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ABSTRACT

Motivation: A critical component of in silico analysis of under-

determined metabolic systems is the identification of the appropriate

objective function. A common assumption is that the objective of the

cell is to maximize growth. This objective function has been shown to

be consistent in a few limited experimental cases, but may not be

universally appropriate. Here a method is presented to quantitatively

determine the most probable objective function.

Results: The genome-scale metabolism of Escherichia coli growing

on succinate was used as a case-study for analysis. Five different

objective functions, including maximization of growth rate, were

chosen based on biological plausibility. A combination of flux balance

analysis and linear programming was used to simulate cellular meta-

bolism, which was then compared to independent experimental data

using a Bayesian objective function discrimination technique. After

comparing ratesofoxygenuptakeandacetateproduction,minimization

of the production rate of redox potential was determined to be the

most probable objective function. Given the appropriate reaction net-

work and experimental data, the discrimination technique can be

applied to any bacterium to test a variety of different possible objective

functions.

Contact: srivasta@engr.uconn.edu

Supplementary information: Additional files, code and a program

for carrying out model discrimination are available at http://www.engr.

uconn.edu/~srivasta/modisc.html.

INTRODUCTION

Amid the explosion of information now available from the publi-

cation of genome sequences, several projects have begun to create

models of large-scale networks or whole-cell behavior (Kitano,

2002; Schaff and Loew, 1999; Zimmer, 2005). Additionally,

many attempts have been made to model cellular metabolism, either

in whole or in part (Aiba and Matsuoka, 1979; Bonarius et al., 1996;
Edwards et al., 2001; Edwards and Palsson, 1999, 2000; Fell and

Small, 1986; Fischer and Sauer, 2005; Forster et al., 2003; Goel
et al., 1993, 1999; Holms, 1996; Ibarra et al., 2002; Majewski and

Domach, 1990; Mavrovouniotis et al., 1992; Raman et al., 2005;
Reed et al., 2003; Sauer et al., 1996, 1998; Savinell and Palsson,

1992; Schilling et al., 2000, 2002; Schilling and Palsson, 2000;

Vallino and Stephanopoulos, 2000). Such analyses are beneficial

because a variety of in silico experiments can be run in less time

than would be necessary to carry out the same experiments using

traditional laboratory methods.

Flux balance analysis (Bonarius et al., 1997; Edwards and

Palsson, 1999; Varma and Palsson, 1994) is a common method

of modeling bacterial metabolism, and it was used in the current

analysis. A vast number of feasible metabolic flux distributions

exist, so optimization may be used to predict the phenotypic

behavior of the cell subject to various constraints (Edwards and

Palsson, 2000). The genome-scale metabolism of Escherichia coli
growing on succinate was the model system analyzed, and five

objective functions were compared.

This paper introduces the technique of objective function discri-

mination to allow researchers to determine the most probable

objective function for any cell given the appropriate experimental

data and reaction set. Most analyses thus far have assumed that

maximization of growth is the appropriate objective function

(Edwards et al., 2001; Edwards and Palsson, 2000; Forster et al.,
2003; Ibarra et al., 2002; Reed et al., 2003; Schilling et al., 2002;
Varma and Palsson, 1993, 1994). However, it has been acknow-

ledged that optimization based on growth may not occur on all

substrates (Ibarra et al., 2002). Others have suggested optimization

(Burgard and Maranas, 2003) or heuristic approaches (Savinell and

Palsson, 1992) for comparing objective function candidates. In this

paper, a Bayesian approach to identify the most probable objective

function was utilized. The objective functions compared were

growth rate maximization, minimization of ATP production rate,

maximization of ATP production rate, minimization of substrate

utilization rate and minimization of the production rate of redox

potential for E.coli growing on succinate. Note that any objective

function can be considered, such as those related to minimization of

metabolic adjustment (MOMA) or regulatory on/off minimization

(ROOM), as long as there is experimental data available for

comparison. Benefits of this rigorous quantitative approach include

ease of implementation as well as extremely low computational cost.

To our knowledge, this is the first comparison of objective functions

for genome-scale metabolism in E.coli. It is also the first use of a

Bayesian approach to identify potential metabolic functions.

METHODS

Modeling approach

Several mathematical methods have been developed to study metabolism,

including biochemical systems theory (Savageau, 1969a,b), cybernetic mod-

eling (Kompala et al., 1986), temporal decomposition (Palsson et al., 1987),

network rigidity (Stephanopoulos and Vallino, 1991), metabolic control

analysis (Fell, 1997; Kacser and Burns, 1973), metabolic pathway analysis

(Liao et al., 1996; Schilling et al., 1999; Schuster et al., 1999), metabolic flux

analysis (Follstad et al., 1999; Lee et al., 1999, 2000) and flux balance�To whom correspondence should be addressed.
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analysis (Alper et al., 2005; Bonarius et al., 1997; Edwards and Palsson,

1999; Varma and Palsson, 1994). However, the rate constants of most meta-

bolic systems are unknown, although there are some notable exceptions

(Joshi and Palsson, 1989a,b; Joshi and Palsson, 1990a,b; Palsson et al.,

1989). Although 13C-labeled substrate may be used to measure fluxes

throughout a metabolic system (Klapa et al., 1999, 2003; Koffas and

Stephanopoulos, 2005; Park et al., 1999; Sauer et al., 1997; Stephanopoulos,

1999) and therefore reduce the degrees of freedom, often only extracellular

metabolite concentrations are measured due to lack of expertise or resources.

As a result, flux balance analysis was used for this research since it only

requires reaction stoichiometry. Given that flux balance analysis predicts

all feasible metabolic flux distributions, optimization theory may be used to

find a solution that satisfies a biologically relevant objective function and its

concomitant set of flux constraints.

Flux balance analysis considers all reactions in which a metabolite

participates. This can be expressed as a mass balance equation of the form

dxi
dt

¼
X

j

Sijfj‚ ð1Þ

where Sij is the stoichiometric coefficient of metabolite xi for the flux fj.

Equation (1) neglects metabolite dilution due to cell growth because this

effect on concentration is negligible compared to the fluxes for each reaction

in which the metabolite participates (Stephanopoulos et al., 1998). The other

major assumption of flux balance analysis is the system is at a pseudo steady-

state. High-turnover allows metabolite concentrations to respond rapidly to

perturbations (Edwards, 1999; Stephanopoulos et al., 1998), justifying this

assumption. As a result, the system of ordinary differential equations is

reduced to a set of linear algebraic equations:

S
¼
· f

�
¼ 0

�
‚ ð2Þ

where S¼ is the m · n matrix of stoichiometric coefficients for all m metabo-

lites in all n fluxes, � is the vector of fluxes, and 0 is a vector of zeros. To

ensure that all internal fluxes are greater than zero, all internal reversible

reactions must be decomposed into forward and reverse reactions. Exchange

fluxes, which are reactions involving transport of metabolites into or out of

the cell, are allowed to be negative, denoting direction. For the genome-scale

metabolism of E.coli MG1655 there are 1320 fluxes—1177 irreversible

reactions and 143 exchange fluxes—that involve 625 metabolites, as

specified in iJR904 (Reed et al., 2003).
Most metabolic systems are underdetermined due to a greater number of

fluxes than metabolites; in Equation (2) S¼ is non-square with n>m. Therefore,
to solve for �, an optimization strategy, such as linear programming must be

used (Savinell and Palsson, 1992). An objective function is chosen and either

minimized or maximized, as appropriate, subject to a variety of constraints.

If Z is the objective function, and one wants to make Z as large as possible,

the linear programming problem has the following form:

Maximize Z subject to
X

i‚ j

Sijfj ¼ 0 and aj � fj � bj‚ ð3Þ

where aj and bj are the minimum and maximum values, respectively, of

the jth flux.

Five objective functions were examined in this work: maximization of

growth rate, minimization of the production rate of redox potential, min-

imization of ATP production rate, maximization of ATP production rate

and minimization of nutrient uptake rate. Growth rate was defined as the

combination of various metabolites, such as amino acids and cofactors, in

stoichiometric proportion to produce ATP, inorganic phosphate, pyrophos-

phate and water (Reed et al., 2003). The specific equation used is listed in the

supplementary files provided with the genome-scale model iJR904 (Reed

et al., 2003). Maximizing growth rate was chosen for examination not

only because it has been utilized in the past, but also because it may be

argued that a cell is best able to out-compete other cells if it can grow quickly

and overtake competitors.

Minimization of redox potential was also selected as a plausible objective

function because it may be interpreted as maximization of energy efficiency

by the cell. The redox potential objective function included all reactions that

produce FADH2, NADH or NADPH (Savinell and Palsson, 1992). This

objective function is expressed as follows:

Minimize{5DGLCNR_R + ABUTD + ACALDI + 2 �ADHER_R +
AGPR_F + ALCD19_R + ALDD19X + ALDD2X + ASAD_F +
BETALDHX + BETALDHY + DAAD + DHBD_F + DHCIND +
DHPPD + DHRF_R + E4PD_F + 6 �FAO1 + 7 �FAO2 + 8 �FAO3 +
FAO4 + G3PD2_F + G6PDH2R_F + GAPD_F + GCALDD +
GLTPD_F + GLUDY_F + GLYCDX + GLYCL + GND + GTHOR_R + 2 �
HISTD + HSDY_F + ICDHYR_F + IDOND_R + IMPD + IPMD +
LCAD_F + LCADI + LCAR_R + LDH_D_F + M1PD_F +
MANAO_F + MDH_F + ME1 + ME2 + MTHFD_F + P5CD + PDH +
PDX5PS + PERD_F + PGCD + PPND + PROD2 + SBTPD_F + SGSAD +
SHCHD2 + SHK3DR_R + SSALX + SSALY + SUCD1I + SUCD4_R + 3�
SULR_F + TAGURR_F + TEST_AKGDH + TEST_NADTRDH + THD2 +
THRD + 2 �UACMAMO + 2 �UDPGD},
where the reaction name is that specified in iJR904 (Reed et al., 2003), and
‘_R’ and ‘_F’ refer to the reverse and forward reaction, respectively, for

reversible reactions. A cell may minimize redox potential to decrease the

number of oxidizing reactions that occur thus conserving its energy or

using its energy in the most efficient way possible (Savinell and Palsson,

1992).

Minimization of ATP production was examined because this implies

efficient use of energy. The goal of this objective function is for the cell

to grow while using the minimum amount of energy necessary, thereby

conserving ATP. As a result the cell uses ATP as efficiently as possible.

Though this objective function is concerned with efficient operation, it is

different than minimizing redox potential because ATP is the molecule in

question instead of one of the adenine dinucleotides. This objective function

includes all reactions that produce ATP (Savinell and Palsson, 1992), and

appears as follows:

Minimize{ACCOACR_R + ACKR_R + ADK1_R + ALAALAR_R +
AP5AH + ASPK_R + ATPS4R_F + CBIAT_R + CBLAT_R +
CYTK1_R + CYTK2_R + DADK_R + DBTSR_R + DGK1_R +
DHBSR_R + DTMPK_R + GALK_R + GK1_R + NDPK1_R +
NDPK2_R + NDPK3_R + NDPK4_R + NDPK5_R + NDPK6_R +
NDPK7_R + NDPK8_R + PGK_R + PPAKR_F + PRAGSR_R +
PRASCS_R + PRPPS_R + PYK + SERASR_R + SUCOAS_R +
TMKR_R + TMPKR_R + UMPK_R + URIDK2R_R}.

Once again, the reaction names are those listed in the supplementary files

of iJR904 (Reed et al., 2003), and ‘_R’ and ‘_F’ refer to the reverse and

forward reaction, respectively, of reversible reactions. It has been proposed

that instead, the rate of ATP production should be as large as possible,

signifying the production of as much ATP as possible. However, this objec-

tive function may make less sense intuitively, as alluded to in the description

of minimizing the ATP production rate. Though often used as an objective

function when modeling mitochondria (Ramakrishna et al., 2001; Vo et al.,
2004), it might not be in a bacterial cell’s best interest to produce an abun-

dance of ATP, especially if the cell’s resources could be diverted to other

processes and the ATP made would be wasted excess. Nonetheless,

maximization of ATP production rate was also analyzed.

Minimization of nutrient uptake was investigated as a fifth objective

function. The rationale behind this hypothesis is that efficient use of the

carbon source leads to a longer-lasting food supply in the case of nutrient-

limiting environments. However, it can be argued that the cell may not

employ this method when in nutrient-rich conditions. This objective function

was implemented by optimizing the exchange flux for uptake of external

nutrients (Savinell and Palsson, 1992), succinate in this case.

Objective function discrimination

The method used for objective function discrimination was adapted from a

Bayesian-based technique developed by Stewart and coworkers detailed in

A.L.Knorr et al.
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several previous works (Knorr and Srivastava, 2005; Stewart et al., 1992,
1996, 1998; Stewart and Sørenson, 1981). Using this technique, the posterior

probability for each objective function was calculated and normalized to the

sum of all the posterior probabilities. These normalized values were referred

to as the posterior probability shares. The objective function with the highest

posterior probability share was considered the most probable.

To calculate the probability share for an objective function, Mj, the

posterior probability must first be determined:

pðMj j Y¼ Þ / pðMjÞ2�pj/2 j v
¼ j j �DOF/2: ð4Þ

In Equation (4) Mj was objective function j; p(Mj) was the prior probability

ofMj; Y¼ was the matrix of weighted experimental data; pj was the number of

parameters estimated inMj; andDOFwas the number of degrees of freedom.

For the case of flux balance analysis, the stoichiometric coefficients of all

reactants were known and it was unnecessary to estimate any parameters;

therefore pj was zero in all cases (Bailey, 2001).

v¼j was the matrix of the products of the deviation of the data from the

predicted value forMj, evaluated at the maximum likelihood of the parame-

ter vector �. The ikth element of vj was calculated by:

vikð�
�
jÞ ¼

Xn

u¼1

½Yiu � Fjiðj
�
u‚ �

�
jÞ�½Yku � Fjkðj

�
u‚ �

�
jÞ�: ð5Þ

Fji was the weighted value predicted by Mj, which was a function of the

vectors of independent variables, ju, and parameters, �j. The subscripts i and
k indicated a specific response value, such as the acetate production rate, and

u represented the event, or experiment, during which the data was collected.

The experimental data, Yiu, and the predicted data, Fji, were weighted by the

reciprocal standard deviation of the corresponding response value, i or k, as
described by Stewart et al. (1998). Standard deviations were provided in the

supplementary data of Edwards et al. (2001).

Each posterior probability was normalized to form the posterior

probability share, p:

pðMj j Y¼ Þ ¼
pðMj j Y¼ ÞX

k

pðMk j Y¼ Þ
: ð6Þ

The objective function with the largest <t>p</t> was selected as the most

probable. It should be noted that objective function discrimination can pre-

dict only which objective function is the most appropriate of those consid-

ered for the system of interest.

Experimental data

Experimental data were obtained from previously published work (Edwards

et al., 2001) for growth of E.coli MG1655 on minimal M9 media supple-

mented with succinate rather than glucose as the carbon source. Twenty-four

batch experiments were run at various temperatures (27.5–37�C) and succi-

nate levels (0.05–4 g/l) to give different succinate uptake rates. Growth rate,

oxygen uptake rate, succinate uptake rate and acetate production rate were

measured for each trial.

Flux predictions

To generate flux predictions, flux balance analysis was carried out for the

genome-scale metabolism of E.coli growing on succinate. Experimentally

determined values were used as constraints to calculate the predicted dis-

tribution of metabolic fluxes for each objective function. To some extent,

values that were constrained were dependent upon the objective function

being evaluated. For example, cell growth was fixed when substrate uptake

was minimized. However, when evaluating maximization of cell growth as

the objective function, substrate uptake was fixed. Both substrate uptake and

cell growth were fixed in all other cases.

RESULTS

Five objective functions were examined for the behavior of E.coli
on succinate using the reactions involved in genome-scale metabo-

lism as detailed in the supplementary files of iJR904 (Reed et al.,
2003). Linear programming and flux balance analysis were utilized

to predict fluxes for all reactions using the GNU Linear Program-

ming Solver software. The predictions for rates of acetate produc-

tion and oxygen uptake were compared to experimental data of

Edwards et al. (2001) for growth on succinate. Each objective

function generated a flux vector of predicted behavior, and com-

parisons to experimental data are shown in Figures 1 and 2. Experi-

ments 1–7 and 10 from Edwards et al. (2001) were not included in

the current study because solutions to the flux balance analysis

problem could not be found when minimization of ATP production

rate, maximization of ATP production rate, or minimization of the

production rate of redox potential was the objective function. A

potential reason why solutions could not be found for some experi-

ments include measurement error leading to points that lie outside

the phenotype phase plane.

Figure 1 shows measured and predicted acetate production rates.

Maximization of ATP predicted the results of experiments 19–22

and 24 fairly accurately, but gave low-values for experiments 11,

14, 18 and 23. In addition, acetate production was predicted in

experiments 12, 13 and 17, though none was observed. Values

of zero were predicted for experiments 8 and 9, failing to reproduce

the acetate production observed experimentally. Minimization of

ATP incorrectly predicted acetate export for experiments 12, 13 and

15–17, although none is observed experimentally. While this

objective function was the only one to predict acetate production

in experiments 8 and 9, the predictions were more than 2- and 4-fold

greater, respectively, than the true values. The prediction for experi-

ment 21 was very close to the measured value, and experiments 23

and 24 were predicted exactly. Maximization of growth rate poorly

predicted acetate production; only two experiments yielded nonzero

predictions, and only that of experiment 24 was close to the true

value. Minimization of redox incorrectly predicted acetate produc-

tion for experiments 12, 13 and 17, as there was no measured acetate

production in all cases. Further, though acetate production was

predicted in experiment 11, this value was <6% of the observed

value. Predictions for experiments 19–21, 23 and 24 were close to

the measured vales, but predictions for experiments 14, 18 and 22

were not. Interestingly, minimization of succinate uptake rate never

predicted production of acetate.

Figure 2 shows values predicted by all objective functions for

oxygen uptake rate. Maximization of ATP production and mini-

mization of the production rate of redox potential generally exhi-

bited the same behavior: oxygen uptake rate was over estimated

in experiments 13, 14, 17–24, under estimated in experiments 8,

and 16, and very close to the true value in experiments 9, 11, 12 and

15. Minimization of ATP production rate under estimated oxygen

uptake rate for every experiment with the exception of experiment

20. Maximization of growth under predicted the oxygen uptake

rate in every experiment except for 21, and results for experiments

19–23 were very close to the observed values. Minimization of

succinate uptake rate greatly under estimated the value measured

in every experiment. Using the objective function discrimi-

nation technique described here, all the information in Figures 1

and 2 was combined to yield the most probable objective function.

Bayesian-based selection of metabolic objective functions
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Fig. 1. Acetate production rate as predicted by each of the five objective functions: ‘Max ATP’ and ‘Min ATP’ are maximizing and minimizing ATP,

respectively; ‘Max GRO’ is maximization of growth rate; ‘Min RED’ is the minimization of the production of redox potential; ‘Min SUR’ is minimization

of succinate uptake rate; ‘Measured’ are the measurements from Edwards et al. (2001). Predictions varied widely and were often wrong.

Fig. 2. Oxygen uptake rate as predicted by each of the five objective functions: ‘Max ATP’ and ‘Min ATP’ are maximizing and minimizing ATP, respectively;

‘MaxGRO’ is maximization of growth rate; ‘Min RED’ is theminimization of the production of redox potential; ‘Min SUR’ is minimization of succinate uptake

rate; ‘Measured’ are the measurements from Edwards et al. (2001).

A.L.Knorr et al.
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Interestingly, minimization of the production rate of redox potential

was the most probable, with growth rate maximization the second

most probable, as shown in Table 1. Although this result is surpris-

ing, given the prominence in the literature of using maximization

of growth rate as the objective function, the results in Table 1 may

be due to constraining only a small number of the 1320 total fluxes.

A noteworthy result is that maximizing ATP production had a

higher posterior probability share than minimizing ATP production,

which was the opposite of what was expected. The more efficient

objective function of minimizing ATP production was less probable

than maximizing ATP production even though the most probable

objective function overall was based on energy efficiency. Further,

efficient use of resources, in the form of succinate, yielded poor

results.

DISCUSSION

Using a Bayesian-based objective function discrimination

method, it was quantitatively demonstrated that minimizing the

production rate of redox potential was a more probable objective

function than maximizing growth rate as well as three other objec-

tive functions for genome-scale metabolism of E.coli growing on

succinate. This result was unexpected since maximization of growth

is the most-widely used objective function for flux balance analysis.

Figures 1 and 2 show the experimentally measured fluxes and

the fluxes predicted by each objective function for 16 experiments.

Maximization of growth rate often predicted no acetate production

though it was observed experimentally. Minimization of the pro-

duction rate of redox potential predicted values of acetate produc-

tion that were close to experimental values for Experiments 14 and

18–24. Minimizing the production rate of redox potential had

closer predictions for oxygen uptake rate than maximizing growth

rate for Experiments 8–13 and 15–17, but maximizing growth rate

was the better predictor over the entire range of data. By taking into

consideration all the data from Figures 1 and 2, objective function

discrimination predicted that minimization of redox production was

the most probable objective function for genome-scale metabolism

of E.coli growing on succinate. These results may change if addi-

tional fluxes are measured experimentally and used as constraints.

Further, while alternate optimal solutions to the linear programming

problem exist (Lee et al., 2000; Reed and Palsson, 2004), the alter-

nate optima that have been found for E.coli growing on succinate do
not have different exchange fluxes, and therefore the results pre-

sented here are not affected by the alternate optima as described

previously in the literature (Reed and Palsson, 2004).

It should be noted that other methods have been proposed to

determine the most appropriate objective function for modeling

bacterial growth. Burgard and Maranas have developed a method

of calculating what were termed the coefficients of importance for

various fluxes (Burgard and Maranas, 2003). The coefficients of

importance are a measure of how much a particular flux contributes

to an assumed objective function. Calculating the coefficients of

importance requires all metabolic fluxes to be known, which was

not the case for the experimental system (Edwards et al., 2001).
Objective function discrimination is an attractive alternative to

coefficients of importance because results can be generated after

measurement of only a few fluxes. Combining coefficients of

importance with objective function discrimination, in the form of

a non-uniform prior probability for example, may yield further

insight in future studies. In the current study the prior probability,

p(Mj), was assumed equal for all objective functions. However, a

coefficient of importance analysis may suggest a different p(Mj)

for each objective function, which would weight their posterior

probability in Equation (4). Such weighting would subsequently

affect the posterior probability shares calculated in Equation (5).

Savinell and Palsson compared the accuracy of three objective

functions for hybridoma cells using a heuristic analysis (Savinell

and Palsson, 1992). Results were generated for minimizing ATP

production rate, minimizing nutrient uptake rate and minimizing

the production rate of redox potential. For each objective function,

Savinell and Palsson compared which nutrients were used, mass

yields, redox production, oxygen uptake and ATP production.

Interestingly, after taking all this information into consideration,

the authors decided that minimizing redox was a realistic and

appropriate cellular objective. Unlike objective function discrimi-

nation where a quantitative criterion, the posterior probability share,

was used to select an objective function, the heuristic approach

was somewhat subjective and qualitative, as multiple pieces of

information were considered to reach a conclusion.

One may wonder what the most appropriate objective function

is for their system of interest. Objective function discrimination

is convenient because it can be applied to any bacterium and can

compare any plausible objective function, regardless whether the

objective function is linear, nonlinear, mixed-integer, etc. The only

requirements are a set of metabolic reactions, which will be used in

linear programming to generate predicted fluxes, and experiment-

ally measured fluxes for comparison. Of course, as more data are

gathered, a more comprehensive analysis can be made. In addition,

instead of using a heuristic approach to choose the best objective

function (Savinell and Palsson, 1992), a single value, the posterior

probability share, is used. Although objective function discrimina-

tion is a very useful technique, one must remember that it only

considers the reactions and objective functions specified by the

user. It cannot consider additional reactions or objective functions

without doing a separate analysis. The caveat to this approach is if a

group of poor objective functions is analyzed, the discrimination

technique will still calculate the best of the poor objective functions.

However, this does not change the fact that the selected objective

function is ultimately a poor one.

In conclusion, minimization of the production rate of redox

potential has been shown to be the most probable objective function

for the genome-scale metabolism of E.coli growing on succinate.

This is the first attempt to compare objective functions using

genome-scale metabolism, and it is also the first to use a proba-

bilistic approach. Because a small number of fluxes were cons-

trained, further study is vital for validating or disproving the

Table 1. Posterior probability share, p(Mj jY), of each objective function,

listed in descending order of probability

Objective function p(Mj j Y)

Minimize production of redox 9.97 · 10�1

Maximize growth 2.47 · 10�3

Maximize ATP production 1.86 · 10�4

Minimize succinate uptake 6.55 · 10�9

Minimize ATP production 1.32 · 10�9

Bayesian-based selection of metabolic objective functions

355

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/3/351/236644 by guest on 20 August 2022



results presented here. Additional experimental data would allow

more fluxes to be constrained, thereby providing a more accurate

depiction of cellular behavior.
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