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Abstract

Surveillance is critical to mounting an appropriate and effective response to pandemics.

However, aggregated case report data suffers from reporting delays and can lead to mis-

leading inferences. Different from aggregated case report data, line list data is a table con-

tains individual features such as dates of symptom onset and reporting for each reported

case and a good source for modeling delays. Current methods for modeling reporting delays

are not particularly appropriate for line list data, which typically has missing symptom onset

dates that are non-ignorable for modeling reporting delays. In this paper, we develop a

Bayesian approach that dynamically integrates imputation and estimation for line list data.

Specifically, this Bayesian approach can accurately estimate the epidemic curve and instan-

taneous reproduction numbers, even with most symptom onset dates missing. The Bayes-

ian approach is also robust to deviations frommodel assumptions, such as changes in the

reporting delay distribution or incorrect specification of the maximum reporting delay. We

apply the Bayesian approach to COVID-19 line list data in Massachusetts and find the repro-

duction number estimates correspond more closely to the control measures than the esti-

mates based on the reported curve.

Author summary

Interventions meant to control infectious diseases are often determined and judged using

surveillance data on the number of new cases of disease. In many diseases, there are sub-

stantial delays between the time when an individual is infected or shows symptoms and

when the case is actually reported to a public health authority, such as the CDC. This

reported data often collects information on symptom onset dates for some individuals. In

this paper, we describe a method that imputes missing onset dates for all individuals and

recreates the history of the disease progression in a population according to symptom

onset dates, which are the best observable proxy available for infection dates. Our method

also estimates the instantaneous reproduction number and is robust to many deviations

from the assumptions of the model. We show, using a COVID-19 dataset fromMassachu-

setts that our method accurately follows the implementation of control measures in the

state.
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Introduction

Surveillance plays a pivotal role in controlling the COVID-19 pandemic and has been used to

provide guidance for government responses to the pandemic [1, 2]. A prerequisite for effective

surveillance is to have daily case counts that are ideally defined based on infection dates (called

the incidence curve) or, at a minimum, symptom onset dates (called the epidemic curve),

which are biologically meaningful [3–5]. However what is most frequently recorded are case

reporting dates, which tend to be either the date when an infected individual was tested, tested

positive, or reported to public health authorities. The processes that impact the timing of case

reporting date, namely obtaining and reporting test results, vary due to a large number of fac-

tors, including individual healthcare seeking behaviors, testing availability, or other factors

that are not related to disease pathogenesis [6, 7]. This means that the reported curve (daily

counts based on case reporting dates) have artificial noise that blurs the underlying epidemio-

logical signal best described by infection dates, or secondarily by symptom onset dates [8, 9]. It

also means that it is challenging to obtain timely estimates of the reproduction number as the

most recently reported cases represent infection events that occurred some time in the past,

which can completely distort the underlying epidemic curve [10]. As these reported curves are

often used to estimate reproduction numbers for surveillance and determining the efficacy of

interventions, it is important that these cases are reported as close to the actual infection dates

as possible [11, 12].

Infection dates are the most epidemiologically meaningful dates as they directly inform

infection events and the reproduction numbers. However, obtaining infection dates is very

challenging because infection events are not directly observable [12]. This is especially the case

for COVID-19 due to significant pre-symptomatic transmission [13]. Typically, infection

dates for all cases can only be obtained based on a strong parametric assumption about the

distribution of incubation period, which is challenging to estimate [12, 14, 15]. On the other

hand, symptom onset dates are more readily observed and in many settings captured for a sub-

set of cases [3]. While symptom onset dates are not as helpful as infection dates, they are still

linked to the epidemiology of infectious disease and are typically more proximate to infection

events than case reporting dates [3, 16]. This makes the epidemic curve more informative than

the reported curve for estimating reproduction numbers [17]. In practice, the major barrier

for getting the epidemic curve is that symptom onset dates are still missing for many cases.

This makes imputation of reporting delays, which are defined as the lags between symptom

onset dates and case reporting dates for individual cases [8–10], a prerequisite for estimating

the epidemic curve. The missing reporting delays are due to the ways that cases are reported

during the current COVID-19 pandemic. For example, some missing reporting delays are sim-

ply due to delays or errors in reporting system as the cases are either not reported yet or their

symptom onset dates are missing. However, some other cases have missing reporting delays

because they either haven’t been tested yet (asymptomatic cases, test capacity etc.) or haven’t

shown symptoms yet (pre-symptomatic cases). In this paper, we focus on addressing missing

reporting delays in line list data which refers to a table that stores individual attributes such as

dates of symptom onset, reporting or death for each reported case, i.e., each row represented a

reported case. In particular, we assume in line list data all cases have known case reporting

dates but some of them have missing symptom onset dates.

Based on observed and imputed reporting delays, there are two steps to recover the epi-

demic curve from the reported curve. The first step is back-calculation which requires one to

PLOS COMPUTATIONAL BIOLOGY Bayesian back-calculation and nowcasting for line list data

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009210 July 12, 2021 2 / 22

Funding: This work was funded by NIH R01

GM122876. TL and LFWwere both supported by

NIH R01 GM122876. There was no additional

funding sources except the listed one for both

authors. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009210


back-calculate symptom onset date based on case reporting date for each case [3]. Therefore,

the epidemic curve is estimated by the daily case counts based on symptom onset dates rather

than case reporting dates. The second step is nowcasting, which is needed because of the

reported curve is right truncated, i.e., any case that is reported after the final reporting date

(but potentially has symptom onset before the final reporting date) is unavailable for analysis

[5]. The consequence of this right truncation issue is that the back-calculated counts of cases

that show symptoms on days close to the final reporting date are likely incomplete as some of

those cases are actually reported after the final reporting date and unavailable for back-calcula-

tion [17]. Hence, nowcasting is the task of modeling and appropriately increasing those case

counts. The idea of back-calculation and nowcasting is illustrated by Fig 1.

Most previous work estimates the epidemic curve either by the one-step approach where

one models the reporting delay distribution and/or case counts directly [5, 18], or by the two-

step approach where one imputes missing reporting delays first (the imputation step) and then

recovers the epidemic curve based on the imputed values (the estimation step) [3, 19, 20]. The

reporting delay distribution is usually modeled based on the reporting triangle, a summary

of the empirical distributions of reporting delays based on symptom onset dates [5, 18, 21].

Since the reporting triangle does not take missing reporting delays into account, the one-step

approach is based on observed reporting delays only and typically is assumed to be time invari-

ant. With such limitations, the two-step approach is generally preferred for a line list data

where the missing reporting delays are non-ignorable. In this approach, the imputation step

usually assumes symptom onset dates are missing at random conditional on case reporting

dates and other available covariates in a line list data [3]. Usually, the imputed reporting delays

in the two-step approach are not dynamically updated by the model of the reporting delay dis-

tribution, and they may be biased and have large variance. More importantly, making infer-

ence about the estimated epidemic curve would be difficult for the two-step approach since the

variance associated with the imputation step is not taken into account by the estimation step, if

no appropriate multiple imputation step involved.

In this paper, we develop a Bayesian framework that dynamically integrates the imputation

step and the estimation step. Our Bayesian framework has five components: (1) inference of

Fig 1. Illustration of back-calculation and nowcasting. Assuming t and T are the first and last reporting day in a line-list data, one
needs to first back-calculate the daily case counts that cover the period from day t − l to day T based on reporting delays, where l is the
maximum reporting delay. The next step is nowcasting, which is to upscale the back-calculated counts for the period from day T − l + 1
to day T.

https://doi.org/10.1371/journal.pcbi.1009210.g001
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the reporting delay distribution based on case reporting dates; (2) imputation of missing

reporting delays; (3) back-calculation; (4) nowcasting; and (5) reproduction number estima-

tion using the EpiEstimmethod [22, 23]. The Bayesian framework is simple to implement and

suitable for estimating the epidemic curve. We demonstrate the robustness of our framework

by simulating an epidemic wave similar to the first COVID-19 outbreak under various condi-

tions, such as changes in reporting delay distribution, violation of model assumptions, and

incomplete surveillance data. We also demonstrate that the 95% Bayesian credible intervals of

the epidemic curve and reproduction number estimates have good coverage rate even under

moderately undesirable conditions and therefore can lead to reliable inferences. We apply this

Bayesian method to COVID-19 data in Massachusetts and show that our estimates of the epi-

demic curve and the reproduction numbers are consistent with the COVID-19 dynamics in

Massachusetts.

Materials andmethods

Imputation of the missing reporting delays

For a line list data, we denote individual case reporting date and symptom onset date as ri and

ti, respectively, for individuals i = 1, . . ., n. Therefore, an individual reporting delay is defined

as di = ri − ti and di should be non-negative integers. We assume di 2 [0, l] for the missing di.

Moreover, we assume reporting starts from day 1 and ends at day T in the line list data. We

use t to denote dates and t could be a negative integer. We use nt to denote the case counts

based on the reported curve on day t. The maximum delay l can be decided based on the

observed reporting delays as well as prior knowledge about the reporting system. The entire

reporting period (from day 1 to day T in the line list data) can be thought of as the composition

of consecutive small reporting periods, such that the reporting delay distribution is stable dur-

ing each small reporting period. For example, for COVID-19 line list data we can define each

week as the small reporting period under the assumption that the reporting delay distribution

is unlikely to change sharply within each week. Then, we define X1 as the n × pmatrix contain-

ing the indicators of the small reporting periods and X2 as the indicator of whether a case is

reported on weekends, assuming there are p small reporting periods in total (for instance p is

the number of weeks in the study period). The reporting delay distribution is then modeled for

a single spatial region based on case reporting dates:

d � NBðm; r; lÞ; m ¼ eX1bþX2g ð1Þ

where r and μ are the size (dispersion) and mean parameters for negative binomial distribu-

tion. l represents the upper bound for the above truncated negative binomial distribution.

Sometimes a reporting system improves over time and the reporting delays are significantly

shortened after a specific date tc. In this case, Eq (1) is modified as:

d � NBðm; r
1
1t<tc

þ r
2
1t�tc

; lÞ; m ¼ eX1bþX2g ð2Þ

where 1A is the indicator of whether the condition A is met. In this formulation, Eq (2) has two

dispersion parameters: r1 corresponds to dates prior to tc and r2 corresponds to dates equal or

later than tc.

Bayesian inference

Based on Eq (1), the posterior distribution for imputing the missing reporting delays (and thus

the missing symptom onset dates) is:

f ðb; r; dmissjdobs;X
1
;X

2
; lÞ / f ðbÞf ðgÞf ðrÞf ðdmissÞf ðdobsjb; g; r; dmiss;X

1
;X

2
; lÞ ð3Þ
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where dmiss represents all the missing di and d
obs represents all the observed di. Using uninfor-

mative priors for β, γ, r, and dmiss, imputation of dmiss is done via the following Gibbs sampler:

1. sample from f(dmiss|β, γ, r, X1, X2, l)

2. sample from f(β|γ, r, dmiss, β, dobs, X1, X2, l)

3. sample from f(γ|r, dmiss, β, dobs, X1, X2, l)

4. sample from f(r|dmiss, β, γ, dobs, X1, X2, l)

where f(dmiss|β, γ, r, X1, X2, l) is a truncated negative binomial distribution whose upper bound

is l. The above posterior distribution and Gibbs sampler are similarly defined for Eq (2).

To take the impact of testing practice into account, one needs to preprocess the reported

curve before using our model. Specifically, the adjusted reported case count ~nt , which should

be used to adjust for the impact of testing practice, is defined as the ratio between the raw

case count nt and the reporting fraction qt. Since symptom onset dates are the target of impu-

tation, it is impossible to build a model conditional on them. By defining the small reporting

periods and modeling the reporting delay distribution for each of these periods, we aim to

estimate the reporting delay distribution within each of these periods and thus collectively

approximate the underlying reporting delay distribution defined by symptom onset dates.

Intrinsically, our approach is data mining rather than statistical modeling of the reporting

delay distribution.

Estimation of the epidemic curve and instantaneous reproduction
numbers

Back-calculation is straightforward given the imputed dmiss and dobs. The back-calculated

counts N̂ t, i.e., the case counts based on symptom onset dates in a line list data, is computed

as:

N̂ t ¼
X

n

i¼0

1ri�di¼t
; t ¼ �l þ 1; . . . ;T: ð4Þ

where 1ri − di = t is the indicator of whether the i
th case showed symptoms on day t. Assuming

the line list data includes all symptomatic cases, we can take N̂ t as the estimate of Nt, the true

number of cases who showed symptoms on day t, up to day t = T − l. Due to right-truncation

N̂ t likely underestimates Nt for t = T − l + 1, . . ., T. To address this, we define the epidemic

curve estimate ~N t (for t = T − l + 1, . . ., T) as the sum of the back-calculated counts N̂ t and the

not-yet-reported counts st which should be drawn from the following negative binomial distri-

bution [24]:

st � NBðN̂ t; P̂ðd � T � tÞÞ; t ¼ T � l þ 1; . . . ;T: ð5Þ

P̂ðd � T � tÞ ¼

Pn

i¼1
1ri�di�tc

� 1di�T�t
Pn

i¼1
1ri�di�tc

ð6Þ

If tc is not provided, it implies there is no change in the reporting system and the indicator

1ri�di�tc
is always 1. In this case, P̂ðd � T � tÞ is the empirical cumulative density function of

the line list data. To summarize, the epidemic curve estimates ~N t are calculated as follows for
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all dates:

~N t ¼

(

N̂ t; for t ¼ �l þ 1; . . . ;T � l

N̂ t þ st; for t ¼ T � l þ 1; . . . ;T
ð7Þ

With the epidemic curve estimates ~N t; t ¼ �l þ 1; . . . ;T, the instantaneous reproduction

number estimates R̂t can be obtained based on EpiEstim [22, 23] with a sliding window size τ:

R̂t ¼
ð
Pt

k¼t�t
~N kÞ þ 1

ð
Pt

k¼t�t
LkðpjÞÞ þ 0:2

ð8Þ

LkðpjÞ ¼
X

minðk;sÞ

j¼1

~N k�jpj ð9Þ

Note that the above expression of R̂t is actually derived as the posterior mean based on the

gamma prior with mean and standard deviation both equal to 5 [22]. The serial interval distri-

bution is needed for computing R̂t: s is the maximum length of serial interval and pj is the

probability of a serial interval of j days. Since both the epidemic curve estimate ~N t and repro-

duction number estimates R̂t depend on the imputed reporting delays dmiss, ~N t and R̂t are

computed based on the posterior sample of dmiss and updated by the Gibbs sampler for impu-

tation, as well. Therefore, the final output of our Bayesian algorithm is a posterior sample of ~N t

and R̂t . Statistical inference based on their Bayesian credible intervals incorporates the uncer-

tainty about dmiss.

Overview of simulation study

We simulated a local epidemic similar to COVID-19 using a branching process with the

parameters based on COVID-19 literature [11, 14, 25, 26]. From this, we created a line list data

based on the simulated epidemic wave (see details in S1 Text). By definition, the branching

process started from Feb 1, 2020 and cases reported after March 31, 2020 were excluded in the

line list data. For simulation scenarios, we vary three factors: data availability, the maximum

reporting delay l assumption, and changes in the reporting delay distribution. We considered

three possibilities regarding data availability: 1) complete data, 2) delayed surveillance initia-

tion, and 3) real time estimation. The first scenario is ideal with the line list data covering the

entire epidemic wave. In the second scenario, the line list data is only available after a certain

date during the epidemic wave, possibly due to delays in initiating surveillance. In this case, we

explored four different starting dates for the line list data to reflect various degrees to which

earlier reports were lost and explore the impact of these delays on our approach. Third, we

focus on estimation in the midst of the epidemic wave, which means the final reporting date in

the line list data is prior to the end of the epidemic wave. We chose two different final report-

ing dates for the line list data: 1) before the peak of the reported curve, and 2) after the peak of

the reported curve.

We also tested the case where we assumed l was 20 days for estimation when l actually was

25 days. We considered three possible scenarios regarding the changing dynamics of the

reporting delay distribution over time. First, the reporting delay distribution remained

unchanged and there was no improvement throughout the epidemic wave. The average report-

ing delay was 9 days in this case. Second, the reporting delay distribution sharply improved to

an average of 4 days in the middle of the epidemic wave (tc =March 1, 2020 based on symptom
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onset dates). Third, the reporting delay distribution was constantly and gradually improving

during the epidemic wave. The average reporting delay gradually decreased from 9 days at the

beginning to 4 days at the end of the epidemic wave.

We simulated 1000 line list datasets for each of the 18 different simulation scenarios. On

average, the line-list data included about 5000 cases reported over 54 days. We randomly made

the symptom onset dates missing for 60% of the cases, a percentage that was consistent with

the CDC line list data.

Line list data of COVID-19 cases in Massachusetts

We apply our method to a CDC line list data for Massachusetts with 85,627 COVID-19 cases

reported from Jan 1, 2020 to May 14, 2020. 823 cases were excluded from analysis due to nega-

tive reporting delays, which cannot be handled by our model. We expect the exclusion of those

cases to have little impact on downstream analyses as those cases are less than 1% of the total

cases and they are evenly distributed over the reporting period (the maximum and minimum

of the weekly proportions of cases who have negative reporting delays are 2.8% and 0.6%

respectively). We excluded 5 cases that were reported before March 4, 2020, as they were dis-

continuously and sparsely distributed during the period. We set the maximum reporting delay

to 60 days, marking 102 cases with longer reporting delays (ranging from 61 days to 117 days)

as missing. Based on the data, these 102 reporting delays were clear outliers, potentially due to

data entry errors. The final line list data contained 84,799 cases reported fromMarch 4, 2020

to May 14, 2020 with symptom onset dates missing for 61.3% of the cases. Each of the 11

weeks was defined as the small reporting period for model estimation. We also calculated the

average daily flow rates based on the daily flow rates of all Massachusetts counties extracted

from the SafeGraph data [27] for the period between Feb 21, 2020 and May 14, 2020, in order

to check whether our reproduction number estimates were consistent with the mobility pat-

tern in Massachusetts. The code and simulation output are available at https://github.com/

tenglongli/backandnow. The COVID line list data is available through the CDC and requires

access request.

Results

Simulation results: Complete line list data and delayed surveillance
initiation

To ensure convergence of the Markov Chain Monte Carlo (MCMC) algorithm, the poste-

rior sample was obtained based on 21,000 MCMC iterations with 1000 burn-in iterations

for each of the 1000 simulated datasets. We ran Geweke’s convergence diagnostic to check

the convergence of MCMC algorithm, and 92% of the estimates (epidemic curve and repro-

duction numbers) passed the test on average [28]. For all reproduction number estimation,

the serial interval was assumed to follow the gamma distribution with the shape equal to

4.29 and the rate equal to 1.18 [14, 29], and the maximum serial interval was assumed to be

14 days. The median and 95% Bayesian credible intervals of the posterior samples of ~N t and

R̂t were extracted for each simulated dataset. The known epidemic curve and estimated

reproduction numbers for each dataset served as the simulation benchmarks. To demon-

strate the difference between the epidemic and reported curves, the reported curve and the

reproduction number estimates based on it were also obtained for each dataset. The esti-

mates were evaluated by two metrics: 1) the actual coverage rate of the 95% Bayesian credi-

ble interval based on 1000 simulated datasets, and 2) the root mean square error (RMSE)

PLOS COMPUTATIONAL BIOLOGY Bayesian back-calculation and nowcasting for line list data

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009210 July 12, 2021 7 / 22

https://github.com/tenglongli/backandnow
https://github.com/tenglongli/backandnow
https://doi.org/10.1371/journal.pcbi.1009210


calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

j¼1

ðxj � yjÞ
2

s

ð10Þ

wherem is the number of simulated datasets. xj and yj are the estimate and benchmark for

jth dataset.

As expected, the estimated epidemic curve and reproduction numbers were much closer to

the simulation benchmark than the reported curve and the corresponding reproduction num-

ber estimates. On average, the estimated reproduction numbers based on the epidemic curve

were 13 days behind the true reproduction numbers built on the dates of infection, due to

incubation periods and the sliding window size (τ = 6) we chose for EpiEstim. With complete

line list data, our model estimated true epidemic curve and the reproduction number well and

was not sensitive to the changes in the reporting delay distribution (Fig 2). The estimates were

Fig 2. The model fit for complete data. For all graphs: the black solid curve corresponds to estimates based on the known epidemic curves and the
black dashed curve corresponds to estimates based on the reported curves. The grey-shaded region superimposed on the curve depicts the 95% Bayesian
credible interval and the grey-shade region on the right indicates the region of nowcasting. The colored curves represent different model choices. All
values were averaged over 1000 simulated datasets with the correct l. A: The epidemic curve estimates if the reporting delay distribution was unchanged.
B: The reproduction number estimates if the reporting delay distribution was unchanged. C: The epidemic curve estimates if the reporting delay
distribution was sharply improved. D: The reproduction number estimates if the reporting delay distribution was sharply improved. E: The epidemic
curve estimates if the reporting delay distribution was gradually improved. F: The reproduction number estimates if the reporting delay distribution
was gradually improved.

https://doi.org/10.1371/journal.pcbi.1009210.g002
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not sensitive to the assumption about the maximum delay l across all simulation scenarios. For

example, we illustrated the impact of the maximum delay assumption for complete line list

data. (S1 and S2 and S3 Figs). Therefore, we only discuss the results obtained under the correct

maximum delay assumption in the main text henceforth.

Our estimates under the scenario where the reporting delay distribution improved sharply

on March 1, 2020 during the epidemic wave (Fig 2C and 2D) was comparatively worse than

other two scenarios (i.e., when the reporting delay distribution was either not improved or

gradually improved), as manifested by the underestimation of the reporting delays between

Feb 15, 2020 and March 8, 2020 during the epidemic wave. The underestimation was mainly

due to the overlap of the two reporting delay distributions for cases reported fromMarch 1,

2020 to March 20, 2020 (most of whom had symptom onsets from Feb 15, 2020 to March 8,

2020). Our model struggled to separately estimate the two distributions during this period

because it is built on case reporting dates rather than symptom onset dates. We also used

both the Eqs (1) and (2) for imputation and estimation. The two models performed similarly

when the reporting delay distribution was unchanged or gradually improved. However, Eq (2)

did result in a slightly better fit than Eq (1) when the reporting delay distribution sharply

improved, likely due to having two dispersion parameters.

Table 1 lists the coverage rate of 95% Bayesian credible interval and the RMSE for our esti-

mates. The average coverage rate of our epidemic curve estimates was 0.89 when there was an

abrupt improvement for the reporting delay distribution and was 0.95 when there was gradual

or no change in the reporting delay distribution. The average coverage rates of the reproduc-

tion number estimates was slightly lower than the average coverage rates of the epidemic curve

estimates in general, likely due to the additional error brought by EpiEstim [23]. Compared to

Eq (1), Eq (2) had higher coverage rates and RMSE of the epidemic curve estimates when the

reporting delay distributions sharply improved on March 1, 2020 (coverage rate: from 0.89 to

0.94; RMSE: from 8.92 to 7.60). The gain of using Eq (2) was even larger for the reproduction

number estimates in this case: the coverage rate increased from 0.64 to 0.87 and the RMSE

decreased from 0.08 to 0.06. For the other two scenarios, Eq (2) was comparable to Eq (1).

Overall, the Bayesian credible interval was tight (indicated by the small RMSE) with the nomi-

nal coverage rate (around 0.95) given appropriate model choice, when the line list data was

complete for the epidemic wave.

We also checked the coverage rate and RMSE of the case count estimates on each day based

on symptom onset dates, in order to evaluate the performance of our model from a temporal

perspective (S4 and S5 Figs). Overall, the coverage rate was negatively correlated with the

RMSE, consistent with of our other results. The coverage rate of our estimate was consistently

over 0.9 for all the dates, except when the reporting delay distribution did sharply improve

during the epidemic wave and Eq (1) was used. We also notice that the credible interval

Table 1. Performance measures for complete data. The results were averaged over all simulated datasets and dates for both the epidemic curve (Curve) and the reproduc-
tion numbers (Rt). The results format: coverage rate (RMSE). Model 1 refers to the model in Eq (1) and model 2 refers to the model in Eq (2).

Improvement MaximumDelay Model 1 Model 2

Curve Rt Curve Rt

No Correct 0.96 (7.34) 0.94 (0.05) 0.96 (7.44) 0.94 (0.06)

Incorrect 0.95 (7.60) 0.90 (0.06) 0.96 (7.85) 0.90 (0.07)

Sharp Correct 0.90 (8.76) 0.64 (0.08) 0.95 (7.02) 0.88 (0.05)

Incorrect 0.88 (9.07) 0.63 (0.08) 0.93 (8.17) 0.85 (0.06)

Gradual Correct 0.95 (7.28) 0.90 (0.05) 0.96 (6.85) 0.93 (0.05)

Incorrect 0.95 (7.26) 0.91 (0.05) 0.96 (6.97) 0.92 (0.05)

https://doi.org/10.1371/journal.pcbi.1009210.t001
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became much wider for the last several days compared to other dates, which was probably due

to the fact that the right truncation issue was the worst for those days, i.e., most of the cases

that showed symptoms on those days were to be reported after the final reporting date (March

31, 2020) of the line-list data and thus unavailable for analysis.

For delayed surveillance initiation, we assume four different starting dates for the line list

data: Feb 11, 2020, Feb 21, 2020, March 2, 2020, and March 12, 2020. To enhance comparabil-

ity of the results based on the line-list data with different starting dates, we only used the Eq (1)

for estimation. In general, we estimate the epidemic curve well from the starting date onward

(Fig 3). For reproduction number estimation, the estimates become reliable τ + 1 days after the

starting date, since EpiEstim needs at least τ + 1 days’ observations to produce unbiased esti-

mates. For example, if the starting date is Feb 11, 2020 and τ = 6 one should expect the epi-

demic curve and reproduction number estimates to converge to their benchmarks from Feb

11, 2020 and Feb 18, 2020 respectively. In general, estimation accuracy decreases with longer

Fig 3. The model fit for data with no early report. For all graphs: the black solid curve corresponds to estimates based on the known epidemic curves
and the black dashed curve corresponds to estimates based on the reported curves. The grey-shaded region superimposed on the curve depicts the 95%
Bayesian credible interval and the grey-shade region on the right indicates the region of nowcasting. The colored curves represent different starting
dates for the line-list data. All values were averaged over 1000 simulated datasets with the correct l. A: The epidemic curve estimates if the reporting
delay distribution was unchanged. B: The reproduction number estimates if the reporting delay distribution was unchanged. C: The epidemic curve
estimates if the reporting delay distribution was sharply improved. D: The reproduction number estimates if the reporting delay distribution was
sharply improved. E: The epidemic curve estimates if the reporting delay distribution was gradually improved. F: The reproduction number estimates if
the reporting delay distribution was gradually improved.

https://doi.org/10.1371/journal.pcbi.1009210.g003
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delays (Table 2). For individual daily case counts, the coverage rate (S6 Fig) and the RMSE (S7

Fig) were acceptable after the starting date. We still observe that the estimated epidemic curve

and reproduction numbers were far better than the reported curve and its associated repro-

duction numbers, unless there was a severe loss of early reporting (eg. if the starting date was

March 2, 2020 or March 12, 2020).

Simulation results: Real time estimation

We chose Feb 28, 2020 (before the peak of the reported curve) or March 9, 2020 (after the peak

of the reported curve) as the final reporting dates for the line-list data. As in the previous sec-

tion, we only used Eq (1) for estimation to ensure comparability of the results. If the final

reporting date was Feb 28, 2020, we consistently underestimated the epidemic curve and the

reproduction numbers (Fig 4). The average coverage rates were low (epidemic curve: 0.55,

reproduction number: 0.40) and the RMSE were large (epidemic curve: 35.94, reproduction

number: 0.16). By comparison, the average coverage rates were much higher if the final report-

ing date was March 9, 2020 (epidemic curve: 0.84, reproduction number: 0.74), and in this case

the RMSE were much lower (epidemic curve: 16.50, reproduction numbers: 0.08) (Table 3).

Interestingly, our model had the best performance when there was gradual improvement in

the reporting delay distribution, especially if the final reporting date was March 9, 2020 for the

line list data. In this case, the coverage rates and RMSE of the estimates were very close to

those for complete data, and the coverage rates were consistently around 0.9 for all individual

daily case counts (S8 and S9 Figs). In the other two scenarios, the coverage rates and RMSE

were much worse and very unstable. This is because our model approximated the gradually

improving reporting delay distribution well as it was built on the small reporting periods,

which could be perceived as smoothing windows and lead to good local estimates. This is also

because most part of the epidemic curve and reproduction number estimation was done by

nowcasting (Fig 4), which benefits from gradually improved reporting delays. When there was

no improvement in the reporting delay distribution, underestimation is worse due to more

extreme right truncation. When there was a sharp improvement for the reporting delay distri-

bution, we observed an erratic sudden jump of the daily count estimates, which likely resulted

from nowcasted case counts being overweighted as reporting delays tended to be underesti-

mated, a pattern that had been observed for the complete data.

COVID-19 in Massachusetts

We estimated the epidemic curve based on the COVID-19 line list data in Massachusetts

and compared it with the reported curve (Fig 5). The estimated epidemic curve was much

Table 2. Performance measures for data with no early report. The results were averaged over all simulated datasets and dates for both the epidemic curve (Curve) and
the reproduction numbers (Rt). The line-list data could start on Feb 11, 2020 (Data 1), Feb 21, 2020 (Data 2), March 2, 2020 (Data 3) or March 12, 2020 (Data 4). The results
format: coverage rate (RMSE).

Improvement Maximum Delay Data 1 Data 2 Data 3 Data 4

Curve Rt Curve Rt Curve Rt Curve Rt

No Correct 0.93 (8.03) 0.87 (0.07) 0.73 (14.28) 0.61 (0.30) 0.55 (39.05) 0.43 (0.58) 0.39 (69.76) 0.21 (0.68)

Incorrect 0.92 (9.11) 0.85 (0.07) 0.72 (14.58) 0.58 (0.28) 0.54 (38.81) 0.43 (0.51) 0.39 (68.46) 0.20 (0.58)

Sharp Correct 0.91 (8.90) 0.67 (0.08) 0.71 (14.34) 0.37 (0.21) 0.54 (37.74) 0.33 (0.46) 0.38 (70.70) 0.14 (0.53)

Incorrect 0.89 (9.40) 0.63 (0.08) 0.70 (14.60) 0.38 (0.19) 0.53 (37.34) 0.33 (0.40) 0.38 (70.19) 0.17 (0.44)

Gradual Correct 0.95 (7.63) 0.89 (0.06) 0.74 (13.72) 0.58 (0.25) 0.55 (41.01) 0.37 (0.53) 0.39 (70.31) 0.16 (0.66)

Incorrect 0.95 (7.66) 0.90 (0.06) 0.74 (13.65) 0.58 (0.23) 0.55 (40.63) 0.38 (0.47) 0.39 (70.13) 0.17 (0.58)

https://doi.org/10.1371/journal.pcbi.1009210.t002
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Fig 4. The model fit for an ongoing epidemic wave. For all graphs: the black solid curve corresponds to estimates based on the known epidemic curves
and the black dashed curve corresponds to estimates based on the reported curves. The grey-shaded region superimposed on the curve depicts the 95%
Bayesian credible interval. The colored curves represent different ending dates for line-list data, and their nowcasting regions are displayed as the gray-
shaded areas with boundary lines in their corresponding colors. All values were averaged over 1000 simulated datasets. All values were averaged over
1000 simulated datasets with the correct l. A: The epidemic curve estimates if the reporting delay distribution was unchanged. B: The reproduction
number estimates if the reporting delay distribution was unchanged. C: The epidemic curve estimates if the reporting delay distribution was sharply
improved. D: The reproduction number estimates if the reporting delay distribution was sharply improved. E: The epidemic curve estimates if the
reporting delay distribution was gradually improved. F: The reproduction number estimates if the reporting delay distribution was gradually improved.

https://doi.org/10.1371/journal.pcbi.1009210.g004

Table 3. Performance measures for an ongoing epidemic wave. The results were averaged over all simulated datasets and dates for both the epidemic curve (Curve) and
the reproduction numbers (Rt). The line-list data could end on Feb 28, 2020 (Data 1) or March 9, 2020 (Data 2). The results format: coverage rate (RMSE).

Improvement MaximumDelay Data 1 Data 2

Curve Rt Curve Rt

No Correct 0.54 (37.87) 0.33 (0.18) 0.88 (15.54) 0.76 (0.06)

Incorrect 0.50 (40.72) 0.33 (0.18) 0.82 (17.69) 0.73 (0.07)

Sharp Correct 0.54 (38.47) 0.32 (0.18) 0.74 (22.07) 0.56 (0.11)

Incorrect 0.50 (40.41) 0.33 (0.18) 0.71 (22.67) 0.54 (0.11)

Gradual Correct 0.62 (28.33) 0.53 (0.12) 0.96 (10.31) 0.92 (0.05)

Incorrect 0.58 (29.82) 0.56 (0.12) 0.95 (10.49) 0.93 (0.05)

https://doi.org/10.1371/journal.pcbi.1009210.t003
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smoother than the reported curve, which indicates that most of the fluctuations in the reported

curve were artificial. The estimated epidemic curve suggests that the daily count of COVID-19

cases showing symptoms started to increase in early March in Massachusetts, and the daily

count began to decline around mid April with a slight increase around May 10. In addition,

we estimated instantaneous reproduction numbers based on the estimated epidemic curve,

assuming the distribution of serial interval is Gamma(4.29, 1.18) and τ = 6 [14, 17, 29]. We

estimated that the instantaneous reproduction numbers were above 2 during the initial stage

of the outbreak and the reproduction number started to drop around mid March (Fig 6). The

estimated reproduction number dropped below 1 since mid April but rose again around May

11. The trajectory of the estimated reproduction numbers suggests that the reproduction num-

ber would likely exceed the critical threshold of 1 after May 14.

To examine the credibility of our reproduction number estimates, we marked the dates of

the non-pharmaceutical interventions (NPI) implemented by the state of Massachusetts (Fig

6). Specifically, the state of Massachusetts banned large gathering on March 13 and was locked

down fromMarch 17. The governor issued the stay-at-home order on March 23. In addition,

we utilized the SafeGraph data [27] to illustrate the daily mobility pattern in the state of Massa-

chusetts during the same period. The daily mobility is quantified by the daily flow rates which

are ratios of the number of residents moving out and the total number of residents for all

counties in Massachusetts. The average daily flow rate (over all the counties) is depicted in

Fig 5. Estimated epidemic curve of COVID-19 in Massachusetts. The estimated epidemic curve was calculated based on weekly smoothing window
and l = 60. The line-list data started onMarch 4, 2020 and ended onMay 14, 2020. The earliest possible date that a case showed symptoms was February
1, 2020 and nowcasting started fromMarch 16, 2020. The dashed curve represents the reported curve.

https://doi.org/10.1371/journal.pcbi.1009210.g005
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Fig 6 as well. We have three key observations: First, the lock-down and stay-at-home order

likely reduced the mobility for about 30–35% (from 0.16 to 0.11), which is consistent with liter-

ature that suggests lock-down and stay-at-home order are effective in reducing the mobility

[30, 31]. Second, our estimated instantaneous reproduction numbers are closely aligned with

the daily mobility pattern, suggesting that the lock-down and stay-at-home order are effective

for controlling the COVID-19 outbreak in Massachusetts. Previous research also found the

NPIs, including lock-down and stay-at-home order, were effective for containing the COVID-

19 outbreak and reducing the public healthcare burden in the state of Massachusetts [32], in

the United States [33] and worldwide [34, 35]. Third, we observed the daily mobility was

slowly increasing fromMay 2020, and this could explain why the reproduction number esti-

mates rose again around May 11, at which point the reopening plan was unveiled for Massa-

chusetts. Most importantly, we found that the reproduction number estimates based on the

estimated epidemic curve corresponded much more closely to the NPIs and the daily mobility

pattern in Massachusetts than those based on the reported curve, which demonstrates the

necessity for adjusting the raw reported curve using our Bayesian method.

We caution readers about the limitations of our analysis. First, we only back-calculated the

symptom onset dates from the case reporting dates in this example and thus compared the

instantaneous reproduction numbers based on the symptom onset dates with the timing of

Fig 6. Estimated instantaneous reproduction number of COVID-19 and daily flow rates in Massachusetts. The estimates were calculated based on
EpiEstim and a posterior sample of epidemic curve estimates (the blue curve). We identify the dates for four key policies: large gathering banned
(March 13, 2020), lock-down (March 17, 2020), stay-at-home order (March 23, 2020) and the plan of reopening (May 11, 2020). By comparison, the
reproduction number estimates based on the reported curve are described by the dashed black curve. The average daily flow rates over all the counties
in Massachusetts was overlaid on the same plot to illustrate the mobility pattern (the red curve).

https://doi.org/10.1371/journal.pcbi.1009210.g006
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interventions. Ideally, as discussed earlier, one should further back-calculate the infection

dates and estimated the incidence curve, which is most appropriate for calculating the repro-

duction numbers. For example, if we subtract the mean incubation period (5 days) [25, 26]

from all symptom onset dates, the reproduction number would start to decrease fromMarch

12 and start to increase again fromMay 6. The resultant reproduction numbers based on such

incidence curve would be an even closer match with the daily mobility pattern, compared with

the ones based on the epidemic curve. However, since the Massachusetts line list data didn’t

have individual incubation periods or dates of infection, we decided to focus on individual

symptom onset and case reporting dates and build the Bayesian framework thereof. We note

that back-calculation to symptom onset dates, in this case (i.e., when the dates of infection are

unavailable for all reported cases), is more robust and convenient than back-projection to

dates of infection, which heavily relies on parametric assumption of incubation periods based

on external data and likely introduces considerable noise brought by additional imputations.

Second, the impact of testing practice was not taken into account in our analysis, as no data

on testing practice in Massachusetts is available. Testing practice has a profound impact on

reproduction number estimation and its impact has been extensively studied for COVID-19

surveillance [36]. As a result, our reproduction number estimates may subject to bias due to

fluctuations in the reporting fraction. Third, our results may indicate there was a causal rela-

tionship between the NPI and the drop in reproduction numbers, however such relationship

may not be warranted without a thorough study about the potential confounders. For example,

if people had changed their behaviors out of their own consciousness or under the guidance of

others (like elder people living in nursing homes) before the implementation of the NPI, the

effect of the NPI may not be as significant as we thought it would be.

Discussion

Reproduction numbers are urgently needed for monitoring the progression of the COVID-19

pandemic, and they should be estimated based on reliable epidemic curve estimates, rather

than the reported curve, to ensure minimal loss of the epidemiological signal. We introduce a

Bayesian approach to estimate the epidemic curve and instantaneous reproduction numbers

from line list data. This approach has two unique advantages over other similar approaches.

First, it is built on line list data which contains individual reporting delays that allow the esti-

mation of the reporting delay distribution to be data-oriented and time-dependent. Second, it

integrates the tasks of estimation of the reporting delay distribution, imputation of the report-

ing delay as well as estimation of the epidemic curve and reproduction numbers into one

Bayesian framework, making those three tasks interdependent. As a result, our approach more

accurately estimates uncertainty and is more efficient than other approaches that perform the

three tasks independently. The results suggest the Bayesian approach is robust to unfavorable

changes in data availability and misspecification of the reporting delay or the maximum delay

assumption. Under typical assumptions, the Bayesian approach produces accurate estimates

(low RMSE) and reliable inference (high coverage rate).

Unsurprisingly, the model performance does rely on data availability, and it will be inade-

quate based on insufficient data. For a single epidemic wave, our model estimates both the epi-

demic curve and reproduction numbers well if line list data is available for the whole epidemic

wave, though one should be cautious about the model choice if the reporting system has signif-

icantly improved over time. If there are severe delays in initiating surveillance, our model will

likely underestimate the case counts of the days prior to the starting date of surveillance, and

the Rt estimates will eventually converge at a rate consistent with the serial interval. If estima-

tion is performed in the midst of an outbreak, the Bayesian approach will underestimate the
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epidemic curve before the peak of the reported curve but performs substantially better after

the peak. This suggests that, in the case of single epidemic wave, we need to wait until the peak

of the reported curve has passed to ensure there is sufficient data for estimating the reproduc-

tion number using this approach. We stress that, if a line list data contains multiple epidemic

waves, the Bayesian estimates are at least accurate for all except the last epidemic wave. To

safely estimate the last epidemic wave, one still needs to wait until the majority of its cases are

reported.

Our model could be sensitive to sharp changes in the reporting delay distribution. If the

reporting delay distribution remains unchanged or changes gradually, our model generally

performs well. However, if there is a sharp improvement for the reporting delay distribution,

using Eq (1) will generate inaccurate estimates during the period when the two underlying

reporting delay distributions overlap, resulting in underestimation of reporting delays. In this

case, it would be beneficial to use Eq (2) to fit the reporting delay distribution instead. In gen-

eral, we recommend using Eq (2) for the reporting delay distributions with sharp changes and

Eq (1) for those without sharp changes. We also note that our model may not be adequate for

handling sharp changes that are due to quality controls in reporting systems, and in this case

there are better alternatives, such as the discrete time hazard models [18, 19].

Our model generates a posterior sample of instantaneous reproduction number estimates,

based on the epidemic curve estimates. We use EpiEstim to compute instantaneous repro-

duction numbers, conditional on the maximum length and distribution of serial interval. We

choose EpiEstim because it is more appropriate for real-time analysis and tracking of tempo-

ral changes (such as impact of a policy), compared to other alternatives [17]. We recommend

using an integrated approach that includes both inference of the reporting delays and estima-

tion of reproduction numbers, to incorporate all sources of uncertainty in modeling, since

we are better able to estimate variability due to estimation from this multistage process. We

note a few limitations of our approach that are inherited from the EpiEstim estimator. First,

the maximum length of serial interval s and the sliding window size τ are subjective choices

[23]. Second, it is possible to have negative serial intervals for COVID-19 which is currently

not allowed by EpiEstim [37]. We note that the reproduction number estimates are poten-

tially biased if the serial interval could be negative. Third, it is most accurate to estimate

reproduction numbers from the incidence curve rather than the epidemic curve for EpiEstim

[23, 38]. However, infection events would be very hard, if not impossible, to observe for the

current pandemic and thus a distribution of incubation period is needed for obtaining the

infection dates [12, 14], which is typically done via an additional back-projection step based

on the estimated epidemic curve and not the focus of this paper. Fourth, reproduction num-

ber estimates will be less trustworthy if the fraction of infection observed is not constant over

time [3, 22, 39]. For COVID-19, this is likely the case considering the evolution of testing

and the significant proportion of asymptomatic transmission [36], requiring further adjust-

ment of the data.

It is worthy emphasizing that we only focus on one part in the workflow for processing the

reported curve and/or line list data, i.e., estimating the epidemic curve and the instantaneous

reproduction numbers thereof. The whole workflow should also include one preprocessing

step where the data is adjusted for testing practice (i.e., fluctuations in the reporting fractions)

and one postprocessing step where the dates of infection are further back-calculated based on

the dates of symptom onset. In this paper, we take a data-oriented approach, i.e., what we can

achieve based on available line list data and the line list data only. However, it’s important to

acknowledge that the preprocessing step is much needed as the impact of testing practice on

reproduction number estimation is profound [36]. As outlined in the method section, one

should estimate the reporting fractions based on data specifically on testing practice or other
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proxy data such as the proportions of hospitalization among COVID-19 cases [3], and com-

pute the adjusted reported case counts ~nt under our framework. Unfortunately, data on testing

practice is rarely available during the current pandemic, which undermines the validity of

most reproduction number estimates. Moreover, the postprocessing step is usually necessary

as the incidence curve is preferred for estimating the reproduction numbers. Ideally, a line list

data should have additional variable containing the dates of infection at the individual level,

but this is hardly the case for the current COVID-19 pandemic. Consequently, the postproces-

sing step for obtaining the dates of infection is typically built on a parametric distribution of

incubation periods, which does not involve line list data and thus is beyond the scope of this

paper.

Empirically, there are some important issues to consider in properly implementing our

method. First, our model is region-specific, i.e., one need to fit our model to line list data of a

single region to avoid systematic differences between regions. The region is defined such that

each region is deemed to have its own reporting system (and thus its unique reporting delay

distribution). For example, if the reporting system differs at the county level, we should use

line list data of each county (rather than each state) for our model. Second, the reporting

period in our model needs to be carefully and properly defined, as our model is essentially a

moving-window smoothing method. As with most other moving-window smoothing meth-

ods, the model performance depends on the moving-window size, which in our case is the

reporting period size [17]. The moving-window size is known for its pivotal role in the bias-

variance trade-off and thus should be neither too small nor too large for estimating the report-

ing delay distribution [5]. Third, our model cannot handle negative reporting delays which are

possible for the current COVID-19 pandemic due to contact tracing, though our assumption

of non-negative reporting delays is consistent with the literature [3, 14]. Fourth, as mentioned

earlier, there are mainly three reasons for having missing symptom onset dates, i.e., they are

missing due to human/system errors, pre-symptomatic cases or asymptomatic cases. By using

negative binomial distribution for reporting delays, our model assumes the missing symptom

onset dates are mostly due to human/system errors, which potentially biases the epidemic

curve estimates as pre-symptomatic and asymptomatic cases could be substantial in COVID-

19. However, the reproduction number estimates won’t suffer much from this if the propor-

tion of pre-symptomatic and asymptomatic cases does not fluctuate much over time. Future

work is needed for incorporating pre-symptomatic and asymptomatic cases into our modeling

framework, potentially via labeling those two groups of cases and modeling negative reporting

delays.

Overall, we provide a useful tool to estimate timely reproduction number estimates based

on a Bayesian approach that integrates reporting delay imputation, back-calculation and now-

casting, all of which are interdependent and critical for reproduction number estimation. Our

approach is robust to reasonable deviations from the model assumptions. Most importantly, it

is more epidemiological meaningful than estimates based on the reported curve and thus a bet-

ter option for surveillance of the COVID-19 pandemic.

Supporting information

S1 Fig. Impact of the maximum delay assumption for complete data when the reporting

delay distribution was unchanged. For all graphs: the black solid curve corresponds to esti-

mates based on the known epidemic curves and the black dashed curve corresponds to esti-

mates based on the reported curves. The grey-shaded region superimposed on the curve

depicts the 95% Bayesian credible interval and the grey-shade region on the right indicates the

region of nowcasting. The colored curves represent different model choices. All values were
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averaged over 1000 simulated datasets.

(PDF)

S2 Fig. Impact of the maximum delay assumption for complete data when the reporting

delay distribution was sharply improved. For all graphs: the black solid curve corresponds

to estimates based on the known epidemic curves and the black dashed curve corresponds to

estimates based on the reported curves. The grey-shaded region superimposed on the curve

depicts the 95% Bayesian credible interval and the grey-shade region on the right indicates the

region of nowcasting. The colored curves represent different model choices. All values were

averaged over 1000 simulated datasets.

(PDF)

S3 Fig. Impact of the maximum delay assumption for complete data when the reporting

delay distribution was gradually improved. For all graphs: the black solid curve corresponds

to estimates based on the known epidemic curves and the black dashed curve corresponds to

estimates based on the reported curves. The grey-shaded region superimposed on the curve

depicts the 95% Bayesian credible interval and the grey-shade region on the right indicates the

region of nowcasting. The colored curves represent different model choices. All values were

averaged over 1000 simulated datasets.

(PDF)

S4 Fig. Coverage rates of all estimated daily counts of symptom onset cases for complete

data. For all graphs: The colored curves represent different model choices and the grey-shaded

region indicates the nowcasting region. The coverage rates were calculated based on 1000 sim-

ulated datasets. A: The coverage rates given the reporting delay distribution was unchanged

and l was correct. B: The coverage rates given the reporting delay distribution was unchanged

and l was incorrect. C: The coverage rates given the reporting delay distribution was sharply

improved and l was correct. D: The coverage rates given the reporting delay distribution was

sharply improved and l was incorrect. E: The coverage rates given the reporting delay distribu-

tion was gradually improved and l was correct. F: The coverage rates given the reporting delay

distribution was gradually improved and l was incorrect.

(PDF)

S5 Fig. RMSE of all estimated daily counts of symptom onset cases for complete data. For

all graphs: The colored curves represent different model choices and the grey-shaded region

indicates the nowcasting region. The RMSE were calculated based on 1000 simulated datasets.

A: The RMSE given the reporting delay distribution was unchanged and l was correct. B: The

RMSE given the reporting delay distribution was unchanged and l was incorrect. C: The

RMSE given the reporting delay distribution was sharply improved and l was correct. D: The

RMSE given the reporting delay distribution was sharply improved and l was incorrect. E: The

RMSE given the reporting delay distribution was gradually improved and l was correct. F: The

RMSE given the reporting delay distribution was gradually improved and l was incorrect.

(PDF)

S6 Fig. Coverage rates of all estimated daily counts of symptom onset cases for data with

no early report. For all graphs: The colored curves represent different starting dates for line-

list data and the grey-shaded region indicates the nowcasting region. The coverage rates were

calculated based on 1000 simulated datasets. A: The coverage rates given the reporting delay

distribution was unchanged and l was correct. B: The coverage rates given the reporting delay

distribution was unchanged and l was incorrect. C: The coverage rates given the reporting

delay distribution was sharply improved and l was correct. D: The coverage rates given the
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reporting delay distribution was sharply improved and l was incorrect. E: The coverage rates

given the reporting delay distribution was gradually improved and l was correct. F: The cover-

age rates given the reporting delay distribution was gradually improved and l was incorrect.

(PDF)

S7 Fig. RMSE of all estimated daily counts of symptom onset cases for data with no early

report. For all graphs: The colored curves represent different starting dates for line-list data

and the grey-shaded region indicates the nowcasting region. The RMSE were calculated

based on 1000 simulated datasets. A: The RMSE given the reporting delay distribution was

unchanged and l was correct. B: The RMSE given the reporting delay distribution was

unchanged and l was incorrect. C: The RMSE given the reporting delay distribution was

sharply improved and l was correct. D: The RMSE given the reporting delay distribution was

sharply improved and l was incorrect. E: The RMSE given the reporting delay distribution was

gradually improved and l was correct. F: The RMSE given the reporting delay distribution was

gradually improved and l was incorrect.

(PDF)

S8 Fig. Coverage rates of all estimated daily counts of symptom onset cases for an ongoing

epidemic wave. For all graphs: The colored curves represent different ending dates for line-list

data, and their nowcasting regions are displayed as the gray-shaded areas with boundary lines

in their corresponding colors. The coverage rates were calculated based on 1000 simulated

datasets. A: The coverage rates given the reporting delay distribution was unchanged and l was

correct. B: The coverage rates given the reporting delay distribution was unchanged and l was

incorrect. C: The coverage rates given the reporting delay distribution was sharply improved

and l was correct. D: The coverage rates given the reporting delay distribution was sharply

improved and l was incorrect. E: The coverage rates given the reporting delay distribution was

gradually improved and l was correct. F: The coverage rates given the reporting delay distribu-

tion was gradually improved and l was incorrect.

(PDF)

S9 Fig. RMSE of all estimated daily counts of symptom onset cases for an ongoing epi-

demic wave. For all graphs: The colored curves represent different ending dates for line-list

data, and their nowcasting regions are displayed as the gray-shaded areas with boundary lines

in their corresponding colors. The RMSE were calculated based on 1000 simulated datasets. A:

The RMSE given the reporting delay distribution was unchanged and l was correct. B: The

RMSE given the reporting delay distribution was unchanged and l was incorrect. C: The

RMSE given the reporting delay distribution was sharply improved and l was correct. D: The

RMSE given the reporting delay distribution was sharply improved and l was incorrect. E: The

RMSE given the reporting delay distribution was gradually improved and l was correct. F: The

RMSE given the reporting delay distribution was gradually improved and l was incorrect.

(PDF)

S1 Text. More details on simulation design.

(PDF)
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18. Höhle M, an der HeidenM. Bayesian nowcasting during the STECO104: H4 outbreak in Germany,
2011. Biometrics. 2014; 70(4):993–1002. https://doi.org/10.1111/biom.12194 PMID: 24930473
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