurice (2003), Wang et al. (2010),
Scharfstein et al. (2014, 1999), Tchetgen Tchetgen,
Wang and Sun (2016), Vansteelandt, Rotnitzky and
Robins (2007). Consider a restriction of the form

(3) (U | V = v,W = w)
d= (

U | V = v′,W = w
)
,

where U is a subset of the missing data, W is a sub-
set of the complete data distinct from U , and V is a
subset of the missing data indicators. The values v and
v′ are such that U is missing when V = v, while U

is observed when V = v′. For example, under sequen-
tial explainability, one has {U = Yj ,W = Ōj−1,V =
Rj , v = 0, v′ = 1} while under PMAR one has {U =
Y−r ,W = Yr,V = R,v = r, v′ = 1}. Let fv(u | w) and
fv′(u | w) denote the densities of the distributions in
(3). The exponential tilting approach sets

(4) fv(u | w) = fv′(u | w) exp{t (u,w)}
E[exp{t (U,w)} | V = v′,W = w] .

The function t (u,w) is a function-valued sensitivity
parameter. By Bayes theorem,

log
Odds(V = v | U = u,W = w,V ∈ {v, v′})
Odds(V = v | U = u′,W = w,V ∈ {v, v′})

= t (u,w) − t
(
u′,w

)
.

Hence, t (·,w) determines the effect of a change in U

on the log-odds of V = v versus V = v′.
Another option is to consider a transformation-based

approach similar to Daniels and Hogan (2000). This
is particularly useful when the underlying response is
continuous.

EXAMPLE 14. Consider the BCPT, but with Y in-
stead representing a continuous measure of depres-
sion level. We believe the NIP restriction is unreason-
able because we expect depression levels to be higher
among those missing at time j , even after conditioning
on the observed data. We instead assume (Yj | Yr =
R = r)

d= (Yj + ξj | Yr,R = r�
j ), where ξj > 0 repre-

sents the expected increase in depression level when a
subject is missing rather than observed.

More generally, starting from (3), one can specify a
generic transformation

(U | V = v,W = w)

d= (
T (U,w) | V = v′,W = w

)
.

(5)

In practice, we must specify T (u,w) to be inter-
pretable by subject-matter experts. Location or loca-
tion-scale transformations, such as Tj (Yj ) = ξ0j +
ξ1jYj , are popular (Daniels and Hogan, 2000, Wang
and Daniels, 2011, Gaskins, Daniels and Marcus,
2016) and can be computationally advantageous. Non-
affine choices for T (·) can be used to rescale the data
before applying an affine transformation.

A meaningful sensitivity analysis requires serious
engagement with subject-matter experts, and as such
requires for � to be low dimensional. A common ap-
proach that does not formally account for the effect
of uncertainty in ξ is a “tipping point” approach. This
identifies values, or regions of values, of ξ which re-
sult in substantively different conclusions for the ef-
fects of interest. If plausible values of ξ do not include
any tipping points, then we can have confidence in our
substantive conclusions; we note, however, that tipping
point analyses do not incorporate uncertainty in ξ when
quantifying uncertainty in treatment effects. For illus-
trations of tipping point analyses, see Scharfstein et al.
(2014) and Liublinska and Rubin (2014). An option
which formally incorporates uncertainty in ξ is to place
an informative prior on ξ . As there is no information in
the data about ξ , this prior for ξ will also be the poste-
rior. An advantage of this approach is that it combines
all restrictions under consideration to achieve a sin-
gle, final, inference. For examples of this approach, see
Daniels and Hogan (2008), Chapter 9, Case Study 2,
Wang et al. (2010), and Gaskins, Daniels and Marcus
(2016).

3.4 A Pattern Mixture Modeling Example

We now show how one might combine the identify-
ing restrictions described above with a model for the
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observed data for the RBCPT (using the original de-
pression score). We specify a pattern mixture model

p(R1 = i,R2 = j) = φij ,[
Y1, Y2 | R = (1,1)

] ∼ Normal
(
μ(1,1),�(1,1)),[

Y1 | R = (1,0)
] ∼ Normal

(
μ

(1,0)
1 , σ

(1,0)
1

)
,[

Y2 | R = (0,1)
] ∼ Normal

(
μ

(0,1)
2 , σ

(0,1)
2

)
.

All parameters above can be estimated from the ob-
served data using standard techniques; for example,
we have μ̂(1,1) = 1

N(1,1)

∑
i:R(i)

1 =R
(i)
2 =1

(Y
(i)
1 , Y

(i)
2 )�. For

convenience, we write

(Y1 | Y2,R1 = 1,R2 = 1) ∼ Normal
(
α + βY2, τ

2)
,

where (α,β, τ ) is a function of (μ(1,1),�(1,1)). Sup-
pose that interest is in the parameter ζ = E(Y1). We
demonstrate how ζ is identified under the PMAR, se-
quential explainability and NIP assumptions. First, by
iterated expectation,

ζ =
1∑

i=0

1∑
j=0

φijE(Y1 | R1 = i,R2 = j).

Observe that E(Y1 | R1 = 1,R2 = 1) = μ
(1,1)
1 and

E(Y1 | R1 = 1,R2 = 0) = μ
(1,0)
1 . This leaves E(Y1 |

R1 = 0,R2 = 0) and E(Y1 | R1 = 0,R2 = 1) to be
identified.

Consider first the PMAR assumption. This implies
E(Y1 | R1 = 0,R2 = 0) = E(Y1 | R1 = 1,R2 = 1) =
μ

(1,1)
1 . Using iterated expectation, PMAR also implies

E(Y1 | R1 = 0,R2 = 1)

= E
{
E(Y1 | Y2,R1 = 0,R2 = 1) | R1 = 0,R2 = 1

}
= E

{
E(Y1 | Y2,R1 = 1,R2 = 1) | R1 = 0,R2 = 1

}
= E(α + βY2 | R1 = 0,R2 = 1) = α + βμ

(0,1)
2 .

This gives

ζPMAR = φ00μ
(1,1)
1 + φ10μ

(1,0)
1

+ φ01
(
α + βμ

(0,1)
2

) + φ11μ
(1,1)
1 .

Next, we consider NIP. The derivations under NIP are
exactly the same as those under PMAR, with the ex-
ception that E(Y1 | R1 = 0,R2 = 0) = E(Y1 | R1 =
1,R2 = 0) = μ

(1,0)
1 . Therefore, under NIP we have

ζNIP = ζPMAR + φ00
(
μ

(1,0)
1 − μ

(1,1)
1

)
.

Hence, ζNIP will be larger than ζPMAR when μ
(1,0)
1 >

μ
(1,1)
1 , and vice versa. Lastly, we consider sequential

explainability. At time j = 1 there is no observed his-
tory, so sequential explainability implies the marginal
independence Y1 ⊥ R1. Consequently,

ζSE = E(Y1 | R1 = 1)

= φ10

φ10 + φ11
μ

(1,0)
1 + φ11

φ10 + φ11
μ

(1,1)
1 .

Sequential explainability differs fundamentally from
NIP and PMAR as, due to its sequential nature, it does
not use the distribution of (Y2,R2) to identify ζ .

We now incorporate sensitivity parameters under se-

quential explainability. Note that if (Y1 | R1 = 0)
d=

(Y1 + ξ | R1 = 1), then ξ = 0 is consistent with se-
quential explainability. Under this assumption we have

ζ(ξ) = p(R1 = 1)E(Y1 | R1 = 1)

+ p(R1 = 0)E(Y1 | R1 = 0)

= p(R1 = 1)ζSE + p(R1 = 0)(ζSE + ξ)

= ζSE + (φ00 + φ01)ξ.

Sensitivity analysis may now proceed either by elicit-
ing an informative prior on ξ , or by identifying values
of ξ which lead to substantively different inferences.

4. INFERENCE AND COMPUTATION

We discuss two approaches to computation. First,
we describe a fully Bayesian approach, which can
be computationally demanding. Second, we describe
multiple imputation, which is a computationally sim-
pler approximation. Let θ denote the parameters of
the model of p(y, r), π(θ) a prior for θ , and O =
(Y

(1)

R(1) ,R
(1), . . . , Y

(N)

R(N),R
(N)) the observed data. We

first obtain samples of θ from its posterior distribu-
tion π(θ | O) ∝ ∏N

i=1 p(Y
(i)

R(i) ,R
(i))π(θ), usually by

Markov chain Monte Carlo. When the working model
framework described in Section 2.4 is used, samples
of θ can be obtained by fitting the working model by
data augmentation, taking advantage of the fact that
pθ(yr , r) = ∫

p�
θ (y, r) dy−r . A benefit of this approach

is that sampling θ can often be accomplished using
general-purpose software for fitting Bayesian models.
Software packages, such as JAGS and WinBUGS, al-
low for fast fitting of custom models, and accommo-
date missing values.

Fully Bayesian inference then proceeds by comput-
ing effects of interest directly from the sampled θ ’s and
the chosen identifying restriction. Multiple imputation,
by contrast, uses the sampled θ ’s to impute completed
datasets some number of times using the identifying
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Algorithm 1 Monte Carlo integration for sequential explainability
1: procedure GCOMP(θ, T , j ) 
 Approximates μj by simulating T samples from pθ(y)

2: for t = 1, . . . , T do
3: Sample (Y

(t)

R(t) ,R
(t)) ∼ pθ(yr , r).

4: if R
(t)
j = 0 then

5: Sample Y
(t)
j ∼ pθ(yj | ōj−1,R

(t)
j = 1)

6: end if
7: end for
8: Set μj = T −1 ∑T

s=1 Y
(t)
j .

9: return μj

10: end procedure

restriction. These approaches are operationally quite
similar. We begin by describing fully Bayesian infer-
ence, and describe the changes required to perform
multiple imputation.

4.1 Fully Bayesian Inference

Given sampled values θ ∼ π(θ | O), fully Bayesian
inference requires computing the desired effects. These
will typically not be available in closed form, but
can be computed by Monte Carlo integration. For il-
lustrative purposes, we present the algorithm for se-
quential explainability in Algorithm 1. In the Supple-
mentary Material (Linero and Daniels, 2017), we pro-
vide Monte Carlo integration algorithms for PMAR
and NIP as well. While we do not pursue this here,
Monte Carlo integration can also be implemented us-
ing IPW methods (see Robins, 1997, Birmingham,
Rotnitzky and Fitzmaurice, 2003, Shpitser, 2016, for
such schemes). The number of Monte Carlo samples
should be large relative to the sample size; in Sec-
tion 5, we use 100 times the sample size. This ap-
peal to Monte Carlo to estimate causal effects was
initially proposed by Robins (1986) to implement G-
computation. While computationally intensive, post-
processing of the MCMC output is parallelizable and
our experience is that the Monte Carlo integration is
not a computational bottleneck. We can avoid repeat-
ing these computations for each ξ by using an infor-
mative prior, providing another advantage to the fully
Bayesian approach.

4.2 Multiple Imputation

Multiple imputation (MI) proceeds by specifying
two, potentially different, models. First, we use the
sampled values θ ∼ π(θ | O) to impute the missing
data from pθ(y−r | yr, r) some number M > 1 times.
The model pθ(y, r) is referred to as the imputation

model. Next, an analysis model is specified to com-
pute a point estimate ψ̂(m) and standard error σ̂

(m)
ψ

from each of the m = 1, . . . ,M completed datasets
C(m). Rubin’s rules (see Harel and Zhou, 2007, for a
review) are then used to produce a point estimate ψ̂

and standard error σ̂ψ . The imputation is referred to
as congenial (Meng, 1994) when ψ̂(m) ≈ E(ψ | C(m))

and σ̂
(m)2
ψ ≈ Var(ψ | C(m)), in which case MI-based in-

ference approximates fully Bayesian inference. MI in-
ference may be valid in the absence of congeniality,
particularly when the analysis model is a submodel of
the imputation model. For further discussion of this is-
sue, see Rubin (1996). For textbook level treatments
of multiple imputation, see Rubin (1987) or Carpenter
and Kenward (2012). For an exploration of impact of
uncongeniality, see Daniels and Luo (2017).

The imputation step for MI is operationally similar
to the Monte Carlo integration used in Section 4.1, as
it requires simulating from the same conditional dis-
tributions. Unlike Monte Carlo integration, MI only
requires imputation of the missing data. Additionally,
imputations can be used with different analysis mod-
els. MI is much more practical for large datasets than
fully Bayesian inference, at the cost of using an ap-
proximation. An MI-based algorithm for estimating
μj = E(Yj ) under sequential ignorability is given in
Algorithm 2.

Extreme caution is required in using MI with par-
tial restrictions in terms of what analysis models can
be used. A minimal condition for MI to be valid is
that the analysis model is a submodel of the imputa-
tion model. Hence, when a partial restriction is used,
the analysis model should not identify any part of the
joint distribution which is unidentified by the imputa-
tion model. For example, if a marginal restriction iden-
tifies the marginals p(yj ) but not the joints p(yj , yk),
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Algorithm 2 Multiple imputation algorithm for sequential explainability
1: procedure MI(M,O, j ) 
 Inference for μj using multiple imputation
2: for m = 1, . . . ,M do
3: Sample θ ∼ π(θ | O)

4: for i = 1, . . . ,N do
5: if R

(i)
j = 0 then

6: Sample Y
(i)
j ∼ pθ(yj | Ō(i)

j−1,R
(i)
j = 1)

7: end if
8: end for
9: Compute μ̂

(m)
j = 1

N

∑N
i=1 Y

(i)
j .

10: end for
11: Compute μ̂j and σ̂ 2

μ,j using the rules for combining inferences under MI.
12: end procedure

then the analysis model may also identify p(yj ) but
must not identify p(yj , yk).

We remark that there are other approaches to sensi-
tivity analysis which are applied with multiple impu-
tation. One approach is the so-called “δ-adjustment”
(Leacy et al., 2017, Van Buuren, 2012, Section 3.9.1)
in which imputations are adjusted, say, by a location
shift δ. This approach is ad hoc and somewhat lack-
ing in transparency regarding what assumptions it en-
codes about the missing data, but is highly appealing
due to its simplicity. Graphical methods for conduct-
ing a tipping-point analysis are given by Liublinska and
Rubin (2014).

5. APPLICATION TO THE BREAST CANCER
PREVENTION TRIAL DATA

We apply the working model approach described in
Section 2.4, using an infinite product-multinomial mix-
ture (Dunson and Xing, 2009) which is implicitly strat-
ified by treatment,

p�(y, r) =
∞∑

k=1

πk

{
J∏

j=1

γ
rj
kj (1 − γkj )

1−rj

}

·
{

J∏
j=1

β
yj

kj (1 − βkj )
1−yj

}
.

(6)

In the context of missing data, Si and Reiter (2013)
applied this model to conduct multiple imputation in
large-scale survey data under MAR. For longitudi-
nal responses, various improvements are possible. One
shortcoming of this model is that it does not incorpo-
rate temporal structure; additionally, a model with de-
pendence within the mixture components would likely
perform better (Murray and Reiter, 2016).

We give {πk}∞k=1 the stick-breaking prior associ-
ated with the Dirichlet process (Sethuraman, 1994),

πk = Vk

∏k−1
j=1(1 − Vj ), Vk

i.i.d.∼ Beta(1, α). We approx-
imate this by setting VK = 1 so that πk = 0 for k >

K . For the BCPT data, we set K = 50 and α = 1.
We view this truncation as a computational conces-
sion, leading to an approximation of inference un-
der K = ∞; as pointed out by a referee, one may
instead view the truncated model as a model in its
own right, which is parametric rather than nonparamet-

ric. We model γkj
indep∼ Beta{ργjaγj , (1−ργj )aγj } and

βkj
indep∼ Beta{ρβjaβj , (1 − ρβj )aβj }. For ργj and βγj

we specify independent Uniform(0,1) priors. Finally,
for aγj and aβj we use a uniform shrinkage prior, with
density fσ (a) = σ/(σ + a)2 with scale σ = 15. Larger
values of σ encourage heavier shrinkage of the βkj ’s
and γkj ’s toward their means. See Daniels (1999) and
Wang et al. (2010) for motivation and details for the
choice of this uniform shrinkage prior.

We use MCMC to draw samples of θ = (π, γ,β)

from the posterior; details are provided in the Sup-
plementary Material (Linero and Daniels, 2017). We
will focus our inference on the effect ψ = p(YJ = 1 |
Z = 1) − p(YJ = 1 | Z = 0), where recall that Z = 1
corresponds tamoxifen and Z = 0 corresponds to the
control. We consider four assumptions which identify
ψ ; the conditional distributions and algorithms needed
are given in the Supplementary Material (Linero and
Daniels, 2017). First, we consider MAR by fitting the
Y -marginal of (6) under ignorability. We also consider
PMAR, sequential explainability and the assumption

p(YJ = 1 | R = r, Yr = yr)

= p(YJ = 1 | R = 1, Yr = yr)e
ξ(7)
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FIG. 1. Observed data means over time for the tamoxifen and placebo arms of the study. Dots correspond to the posterior mean using the
prior outlined in this section. The line corresponds to the empirical mean of the observed data for each time point. Solid error bars give the
95% credible interval for the observed data mean; dashed error bars given the usual 95% confidence interval based on asymptotic normality
of the observed-data means.

/
(
p(YJ = 1 | R = 1, Yr = yr)e

ξ

+ p(YJ = 0 | R = 1, Yr = yr)
)
.

Assumption (7) is a nonmonotone, exponentially-
tilted, variant of the last-occasion restriction of Birm-
ingham, Rotnitzky and Fitzmaurice (2003). We refer
to it as the tilted-last-occasion restriction. In addition
to the interpretation of the exponential tilting strategy
in Section 3.3, the parameter ξ can be interpreted as a
location-shift on the logit-scale,

p(YJ = 1 | R = r, Yr = yr)

= expit
[
ξ + logit

{
p(YJ = 1 | R = 1, Yr = yr)

}]
,

where ξ represents the log-odds ratio of [YJ = 1]
relative to equivalent individuals with [R = r] and
[R = 1]. We posit independent priors for ξ for each
treatment; this has the effect of making the posterior
variance of ψ large relative to dependent priors. Alter-
natively, one might take ξ constant across treatments to
encode the belief that the effect of depression on miss-
ingness does not interact with treatment. To account for
the fact that depression is expected to be positively cor-
related with missingness, we set ξ ∼ Uniform(0,B).
We set B = 0.8, corresponding to the belief that it
is unlikely that the odds ratio of depression exceeds
e0.8 ≈ 2.2. The above specification is made for illus-
trative purposes and is highly stylized. For a more
realistic specification which seriously engages with
subject-matter expertise, see Wang et al. (2010), who

elicited informative priors from four subject-matter ex-
perts about analogous sensitivity parameters ξ ; none
posited values of ξ larger than 0.8.

As a sanity check on the model, it is useful to ver-
ify that the posterior gives inferences which are con-
sistent with the empirical distribution of the observed
data. Let μobs,j = E(Yj | Rj = 1). In Figure 1, we
compare the inferences based on the posterior distribu-
tion of the μobs,j ’s to the inferences that would be ob-
tained from the standard model-free estimates μ̂obs,j =∑N

i=1 Y
(i)
j R

(i)
j /

∑N
i=1 R

(i)
j . We see that the posterior

means are essentially identical to the the μ̂obs,j ’s, and
the posterior credible intervals agree with the model-
free intervals.

We report inferences for ψ obtained using the fully
Bayesian approach in Figure 2; results using multiple
imputation with a nonparametric analysis model for
p(yJ ) are similar, and are given in the Supplementary
Material (Linero and Daniels, 2017), along with exact
numerical results. The most striking feature is that in-
ferences obtained under sequential explainability are
very different from inferences obtained under either
PMAR or MAR. First, the magnitude of the effect of
tamoxifen on depression is much larger under sequen-
tial explainability; second, the posterior uncertainty is
large. This is surprising, as one would expect the addi-
tional uncertainty in ξ to cause the tilted-last-occasion
model to have the most posterior uncertainty.

The additional posterior uncertainty can be ex-
plained from the fact that most of the missingness in



210 A. R. LINERO AND M. J. DANIELS

FIG. 2. Posterior credible intervals for ψ under different assumptions. Dots give the posterior mean, green bars give two-sided 90%
credible intervals, blue bars give two-sided 95% credible intervals. On the right, the posterior probability P = Pr(ψ < 0) is given for each
assumption.

the data was monotone. As a result, there is little infor-
mation about p(yJ | ōJ−1,RJ = 1) for most missing-
ness patterns. On the other hand, there are many fully
observed individuals, so there is ample data to estimate
p(YJ | Yr,R = 1) for all patterns.

The fact that sequential explainability produces a
larger effect size and leads to substantively different
conclusions is concerning, and nessecitates an explana-
tion. Further investigation revealed that, among those
who were observed at the end of study, but who missed
at least one visit (roughly 650 individuals per treat-
ment), the difference in depression levels was a mas-
sive 6%. Moreover, this difference was highly sig-
nificant, with Fisher’s exact test giving a P -value of
0.002. Under sequential explainability, those who were
not observed at the end of the study are associated to
this group, whereas under PMAR and the tilted-last-
occasion model these individuals are associated to fully
observed individuals. As there was no evidence of a
difference in depression levels for fully observed sub-
jects (P -value > 0.5 using Fisher’s exact test) the esti-
mate of ψ is much smaller.

Whether PMAR or sequential explainability is more
appropriate depends on subject matter considerations,
as well as the causes of missingness. Regardless, the
sensitivity analysis led us to find a treatment effect in
a subpopulation (those who were observed at the end
of the study, but missed at least one prior visit) which

is perhaps itself of interest. Hence, in addition to deter-
mining the robustness of our inferences, a sensitivity
analysis can give substantive insight into the relation-
ship between the missingness and the response.

6. DISCUSSION AND OPEN PROBLEMS

In this paper, we reviewed identifying restrictions
with a focus on recent proposals for nonmonotone
missingness. We also combined a flexible modeling ap-
proach for the observed data with a variety of identify-
ing restrictions to analyze data from the BCPT.

Several interesting avenues of research exist. Auxil-
iary covariates are often used to impute missing out-
comes under an assumption that MAR holds only con-
ditional on these additional covariates. This is some-
times called A-MAR missingness. The inclusion of
such covariates can create parameter interpretation
problems (Daniels, Wang and Marcus, 2014) for cate-
gorical outcomes. A proposal similar to that introduced
here for continuous outcomes and auxiliary covariates
can be found in Zhou et al. (working paper).

This paper has focused on missing outcome data.
Handling missing covariate data is also of general im-
portance (see, e.g., Ibrahim, Lipsitz and Chen, 1999,
Xu, Daniels and Winterstein, 2016, Murray and Re-
iter, 2016). One approach to addressing this would be
to specify joint Bayesian nonparametric models, along
with identifying restrictions for the combined vector of
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outcomes and covariates. An interesting problem here
is how to specify a parsimonious set of sensitivity pa-
rameters which will correspond to conditional distri-
butions of both missing outcomes and missing covari-
ates. Multiple identifying restrictions could be used for
such analyses, similar to what was used in Linero and
Daniels (2015) for different types of dropouts (see also
Sadinle and Reiter, 2017b). Nonignorable missingness
for more complex data structures, such as longitudi-
nal images or networks, remains an underdeveloped
area. Much of what has been proposed here could also
be used for causal inference. Kim et al. (2017) and
Roy, Lum and Daniels (2017) propose Bayesian non-
parametric approaches similar to ours in the context of
causal mediation and marginal structural models, re-
spectively. We are also intrigued by the ICIN restric-
tion as an anchoring assumption, and believe practical
methods for performing inference under ICIN would
be valuable.

There are few software implementations for con-
ducting sensitivity analysis using identifying restric-
tions, especially when missingness is nonmonotone.
The primary challenge lies in imputing the missing
data from the appropriate conditional distributions, as
this requires model-specific software. Our R imple-
mentation of the multinomial mixture model is avail-
able at www.github.com/arlinero/NiNBayes. Beyond
this, we mention several tools available for sensitiv-
ity analysis. Bunouf et al. (2015) provide SAS and
R code for implementing pattern-mixture models un-
der monotone missingness and a Gaussian assump-
tion. Scharfstein et al. (2018) provide the R/SAS pack-
age SAMON for implementing semiparametric mod-
els under monotone missingness. Outside of our pro-
posed framework, proc MI in SAS now supports δ-
adjustments using the MNAR option, and the SOLAS
software package implements the tipping-point strat-
egy of Liublinska and Rubin (2014).
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