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Propositions

accompanying the thesis

Bayesian Belief Nets and Vines in Aviation Safety and other

Applications.

Oswaldo Morales Nápoles.

(1) The algorithm proposed in Aas et al. [2009, p.189] suggests that ope-
rations to assign the ‘best’ regular vine to a data set should begin by
selecting the first tree and iteratively selecting subsequent trees of the
regular vine. Algorithm 2.3.2. in this thesis (Morales Nápoles [2009]) is
the most advantageous in this case if regular vines are to be generated
“on the fly”.

(2) The notion of natural order for regular vines presented in this thesis has
helped to enumerate the number of equivalence classes of regular vines
on n nodes [Joe et al., 2010]. This same notion should shed light on other
graphical properties of regular vines such as the number of tree-equivalent
classes, the degree sequence, the typical distance and the diameter of each
tree in every level of the vine. Moreover, these properties should be further
studied.

(3) The subject of random vines should be developed. One example is the
random vine V (n) taken at random from the collection of all vines on
n nodes. A second example, more important for present applications
[Kurowicka and Cooke, 2006], could be the random regular vine RV (n, p)
on n nodes where each of the n(n − 1)/2 edges realizes independently a
partial correlation equal to zero with probability p. Moreover, p could be
related to the ratio of the number of labeled elements in each equivalent
or tree-equivalent class to the total number of labeled regular vines on n
nodes.

(4) The construction of a large data base with all possible labeled regular vines
on n nodes for a sufficiently large n that includes all known graphical
properties is, at this stage, as important for applications as algorithms
for generating them.

(5) The number of stars in the Milky Way as computed from Schneider [2006,
p.5] is approximately equal to the number of labeled vines on 7 nodes.

(6) According to the CATS BBN presented in this thesis (Morales Nápoles
[2009]), it is possible to reduce the accident rate to a value approximately
6 times smaller than the current value. In order to do this, the flight
crew should increase their levels of experience to a value equal to the 97th

percentile of their distributions. The aviation sector cannot support this
change in the short run. In order to achieve a reduction in the accident
rate of similar magnitude, a combination of policies is required. Inves-
tigating these possible policies should be at least one of the immediate
goals of the CATS BBN.
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(7) Non-Parametric Continuous-Discrete BBNs are more flexible with res-
pect to changes in modelling than discrete, Gaussian and discrete-Gaussian
BBNs. However, adding or deleting nodes or arcs in the graph could still
lead to a re-quantification.

(8) The assessment of conditional rank correlations through ratios of uncon-
ditional rank correlations is easier for experts than its assessment through
probabilities of exceedence with a large number of conditions.

(9) The consequences of an earth dam failure in the State of Mexico will be
approximately constant regardless of the size of the failure.

(10) When the univariate marginal distributions are very different across ex-
perts, the joint distribution obtained with the method for combination
described in this thesis (Morales Nápoles [2009, Ch.4]) with equal weights
tends to suppress the magnitude of the dependence even if individual ex-
perts think bivariate rank correlations are of the same sign and magnitude.
This is an advantage of combining rank correlations through exceedence
probabilities.

(11) The number of hairs in a cow’s tail is a random variable with mean 2,872
(Fauvel and Gerdes [1990]). Efforts to adequately characterize this quan-
tity would lead to a better world.

These propositions are considered opposable and defendable and as such have
been approved by the supervisor prof. dr. R.M. Cooke.
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Stellingen

behorende bij het proefschrift

Bayesiaanse Netwerken en Vines in veiligheid van de luchtvaart en

andere toepassingen.

Oswaldo Morales Nápoles.

(1) Het algoritme voorgesteld in Aas et al. [2009, p.189] suggereert dat activi-
teiten, om de “beste” ( regular vine) aan een reeks gegevens toe te wijzen,
moeten beginnen met het selecteren van de eerste boom en daarna itera-
tief selecteren van latere bomen van de ( regular vine). Algoritme 2.3.2.
in dit proefschrift (Morales Nápoles [2009]) is de meest voordelige in dit
geval, waarin reguliere takken per direct gegenereerd worden.

(2) Het begrip dat regular vines aan een natuurlijke orde voldoen, zoals ge-
presenteerd in dit proefschrift, heeft bijgedragen aan de mogelijkheid om
het aantal equivalentie klassen van reguliere takken op n knopen op te
sommen [Joe et al., 2010]. Dit begrip zou tevens licht moeten werpen
op andere grafische eigenschappen van reguliere takken, zoals het aantal
boom-gelijkwaardige klassen, de graad volgorde, de typische afstand en
de diameter van elke boom in elk niveau van de vine. Bovendien moeten
deze eigenschappen verder worden onderzocht.

(3) Het onderwerp van willekeurige vines moet verder worden ontwikkeld.
Een voorbeeld hiervan is de willekeurige vine V (n) die willekeurig uit
de verzameling van alle vines op n knooppunten getrokken wordt. Een
tweede voorbeeld, dat belangrijker is voor de huidige toepassingen [Kuro-
wicka and Cooke, 2006], zou de willekeurige reguliere vine RV (n, p) op n
knopen kunnen zijn, waarbij elk van de n(n− 1)/2 randen onafhankelijk
een partiële correlatie gelijk aan nul met kans p realiseert. Bovendien zou
p gerelateerd kunnen worden aan de verhouding tussen het aantal gela-
belde elementen in elke equivalente klasse of boom-equivalente klasse en
het totale aantal gelabelde regular vines op n knopen.

(4) Het maken van een grote databank, met alle mogelijke gelabelde regular
vines op n knooppunten voor een voldoend grote n, dat alle bekende
grafische eigenschappen bevat, is, in dit stadium, van hetzelfde belang
voor toepassingen als algoritmen zijn voor het genereren van vines.

(5) Het aantal sterren in de Melkweg zoals berekend van Schneider [2006, p.5]
is ongeveer gelijk aan het aantal gelabelde vines op 7 knooppunten.

(6) Volgens de CATS BBN gepresenteerd in dit proefschrift (Morales Nápoles
[2009]), is het mogelijk om het aantal ongevallen te verminderen tot een
waarde die ongeveer 6 maal kleiner is dan het huidige aantal. Om dit
te doen, moet het cockpitpersoneel hun ervaringsniveau opvoeren naar
een niveau gelijk aan het 97ste percentiel van hun verdelingen. De lucht-
vaartsector kan op korte termijn niet voldoen aan deze wijziging. Om een
gelijkwaardig grote reductie in het aantal ongevallen te verkrijgen is een
combinatie van maatregelen nodig. Het onderzoeken van deze mogelijke



maatregelen zou ten minste n van de doelen van de CATS BBN moeten
zijn.

(7) Niet-parametrische continue-distcrete BBN zijn flexibeler met betrekking
tot veranderingen in modellering dan discrete, Gaussische en discrete-
Gaussische BBNs. Echter, het toevoegen of verwijderen van knooppunten
of bogen in de grafiek kan nog leiden tot een nieuwe kwantificering.

(8) De beoordeling van de voorwaardelijke rang correlaties door middel van
vehoudingen van onvoorwaardelijke rang correlaties is eenvoudiger voor
experts dan het beoordelen met behulp van kansen op overschrijding met
een groot aantal voorwaarden.

(9) De gevolgen van het falen van een dijk in de Staat van Mexico zal ongeveer
constant zijn, onafhankelijk van de omvang van het falen.

(10) Wanneer de één-dimensionale verdelingen zeer verschillend zijn over ver-
scheidene experts, zal de gezamenlijke verdeling, verkregen met de me-
thode voor de combinatie beschreven in dit proefschrift (Morales Nápoles
[2009, Ch.4]), met gelijke gewichten de neiging hebben om de grootte van
afhankelijkheid te onderdrukken. Zelfs als individuele experts denken dat
rang twee dimensionale correlaties van hetzelfde teken en dezelfde om-
vang zijn. Dit is een voordeel van het combineren van rang correlaties
door overschrijdende kansen.

(11) Het aantal haren in de staart van een koe is een willekeurige variabele
met een gemiddelde van 2.872 (Fauvel and Gerdes [1990]). Inspanningen
om deze hoeveelheid adequaat te kwantificeren zou een betere wereld tot
gevolg hebben.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedkeurd door de promotor prof. dr. R.M. Cooke.
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CHAPTER 1

Introduction

1.1 Probability & uncertainty

This thesis explores some properties of graphs and their relation to probability
distributions in order to show their use in current applications in risk and uncer-
tainty analysis.

According to David [1955] games of chance were invented some time between
40, 000 years ago and the third millennium before Christ. About 960 A.D. the
earliest work which mentions the number of ways in which three dice thrown toge-
ther (or one dice thrown three times) may fall, irrespective of order, is presented
by a certain bishop Wibold. In his presentation no attempt to assess relative
probabilities may be visualized [Kendall, 1956].

Games of chances were studied by mathematicians such as Cardano, Gali-
leo Galilei, Pascal, Fermat and Huygens until the middle of the 17th century.
Concepts such as fair coins, honest dice, equal case of occurrence, equal condi-
tions and others were in the minds of scientists at the time. But it is not until the
works of De Moivre and Jacob Bernoulli that a more modern version of the theory
is encountered. It appears to be the latter the first who thought of applying the
doctrine of chances to the art of conjecture [Kendall, 1956]. Applications of pro-
bability theory to the actuarial sciences begin also with the works of Halley and
later Montmort and Nicholas Bernoulli [Sheynin, 1968].

From the 1700s on, the development of probability theory and its applications
in many fields has progressed rapidly. In particular this thesis is interested in
the description of applications of Bayesian belief networks (BBNs) and vines to
specific problems in which quantifying uncertainty is of prime importance. BBNs
and vines are graphical models used to represent multivariate probability distri-
butions. BBNs will find their application in this thesis in the identification and
measurement of risks in the aviation industry and earth dams.

1



2

1.2 Copulae

Representing multivariate probability distributions for certain phenomena can be
a challenging task. Perhaps the multivariate model which is most widely used is
the joint normal distribution. However, many phenomena behave far from normal.
This is one of the reasons for researchers to have recourse to alternative models
such as copulae.

The use of copulae can be traced back to the 1940s in the work of Hoeffding
and the 1950s with the work of Fréchet and Sklar [Nelsen, 1998, p.2]. Copulae
are multivariate distributions with uniform margins on (0, 1). This suggest im-
mediately the possibility of inducing a certain dependence structure to given one
dimensional margins. Its possibilities for applications in statistics and simulation
become evident and today many references can be found for them.

Copulae are part of the building blocks of the graphical models to be used in
this thesis and for that reason basic concepts and definitions regarding them are
introduced. The book by Nelsen [1998] presents an introduction to the subject.
A larger account of the ideas briefly discussed in this section may be found in
Kurowicka and Cooke [2006].

Bivariate copulae will be of special interest for us. By copula (or copulae) we
mean a bivariate copula (or bivariate copulae) unless otherwise specified. The
bivariate copula or simply the copula of two continuous random variables X and
Y is the function C such that their joint distribution can be written as:

FX,Y (x, y) = C(FX(x), FY (y)).

Copulae are functions that allow naturally the investigation of association
between random variables. Measures of association such as the rank correlation or
Kendall’s tau may be expressed in terms of copulae [Nelsen, 1998]. The measures
of association to be used in this thesis are described next.

1.2.1 Dependence Measures

In this section we briefly present basic concepts and definitions about the mea-
sures of association used later on in the thesis. The product moment correlation
of random variables X and Y with finite expectations E(X), E(Y ) and finite
variances var(X), var(Y ) is:

ρX,Y = E(XY )−E(X)E(Y )√
var(X)var(Y )

.

The rank correlation of random variables X, Y with cumulative distribution
functions FX and FY is:

rX,Y = ρFX(X),FY (Y ) = E(FX(X)FY (Y ))−E(FX(X))E(FY (Y ))√
var(FX(X))var(FY (Y ))

.

The rank correlation is the product moment correlation of the ranks of va-
riables X and Y , and measures strength of monotonic relationship between va-
riables. The conditional rank correlation of X and Y given Z is:
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rX,Y |Z = rX̃,Ỹ

where (X̃, Ỹ ) has the distribution of (X,Y ) given Z = z.
The (conditional) rank correlation is the dependence measure of interest be-

cause of its close relationship with conditional copulae used in vines (chapter 2)
and non-parametric continuous-discrete BBNs (chapter 3). One disadvantage of
this measure however is that it fails to capture non-monotonic dependencies.

Rank correlations may be realized by copulae, hence the importance of these
functions in dependence modeling. Partial correlations will also be of interest
in this thesis. These can be defined in terms of partial regression coefficients.
Consider variables Xi with mean zero and standard deviation σi for i = 1, ..., n
and let the numbers b1,2;3,...,n, ..., b1,n;2,...,n−1 minimize:

E[(X1 − b1,2;3,...,nX2 − ...− b1,n;2,...,n−1Xn)2]

The partial correlation of X1 and X2 based on X3, ..., Xn is:

ρ1,2;3,...,n = sgn(b1,2;3,...,n)(b1,2;3,...,nb2,1;3,...,n)1/2

Partial correlations can be computed recursively from correlations [Yule and
Kendall, 1965.]:

ρ1,2;3,...,n =
ρ1,2;4,...,n − ρ1,3;4,...,n · ρ2,3;4,...,n

((1 − ρ21,3;4,...,n) · (1 − ρ22,3;4,...,n))1/2
(1.1)

Next two examples of copulae that will appear later in this thesis are presented.

1.2.2 Two examples of copulae

A unique copula that corresponds to any given continuous joint distribution may
always be found. In this section two such copulae will be presented. Denote by Φρ

the bivariate standard normal cumulative distribution function with correlation ρ
and Φ−1 the inverse of the univariate standard normal distribution function then

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
; (u, v) ∈ [0, 1]2

is called the normal copula. Notice that ρ is a parameter of the normal copula. The
relationship between the correlation of the normal copula r (the rank correlation
of the normal variables) and the parameter ρ (the product moment correlation
of the normal variables) is known and given by the following formula [Kurowicka
and Cooke, 2005, p.55]:

ρ = 2 sin
(π

6
r
)
. (1.2)

In this thesis rank and conditional rank correlations will be of special im-
portance. In general partial correlation is not equal to conditional correlation,
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however, for the joint normal distribution the partial and conditional correlations
are equal.

A second example of a copula that will be used in this thesis is Frank’s copula.
Frank’s copula [Frank, 1979] is an Archimedean copula that has closed form for
the density, conditional and inverse conditional distribution. Additionally, it has
the property of reflection symmetry [Kurowicka and Cooke, 2005, p.49]. Frank’s
copula is:

Cθ(u, v) = −1

θ
ln

[
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

]
; (u, v) ∈ [0, 1]2 (1.3)

The parameter θ in equation (1.3) may be expressed in terms of rank corre-
lation. For the Normal copula zero correlation entails independence. For Frank’s
copula the limit θ −→ 0 yields Cθ(u, v) = u · v. The property that zero cor-
relation implies independence is called the zero independence property and is of
special importance for continuous non-parametric BBNs [Hanea et al., 2006].
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Figure 1.1: Density of the normal copula
with rank correlation 0.7859
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Figure 1.2: Density of Frank’s copula
with rank correlation 0.7859
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Figure 1.3: Contour plot of Figure 1.1
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Figure 1.4: Contour plot of Figure 1.2

The densities of the normal and Frank’s copulae with correlation 0.7859 are
presented in Figures 1.1 and 1.2 respectively. At first sight the densities seem
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to be almost identical. The differences between the two densities become more
evident in Figures 1.3 and 1.4 where contour plots are shown for each of them.

The advantages of using the normal copula for the methods proposed in this
thesis will become evident in chapters 3 an 4. The differences that may arise by
the choice of a copula in the modeling process will be illustrated comparing these
two copulae. Copulae are used in the graphical models discussed in this thesis
(vines and BBNs) to construct multidimensional probability distributions. Before
discussing vines and BBNs more formally a small overview of the development of
such models will be presented.

1.3 Overview of the development of vines & BBNs

1.3.1 Graph Theory

As previously mentioned, vines and BBNs combine graph theory with probability
theory. For that reason we begin this thesis with an overview of graph theory.
Some concepts and definitions additional to those presented in section 1.2 will be
required. They will be presented in this section.

Because of his discussion of a famous problem called the Königsberg bridge
problem, Leonhard Euler is acknowledged as the father of graph theory. This
problem appears in almost any modern text book on graph theory. Euler’s ori-
ginal paper is written in Latin, for a translation to English the reader is referred
to [Biggs et al., 1986]. Like many problems in probability theory, some of the
early developments of graph theory originated from games. One of these was the
hamiltonian game invented by Sir William Hamilton. The hamiltonian game will
be used to introduce some definitions and notation that will be used later in the
rest of the thesis.

An undirected graph G = (N,E) consists of a finite non empty set N of nodes,
also called (points or vertices) and a possibly empty set E of edges (lines or arcs)
where each element is an unordered pair (α1, α2), where α1 and α2 ̸= α1 are
elements of N . Without loss of generality in this thesis when N = {1, 2, ..., n}
we speak of labeled graphs. It will be assumed that two distinct edges do not join
the same pair of nodes; graphs in which this is allowed are called multigraphs).
Observe that no self-loops are permitted that is, edges joining nodes with itself.
If the pair (α1, α2) is ordered then G is a directed graph and the pair (α1, α2) will
be represented as α1 → α2. In this case α1 will be called a parent node of the
child node α2. Examples of undirected and directed graphs are shown in Figures
1.5 and 1.6 respectively.

The cardinality of N is called the order of the graph. If the pair (α1, α2) ∈ E
then the two nodes α1 and α2 are adjacent and each one is incident with the pair
(α1, α2) ∈ E. The degree of a node is the number of edges incident with it. A
complete graph CG has every node adjacent to each other. A path of length n from
α to β is a sequence α = α0, ..., αn = β of distinct nodes such that (αi−1, αi) ∈ E
for all i = 1, ..., n. A cycle is a path such that α = β. If every pair (αi−1, αi) in
a cycle of a directed graph is ordered as in E then it is a directed cycle otherwise
it is an undirected cycle. If a directed graph has no directed cycles, then it is a



6

Figure 1.5: Undirected graph of order 20
Figure 1.6: Directed graph of order 20
with a cycle.

directed acyclic graph.
Hamilton proposed a graph like the one in Figure 1.5 where each node re-

presented a city of the world and the edges connections between the cities. The
object of the game was to travel “Around the World” by finding a route that
passes through each node exactly once. In other words, the object of the game
was to find a cycle of the graph in Figure 1.5 such that all nodes in N are contai-
ned in the cycle. One possible such cycle is represented by the directed graph in
Figure 1.6. According to Harary [1967, p.5] “Hamilton sold this idea to a game
manufacturer in Dublin for about twenty-five guineas which was wise of him since
it was not a commercial success” 1.

Since the introduction of graphs by Euler, its applications to many fields of
science has grown. Probability theory has also relied on graphs to advance its
methods. Two types of graphs will be of special importance in this thesis: directed
acyclic graphs and trees. The presentation continues with a short overview of the
development of vines and BBNs.

1.3.2 Bayesian belief networks and influence diagrams

Most of the literature on graphical models reflects the idea of using graphical
representations for probabilistic information can be traced to the work of Sewal
Wright in the 1920s (See for example Pearl [1988, p.131] and Cowell et al. [1999,
p.81]). Figure 1.7 taken from Wright [1921] shows the diagram that Wright used
in his guinea pigs example for introducing his method of path coefficients. Wright
though of the boxes in Figure 1.7 as variables that are correlated with each other.
He thought it was convenient to use a diagram such as the one in Figure 1.7 to
represent relations in which the paths of influence between variables are shown
by arrows. The sign of the correlations between variables is shown in the arcs of
the network. This kind of diagrams have a close relationship to those that will

1One guinea in Victorian Britain was equivalent with 26.25 pounds.
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be used later in this thesis. Wright’s method was criticized by Neils [1922] and
perhaps that critique contributed to delay the development of graphical models
in probability theory [Pearl, 1988, p.131]2.

Figure 1.7: Wright’s diagram showing the interrelation among the factors determining
the weight of guinea pigs at birth and at 33 days.

The use of directed acyclic graphs in combination with probability theory ap-
pears to be parallel in decision analysis and artificial intelligence in the late 70s
and early 80s [Pearl, 1993]. In Pearl [1982] inference nets where nodes represent
discrete variables and arcs conditional probabilities of the child variable given the
parents are introduced3. These were extended by Kim and Pearl [1983] and later,
in Pearl [1985] a more formal concept of Bayesian Networks is introduced that
would lead finally to its formalization in Pearl [1986] and Pearl [1988]. In fact,
Pearl [1986, p.246] states that the names “belief networks, Bayesian networks or
influence networks [will be used] interchangeably, the former two to emphasize
the judgmental origin and the probabilistic nature of the quantifiers, the later to
reflect the directionality of the links. When the nature of the interaction is percei-
ved to be causal, then the term, causal network may also be appropriate”. Future
developments of discrete Bayesian networks where in the direction of techniques
for network updating of which probably the one by Lauritzen and Spiegelhalter
[1988] is the most used to date. This technique has been improved however over
the years[Cowell et al., 1999, p.123] and [Pearl, 1993, p.55].

Influence diagrams where introduced by Howard and Matheson [1984/2005]
as an attempt to form a bridge between qualitative description and quantitative

2According to [Neils, 1922, p.262] there ware three fallacies that vitiate the theory: ”(1) the
assumption that a correct system of the action of the variables upon each other can be set up
from a priori knowledge; (2) the idea that causation implies an inherently necessary connection
between things, or that in some other way it differs from correlation; (3) the necessity of breaking
off the chain of causes at some comparatively near finite point.”

3Pearl restricts the analysis to “trees” though he recognizes that the model may be generalized
to include multiple parents keeping in mind that the states of each variable in the tree may
represent the power set of multi-parent groups in the corresponding graph. In the same paper,
in a footnote Pearl acknowledges Bayes’s essay [Barnard and Bayes, 1958] as the beginning of
the science of inductive reasoning. Next year Stigler [1983] makes a suggestion that Bayes may
not have have been the originator of the theorem named after him.
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specification. According to Boutlier [2005], these had their share of influence in
artificial intelligence. Pearl [2005] views influence diagrams as informal precursors
of belief networks. They might have had a larger impact in representing joint
distributions with continuous variables as observed in Pearl [1988] and Schachter
and Kenley [1989]. Networks with continuous nodes where restricted to this point
to variables with joint normal distributions or discretizing continuous nodes to a
finite number of states. Mixed discrete-gaussian models where also made available
later Cowell et al. [1999].

Bayesian belief networks4 bear the name of the celebre reverend Thomas
Bayes5 however Baysian networks as such were not a subject of discussion in
his work. Because of his essay [Barnard and Bayes, 1958] he is acknowledged
as one of the mayor exponents of the philosophy of induction6. Thus the name
Bayesian belief networks emphasizes the continuous use of Bayes’s rule and in-
verse probability in the philosophy behind these objects7. A recent work by Hanea
[2008] compares basic characteristics of these models (discrete BBNs, Gaussian
and Discrete-Gaussian BBNs and non-parametric BBNs) and hence that will not
be done in the present work. However some concepts and definitions will be
repeated for completeness.

1.3.3 Undirected Graphs and Vines

Vines are undirected graphs that specify a multivariate joint distribution. Accor-
ding to Cowell et al. [1999, p.81] undirected models can be traced back to the
work of Bartlett [1935] in contingency tables. However the use of undirected gra-
phical models to represent multivariate interactions were formally introduced in
Darroch et al. [1980] for discrete variables specified by multidimensional contin-
gency tables. In Speed and Kiiveri [1986] the continuous counterpart is presented
for jointly Gaussian random variables. These references make use of undirected
graphs to specify conditional independence, however we shall not deal with these
kind of models in this thesis8.

A more direct ancestor of vines may be found in trees (see section 2.2). Trees
were used by Darroch et al. [1980] and Speed and Kiiveri [1986] as special cases
of graphical models, however undirected graphs with cycles were also used. Trees
were also used in Chow and Liu [1968] to infer discrete distributions9 from data.
The direct parents of vines are however Markov or Dependence Trees [Meeuwissen,
1993] and [Meeuwissen and Cooke, 1994]. These were used to specify multivariate

4In this thesis the name Bayesian belief nets will be used in accordance to previous literature
by the group at TU Delft. Pearl [1988] is the first to use this name as far as the author knows.

5For a biographical sketch of Bayes see Bellhouse [2004]
6Both Hartley and Price recognized the implications that Bayes’s theorem would have for

methods of reasoning Stigler [1983]and Barnard and Bayes [1958].
7For an overview on inverse probability the reader is referred to Dale [1999]. In page 10 Dale

uses an example that is recurrent in the early literature on Bayesian networks [Pearl, 1982] and
[Kim and Pearl, 1983]

8The readers interested in log-linear interaction models and gaussian dependence graphs are
referred to Whittaker [1990] and Lauritzen [1996]

9Actually the method presented by Chow and Liu [1968] characterized trees as directed
graphs and keeps a close relationship with BBNs.
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distributions for use in uncertainty analysis. Their suitability for Montecarlo
Simulation made them appealing for applications. The concept of a tree was later
extended to allow for more complicated dependence structures.

Vines use sequences of conditional distributions to build a multivariate dis-
tribution where conditional bivariate constraints are satisfied. The first model
with such characteristics was presented in Joe [1996] with no specific relation to
graphs. Cooke [1997] introduced independently the formal concept of a vine as a
graphical object that uses sequences of trees to build the joint distribution and
Bedford and Cooke [2002] developed it further. Vines as graphical models will
be discussed in more detail in chapter 2. Relevant information for researchers
interested in vines is presented additionally in appendix A.

Vines and continuous BBNs are closely related. This was investigated in
Kurowicka and Cooke [2005], Hanea et al. [2006] and Kurowicka and Cooke
[2006]. In particular the theory behind Non-parametric Continuous-discrete BBNs
(NPCDBBNs) was built around vines. Theorem 1.3.1 shows the main result of
the copula vine approach to non-parametric continuous BBNs.

Theorem 1.3.1. [Hanea et al., 2006] Given:

• A directed acyclic graph with n nodes specifying conditional independence
relationships in a BBN;

• n variables, assigned to the nodes, with invertible distribution functions;

• the specification in equation (3.3) of conditional rank correlations on the
arcs of the BBN and;

• a copula realizing all correlations [−1, 1] for which zero correlation entails
independence;

the joint distribution of the n variables is uniquely determined. This joint distri-
bution satisfies the conditional independence statements implied by the BBN and
the conditional rank correlations in 3.3 are algebraically independent.

In the prove of theorem 1.3.1 D-vines (see chapter 2) were used[Hanea, 2008].
NPCDBBNs will be discussed in more detail in chapter 3. Emphasis will be made
on the elicitation of rank and conditional rank correlations attached to the arcs of
the BBN. The main application driving the ideas discussed in this thesis consists
of a large scale NPCDBBN for measuring risks in the aviation industry. For its
importance in this thesis the model will be briefly introduced in next section. The
model will be explained in more detail in chapters 3 and 5.

1.4 Introduction to the Causal Model for Air transport Safety

As mentioned in section 1.1, BBNs will find their main application in this thesis
in modeling risks in the aviation industry. The aviation sector is generally ack-
nowledged for its impressive levels of safety. According to data from the Dutch
National Aerospace Laboratory (NLR) [CAANL, 2008], the number of flights
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worldwide has roughly doubled from 1980 to 2007. The number of fatal accidents
on the other hand has not. Figure 1.8 presents the number of flights and the
number of fatal accidents per year for the period between 1993 and 2007. The
number of accidents per flight is decreasing, both world wide and for European
Air Safety Agency (EASA) countries. Whereas worldwide, the fatal accident rate
has been deceasing by 3.5% per year, for EASA countries, the fatal accident rate
is deceasing by 5.3% per year (Figure 1.9).

The worldwide and EASA fatal and non-fatal accident frequencies are shown
in Figure 1.10. The fatal and non-fatal accident frequency worldwide is deceasing
by 1.8% per year. For EASA countries it is deceasing by 1.0% per year. The FAA
forecasts growth in civil air transportation volume: “The active general aviation
fleet is projected to increase at an average annual rate of 1.0 percent over the
17-year forecast period, growing from an estimated 234,015 in 2008 to 275,230
aircraft by 2025”[FAA, 2009, p.41]. If historical trends continue, this growth in
volume must be accompanied with a decrease in the accident rate per flight in
order to keep the absolute number of accidents minimum.

Human error plays an important role in aviation safety. About 56% of the
accidents have humans as their main contributing factor (Figure 1.1110). The
main causal contributor for accident is “cockpit crew”. Many responsible agen-
cies have concluded that further improvements in safety would be served by a
comprehensive system-wide risk model for civil aviation. This model should en-
able the disaggregation of fatal accidents into their causal components, including,
in particular, human error.

The Netherlands ministry of Transport and Water Management commissioned
a project for the realization of a causal model to be used for comparing alternatives
for strengthening safety measures, for finding causes of incidents and accidents
and for quantification of the probability of adverse events in the aviation system
[Ale et al., 2006]. The model is being developed by a consortium including Delft
University of Technology (TUD), Det Norske Veritas (DNV), the National Aeros-
pace Laboratory (NLR) and White Queen (WQ). These organizations have been
involved in the process of building the appropriate tools for the delivery of the
model. The final product should be delivered in the form of a computer assisted
decision tool supported by reports on the underlying technology and data [Ale
et al., 2007].

Originally the The Causal Model for Air Transport Safety (CATS) comprised
3 different kinds of techniques: Fault Trees (FTs), Event Sequence Diagrams
(ESDs) and BBNs. A schematic representation of the CATS model is presented
in Figure 1.12.

The ESDs represent generic accident scenarios. Fault Trees link to the initia-
ting events and pivotal events of the ESDs and describe them in a more detailed
manner as a sequence of barrier failures. The base events of the fault trees include
events representing human reliability, such as for instance ‘autopilot incorrectly
used by flight crew ’, ‘pilot disregards cross wind limit per severe wind ’, ‘failure of

10The human factor plays a role in the categories cockpit crew, maintenance and air traffic
control.
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Figure 1.8: Worldwide number of flights and fatal accidents 1993-2007 CAANL [2008].
Commercial operated aircrafts with take-off weight ≥5,700 kg.
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Figure 1.9: Worldwide and EASA fatal accidents per million flights 1993-2007 CAANL
[2008]. Commercial operated aircrafts with take-off weight ≥5,700 kg.
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Figure 1.12: Schematic representation of the CATS model with ESDs, FTs and BBNs

air traffic controller to advise pilot per windshear on take off with LLWAS11’
or ‘breaks not applied correctly by flight crew per control following encounter
with unexpected wind ’. Base events involving human reliability are detailed fur-
ther as Bayesian Belief Nets. BBNs are more general models than FTs and ESDs,
hence ultimately these were also represented through functions as part of a large
scale BBN. For this purpose UniNet [Cooke et al., 2007], a stand-alone software
package is being developed at the Delft Institute of Applied Mathematics of the
Delft University of Technology for dealing with large scale BBNs.

Figure 1.13 shows the BBN representing the CATS model. The graph in Figure
1.13 at the moment of publication consists of 1,504 nodes and 4,979 arcs. It is
evident that the simple idea represented in Figure 1.12 becomes a very complicated
graphical structure once all the elements of the model are finally quantified and
integrated into a single BBN.

Building a Bayesian network with about 1.5 thousand nodes and 5 thousand
arcs is a very complex task. Robinson [1977] presents results about unlabeled and
labeled acyclic directed graphs. The number of unlabeled directed acyclic graphs12

grows extremely fast with the number of nodes. Just to give an idea, the largest
number of nodes for which unlabeled directed acyclic graphs has been computed
is 18 and it is in the order of 1.55×1043. The number of BBNs that one could
construct with 1.5 thousand nodes are mind boggling. The CATS consortium
brought together efforts from many professionals from different disciplines in order
to construct the model shown in Figure 1.13. The major focus of this thesis is
in the description of the quantification of the model in Figure 1.13. Emphasis is
placed in the techniques used for the quantification of the dependence measures
required by NPCDBBNs. Three human error models were quantified through
structured expert judgment for the CATS model: flight crew, air traffic control
and maintenance technician.

In the case of the CATS model, the distributions of the individual variables
(marginal distributions) were almost all retrieved from data. The quantification
and combination of dependence through expert opinion were a crucial step in

11Low Level Windshear Alert System
12Which is a lower bound for the number of Bayesian networks possible on n nodes. An upper

bound is the number of labeled acyclic directed graphs.
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Figure 1.13: The CATS model in UniNet.

the CATS model as it provides a powerful tool for the analysis of the aviation
system. This will be seen in the thesis through examples of model use. We can
be confident that the joint distribution represents a validated expert belief about
the influences of various variables on the accident probability. Further empirical
validation of the CATS model should be a major goal in the future of the project.

Results from the CATS model that will be discussed in this thesis reflect
the fact that the human error plays a mayor role in aviation safety. From the
human actors involved in the aviation system and considered in the model, the
cockpit crew and maintenance personnel appear more important than the air
traffic control crew.

In particular, from the variables that measure human’s performance at a basic
level captain’s and first officer’s experience are the most highly rank correlated
with accident probability (≈ −0.22 for each). This rank correlation is comparable
to the correlation between aircraft generation and accident probability (−0.24).
From the variables included for cockpit crew, training is the least important.
The sample rank correlation between accident probability and training for both
captain and first officer is close to zero (< 0.01).

Crew experience is immediately followed by maintenance technician experience
in regards to absolute rank correlation with accident probability (≈ −0.21). Again
this rank correlation is comparable to the one between accident probability and
aircraft generation or fatigue. The rank correlation between maintenance crew
and accident probability is smaller than 0.1 in absolute value for all other variables



Introduction 15

related to maintenance crew.
In contrast with the flight crew or maintenance crew experience, the rank cor-

relation between the accident probability and experience of air traffic controllers is
about a factor 260 smaller than the correlation between accident probability and
cockpit crew experience. For air traffic controllers the most important variable is
the communication with cockpit crew. This is expressed through a rank correla-
tion of 0.1 between total transmission time and accident probability. There are
some applications where inferences with small correlations are not much different
than those with independence. At first sight this could appear to be the case in
the CATS model. However, as it will be seen next and later in chapters 3 and 7
the effect of model variables on accident probability can be large.

To illustrate the use of the model and the effect of rank correlations of the
magnitude described previously, Table 1.1 is presented. Table 1.1 shows the result
of conditionalizing on selected variables. For all three conditioning variables the
97th percentile if its distribution is used. Observe that though the rank correlation
between accident probability and captain’s experience is almost equal to the rank
correlation between accident probability and maintenance technician experience
the conditional distributions may differ significantly. The conditional mean of the
accident probability when captain’s experience is set to 17,016 hrs. is ≈ 3 times
smaller that the original accident probability. The effect of captain’s experience
in accident probability is larger than the two other cases. The conditional mean
of the accident probability given maintenance technician experience is 24 yrs. is
≈ 1.2 times smaller that the original accident probability. Finally, the conditional
probability of accident given the air-ground transmission time is 100 sec. is ≈ 1.76
times larger than the unconditional mean. Conclusions similar to those briefly
presented here are examples of possible use of the BBN representing the CATS
model.

Uncond. Prob. of accident/flight
5% 50% 95% mean

8.58×10−8 4.59×10−7 8.98×10−6 3.18×10−6

Conditioning variable min max conditioned value
Captain’s experience (hrs) 3,069 27,913 17,016

Cond. Prob. of accident/flight
5% 50% 95% mean

6.95×10−8 2.92×10−7 2.88×10−6 9.84×10−7

Conditioning variable min max conditioned value
Maintenance technician experience (yrs) 0.6 31 24

Cond. Prob. of accident/flight
5% 50% 95% mean

6.66×10−8 2.97×10−7 7.05×10−6 2.66×10−6

Conditioning variable min max conditioned value
Air/ground total transmission time (sec) 17.5 306.5 100

Cond. Prob. of accident/flight
5% 50% 95% mean

1.02×10−7 6.14×10−7 1.69×10−5 5.60×10−6

Table 1.1: Unconditional probability of accident / flight, and conditional probability for
selected variables.

The rest of the thesis is divided as follows: in chapter 2 the problem of enume-
rating regular vines is investigated. This section is of interest because in the last
years the problem of finding an ‘optimal’ vine for data sets has been investigated.
This requires a classification of regular vines and algorithms for generating them.



16

A result concerning the number of regular vines on n nodes is also discussed in
chapter 2. Chapter 3 presents discrete BBNs and non parametric continuous dis-
crete BBNs. The relationship between D-Vines and BBNs is also briefly discussed
in chapter 3. The process of building the BBN from Figure 1.13 and examples
of model use are presented in chapter 3 as well. In this thesis special attention
is payed to the techniques for eliciting and combining rank and conditional rank
correlations from domain experts as input for NPCDBBNs. This is discussed in
chapter 4. The quantification of human reliability models used in the CATS mo-
del will be discussed in chapter 5. Chapter 6 presents an application of the same
type of techniques used for measuring risks in the aviation system in measuring
earth dams risks in Mexico. Finally, conclusions are presented in chapter 7.



CHAPTER 2

About The Number of Vines and Regular

Vines on n Nodes.1

2.1 Introduction

Man has always been fascinated by counting all sorts of different objects2. The
problem of counting graphs has been undertaken in the past [Harary and Pal-
mer, 1973.]. Labeled trees find application in probability theory. Trees are the
immediate ancestors of vines (section 1.3.3). These objects were first successfully
counted by Cayley [1889].

Vines are graphical models that extend the idea of a tree. These objects have
found application in probability theory and uncertainty analysis. More recently
they are becoming popular in statistical analysis of data [Aas et al., 2009], [Aas
and Berg, 2009], [Min and Czado, 2008], [Kolbjornsen and Stien, 2008], [Chollete
et al., 2009].

In this chapter previous results concerning the number of trees on n nodes are
briefly discussed in section 2.2. Section 2.3 presents two ways to characterize vines
on n variables. The first method counts the total number of vines on n nodes
and extracts regular vines by discarding those vines which are non-regular. The

1This chapter is based on Morales-Nápoles et al. [2009a]
2Calculating prodigies have counted many things along history, Jedediah Buxton (1702) an

illiterate man from Elmton, England kept a mental record of all the free beer and ale he was
given since the age of 12 and that averaged out to 5 or 6 ounces a day. When taken to see
Richard III at the Drury Lane Playhouse in London “he declared after a fine piece of music,
that the innumerable sounds produced by the instruments had perplexed him beyond measure,
and he attended even to Mr. Garrick only to count the words that he uttered, in which, he
says, he perfectly succeeded”[Smith, 1983]. Thomas Fuller, an African man shipped to America
as a slave in 1724 “began his application to figures by counting to ten, and then when he was
able to count a hundred, he thought himself (to use his own words) “a very clever fellow”. His
first attempt after this was to count the number of hairs in a cow’s tail, which he found to be
2872”[Fauvel and Gerdes, 1990]
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18 Chapter 2

second method constructs all possible regular vines on n nodes using line graphs
at each level in the vine. Neither method yields the number of regular vines on n
nodes as a function of n.

Section 2.4 characterizes regular vines as triangular arrays, and finds the num-
ber of regular vines on n nodes by extending a regular vine on n−1 nodes. This en-

ables us to express the number of regular vines on n nodes as
(
n
2

)
×(n−2)!×2

(n−2
2 )

.
The results from section 2.3 may be contrasted with the result from section 2.4.
For example, there are 11 unlabeled trees on 7 nodes each of which admits a
number of regular vines. From these 11 trees, the one where every node has de-
gree at most equal to 2 admits only one regular vine and can be labeled in 2,520
different ways. Other trees may be analyzed similarly to enumerate regular vines.
In general for trees on seven nodes there are 2, 520× 1 + 9× 2, 520 + 19× 5, 040 +
840× 33 + 630× 80 + 2, 520× 168 + 840× 168 + 1, 260× 342 + 420× 1, 452 + 210×
2, 928 + 7 × 23, 040 = 2, 580, 480 =

(
7
2

)
× 5! × 2

(
7

2)
. Interestingly, the number of

extensions of a regular vine on n− 1 nodes to a regular vine on n nodes does not
depend on the particular regular vine on n− 1 nodes being extended. Section 2.5
gathers some conclusions and final comments.

2.2 Trees

A tree is an undirected acyclic graph. The graph isomorphism problem consist
on deciding whether there exists a mapping from the nodes of one graph to the
nodes of a second graph such that the edge adjacencies are preserved.

Definition 2.2.1. Two labeled graphs Gi = (Ei, Ni) and Gj = (Ej , Nj)
are isomorphic if there is a bijection ϕ : Ni → Nj such that for all pairs
(a, b) ∈ Ei ⇐⇒ (ϕ(a), ϕ(b)) ∈ Ej. If two graphs are isomorphic they are the
same unlabeled graph.

A connected graph T = (N,E) is called a labeled tree with nodes N =
{1, 2, ..., n} and edges E, where E is a subset of pairs of N with no cycle.

In this section labeled trees will be briefly discussed. These structures have
been used to represent high dimensional probability distributions [Cooke, 1997]
and they are often called dependence trees. This section however will be concerned
with the properties of trees only as graphs. For an account of dependence trees
see Kurowicka and Cooke [2006]. We begin our presentation with a well known
result about trees.

2.2.1 The Number of Labeled Trees on n Nodes and the Prüfer Code

Two different labeled trees on 5 nodes are presented in Figures 2.1 and 2.2. The
reader may observe that permuting nodes 1 and 5 in T1 transforms it into T2 and
hence they would be the same unlabeled tree. In this section the interest will be
mainly in labeled trees.

The first proof about the number of labeled trees on n nodes is due to Cayley
[1889]. Since then several proofs have been presented [Moon, 1967].
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Figure 2.1: T1 a tree on 5 nodes. Figure 2.2: T2 a tree on 5 nodes.

Theorem 2.2.1. The number of labeled trees on n nodes is nn−2.

One of various proofs due to Prüfer [1918] of this theorem provides a very
useful result for representing labeled trees. The argument is to notice that there
is a one-to-one correspondence between the set of trees with n labeled nodes and
the set of ordered (n − 2)-tuples (A1, A2, ..., An−2) where each Ai is an integer
not greater than n.

Definition 2.2.2. Every sequence of numbers R(T ) = (A1, A2, ..., An−2) where
each Ai is an integer not greater than n is a Prüfer Code for some labeled tree
T on n nodes.

In his paper Prüfer obtains the correspondence by the following procedure:
For a given tree, remove the endpoint3 with the smallest label (other than the
root4) and let A1 be the label of the unique node which is adjacent to it. Re-
move the endpoint and the edge adjacent to it and a tree on n − 1 nodes is
obtained. Repeat the operation with the new tree on n − 1 nodes to obtain
A2 and so on. The process is terminated when a tree on two nodes has been
found. The reader may check that the trees from Figures 2.1 and 2.2 have Prüfer
codes R(T1) = (4, 1, 1) and R(T2) = (5, 4, 5) respectively. The procedure descri-
bed above may be easily reversed, that is, suppose you start with a sequence of
(n − 2)-tuples R(T ) = (A1, A2, ..., An−2) then to obtain the only tree correspon-
ding to the sequence one applies algorithm 2.2.1:

Algorithm 2.2.1. Decoding a Prüfer code.

1. Take a sequence R(Tk) = (A1, A2, ..., An−2) for k = 1, 2, .., nn−2 where each
Ai, i = 1, 2, ..., n− 2 is an integer not greater than n.

2. Write the root in the right most position of R(Tk). Notice that R(Tk) has
now length n− 1 which is |E|.

3. Write another row of integers on the bottom of Rk from left to right. Each
entry Bi in this new row is the smallest integer that has not been already
written in this new row (the row of B′

is) nor in the first row (the row of
A′

is) in the position exactly above it or every other position to the right.

3The endpoints are nodes with degree one in the tree, they are sometimes referred to as leafs.
4Without loss of generality we will choose node n as the root of all labeled trees on n nodes.

Choosing any other node as the root makes no difference except that the algorithm and the
procedure to find the Prüfer code for a given tree must be modified.
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4. The resulting code S(Tk) is the Extended Prüfer Code. Each column
in the extended Prüfer code represents an arc in the unique labeled tree
corresponding to it.

S(Tk) =

(
A1 A2 A3 ... n
B1 B2 B3 ... Bn−1

)

Take the two Prüfer codes R(T1) = (4, 1, 1) and R(T2) = (5, 4, 5). Apply
algorithm 2.2.1 to decode each sequence into the extended Prüfer code. The
reader may check in equation (2.2.1) that S(T1) corresponds to Figure 2.1 and
S(T2) to Figure 2.2.

S(T1) =

(
4 1 1 5
2 3 4 1

)
, S(T2) =

(
5 4 5 5
1 2 3 4

)
(2.1)

Prüfer then gives an induction argument to show that for each (n − 2)-tuple
there is some tree which determines the given sequence by the above procedure.
From the code one can see that a node with degree m would occur exactly m− 1
times in the code. Labeled trees are interesting not only as objects that can be
counted and subject of combinatorial problems. They find application in opti-
mization, probability theory and uncertainty analysis ([Cooke, 1997], [Kurowicka
and Cooke, 2006]). In next section vines will be discussed and the ideas presented
in this section will be extended to deal with these graphical objects.

2.3 Vines

A vine [Cooke, 1997] is a set of nested trees. Just as labeled trees, vines have been
used to represent high dimensional probability distributions [Bedford and Cooke,
2002] and [Kurowicka and Cooke, 2006] with applications in uncertainty analysis.
More recently they are being applied in statistical analysis of multivariate data
sets [Aas et al., 2009], [Min and Czado, 2008], [Aas and Berg, 2009] and [Chollete
et al., 2009]. These last references are concerned with choosing an optimal vine to
represent multivariate data sets. Algorithms for enumerating all possible regular
vines on n nodes will be needed for this purpose. All trees in a vine may be
thought of as labeled trees. In this section some results about the number of
vines on n nodes will be presented.

2.3.1 The Number of Vines on n Nodes and the Prüfer Code

The ideas presented in section 2.2.1 can be extended to count the number of vines
(and regular vines) that are possible on n variables. This will be shown in the
present subsection. This subsection begins with the definitions of vine and regular
vine.

Definition 2.3.1. V (n) is a labeled vine on n elements if:

1. V (n) = (T1, T2, T3, T4, ..., Tn).
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2. T1 is a labeled tree with nodes N1 = 1, 2, ..., n and edges E1. For i = 2, ..., n,
Ti is a labeled tree with nodes Ni = Ei−1. Ei−1 has been given a unique
labeling.

If in addition for i = 2, ..., n− 1, if (a, b) ∈ Ei, then |a△b| = 2, where △ denotes
the symmetric difference, then V (n) is a labeled regular vine. In other words,
if a and b are nodes of Ti connected by an edge in Ti, where a = {a1, a2} and
b = {b1, b2}, then exactly one of the ai equals one of the bi. This condition is
called the proximity condition.

The nodes reachable from a given edge in a regular vine are called the constraint
set of that edge. When two edges are joined by an edge in tree Ti, the intersection
of the respective constraint sets form the conditioning set. The symmetric dif-
ference of the constraint sets is the conditioned set. Formal definitions may be
found in Kurowicka and Cooke [2006]. Vines (and regular vines) may be classified
according to the unlabeled tree used at each level in the vine. For this reason the
following definition is introduced.

Definition 2.3.2. If a bijection as in definition 2.2.1 may be found for each
Ti ∈ Vk(n) and Ti ∈ Vj(n) then we speak of the same tree-equivalent vine
and accordingly the same tree-equivalent regular vine when the proximity
condition holds.

Figure 2.3: Non-regular vine on 5 nodes.
Figure 2.4: Regular vine on 5 nodes.

In Figures 2.3 and 2.4 respectively a non-regular and a regular vine on five
nodes are generated. The edge that makes Figure 2.3 a non-regular vine is indi-
cated by an arrow. The conditioned set is separated from the conditioning set by
a vertical line “|” in Figure 2.4. Obviously these two vines are different labeled
vines. However, according to definition 2.3.2 they are the same tree-equivalent
vine. Observe that by permuting the numbers in T1 in Figure 2.4 we would ge-
nerate different labeled regular vines but according to definition 2.3.2 the same
tree-equivalent regular vine.

Since every labeled tree can be represented by a Prüfer code, then every sub-
tree in the vine may also be represented by a Prüfer code and in this way the vine
may be generated. A way to write all possible vines on n nodes is presented in
algorithm 2.3.1.

Algorithm 2.3.1. Constructing all possible vines on n nodes.

1. Set i = 1.
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2. Construct all Prüfer codes possible for Ti.

3. The edges of each one of the nn−(i+1) trees in step 2 become nodes in Ti+1.
Hence, for each tree in step (2):

(i) Label the n − i edges of each tree giving the label 1 to the edge ap-
pearing in the first column in its extended Prüfer code, 2 to the edge
in the second column and so on until all edges have been labeled 5.

(ii) Construct all Prüfer codes possible for Ti+1 and connect the new la-
beled edges (from Ti) as nodes according to these new Prüfer codes.

4. Set i := i + 1 and go to step (3) until two edges must be connected in the
last tree. At this point there is only one way to connect them and no Prüfer
code is required.

From algorithm 2.3.1 it may be observed that to write any vine on n nodes all
is required are n−2 Prüfer codes. The first one of length n−2, the second one of
length n− 3 and so on until the last one of length 1. A vine on n nodes may be
represented by an upper triangular array of size (n− 2)× (n− 2) whose first row
represents the Prüfer code of the first tree in the vine, the second row the second
tree of the vine and so on. For example V1(5) represents the vine from Figure 2.3
and V2(5) the one in 2.4 :

V1(5) =




4 1 1
3 2

1


 , V2(5) =




4 1 1
3 2

2


 (2.2)

Corollary 2.3.1. The number of vines on n nodes is
n∏

i=1

ii−2.

Proof. The proof is in fact algorithm 2.3.1. This is a consequence of theorem
2.2.1 and definition 2.3.1.�

Regular vines are most interesting in uncertainty analysis. Implementing Al-
gorithm 2.3.1 in a computer is very easy and it provides a simple way to construct
all possible regular vines on n nodes by simply discarding those that are not re-
gular. However, this method incurs an excessive burden of searching all vines (see
table 2.1). According to corollary 2.3.1 the number of vines grows extremely fast
with n and it could be very restrictive in time to find all regular vines even for a
modest number of nodes (8 or 9). Another possibility to construct only regular
vines will be discussed in the next subsection.

2.3.2 Regular vines and the line graph

As stated at the end of previous section, another possibility is available to produce
only regular vines as opposed to producing all possible vines and discarding those

5This labeling is not unique and any other labeling would work equally well as long as all
nn−2 trees are labeled in the same way.
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that are not regular as in algorithm 2.3.1. The idea is to use the line graph6 of
each tree in the vine. Harary notes in [Harary, 1969] that the concept of the line
graph of a given graph is so natural that is has been rediscovered independently
by many authors.

Definition 2.3.3. [Beineke, 2006] The line graph LG(G) of a graph G has as
its nodes the edges of G, with two nodes being adjacent in LG if the corresponding
edges are adjacent in G.

If the edges of the first tree of Figure 2.4 are labeled according to the second
step in algorithm 2.3.1 then the line graph of this tree can be found according to
definition 2.3.3. This line graph corresponds to Figure 2.5. Nodes 1, 2, 3 and 4 in
Figure 2.5 corresponds to edges (4,1), (1,3), (1,4) and (5,1) respectively in Figure
2.4.

If in the same way we label the nodes of the second tree in the vine in Figure
2.4 accordingly, then the line graph in Figure 2.6 may be obtained. In this new
line graph, nodes 1, 2, 3 correspond respectively to nodes (2, 1|4), (3, 4|2) and
(3, 5|1) in Figure 2.4.

Figure 2.5: Line Graph of the first tree
in Figure 2.4

Figure 2.6: Line Graph of the second tree
of the vine from Figure 2.4.

Definition 2.3.4. [Harary, 1967] A spanning subgraph T of a graph G is a
subgraph with the same set of nodes as G. If T is a tree, it is called a spanning
tree of G.

It is clear from definitions 2.3.3 and 2.3.4 that in order to find all regular vines
on n nodes, all the spanning trees of the line graphs of all subtrees in the vine
must be found. This result is summarized in algorithm 2.3.2.

Algorithm 2.3.2. Constructing all possible regular vines on n nodes.

1. Set i = 1.

2. Construct all Prüfer codes possible for Ti.

3. The edges of each one of the nn−(i+1) trees in step 2 become nodes in Ti+1.
Hence, for each tree in step (2):

6Line graphs are also known as derived graphs, interchange graphs, adjoint and edge to vertex
dual[Beineke, 2006].
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Nodes
Trees Vines

Aa Bb Cc Dd Ee

3 1 3 3 3 1

4 2 16 48 24 2

5 3 125 6,000 480 5

6 6 1,249 7,776,000 23,040 22

7 11 16,807 130,691,232,000 2,580,480 136

8 23 262,144 34,259,922,321,408,000 660,602,880 1,464

9 47 4,782,969 1.63864146405703×1023 380,507,258,880 24,115

Table 2.1: Number of unlabeled and labeled trees, vines, regular vines and tree-
equivalent classes of regular vines in 3, 4, 5, 6, 7, 8 and 9 nodes.

aNumber of unlabeled trees
bNumber of labeled trees
cNumber of labeled vines
dNumber of labeled regular vines
eNumber of tree-equivalent regular vine classes.

(i) Label the edges of each tree giving label 1 to the edge appearing in the
first column in its extended Prüfer code, 2 to the edge in the second
column and so on until all edges have been labeled 7.

4. Construct the line graph of each one of the trees from step 2.

5. For each line graph from step 3 find all possible spanning trees. Connect
the edges of each tree in step 1 according to all spanning trees from its line
graph. This will give all possible Ti+1 for each Ti.

6. Set i := i + 1 and go to step (2) until two edges must be connected in the
last tree. At this point there is only one way to connect them and no Prüfer
code is required.

Notice that the vines generated by this procedure may still be stored in an
(n−2)×(n−2) upper triangular array as in equations (2.2) once a way of labeling
the edges from each tree in the vine is specified. Algorithm 2.3.2 does not produce
any irregular vine as opposed to algorithm 2.3.1. However it involves a greater
programming effort and more operations as all possible spanning trees of the line
graphs in all trees in the vine must be found. Several algorithms for finding all
spanning trees of a given graph have been proposed and examined [Minty, 1965],
[Mayeda and Seshu, 1967], [Read and Tarjan, 1975], [Smith, 1997] and [Shioura
et al., 1994] . In general finding all possible spanning trees of a given graph other
than a complete graph 8 is demanding in terms of time and space [Smith, 1997].

Table 2.1 presents a summary with the number of labeled trees, vines and
regular vines on 3, 4, 5, 6, 7, 8 and 9 nodes9. The second column presents the

7As before, this labeling is not unique and any other labeling would work equally well as long
as all nn−i+1 are uniquely labeled.

8For a complete graph all possible spanning trees are the nn−2 Prüfer codes
9For 1 and 2 variables there is exactly one of each object.
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number of unlabeled trees on n nodes. The third column corresponds to the
values obtained by applying the formula in theorem 2.2.1 and the fourth to values
obtained by applying the formula in corollary 2.3.1. Algorithms 2.3.1 and 2.3.2
allow to count the number of regular vines on n nodes. The number of regular
vines on up to 7 nodes was found using algorithm 2.2.1 and the values for 8
and 9 nodes using algorithm 2.3.210. The results of counting regular vines with
algorithms 2.2.1 and 2.3.2 are presented in column 5. To implement algorithm
2.3.2, MATGRAPH [Sheinerman, 2009] was used to find line graphs for each of
the 23 and 47 unlabeled trees on 8 and 9 nodes. A version of the Mayeda-Seshu
algorithm was used [Smith, 1997, p.10] to find all spanning trees of each of the 70
line graphs.

Column six in table 2.1 presents the number of tree-equivalent regular vines on
n nodes. Also, algorithm 2.3.1 may be used to list the number of tree-equivalent
vines (or tree-equivalent regular vines) on n nodes by checking for isomorphism
at each level in the vine. Also, algorithm 2.3.2 can be used to count the number
of tree-equivalent regular vines on n nodes by checking tree isomorphism at each
level of the vine11. Appendix A presents a catalogue with non-isomorphic trees
on 1, 2, 3, 4, 5, 6, 7, 8 and 9 nodes and some relevant characteristics of each one.
In particular an example of Prüfer code, the number of labeled trees, the number
of regular vines per labeled tree and the number of tree-equivalent regular vines
is shown.

A similar catalogue was presented in Moon [1967] for trees with at most five
nodes. In Kasyanov and Evstigneev [2000] a catalogue of non-isomorphic tress
with at most 8 nodes may be found12. None of the above catalogues presents
results for vines.

Tables A.1 to A.4 present the 48 trees on 8 nodes or less. These trees will
be used to present pictures of tree-equivalent regular vines on at most 6 nodes in
tables A.8 and A.9. Finally tables A.10 to A.32 present tree-equivalent regular
vines on 7 and 8 nodes.

The concept of the line graph also allows to obtain bounds for the number
of regular vines admissible by unlabeled trees on n nodes. These results are
presented next as lemmas. Lemma 2.3.3 that is rather evident has been stated in
Cooke [1997] without a proof.

Lemma 2.3.2. If the first tree of a vine on n nodes has one node with maximal
degree, then the number of labeled regular vines possible with this tree equals the
number of labeled regular vines on (n− 1) nodes.

Proof. Since every edge in T1 is adjacent to each other then the line graph

10Actually algorithm 2.3.2 does not need to be implemented completely to count the number
of regular vines on 8 and 9 nodes. Observe that it is sufficient to know how many spanning tress
of each unlabeled class in n− 1 nodes does a line graph of a tree in n nodes contain.

11As for counting regular vines algorithms 2.3.1 and 2.3.2 do not need to be implemented
completely to count the number of tree-equivalent regular vines on 8 and 9 nodes. Observe that
it is sufficient to know how many spanning tress of each unlabeled class in n − 1 nodes does a
line graph of a tree in n nodes contain.

12This catalogue repeats a tree in eight nodes neglecting another one. In the same reference
tables counting the number of rooted trees on up to 26 nodes and the number of non-isomorphic
trees on less than 26 nodes may be found.
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of this tree is a complete graph on (n − 1) nodes that has (n − 1)n−3 possible
spanning trees. These are all possible labeled trees on n− 1 nodes each of which
admits a fixed number of labeled regular vines.�

Lemma 2.3.3. If the first tree of a vine on n nodes has (n−2) nodes with degree
2, then the number of regular vines possible with this tree equals 1.

Proof. Observe that the line graph of T1 will be also a tree on n−1 nodes with
(n − 3) nodes with degree 2. Hence its only possible spanning tree will be itself
and to preserve regularity this tree should be used in T2. The same argument
holds for all j ≥ 2 and hence only one regular vine is possible.�

Lemma 2.3.3 provides a lower bound for the number of regular vines possible
for a given unlabeled tree T1. In the same way lemma 2.3.2 provides an upper
bound. This result may be observed in tables A.1 to A.11 in appendix A. A more
general result for counting labeled regular vines is dealt with in next section.

In applications two kind of regular vines have been most widely used. C-
Vines are regular vines for which each tree in the vine has one node with maximal
degree. D-Vines are regular vines for which the first tree of the vine has (n− 2)
nodes with degree 2. Next results about the number of D-vines and C-vines on n
nodes are presented. Both results where presented in Aas et al. [2009] with proofs
that are slightly different to the ones presented here.

Lemma 2.3.4. The number of C-vines on n nodes equals the number of D-vines
on n nodes and is (n!/2)

Proof. For C-vines observe that there are n possible labeled trees on n nodes
for which a single node has maximal degree. Once the first tree has been fixed any
of the (n− 1) edges may be chosen so as to construct any of the (n− 1) possible
labeled trees on (n− 1) nodes for which a single node has maximal degree. Any
of these would preserve regularity. The same argument holds for all other trees
on the vine until two edges need to be connected as nodes in Tn−1. Hence there
are n · (n− 1) · (n− 2) · ... · (3) = (n!/2) C-vines on n nodes.

For D-vines observe that from lemma 2.3.3, T1 ∈ V completely determines the
vine. And since there are (n!/2) ways of choosing it the result follows. �

2.4 The Number of Regular Vines on n Nodes.

So far the number of vines has been obtained from Cayley’s theorem in corollary
2.3.1. Results concerning the number of tree-equivalent and labeled regular vines
on at most 8 nodes have been presented by using Prüfer codes and line graphs.
This section derives a formula for the number of regular vines on n nodes.

Definition 2.4.1. If node e is an element of node f in a regular vine, we say
that e is an m-child of f ; similarly, if e is reachable from f via the membership
relation: e ∈ e1 ∈ ... ∈ f , we say that e is an m-descendent of f .
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Lemma 2.4.1. Kurowicka and Cooke [2006] For any node M of order k > 0
in a regular vine, if node i is a member of the conditioned set of M , then i is
a member of the conditioned set of exactly one of the m-children of M , and the
conditioning set of an m-child of M is a subset of the conditioning set of M .

Definition 2.4.2. If element a occurs with element b as conditioned variables in
tree k, then a and b are termed k-partners. Nodes A and B are siblings if they
are m-children of a common parent.

Regularity13 means that every node in Ti, i ≥ n − 1 must have a sibling and
a common child with its sibling. In this section, another triangular array repre-
senting a regular vine will be introduced. In this section another triangular array
representing a regular vine will be introduced. One disadvantage of using a trian-
gular array such as the one used in section 2.3.1 is that the information regarding
the label of nodes in the first tree of a regular vine is lost when assigning new
labels to its edges when they become nodes of the next tree. The same happens as
more trees are added to a regular vine. This means that conditioned and condi-
tioning sets are not immediately visible anymore. The idea of the construction
presented here is to preserve the information concerning the labels of the first tree
as lower trees in the vine are added. In analogy to a Prüfer code a sequence of
n-tuples (An, An−1, ..., A1) where each Ai is an integer not greater than n will be
called a natural order. This is defined next.

Definition 2.4.3. A natural order of the elements of a regular vine on n ele-
ments is a sequence of numbers NO (V (n)) = (An, An−1, ..., A1) where each Ai is
an integer not greater than n obtained as follows: Take one conditioned element of
the last tree of a regular vine (a tree with a single node and no edges) and assign it
position n; assign the other conditioned element of the top node position (n− 1).
Element An−1 occurs in one m-child of the top node with an (n − 1)-partner in
the conditioned set. Give this (n − 1)-partner position (n − 2) and iterate this
process until all elements have been assigned a position.

Observe that there are two natural orders for every regular vine. A repre-
sentation of the regular vine in Figure 2.4 using a directed graph is presented
in Figure 2.7. This representation will be useful in the rest of the chapter for
explaining some of the concepts introduced. The nodes of each tree in the regular
vine are nodes in the directed graph. Observe that every parent node has exactly
two children. The conditioned set is presented to the left of a vertical line (| sign)
and the conditioning set to its right.

The element in position n occurs as conditioned variable in tree Tn (this tree
has one node and no edges). The element in position (n − j) occurs in the
unique node of tree Tn−j with conditioned set {An−(j+1), An−j}. If 5 is chosen
as An, then by definition 2.4.3 the natural order of the regular vine would be
NO1(V2(5)) = (5, 2, 3, 4, 1) for j = 1, ..., n − 2. In the same way if node 2 was
chosen as element An then the natural order would be NO2(V2(5)) = (2, 5, 4, 3, 1).
A regular vine may be coded as a lower triangular array with the natural ordering

13Or proximity in the language of subsection 2.3.1



28 Chapter 2

on the diagonal. The natural order will be used in a triangular array similar to the
one introduced in section 2.3.1 but that preserves all the information regarding
conditioned and conditioning sets in the regular vine.

5, 2|1, 3, 4

�� %%LLLLLLLLLL

4, 5|3, 1

�� **UUUUUUUUUUUUUUUUUUU 3, 2|1, 4

$$I
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��

4, 2

�� ))TTTTTTTTTTTTTTTTTTT 1, 3

�� ((QQQQQQQQQQQQQQQQ 1, 4

  A
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AA
AA

A

��
5 2 3 4 1

Figure 2.7: Representation of the regular vine in Figure 2.4

Definition 2.4.4. A regular vine array TA(V(n)) = {Ai,j} for i, j = 1, ..., n
and j ≥ i is a lower triangular matrix with elements in {1, ..., n} indexed in
‘reverse order’ (see equation (2.3)), where Aj,j equals the element in position
j in NO(V (n)) and Aj−1,j equals the element in position j − 1 in the same
natural order. The echelon of element Ai,j is i and element Ai,j codes the node
(Aj,j , Ai,j |Ai−1,j , ..., A1,j)

The regular vine array TA(V2(5)) array corresponding to the regular vine
V2(5) in equation (2.2) (Figures 2.4 and 2.7) using NO1(V2(5)) is presented in
equation (2.3). Observe that the row and column indices are in their usual position
but their sense is reversed (with respect to traditional matrix indexing) in order
to facilitate adding new variables to the left. From definition 2.4.4, we may
speak unambiguously of “node”, “element” or “variable” Ai,j . Thus the “node
Ai,j” is the set of elements “(Ai,j , Aj,j |Ai−1,j , . . . A1,j)”, arranged to separate the
conditioned elements from the conditioning elements by “|”.

TA(V2(5)) =




A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1




=




5
2 2
4 3 3
3 1 4 4
1 4 1 1 1




(2.3)
From Figure 2.7 and equation (2.3) it may be observed that a regular vine may

be represented by a triangular array as described in definition 2.4.4, in which the
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nodes of each tree in a regular vine have children in the immediate lower order
tree. Conditions for child nodes in the triangular array are given next.

Definition 2.4.5. Node Ai−1,h is a child of node Ai,j if:

(i) {Ah,h, Ai−1,h, Ai−2,h, ..., A1,h} ⊂ {Aj,j , Ai,j , Ai−1,j , Ai−2,j , ..., A1,j}

(ii) |{Ah,h, Ai−1,h, Ai−2,h, ..., A1,h}| = |{Aj,j , Ai,j , Ai−1,j , Ai−2,j , ..., A1,j}| − 1

(iii) |{Ah,h, Ai−2,h} ∩ {Aj,j , Ai−1,j}| = 1

The reader may check for example that according to definition 2.4.5 A2,4 =
(2, 1|4) and A2,3 = (3, 4|1) in 2.3 are children of A3,4 = (2, 3|1, 4). According to
definition 2.4.2, A3,4 = (2, 3|1, 4) and A3,5 = (5, 4|3, 1) are siblings because they
are children of the common parent A4,5 = (5, 2|4, 3, 1). Similarly A2,3 = (3, 4|1)
and A2,5 = (5, 3|1) are children of A3,5 = (5, 4|3, 1) and hence siblings. Other
elements may be also checked by the reader. Next it will be shown that a matrix
such as the one in definition 2.4.4 represents a regular vine.

We characterize first those triangular arrays which represent regular vines.

Theorem 2.4.2. TA(V (n)) represents a regular vine ⇐⇒ TA(V (n)) satisfies
condition R. That is, for all i ≥ 2, element Ai,j = Ah,h or Ai,j = Ai−1,h for
some h such that i ≤ h < j and {Aj,j , ..., Ai+1,j} ∩ {Ai−1,h, ..., A1,h} = ∅

Proof. ⇒ If V (n) is a regular vine then every node Ai,j in TA(n) has two
children in echelon i − 1 one of which is Ai−1,j . Suppose the other child is in
column h, then condition R follows from (i), (ii), (iii) in definition 2.4.5.

⇐ Let TA(k) be a regular vine array satisfying condition R. If k = 3, the
nodes of TA(k) clearly satisfy regularity. Suppose the theorem holds for k = n−1.
Node An−1,n satisfies regularity by definition 2.4.4. An induction will show that
nodes An−1,n, ..., A1,n satisfy regularity. We show first that node An−2,n has a
sibling and has a common child with this sibling. By condition R element An−2,n

is equal to element An−2,n−2 or An−3,n−2. In either case, node An−3,n−2 is a
child of node An−2,n and hence node An−2,n satisfies regularity.

Suppose that for every j = n−2, ..., k+1, every node Aj,n, satisfies regularity.
We claim that Ak,n must also satisfy regularity.

Node Ak,n is a child of node Ak+1,n and by the induction hypothesis, node
Ak+1,n satisfies regularity, therefore, it has a second child node Ak,h and relation
2.4 must hold according to condition R.

{Ah,h, Ak,h, Ak−1,h, ..., A1,h} = {Ak+1,n, Ak,n, ..., A1,n} (2.4)

Two situations are possible:

(i) Ak+1,n = Ah,h or,

(ii) Ak+1,n = Ak,h

By induction node Ak,h has two children, one of which is node Ak−1,h. It will
be shown that one of these children must be a child of node Ak,n. In other words
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it will be shown that Ak,n and Ak,h are siblings and have a common child which
is the condition for regularity.

In case (i) node Ak−1,h cannot be a child of node Ak,n since node Ak−1,h

contains element Ah,h = Ak+1,n in its conditioned set, and element Ak+1,n cannot
belong to the constraint set of node Ak,n. The other child of node Ak,h must be
node Ak−1,m for some k ≤ m < h. This child cannot contain element Ah,h, and:

{Am,m, Ak−1,m, ..., A1,m} = {Ak,h, Ak−1,h, ..., A1,h} (2.5)

By induction, node Ak,h satisfies regularity; therefore either element Ak,h =
element Am,m or element Ak,h = element Ak−1,m, in either case by combining 2.4
and 2.5 we see that node Ak−1,m is a child of node Ak,n.

In case (ii) element Ak+1,n ̸= element Ah,h, and equation (2.4) must still hold
and by induction Ak,n = Ah,h or Ak,n = Ak−1,h; in either case node Ak−1,h will
be a child of node Ak,n and the latter will satisfy regularity.�

We now count the number of ways of extending an n− 1 regular vine with a
fixed natural ordering. This is equivalent to adding an additional column to the
left of a regular vine in the triangular array.

Evidently the top two elements of this new column are fixed, and the last
element is fixed by the choices for the elements above it. If there are n elements
in the new column, there are n− 3 elements to be chosen. It will be seen that the
number of extensions is in fact 2n−3 regardless of the regular vine being extended.

Theorem 2.4.3. For any vine on n− 1 elements, the number of regular n vines
which extend this vine, preserving the natural ordering of the n− 1 vine is 2n−3.

Proof. Let V (n − 1) be an arbitrary regular vine on n − 1 elements with
a natural order and TA(V (n − 1)) its triangular array. TA(V (n − 1)) will be
extended by adding a column of n elements to the left whose top two entries are
An,n, An−1,n.The goal is to count the number of ways of adding a column to the
left of TA(V (n − 1)), so as to preserve regularity. Node Ak,n satisfies regularity
if it has a sibling which is a child of node Ak+1,n and has a child which is also a
child of its sibling. This latter child must be a node in V (n−1). If each node Ak,n

for k = 2, ..., n − 2, satisfies regularity, then TA(V (n)) (the extended triangular
array) codes a regular vine which extends the original regular vine V (n− 1).

V (n − 1) has trees Tn−1, ..., T1 where Tn−1 has one node and no edges, T1

has n − 1 nodes and n − 2 edges; in general for j = 1, ..., n − 1 tree Tn−j has
j nodes and j − 1 edges. After adding node An,n, T1 will have n nodes and
n − 1 edges, T2 will have n − 1 nodes and n − 2 edges and so on until tree
n that will have a single node An−1,n = (An,n, An−1,n|An−2,n, ..., A1,n) This
node must have two children. One child must be, evidently, node An−2,n =
(An,n, An−2,n|An−3,n, ..., A1,n) and the other is the top node of V (n − 1) which
is An−2,n−1 = (An−1,n−1, An−1,n−2|An−3,n−1, ..., A1,n−1). To satisfy regularity,
nodes An−2,n and An−2,n−1 must have a common child. This common child can-
not contain element An−1,n = An−1,n−1 since it does not belong to node An−2,n

and hence the child must be of the form:

(An−3,n−2, An−2,n−2|An−4,n−2, ..., A1,n−2)



About The Number of Vines and Regular Vines on n Nodes. 31

The situation is pictured in Figure 2.8.

An−1,n

�� ((QQQQQQQQQQQQQ

An−2,n

�� ,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX An−2,n−1

�� ))SSSSSSSSSSSSSS

An−3,n
(An−3,n−1, An−1,n−1|
An−4,n−1, ..., A1,n−1)

(An−3,n−2, An−2,n−2|
An−4,n−2, ..., A1,n−2)

Figure 2.8: Regular Vine Growing 1.

Since element An−2,n must be in exactly one of the children of the node
An−2,n−1 it follows that element An−2,n must be element An−2,n−2 or element
An−3,n−2 either choice satisfying regularity.

Assume that variables An−1,n, ..., Ak+1,n satisfying regularity have been found.
We show that variable Ak,n can be found such that node Ak,n satisfies regularity,
and that there are exactly two choices for this element. Node Ak+1,n may be
written Ak+1,n = (An,n, a|b, c, d, ..., e) with children as in Figure 2.9.

Ak+1,n

�� ))SSSSSSSSSSSSSSS

(An,n, X|{b, c, d, ..., e} \X)
(a, f |{b, c, d, ..., e} \ f);

f ∈ {b, c, d, ..., e}

�� ((QQQQQQQQQQQQQ

(f, g|{{b, c, d, ..., e} \ f} \ g);
g ∈ {b, c, d, ..., e} \ f

(a, h|{{b, c, d, ..., e} \ f} \ h);
h ∈ {b, c, d, ..., e} \ f

Figure 2.9: Regular Vine Growing 2.

Node (a, f |{b, c, d, ..., e}\f) exists in the original vine V (n−1) by assumption.
Node (An,n, X|{b, c, d, ..., e} \ X) satisfies regularity if X = f or X = g, either
choice being possible. No other choice is possible, as no other node can have
constraint set {b, c, d, ..., e}. Note that if k = 2 then {{b, c, d, ..., e} \ f} \ g) =
{{b, c, d, ..., e} \ f} \ h) = ∅.

It follows that for each node An−2,n, ..., A2,n there is a choice among 2 al-
ternatives. Hence there are 2n−3 extensions of V (n − 1) to a regular vine on n
elements.�
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For the example from Figure 2.7 the 26−3 possible extensions of the triangular
array from example 2.3 are given by the tree in Figure 2.10 below. Corollary 2.4.4
follows immediately from theorem 2.4.3.
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Figure 2.10: 8 Possible Extensions of TA(V2(5)) in equation (2.3) Representing the
Vine in Figure 2.4

Corollary 2.4.4. The number of regular vines possible with a fixed natural order

NO(n) = An,n, An−1,n−1, ..., A1,1 is:
n−3∏
j=1

2j = 2
(n−2

2 )

Proof. Start with a regular vine on three nodes with an arbitrary natural order
and extend it to a regular vine on four nodes. Elements A4,4, A3,4 and A1,4 are
fixed by the natural order and hence only element A2,4 may be chosen in 2 distinct
ways. For each one of the 2 choices of A2,4, from theorem 2.4.3 an extension to a
regular vine on 5 nodes leaves two choices for each of the two elements A3,5 and
A2,5. Continue this way until a regular vine on n nodes is formed and the result
follows.�

Observe that corollary 2.4.4 implies that no regular vine would be counted
twice once the natural order has been fixed. Obviously two triangular arrays that
are equal will represent the same vine. Once the number of regular vines that
may be obtained with a given natural order is known, all that is left to know the
number of regular vines on n nodes is how many natural orders are possible in
order to produce all possible regular vines. Corollary 2.4.5 completes the problem
of enumerating regular vines.

Corollary 2.4.5. There are
(
n
2

)
× (n− 2)!× 2

(n−2
2 )

labeled regular vines in total.

Proof. There are
(
n
2

)
ways of choosing the pair An,n, An−1,n−1 in a natural

order and (n − 2)! ways of permuting elements An−2,n−2, .., A1,1. By corollary
2.4.4 the proof is completed. �

The results of corollary 2.4.5 may be observed in tables A.1 to A.7 which were
obtained by the methods explained in previous sections. For example, the number

of regular vines on 9 nodes is
(
9
2

)
×7!×2

(
9

2)
= 181, 440×1+362, 880×69+362, 880×
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41 + 181, 440×13 + 181, 440× 129 + 181, 440× 181 + 181, 440×2, 651 + 181, 440×
5, 390 + 90, 720 × 1, 708 + 181, 440 × 1, 646 + 362, 880 × 2, 708 + 45, 360 × 168 +
181, 440×528+181, 440×887+181, 440×887+90, 720×4, 202+181, 440×2, 567+
60, 480× 528 + 181, 440× 8, 738 + 15, 120× 18, 504 + 90, 720× 11, 296 + 181, 440×
34, 417+45, 360×36, 892+30, 240×72, 546+90, 720×120, 444+60, 480×20, 904+
181, 440×99, 028+60, 480×34, 143+30, 240×6, 756+90, 720×32, 812+90, 720×
54, 004+15, 120×32, 688+60, 480×149, 901+30, 240×360, 084+30, 240×428, 388+
22, 680 × 680, 576 + 5, 040 × 262, 080 + 30, 240 × 1, 232, 820 + 7, 560 × 414, 432 +
30, 240×1, 919, 610+15, 120×1, 232, 340+3, 024×1, 869, 120+7560×5, 255, 904+
2, 520×14, 889, 744+1, 512×23, 334, 480+504×62, 523, 360+9×660, 602, 880 =
3.8050725888 × 1011.

Remark. By lemma 2.3.2 and corollary 2.4.5 it may be seen that a tree with a

single node with maximum degree admits
(
n−1
2

)
× (n− 3)!× 2

(n−3
2 )

regular vines.

Finally, the results of remark 2.4 may be also observed in tables A.1 to A.7.
For example there are 9 trees with maximal degree on 9 nodes each of which

admits
(
8
2

)
× (6)! × 2

(6
2)

= 20, 160 × 1 + 20, 160 × 11 + 40, 320 × 29 + 20, 160 ×
39 + 20, 160 × 71 + 10, 080 × 820 + 5, 040 × 120 + 20, 160 × 315 + 20, 160 × 815 +
20, 160 × 423 + 5040 × 4, 520 + 6, 720 × 2181 + 10, 080 × 11, 246 + 6, 720 × 315 +
20, 160×1, 046+3, 360×3, 384+6, 720×8, 667+560×89, 712+3, 360×27, 222+
1, 680 × 11, 160 + 840 × 117, 072 + 336 × 279, 000 + 8 × 2, 580, 480 = 660, 602, 880
regular vines which is exactly the total number of regular vines on 8 nodes. To
finalize some conclusions are presented next.

2.5 Final Comments

This chapter investigates counting problems related to vines. Corollary 2.3.1
has been obtained from Cayley’s theorem 2.2.1 to count the number of vines
on n nodes. A way to efficiently code and store vines on n nodes based on
the Prüfer code is proposed. This consists of an upper triangular matrix of size
(n−2)×(n−2). An algorithm for building vines and two others for building regular
vines on n nodes have been presented. Algorithm 2.2.1 is easy to implement and
efficient if regular vines on less than 6 nodes are required. Algorithm 2.3.2 would
produce only regular vines at the cost of greater programming effort and a larger
number of arithmetic operations.

Table 2.1 shows the number of labeled trees, labeled vines, labeled regular
vines and tree-equivalent regular vines, on up to 9 nodes. Tables A.1 to A.7
presents the number of labeled trees, regular vines per labeled tree and tree-
equivalent regular vines according to unlabeled trees on n nodes. The number of
ways of extending an n − 1 vine to an n vine has been found and the number
of labeled regular vines as a function of n has been presented. Future research
about efficient implementation and storing of codes for producing regular vines is
desirable. Vines keep a close relationship with continuous-discrete non-parametric
BBNs. This will be discussed in the next chapter.



34 Chapter 2



CHAPTER 3

BBNs in Aviation Safety1

3.1 Discrete BBNs

Graphical methods for dependence modeling have become increasingly impor-
tant over the past years. From the graphical methods discussed in the literature
perhaps BBNs have drown more attention from the scientific community. An over-
view of the development of the use of graph theory in combination with probability
theory was given in chapter 1. The CATS model which is the main application
driving this thesis2 was briefly introduced in section 1.4. In this chapter BBNs
will be presented more formally. An excellent overview of BBNs is presented in
Hanea [2008]. A thorough treatment of the semantics of BBNs is presented in
Pearl [1988]. The CATS model will also be explained in more detail in order to
be able to show its use in risk and uncertainty analysis in later chapters.

For our purpose Bayesian Belief Nets (BBNs) are directed acyclic graphs
whose nodes represent univariate random variables and whose arcs represent di-
rect influences between adjacent nodes. These influences may be probabilistic or
deterministic3. The graph of a BBN induces a non unique ordering of variables and
stipulates that each variable is conditionally independent of its non-descendants
given its parents. The parent set of variable Xi will be denoted as Pa(i). Hence,
to specify a joint distribution through a BBN the graph must be specified together
with conditional probability functions of each variable given its parents (equation
(3.1)).

f(X1, . . . , Xn) =
n∏

i=1

fXi|XPa(i)
(3.1)

1This chapter is based on Morales-Nápoles et al. [2008]
2And a good part of the research currently carried out in the Decision Theory group in Delft
3When an influence is deterministic, nodes will be called functional. The discussion presented

next refers to probabilistic influences unless otherwise specified.

35
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Figure 3.1: Simple example of BBN on n nodes.

If Pa(i) = ∅ then fXi|XPa(i)
= f(Xi). A BBN is then a concise and complete

representation of the joint distribution. In the case that all nodes in the BBN are
discrete then the functions to be specified are conditional probability tables (CPT)
of each node given its parents. When variables are continuous, one possibility is
to discretize them into a large enough number of states and use discrete BBNs.
This approach might however turn out to be infeasible even for a modest sized
model mainly because of the number of parameters to be specified. This idea is
illustrated in example 3.1.1.

Example 3.1.1. Consider the BBN in Figure 3.1 and suppose each variable Xi

has ki states. Then (n− 1) univariate marginal distributions need to be specified
for each parent node of X2. For each of these marginal distributions ki − 1
probabilities need to be assessed4. For X2 a table with k2 ·k1 ·k3 ·...·kn conditional
probabilities needs to be specified of which k1 · k3 · ... · kn are constrained by the
choice of the other conditional probabilities.

In particular suppose that for the BBN in Figure 3.1 n = 3, k1 = 2, k2 = 3 and
k3 = 3. The states of each Xi will be 1, ..., ki ∀ i then a table such as 3.1 would
be required for X2. One cell in each row of table 3.1 is fixed by the requirement
that the values in each row must sum to one. Additionally to the 12 probabilities
to be assessed for X2, one state of X1 and 2 of X3 would need to be specified.�

P (X2=1|X1=x1,X3=x3) P (X2=2|X1=x1,X3=x3) P (X2=3|X1=x1,X3=x3)

x1=1,x3=1

x1=1,x3=2

x1=1,x3=3

x1=2,x3=1

x1=2,x3=2

x1=2,x3=3

Table 3.1: Conditional probability table for X2 in example 3.1.1.

In general, the number of probabilities to be assessed for a discrete BBN on
n nodes with ki states for each Xi for i = 1, ..., n is:

4One probability is of course determined once the others have been.
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K =
∑

j∈S

kj − |S| +
∑

l∈C

(kl − 1)
∏

m∈Pa(l)

km (3.2)

where S = {Xj |Pa(j) = ∅} and C = {Xl|Pa(l) ̸= ∅} and |S| + |C| = n.
One of the main advantages of BBNs is that they posses a graphical represen-

tation which makes them appealing for applications. Another property of discrete
BBNs that makes them attractive for practitioners is that once it has been quan-
tified, it may be used to update the joint distribution when evidence becomes
available. Exact algorithms and approximation algorithms are available for this
purpose. See for example Lauritzen and Spiegelhalter [1988], Cowell et al. [1999,
p.123] and Pearl [1993, p.55].

It is clear from equation (3.2) that K grows rather quickly as the number of
states of each Xi grow. This is one of the main drawbacks of discrete BBNs.
Some of the drawbacks of discrete BBNs were discussed in Hanea et al. [2006]
and Cowell et al. [1999]. We list a summary of them next:

1. K imposes an assessment burden that might lead to informal and indefen-
sible quantification or a drastic discretization or reduction of the model.

2. Marginal distributions are often available from data. Marginal distributions
for children nodes are calculated from probability tables and this could
impose severe restrictions in a quantification process.

3. Discrete BBNs are flexible with respect to recalculation and updating ho-
wever they are not flexible with respect to modelling changes. If a parent
node is added then the child nodes must be completely re-quantified.

Continuous-discrete non-parametric BBNs (Kurowicka and Cooke [2005], Ha-
nea et al. [2006]) have been developed to cope with some of the drawbacks that
discrete (and discrete-normal) a models impose. These will be discussed next.

3.2 Non-Parametric Continuous-Discrete BBNs.

Another way to deal with continuous nodes in a BBN is with the use of normal
[Schachter and Kenley, 1989] or discrete-normal BBNs. For discrete-normal BBNs
[Cowell et al., 1999], unconditional means and conditional variances must be as-
sessed for each normal variable. For each arc partial regression coefficients must
be assessed. In the absence of data the assessment of partial regression coefficients
and conditional variances by experts is difficult if the normality assumption does
not hold.More flexible models will be discussed in this section for dealing with
continuous nodes.

Vines and BBNs represent a joint distribution specified by marginal distri-
butions and conditional bivariate dependence statements. One advantage of
BBNs versus vines is that the former preserve the intuitive representation of
influence diagrams. This section describes the relationship between vines and
non-parametric BBNs.
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The graphical objects discussed in chapter 2 are used in dependence modelling.
The nodes of the vine represent random variables with invertible distribution
function and the edges may be used to specify conditional bivariate dependencies.

Each edge in the regular vine may be associated with a conditional rank cor-
relation. In general these conditional rank correlations may depend on the values
of the conditioning nodes, but in the present implementation, all conditional rank
correlations are constant. All assignments of rank correlations to edges of a vine
are consistent and each one of these correlations may be realized by a copula. A
regular vine enables the construction of a joint distribution from bivariate and
conditional bivariate distributions.

The reader may see in Kurowicka and Cooke [2006] how to sample a joint dis-
tribution represented by a D-vine in 4 nodes. At this point it may also be observed
that a Markov-Dependence Tree is a special case of a vine where all conditional
rank correlations are set to zero. In other words, in a Markov-Dependence tree the
random variables that are not joined by an edge in the tree are conditionally inde-
pendent given variables on the path between them. It may be observed that vines
relax the assumptions about conditional independence for Markov-Dependence
trees to allow for conditional dependence.

If one chooses the normal copula to realize the (conditional) rank correlations
assigned to the edges of a regular vine and the marginal distributions are standard
normal, then we call such vine the standard normal vine. The standard normal
vine gives us a very convenient way of specifying a standard joint normal distri-
bution by specifying

(

n

2

)

algebraically independent numbers from (−1, 1). This
is in contrast to the specification of a correlation matrix that must satisfy the
constraint of positive definiteness [Bedford and Cooke, 2002].

Example 3.2.1. Let us consider a standard normal D-vine on three standard nor-
mal variables and assume that the following rank correlations were specified:
r2,1, r3,2 and r3,1|2. The correlation matrix of the joint normal distribution cor-
responding to this normal vine can be calculated as follows:

• Let ρ2,1, ρ3,2 and ρ3,1;2 be the product moment correlations obtained by
applying equation (1.2) to r2,1, r3,2 and r3,1|2 respectively.

• Since for the normal distribution partial correlation is equal to conditional
correlation ρ3,1|2 = ρ3,1;2, then from equation (1.1) we can compute ρ3,1 as:

ρ3,1 = ρ3,1|2 · ((1 − ρ22,1)(1 − ρ23,2))1/2 + ρ2,1ρ3,2. �

Non-parametric BBNs and their relationship to vines were presented in Ku-
rowicka and Cooke [2005] and extended in Hanea et al. [2006]. A non-parametric
continuous-discrete BBN (NPCDBBN) is a directed acyclic graph whose nodes
represent continuous univariate random variables and whose arcs are associated
with parent-child (un)conditional rank correlations. For each variable Xi with
parents Xj , ..., XPa(i) associate the arc XPa(i)−k → Xi with the conditional rank
correlation:

{
ri,Pa(i), k = 0
ri,Pa(i)−k|Pa(i),...,Pa(i)−k+1, 1 ≤ k ≤ Pa(i) − 1

(3.3)
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The assignment is vacuous if {Xj , ..., XPa(i)} = ∅. These assignments together
with a copula family indexed by correlation and with conditional independence
statements embedded in the graph structure of a BBN are sufficient to construct
a unique joint distribution. Moreover, the conditional rank correlations in 3.3
are algebraically independent, hence any number in (-1,1) can be attached to
the arcs of a NPCDBBN. In Figure 3.2 it may be seen that variables X1, ..., X5

are independent of each other and their dependence with variables X6 and X7 is
described in terms of (conditional) rank correlations. Variables X6 and X7 are
conditionally independent given X1, ..., X5.

Figure 3.2: A BBN on 7 variables.

One can use the copula-vine approach [Kurowicka and Cooke, 2006] to re-
present the multidimensional joint distribution specified by a BBN (Kurowicka
and Cooke [2005], Hanea et al. [2006]). D-Vines become an important instrument
as the sampling procedure for a BBN is based on the sampling procedure for a
D-vine. Some BBNs might not be represented as a single D-vine in their sampling
order and it might be necessary to perform extra calculations [Hanea et al., 2006,
p.716].

Any copula with an ‘easy-to-compute’ invertible conditional cumulative dis-
tribution function may be used as long as the chosen copula possesses the zero
independence property5. Choosing the normal copula presents advantages with
respect to other copulae for building the joint distribution. Observe that for the
normal copula relation 1.2 holds and since conditional correlations are equal to
partial correlations then a procedure similar to example 3.2.1 may be applied in
the graph. Moreover since for the joint normal distribution, conditional distribu-

5A copula with an analytic form for the conditional and inverse conditional cumulative dis-
tribution function accelerates the sampling procedure. One example of such a copula is Frank’s
copula presented in section 1.2.
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tions are also normal [Tong, 1990, p.33], then analytical updating is possible by
this choice [Hanea et al., 2006, p.724].

The NPCDBBN representing the CATS model (section 1.4) was implemented
in UniNet [Morales-Nápoles et al., 2007] [Cooke et al., 2007]. The next section
explains in more detail the implementation.

3.3 Causal Model for Air transport Safety (CATS)

As mentioned in section 1.4, the CATS model integrates ESDs, FTs, and BBNs
into one single CDNPBBN. This section is devoted to a summary description of
the procedure to build up the CATS model. Some of the results presented in this
section are taken from Morales-Nápoles et al. [2008]. The three human reliability
models that will be introduced in subsection 3.3.2 are represented for 3 different
flight phases; these are Take Off (TO) En-Route (ER) and Approach & Landing
(AL). In Spouge and Vernon [2008] these flight phases are considered for building
up the FTs that are attached to the ESDs. The definitions of flight phases used
here are equal to those in Spouge and Vernon [2008].

3.3.1 Event Sequence Diagrams & Fault Trees

An event sequence diagram is a flow chart showing a sequence of events whose
happening or not happening lead to different end states. ESDs for the CATS
model have been quantified in Roelen et al. [2007.]. Since the sequence of in-
termediate events that must happen in order to observe the end state may be
represented by logical statements, ESDs may be represented as Fault Trees. In
the CATS model ESDs and FTs were modelled as a single unit. FT analysis is
considered a technique which allows the analysis of a system in the context of its
environment and operation to find the largest number of credible ways in which
an undesired state of a system may happen [Vesely et al., 1981, p.IV-1].

Basic events in Fault Trees can be represented by a Boolean variable. In this
sense, a FT may be thought of as a picture of a Boolean formula. In Boolean
arithmetic, variables take only two values, usually 0 or 1. Suppose A1 and A2

are Boolean variables, then A1 ⊕A2 and A1 ⊗A2 are also Boolean variables, and
hence take values 0 or 1. This is arranged by defining A1⊕A2 = A1 +A2−A1 ·A2

and A1⊗A2 = A1 ·A2. The operators ⊕ and ⊗ correspond to the AND and OR
operators in propositional logic. In other words, A1 ⊕A2 means “either A1 or A2

or both are true” and A1 ⊗ A2 means “both A1 and A2 are true”. In Boolean
arithmetic A1 ⊗ A1 = A1; this corresponds to saying that the event A1 AND A1

is the same as the event A1
6. Two examples of FTs are presented in Figures 3.3

and 3.4. Their usual notation for AND and OR gates is also displayed.
In most cases, we don’t know whether a given basic event occurs, we know only

its probability of occurrence. Recall that E(A1) = P (A1 = 1) where E denotes
mathematical expectation. If A1 and A2 are independent, then E(A1 ⊗ A2) =
E(A1)E(A2) and E(A1 ⊕A2) = E(A1) + E(A2) − E(A1 ·A2).

6Other rules for Boolean algebra may be found in [Vesely et al., 1981, p.VII-2]
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The above reasoning might suggest that we can just replace the Boolean va-
riables at the base of a fault tree with their probabilities (i.e. their expectations)
and compute the probability of the top event with ordinary arithmetic. This is
not true, in general, and it may depend on how the fault tree is displayed. This
is illustrated in Figures 3.3 and 3.4. Suppose that A4 occurs when either (A1

AND A2) OR (A1 AND A3) occur. Observe that Figures 3.3 and 3.4 are logically
equivalent fault trees.

Figure 3.3 Figure 3.4

If Boolean reduction is applied to both FTs we see that they yield the same
formula for A4. However, if we replace the variables by their expectations and
apply ordinary arithmetic to the non-reduced formulae, we will get different ans-
wers. The correct calculation would be obtained from Figure 3.4 P (A4 = 1) =
P (A1 = 1)P (A2 = 1) + P (A1 = 1)P (A3 = 1) − P (A1 = 1)P (A2 = 1)P (A3 = 1).
The problem is that when (A1 AND A2) OR (A1 AND A3) is computed with
expectations in Figure 3.3, the term P (A1 = 1) is included twice.

In general, computing probabilities of occurrence from a Fault Tree requires
some careful manipulations, before substituting Boolean variables with their ex-
pected values. However, if our Fault Trees contain no “repeated events” then we
can replace Boolean variables with expectations and replace Boolean arithmetic
with ordinary arithmetic. This assumes that we have captured all common cause
dependencies in the Fault Tree. This means that once probabilities are assigned
to the basic events, the probability of joint occurrence is computed as the pro-
duct of the probabilities. In the CATS model no repeated events exist and hence
we can simply replace basic events with expectations and compute with ordinary
arithmetic.

The quantification of ESDs presented in Roelen et al. [2007.] is used in Spouge
and Vernon [2008] to quantify the FTs that later compute the accident probability.
The FTs (and consequently ESDs) presented in the appendix DNV Collected
Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008] are translated into
functional nodes in UniNet using ordinary arithmetic.

Translating FTs into BBNs is not new. In Bobbio et al. [1999] and Bobbio et al.
[2001] FTs are translated into discrete BBNs. Our approach is different in the
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sense that uncertainty analysis is carried out by sampling the probability of each
base event in the FTs from a distribution (see section 3.3.3.2). The expectation of
each base event distribution is the probability estimated originally for the FTs in
Spouge and Vernon [2008]. By sampling each base event probability from a given
distribution and computing the arithmetic operations at each level of the FT a
distribution is obtained for the accident probability. Samples for each base event
can be generated with some dependence structure. Most of the base events of the
FTs are a result of human errors. Factors influencing human performance might
induce the dependence structure for base events of the FTs. For this reason human
reliability models (HRM) will be introduced next. The issue of the quantification
of dependence in each HRM will be dealt with in chapter 4. In section 3.3.3 the
connection between base events of the FTs and HRM will be made explicit.

3.3.2 Human Reliability Models

To a large extent, events initiating accident scenarios in the CATS model are a
result of incorrect performance of humans. Models for taking into account the
probability of human errors have been developed for Flight Crew Performance
(FCP), Air Traffic Controller Performance (ATCP) and Maintenance Crew Per-
formance (MNTP). These are discussed next. The quantification of the models
presented in this section include field data whenever available and structured ex-
pert judgment (SEJ). Structured expert judgment is a process intended to use
expert opinion in a transparent way with the purpose of treating expert judg-
ments as scientific data [Cooke, 1991]. SEJ will be dealt with in more detail in
chapter 4. In this section the models are introduced together with the data source
for marginal distributions. Rank and conditional rank correlations were retrieved
through SEJ in all models presented in this thesis. Techniques for eliciting such
measures are also introduced in chapter 4.

3.3.2.1 FCP Model Description

The FCP model is shown in Figure 3.5. The model is described extensively
in Morales-Nápoles et al. [2009b] and Roelen et al. [2007]. Variables taken into
account for this model are briefly described in table 3.2 according to their labeling
in Figure 3.5.

The basis for the quantification of each marginal distribution is presented in
column 3. Four variables were elicited through structured expert judgment7 and
the rest come from data. Node 14 would represent a base event in DNV’s Fault
Trees. Whenever the flight crew performance is of interest in the FTs an instance
of node 14 will appear in the CATS model.

Each node of the BBN in Figure 3.5 shows the marginal distribution of the
variables listed previously. The mean of the distribution (and the standard devia-
tion after the ± sign) of each variable are shown at the bottom of each node. An
elicitation protocol was designed for obtaining the marginal distributions from Fi-
gure 3.5 shown in table 3.2 and the dependence information (rank and conditional

7See section 4.2 for an overview of structured expert judgment.
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Node ♯ Definition
Marginal

distribution.

1
Total number of hours flown (all types)

Data
for the First Officer

2
Number of days since the last type recurrent

Data
training for the First Officer

3 Stanford Sleepiness Scale Data

4
Number of days since the last type recurrent

Data
training for the Captain

5 Total number of hours flown (all types) for the Captain Data
6 Likelihood that the Captain fails a proficiency check SEJa

7 Likelihood that the First Officer fails a proficiency check SEJ
8 Rainfall rate in mm/hr Data

9
Difference in mother tongue between Captain and

SEJ
First Officer per 10000 flights

10
Likelihood that the Captain or the First Officer

SEJ
fail a proficiency check

11 Aircraft generation: 1, 2, 3, or 4 Data

12
Likelihood that the flight crew needs to follow

Dataa procedure of the abnormal/emergency procedures

section of the AOMb

13
Total duration (in seconds) of the air/ground

Datacommunications, per aircraft, for the

approach and landing flight phase.

14
Likelihood that the flight crew makes an

FTcunrecovered error that is potentially

hazardous for the safety of the flight.

Table 3.2: Description of variables from the model in Figure 3.5.

aStructured Expert Judgment
bAircraft operations manual
cFrom the associated Fault Tree quantified by DNV
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Figure 3.5: Flight Crew Performance Model

rank correlations) required by the model. The elicitation of rank and conditional
rank correlations will be discussed in section 4.2.2 and results for the FCP model
elicitation will be presented in section 5.2.

3.3.2.2 ATCP Model Description.

The Air Traffic Control Performance model (ATCP) is the second one of the
generic models that has been developed to represent dependence between base
events in the FTs of the CATS model. The model is discussed in details in
Morales-Nápoles et al. [2009b] and Roelen et al. [2008a]. Figure 3.6 shows the
BBN representing the model. Variables 1-6 are considered to be correlated to
ATC error probability (variable 7) and independent of each other. Each variable
considered in the model is briefly described in table 3.3 according to its labeling
in Figure 3.6.

The basis for the quantification of each marginal distribution is presented in
column 3. Five variables come from data and the error distribution from the
quantification of FTs. Node 7 would represent base events in the Fault Trees. As
with node 13 in the FCP model, whenever the air traffic error is of interest an
instance of node 7 will appear in the CATS model. Results for the ATCP model
elicitation will be presented in section 5.3.
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Figure 3.6: Air Traffic Controller Performance Model

Node ♯ Definition
Marginal

distribution.

1
Number of aircraft (any type)

Data
simultaneously under control.

2
Four states variable. From 1- using radio only to

Data4-using radio, primary and secondary radar

and additional tools.

3
Two states. 1 - The communication with other ATC

Datatakes place in the same room, 2 - The communication

with other ATC does not take place in the same room

4 Number of years working as an ATC in the same position. Data

5
Five states variable. From 1 - normal operations to

Data
5 - operations below 200 meters visibility.

6
Total duration (in seconds) of the air/ground

Datacommunications, per aircraft, for the

approach and landing flight phase.

7
Likelihood that the air traffic control makes an

FTaunrecovered error that is potentially

hazardous for the safety of the flight.

Table 3.3: Description of variables from the model in Figure 3.6.

aFrom the associated Fault Tree quantified by DNV
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Figure 3.7: Maintenance Crew Performance Model

Node ♯ Definition
Marginal

distribution.

1
Whether the work is performed at the ramp

SEJa

(outside - 1) or in the hangar (inside - 2)

2 Stanford Sleepiness Scale SEJ
3 # of years in current position Data
4 Time available to transfer a job (min) SEJ
5 Aircraft generation: 1, 2, 3, or 4 Data

5
Five states variable. From 1 - normal operations to

Data
5 - operations below 200 meters visibility.

6 Estimated delay in release of the aircraft (hrs) SEJ

7
Likelihood that the maintenance crew makes an

FTbunrecovered error that is potentially

hazardous for the safety of the flight.

Table 3.4: Description of variables from the model in Figure 3.7.

aStructured Expert Judgment
bFrom the associated Fault Tree quantified by DNV
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3.3.2.3 MNTP Model Description.

The maintenance crew performance model is the third and last of the generic
models that have been developed to represent dependence between base events
in the FTs of the CATS model. A preliminary version of the model presented
here may be found in Jagielska [2007]. The MNTP model is discussed in the
context of CATS in Krug la [2008] and Roelen et al. [2008b]. The model is shown
in Figure 3.7 and the variables taken into account are briefly described in table 3.4
according to their labeling in Figure 3.7. Equivalently with node 13 in the FCP
model and 7 in the ATCP model if a maintenance technician error is of interest
an instance of node 7 will appear in the CATS model.

The three HRM briefly introduced here and the FTs in Spouge and Vernon
[2008] are introduced in UniNet to build the CATS model. That process is
described next.

3.3.3 The CATS Model in UNINET

3.3.3.1 ESDs & FTs for the CATS model in UNINET

In Figure 3.8 one may see ESD1 aircraft system failure for the TO flight phase
as presented in appendix DNV Collected Fault Trees (3Feb09) v7,1.xls of
Spouge and Vernon [2008]. In total four AND gates and four OR gates represent
the FT and ESD. Fifteen base events are influenced by the MNTP model presented
in section 3.3.2.3 and 3 base events by the FCP model from section 3.3.2.1. No
influence of the ATCP model is observed in this particular FT. To translate this
information into a BBN the process is:

1. Find a distribution of the probability of base events per demand according to
their variability. The variability of each base event in this case corresponds
to the different percentiles and expectation from DNV Collected Fault
Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008]. These correspond
to the expectation, minimum, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 99th

and maximum percentiles of each base event distribution. This information
is treated as data (see Figure 3.9).

2. Connect with incoming arcs each base event to the corresponding depen-
dence model from subsections 3.3.2.1 to 3.3.2.3 using the corresponding
rank and conditional rank correlations. These nodes will be ancestors of
base events in the Fault Trees.

3. Write in descendent nodes of each base event the arithmetic formulae that
translate a FT into a BBN (subsection 3.3.1). These will be functional nodes
in the BBN.

These steps are repeated for all ESDs presented in table 3.5.

3.3.3.2 The error distributions in UNINET

Base events in the FTs are influenced by the human performance models introdu-
ced in section 3.3.2. In fact, the probabilities presented in the FTs [Spouge and
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Figure 3.8: ESD1 aircraft system failure for the TO flight phase

Figure 3.9: Distribution of base event probability
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ESD Initiating event Flight Phase
1 Aircraft system failure TO
2 ATC event TO
3 Aircraft handling by flight crew inappropriate TO
4 Aircraft directional control related systems failure TO

5
Operation of aircraft systems by flight

TO
crew inappropriate

6 Aircraft takes off with contaminated wing TO
7 Aircraft weight and balance outside limits TO

8
Aircraft encounters performance decreasing

TO
windshear after rotation

9 Single engine failure TO
10 Pitch control problem TO
11 Fire on board aircraft ER
12 Flight crew member spatially disorientated ER
13 Flight control system failure ER
14 Flight crew incapacitation ER
15 Anti-ice system not operating ER
16 Flight instrument failure ER
17 Aircraft encounters adverse weather ER
18 Single engine failure ER
19 Unstable approach AL
21 Aircraft weight and balance outside limits AL

23
Aircraft encounters windshear

AL
during approach/landing

25
Aircraft handling by flight crew

AL
during flare inappropriate

26
Aircraft handling by flight crew

AL
during roll inappropriate

27 Aircraft direction control related systems failure AL
28 Single engine failure AL
29 Thrust reverser failure AL
30 Aircraft encounters unexpected wind AL
31 Aircraft are positioned on collision course ER

32
Incorrect presence of aircraft/vehicle

TO/AL
on runway in use

33 Cracks in aircraft pressure cabin ER

35
Flight crew decision error/operation

AL
of equipment error

36 Ground collision imminent TO/AL
37 Wake vortex encounter ER

Table 3.5: ESDs used in the CATS model.



50 Chapter 3

Vernon, 2008] represent the expected probability of a given human error. Other
percentiles over the distribution of error probability are also presented in appen-
dix DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon
[2008]. An example of the data is presented in Figure 3.9.

Figure 3.9 shows that the minimum value that the base event probability
TO01B11 can take is 0. In the same way the maximum value of TO01B11 should
be equal to 6.11×10−5. Other quantiles may be read in the same way. This
information is used to fit a parametric distribution to represent the distribution
over the base event probability. In total there are 856 basic events over all thirty
five ESDs from table 3.5 in the model as presented in Figure 1.13.

With these percentiles a minimally informative distribution with respect to
the log uniform measure may be found. This distribution will always comply
with the percentiles provided by DNV, however, it was decided that a parametric
distribution would be fit to the data provided by DNV. A parametric distribution
is desired for the following reasons:

• The model is easier to maintain. The minimally informative distribution
requires storing the whole distribution while a parametric distribution would
require storing only a number of parameters to completely describe the
distribution.

• The minimally informative solution fitted to the quantiles exemplified in
Figure 3.9 will not in general preserve the expectation provided by DNV.

• The model was required to have the functionality that by specifying a mean
different than the one computed by DNV and keeping the variance constant,
a new distribution within a given parametric family could be obtained.

The fitting procedure to obtain the parametric distribution for each base event
is described briefly next. Denote by Xi, i = 1, .., 856 the random variable des-
cribed by the parametric distribution required by each base event in the FTs of
the CATS model. The m = 1, ..., 10 observations obtained in DNV Collected
Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008] (Figure 3.9) will
be denoted as x̃i,qk,m

for the kth percentile of base event i.

Algorithm 3.3.1. Finding parametric distribution for base events in the FTs.

1. For i = 1, .., 856 find the parameters of Fj(Xi) where each j = a, . . . , g
corresponds to one of the 7 subitems given below.

(a) Weibull with shift parameter equal zero,

(b) Weibull with shift parameter non zero,

(c) Gamma with shift parameter equal zero,

(d) Gamma with shift parameter non zero,

(e) Beta with parameters (0,1),

(f) Beta with parameters (x̃i,qmin
, x̃i,qmax

),

(g) Log-normal
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such that:

(i)
∑
m

(
F−1
j (qk,m) − x̃i,qk,m

)2
is minimal

(ii)
∣∣∣(Ej(Xi) − E(X̃i))/E(X̃i)

∣∣∣ < 1 and,

(iii) F−1
j (0.9999999999999999) ≤ x̃i,qmax

.

2. Select j such that
∑
m

(
F−1
j (qk,m) − x̃i,qk,m

)2
is minimal.

After applying algorithm 3.3.1 to the data no distribution of the class (a) was
selected, 2 of class (b), 1 of (c) and 2 of (d) were selected. More than 99% of the
base events are within classes (e) to (g). In particular a Beta with parameters
(0,1) was used for 58 base events, a Beta with parameters (x̃i,qmin

, x̃i,qmax
) for

729 events and finally a log-normal distribution was selected for 2 base events.
Whenever algorithm 3.3.1 would not find a solution, a constant equal to E(X̃i)
was used. This was the case in 62 base events.

Finally, to illustrate differences in the outcomes of the fitting procedure des-
cribed in algorithm 3.3.1, Figures 3.10 and 3.11 are presented. Figure 3.10 cor-
responds to the 5th percentile of the distribution of minimal sum of squared diffe-
rences. The solution corresponds to a uniform distribution in [1.2×10−5,3.2×10−5].
Figure 3.11 corresponds to the 99th percentile of the same distribution of minimal
sum of squared differences. In this case algorithm 3.3.1 finds a distribution that
complies with the mean specified in DNV Collected Fault Trees (3Feb09)
v7,1.xls of Spouge and Vernon [2008]. However other percentiles are not well
captured by the solution. This is due to the fact that according to DNV’s data
50% of the mass is concentrated in zero and 10% in one. Though the sum of
squared difference is not directly comparable across base events, Figures 3.10 and
3.11 are presented for illustration purposes.

3.3.3.3 The complete model

Once a distribution for each of the 856 base events of interest has been found, the
next step is to attach the adequate dependence information between base events.
From Figure 3.8 it may be observed that 18 base events represent an instance of
either the FCP or the MNTP models from section 3.3.2.

Figure 3.12 shows ESD1 represented as a BBN in UniNet with a single ins-
tance of the FCP model. However, according to Figure 3.3.2 there are in total
three base events in ESD1 influenced by the flight crew performance. Also from
Figure 3.3.2 it may be observed that the FCP model is not the only one influen-
cing basic events in ESD1. The fifteen base events influenced by the MNTP
model should also be included in the BBN representation of ESD1. The complete
representation of ESD1 is shown in Figure 3.13.

If the same process is repeated for ESD2 the model should look as in Figure
3.14. This process has to be repeated for the 35 ESDs from table 3.5. The reader
should observe that some nodes change through flight phases and some do not.
For example, experience in the ATCP and FCP models is consider not to change
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Figure 3.10: Fit of event ‘AL30B31’: No input to controls will allow the
flight crew to maintain control of the aircraft per encounter with unexpected wind.
Beta(1,1,1.2×10−5,3.2×10−5), sum of squared difference = 1.1951.
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Figure 3.11: Fit of event ‘AL32B112’: ATC fails to detect a conflict and give warning
due to darkness per ineffective conflict warning. Beta(0.97,0.36,0,1), sum of squared
difference = 1.1951).
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Figure 3.12: ESD1 with a single instance of the FCP model attached to it.

Figure 3.13: ESD1 with 3 instances of the FCP model and 15 of the MNTP model
attached to it.
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Figure 3.14: ESD1 & ESD2 with HRMs attached.

Figure 3.15: Common nodes in the HRMs.
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Figure 3.16: Human performance models in CATS.

across flight phases. On the other hand the FCP model would have one instance
of weather per flight phase.

In the CATS model the FCP model and the ATCP model share in common
the total transmission time in the AL flight phase. The MNTP model and the
FCP model share the aircraft generation node in all flight phases. This situation
is summarized in Figure 3.15.

The complete CATS model is presented in Figure 3.16. Figure 3.16 is identical
to Figure 1.13 except that the human performance models used at each flight
phase are indicated. The model has been integrated with the methods described
in this chapter. At the date of publication of this document, the model consists of
918 probabilistic nodes, 586 functional and 4,979 arcs. Obtaining the dependence
information for the models presented in sections 3.3.2.1 to 3.3.2.3 was one of the
most challenging tasks in the model. Next chapter explains the methodology
followed for that purpose. In next section, examples of the use of the model will
be given.
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3.4 Model Use

At this writing, the model presented in section 3.3.3 is still under development.
However, a smaller version of the model with 834 probabilistic nodes, 532 func-
tional and 4,756 arcs has been used [Morales-Nápoles et al., 2008]. The model in
Morales-Nápoles et al. [2008] keeps the same structure as Figures 1.13 and 3.16
except that it does not include ESDs 36 and 37. In this section the version of the
model from Morales-Nápoles et al. [2008] will be used. According to the model
the accident probability is obtained as the expectation of the accident rate. The
expectation of the baseline case is 3.18×10−6. This is in line with the worldwide
data tendency (see Figure 1.10). The 5th and 95th percentiles of the baseline
accident distribution are 8.58×10−8 and 8.97×10−6 respectively.

The model was sampled in UniNet. The sample rank correlation was com-
puted between the accident rate and each of the 45 nodes representing the HRMs
from section 3.3.2 used in the CATS model as explained in section 3.3.3. The
rank correlations were obtained using UniSens [Next-Page-Software, 2009]. Re-
sults are presented in table 3.6. Other sensitivity measures may also be obtained
with UniSens [Lewandowski et al., 2007].

From table 3.6 it may be seen that variables from the FCP and the MNTP
model are most highly correlated to accident probability. Crew unsuitability is
influenced by captain’s and first officer’s unsuitability. These are influenced in
turn by experience, training and fatigue (Figure 3.5). Experience and Training
are considered not to change across flight phases however fatigue does and hence
3 instances of crew unsuitability are used in the model (Figure 3.16). Crew unsui-
tability for each flight phase appears to be most highly correlated with accident
probability (∼= 0.3).

Aircraft generation does not change across flight phases and is a common
node for both the FCP and the MNTP models. This variable has the second
largest rank correlation in absolute value with accident probability (-0.245). After
aircraft generation and excluding all variables related to unsuitability; experience
for captains, first officers and maintenance personnel seem to be most influential in
the accident probability. Fatigue and weather complete the top 15 most correlated
variables with accident probability.

Table 3.7 presents the expectation, 5th and 95th percentiles of the accident rate
distribution for the baseline case and two conditional distributions. The ratio of
the 95th to the 5th percentiles in the baseline case is 104.5. The third row of
table 3.7 presents data for the accident rate given the oldest type of aircraft. The
expectation of the conditional distribution of accident is 16.2 times larger than
the base line case. The ratio of the 95th to the 5th percentiles in the conditional
distribution A is 484.3.

According to table 3.6 the next variables most highly correlated with accident
probability other than unsuitability are first officers and captains experience. The
model is further conditionalized on low values of experience for crew (5th percentile
of each experience distribution). The results are presented in the last row of table
3.7. In the conditional distribution B the ratio of the 95th to the 5th percentiles is
171.9, however the accident probability is 92 times larger than the base line case.
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Rank Variable
Model & Flight Rank correlation
Node ♯ phase (with accident)

1 Crew Unsuitability FCP 10 TO 0.301
2 Crew Unsuitability FCP 10 AL 0.300
3 Crew Unsuitability FCP 10 ER 0.295
4 Aircraft generation FCP\MNTP 11\5 TO\ER\AL -0.245
5 Unsuitability (Captain) FCP 6 AL 0.221
6 Unsuitability (FO) FCP 7 AL 0.219
7 Unsuitability (Captain) FCP 6 TO 0.218
8 Unsuitability (Captain) FCP 6 ER 0.218
9 Experience (Captain) FCP 5 TO\ER\AL -0.217
10 Experience (FO) FCP 1 TO\ER\AL -0.216
11 Unsuitability (FO) FCP 7 TO 0.216
12 Unsuitability (FO) FCP 7 ER 0.215
13 Experience (Maintenance) MNTP 3 TO\ER\AL -0.208
14 Fatigue (Maintenance) MNTP 2 TO\ER\AL 0.195
15 Weather FCP 8 AL 0.177
16 Language difference FCP 11 TO\ER\AL 0.160
17 Weather FCP 8 TO 0.127
18 Weather FCP 8 ER 0.121
19 Total transmission time FCP\ATCP 13\6 AL 0.115
20 Workload (Maintenance) MNTP 6 TO\ER\AL 0.108
21 Workload (Flight crew) FCP 9 AL 0.063
22 Shift overlap time MNTP 4 TO\ER\AL -0.056
23 Workload (Flight crew) FCP 9 ER 0.052
24 Workload (Flight crew) FCP 9 TO 0.050
25 Fatigue (Flight crew) FCP 9 AL 0.045
26 Fatigue (Flight crew) FCP 9 ER 0.037
27 Fatigue (Flight crew) FCP 9 TO 0.034
28 Traffic ATCP 1 AL -0.011
29 Training (FO) FCP 2 TO\ER\AL 0.009
30 Interface ATCP 2 ER 0.009
31 Working Condition MNTP 1 TO\ER\AL 0.009
32 Traffic ATCP 1 TO -0.008
33 Experience (Controller) ATCP 4 ER 0.008
34 Coordination ATCP 3 AL 0.007
35 Visibility procedure ATCP 5 AL -0.006
36 Interface ATCP 2 AL -0.005
37 Coordination ATCP 3 TO 0.005
38 Visibility procedure ATCP 5 ER 0.003
39 Visibility procedure ATCP 5 TO 0.003
40 Experience (Controller) ATCP 4 TO 0.002
41 Interface ATCP 2 TO -0.002
42 Traffic ATCP 1 ER -0.001

43 Experience (Controller) ATCP 4 AL -8×10−4

44 Coordination ATCP 3 ER -3×10−4

45 Training (Captain) FCP 4 TO\ER\AL -2×10−5

Table 3.6: Variables from the human reliability models from section 3.3.2 with highes
absolute rank correlation with accident probability (32,500 samples per variable).
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Model
Accident rate

Mean 5th percentile 95th percentile
Base line 3.18×10−6 8.58×10−8 8.97×10−6

Conditional Aa 5.14×10−5 4.53×10−7 2.19×10−4

Conditional Bb 2.92×10−4 6.91×10−6 1.20×10−3

Table 3.7: Expectation, 5th and 95th percentiles for base line accident probability
and conditional distributions

aGiven aircraft generation = 1 (oldest kind of aircraft)
bGiven aircraft generation = 1 (oldest kind of aircraft), captain experience = 9,467 hr

(5th percentile) and first officer experience = 7,844 hr (5th percentile).

The three distributions from table 3.7 may be observed in Figure 3.17. From the
picture it is immediately evident the negative effects that older aircrafts and very
low experienced crews have on aviation safety.

Similar analysis to the one presented in this section is possible with the CATS
model and UniNet. A single run of the CATS model in UniNet takes about
2.5 minutes on a PC with a CoreTM 2 Duo processor at 3 GHz and 3.25 GB of
RAM memory. A BBN model with about 1.5 thousand nodes and a dependence
structure imposed by more than 4,000 arcs may be an important source of infor-
mation for the aviation system. Once the model is complete, it is the task of the
users and analysts to place a major focus on the answers that should be retrieved
from the model. Next chapter will focus on the methods employed to retrieve
the rank and conditional rank correlations required by the models presented in
section 3.3.2 from experts.
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1. Base Line
2. Conditional on oldest aircrafts
3. Conditional on oldest aircrafts and low experience crew

Figure 3.17: Fatal and non-fatal accident distribution from the CATS model. 1. Ba-
seline; 2. Given aircraft generation = 1; 3. Given aircraft generation = 1, captain
experience = 9,467 hr. and first officer experience = 7,844 hr.
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CHAPTER 4

Elicitation and Combination of

Dependence1.

4.1 Introduction

The elicitation of expert judgments for use in scientific research and decision
making is a common practice nowadays. Most of the times these judgments ga-
ther information about univariate distributions of continuous uncertain quantities.
The use of dependence measures between given uncertain quantities is becoming
more and more important in risk and uncertainty analysis. This is true at least
for the aviation industry where a large model for quantifying and analyzing risks
is under development in the Netherlands (see section 1.4 and chapter 3). The use
of structured expert judgment for eliciting and combining dependence measure is
far less developed than the use of expert judgment for the elicitation of marginal
distributions.

This chapter discusses the elicitation and combination of expert judgments
in the form of rank and conditional rank correlations. These methods may be
used in graphical models such as vines (chapter 2) or BBNs (chapter 3) and have
been used with groups of experts for the quantification of models for the aviation
industry (chapter 5) and dams safety 6. Choices of copulae for the elicitation are
compared.

Whenever data are available about the joint distribution, it may be used for
the quantification of a BBN. Often times, data is not available for the complete
quantification of a NPCDBBN. In this case structured expert judgment provides
another kind of data for model quantification. Methods for eliciting rank and
conditional rank correlations have been presented before, for example in Cooke
and Goossens [1999], Clemen and et al. [2000], Clemen and et al. [1999], Kraan
[2002] and Morales et al. [2008].

1This chapter is based on Morales et al. [2008] and Morales-Nápoles et al. [2009b]
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The purpose of this chapter is to present examples where groups of experts
have been gathered for the quantification of (un)conditional rank correlations
for use in risk analysis. These measures are input for continuous-discrete non-
parametric BBNs. In a project commissioned by the Dutch Ministry of Transport,
Public Works and Water Management for aviation safety, a model for “Missed
Approach” was developed and quantified with the probabilistic method described
here. This application model will be presented in chapter 5. The probabilistic
method is also used in the quantification of the FCP model. A direct method for
the elicitation of rank correlations is also presented in the quantification of the
ATCP model. The FCP and ATCP models will be further discussed in chapter 5.
The combination of expert dependence measures in the form of conditional rank
correlations will also be discussed and follows the ideas presented previously in
Cooke and Goossens [1999] and Kraan [2002]. It is a goal of this chapter to serve
as a guideline for the quantification of models similar to CATS.

4.2 Structured Expert Judgment

As stated previously in the NPCDBBN approach, nodes represent univariate ran-
dom variables with invertible distribution function. Arcs represent parent-child
(un)conditional rank correlations. The choice of (un)conditional rank correlations
to represent influence responds to the fact that the conditional rank correlations
are algebraically independent and every number in (−1, 1) may be attached to
the arcs of a BBN. The univariate marginal distributions represented by nodes
in the BBN, together with the conditional independence statements embedded in
the graph, and a copula realizing the correlations, uniquely determine the joint
distribution Hanea et al. [2006]. It is important that for the chosen copula, zero
correlation corresponds to the independent copula as this assures that the condi-
tional probability statements implied by the graph are satisfied2. The normal
copula is the preferred choice since in addition to the zero independence property,
computationally expensive numerical evaluations of multiple integrals are avoided.
Additionally, the relationship between partial correlations and conditional rank
correlations for the normal copula might be of advantage during an elicitation
with experts.

The quantification of a full BBN requires marginal distributions for each node
and dependence information in the form of (un)conditional rank correlations.
Whenever data is not available for any of these inputs expert judgment is yet
another kind of data available. The use of expert judgments in science is not
new. Structured expert judgment has been proposed as a methodology to use
expert opinion in a transparent way with the purpose of treating expert judg-
ments as scientific data. Structured expert judgment has been widely used for
the quantification of uncertain quantities in the form of subjective probability dis-
tributions [Cooke and Goossens, 2008]. The use of structured expert judgment for
multivariate elicitation is less explored in the literature [O’Hagan, 2005] though
some progress has been made over the past years. The use of structured expert

2This property is often referred as the zero independence property
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judgment will be dealt with in more detail next.

4.2.1 The Classical Model for Structured Expert Judgment

The name classical model derives from its resemblance to classical statistical hypo-
thesis testing. In 17 years, about 67, 000 experts’ subjective probability distribu-
tions have been elicited from 521 domain experts with the classical model ([Cooke
and Goossens, 2008]). Fields of application include nuclear applications, chemical
and gas industry, water management, aviation, health, banking, vulcanology and
others.

The classical model for structured expert judgment [Cooke, 1991] is a perfor-
mance based linear pooling (weighted average) model. In addition to variables of
interest, experts are queried about seed or calibration variables. The latter are
variables whose value is known to the analyst but not to the expert at the moment
of the elicitation. Experts’ performance as uncertainty assessors is measured by
the calibration and information scores from seed variables. These are used to
derive the weights entered in the linear pooling (Equation 4.1).

Roughly speaking, the calibration score is the probability that the divergence
between the expert’s assessments and the observed values on seed variables might
have arisen by chance. A high score near 1 but higher than a significance level α
(for instance 0.05) means that the expert’s assessments are statistically supported
by the set of seed variables. The second performance measure is the information
score. Loosely, the information score measures the degree to which a distribution
is concentrated relative to a background measure. The uniform and log uniform
are most common choices for the background measures. The overall information
score is the mean of information scores for each variable. The weights in the classi-
cal model are proportional to the product of statistical likelihood and information
and satisfy a strictly proper scoring rule constraint [Cooke, 1991].

The linear pooling of experts’ assessments is called a Decision Maker (DM).
If fe,i is expert e′s density for item i then the decision maker is:

DMα,i =
∑

e

we,αfe,i (4.1)

The weights (we,α ≥ 0 and
∑

e we,α = 1) are determined for each expert
according to calibration and information. The value of α is chosen such that
the product of the calibration and information scores of the decision maker is
maximized. Any expert whose calibration score is less than α would be un-
weighted in equation (4.1). Three types of DM are contained in the classical
model. The equal weights decision maker (EWDM), the global weights decision
maker (GWDM) and the item weights decision maker (IWDM).

The EWGD assigns equal weight to each expert and hence reduces equation
(4.1) to the arithmetic mean of experts’ opinions. This decision maker is not in
the class of performance based DMs and hence does not implement the procedure
described above to un-weight experts. The GWDM and IWDM are performance
based decision makers. The GWDM determines weights per expert by each ex-
pert’s calibration score and the overall information score. The IWDM determines
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the weights per expert and per variable using the information score on each va-
riable rather than the averaged information score across variables.

The classical model has been mostly used to determine information about
univariate distributions. The elicitation of multivariate distributions has been a
topic for more recent research. This subject will be discussed next.

4.2.2 Dependence Elicitation

The literature available to guide researchers in the elicitation of a joint distribu-
tion is much less than that available for the elicitation of univariate distributions
[O’Hagan, 2005]. Previous studies have shown that eliciting dependence mea-
sures for the construction of multivariate distributions though not an easy task
is still possible (Cooke and Goossens [1999], Clemen and et al. [1999], Clemen
and et al. [2000]). In Kraan [2002] elicitation techniques are summarized and
exemplified using the probabilistic approach. Combination schemes for experts’
opinions are also proposed in Cooke and Goossens [1999] and Kraan [2002] for
bivariate distributions. An extension of previous methodologies for the elicita-
tion of conditional rank correlations is discussed in Morales et al. [2008] as input
for continuous-discrete non-parametric BBNs and vines, however no discussion
regarding the combination of experts’ individual assessments for distributions of
order higher than two was performed. In this section guidelines for the elicitation
and combination of experts’ estimates of rank and conditional rank correlations
as input for BBNs will be discussed.

Two types of methods for the elicitation of dependence measures will be dis-
cussed. Examples of the two methods will be discussed with the BBN in Figure
4.1. This BBN corresponds to Figure 3.2 after removing node 7. The six margi-
nal distributions (one for each node) may be computed from data from separate
sources or with the classical model for expert judgment outlined in previous sub-
section. Variables {X1...X5} are independent of each other. Four conditional rank
correlations and one unconditional rank correlation are required. The rank and
conditional rank correlations are associated with edges according to the protocol
discussed in section 3.2 [Hanea et al., 2006].

4.2.2.1 Probabilistic Approaches

Experts give probability statements such as a joint probability, a conditional
probability or a probability of concordance. By making assumptions about the
joint distribution, the assessments can later be translated to rank correlations.
Denote rei6,1 the rank correlation between X6 and X1 for expert i = 1, ..., N .
Similarly the conditional rank correlation between X6 and X2 given X1 will be
denoted as rei6,2|1 for expert ei. All other (un)conditional rank correlations in

the BBN will be denoted similarly. The median value of variable Xj for expert
ei is denoted as xei

j,q50
. Similarly the kth percentile of variable Xj is denoted

as xei
j,qk

. The cumulative distribution function for variable Xj from expert ei
will be denoted as F ei

Xj
. The probabilistic approach recommends eliciting the 5

probabilities P ei
1 , ..., P ei

5 to each expert to quantify the BBN in Figure 4.1 for ei:
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Figure 4.1: A simple example of BBN on 4 Variables.

1. P
ei
1 = P (X6 ≥ x

ei
6,q50

|X1 ≥ x
ei
1,q50

)
= P (F ei

X6
(X6) ≥ 0.5|F ei

X1
(X1) ≥ 0.5)

2. P
ei
2 = P (X6 ≥ x

ei
6,q50

|X1 ≥ x
ei
1,q50

, X2 ≥ x
ei
2,q50

)
= P (F ei

X6
(X6) ≥ 0.5|F ei

X1
(X1) ≥ 0.5, F ei

X2
(X2) ≥ 0.5)

3. P
ei
3 = P (X6 ≥ x

ei
6,q50

|X1 ≥ x
ei
1,q50

, X2 ≥ x
ei
2,q50

, X3 ≥ x
ei
3,q50

)
= P (F ei

X6
(X6) ≥ 0.5|F ei

X1
(X1) ≥ 0.5, . . . , F ei

X3
(X3) ≥ 0.5)

4. P
ei
4 = P (X6 ≥ x

ei
6,q50

|X1 ≥ x
ei
1,q50

, X2 ≥ x
ei
2,q50

, X3 ≥ x
ei
3,q50

, X4 ≥ x
ei
4,q50

)
= P (F ei

X6
(X6) ≥ 0.5|F ei

X1
(X1) ≥ 0.5, . . . , F ei

X4
(X4) ≥ 0.5)

5. P
ei
5 = P (X6 ≥ x

ei
6,q50

|X1 ≥ x
ei
1,q50

, X2 ≥ x
ei
2,q50

, X3 ≥ x
ei
3,q50

, X4 ≥ x
ei
4,q50

, X5 ≥ x
ei
5,q50

)
= P (F ei

X6
(X6) ≥ 0.5|F ei

X1
(X1) ≥ 0.5, ..., F ei

X5
(X5) ≥ 0.5)

(4.2)

The first question of the elicitation is read as: Suppose that variable X1 was
observed above its qthk quantile. What is the probability that also X6 will be ob-
served above its qthk quantile? Notice that the recommended choice for the
percentile used in the probabilities stated in relation 4.2 is the median; however
any other percentile xei

j,qk
may be used. In particular other percentiles are ne-

cessary for discrete variables. Notice also that as stated before, conditional on
the BBN to be quantified, other probabilistic statements could be elicited in re-
lation 4.2 according to the analysts preference. For example shorter conditioning
sets might be considered: P ei

1 = P (X6 ≥ xei
6,q50

|X1 ≥ xei
1,q50

), . . . , P ei
5 = P (X6 ≥

xei
6,q50

|X5 ≥ xei
5,q50

). Another option would be to elicit joint distributions, proba-
bilities of concordance or discordance or other probabilistic statements about the
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joint distribution, instead of conditional probabilities of exceedence.
Once estimates as in relation 4.2 are available to the analyst, the corresponding

(un)conditional rank correlations may be computed for each expert (relation 4.3).

P ei
1 → rei6,1

P ei
2 → rei6,2|1

P ei
3 → rei6,3|1,2

P ei
4 → rei6,4|1,2,3

P ei
5 → rei6,5|1,2,3,4

(4.3)

Figure 4.2: P (X6 ≥ x6,q50 |X1 ≥ x1,q50) for the normal & Frank’s copulae

The rank correlation rei6,1 may be obtained for each expert from their answer
to P ei

1 in relation 4.2. The relation for each possible value of P ei
1 and rei6,1 is shown

in Figure 4.2 for Frank’s and the normal copulae.
For the normal copula to calculate the exceedance probability one can integrate

numerically the bivariate normal density φ(x̃6, x̃1, ρ
ei
6,1) over the region correspon-

ding to the quantile’s exceedence region [Φ−1(q50),∞)×[Φ−1(q50),∞), where Φ−1

is the inverse standard normal cumulative distribution function. The analyst may
use formula (4.4) where x̃i,qk is the standard normal variate transform of xi,qk . In
other words x̃i,qk will be the kth quantile of the corresponding standard normal
distribution. The analyst then finds the ρ which satisfies the expert’s conditional
probability assessment and transforms this to the corresponding rank correlation
using the inverse function of equation (1.2). A similar procedure can be followed
using Frank’s copula (equation (1.3)).

1

1 − pk

∫ ∞

Φ−1(qk)

∫ ∞

Φ−1(qk)

φ(x̃6, x̃1, ρ
ei
6,1)dx̃6dx̃1 (4.4)
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For both copulae because of the zero independence property, zero correlation
entails that for any k, P ei

1 = 1−qk. A conditional probability value in the interval
[0, 1− qk) corresponds to negative correlation and positive correlation is attained
when P ei

1 > 1− qk. Choosing a value for qk different than 0.5 makes the resulting
rank correlation more dependent on the chosen of copula.

With the answer to P ei
i a relationship between P ei

2 and rei6,2|1 may be compu-

ted. According to relation 4.2 experts would be queried: Suppose that not only
variable X1 but also X2 were observed above their medians. What is now your
probability that also X6 will be observed above its median value?.

The probability that each expert i can provide in this situation will depend
on the estimate given for P ei

1 . The reader may see this by observing that if each
expert regards variables X2 and X6 as independent given X1, then their answer
to P ei

2 is identical to the answer to question P ei
1 for each i. If the expert regards

variables X1 and X6 as completely positively (negatively) correlated then he/she
would have answered P ei

1 = 1 (P ei
1 = 0) and question 2 would not have been

necessary at all, as X6 would be completely explained by X1. Any answer for P ei
1

different than 0, 0.5 or 1 means that the expert believes that X2 explains at least
in part X6 and hence X2 can only explain part of the dependence that was not
explained already by X1.

Suppose expert’s 1 answer for question 1 in relation 4.2 was P e1
1 = 0.33. In this

case according to Figure 4.2 re16,1 would be equal to −0.49 for the normal copula

and −0.44 for the Frank’s copula 3. This situation is shown in Figure 4.3. For
the normal copula P e1

2 ∈ (0, 0.65) and for the Frank’s copula P e1
2 ∈ (0.16, 0.56).

Observe that P e1
2 as a function of re16,2|1 is highly dependent on the choice of the

copula.
In the case of the normal copula, to determine the possible values for P e1

2 and
its relationship with the conditional correlation re16,2|1 we consider a normal D-vine

on variables X6, X1 and X2. As mentioned earlier, the rank correlation re16,1 has
been already calculated using expert’s assessment in question 1. In the particular
case of the BBN in Figure 3.2, variables X1 and X2 are independent, hence rei1,2 is
equal to zero. Since all rank correlations specified on the BBN are algebraically
independent, rei6,2|1 can take any value in (−1, 1). The correlation matrix of the

joint normal distribution corresponding to this normal vine can be found as in
example 3.2.1 in chapter 3 and should have the form of equation (4.5).

Σei
6,1,2 =




ρei2,2 ρei1,2 ρei2,6
ρei2,1 ρei1,1 ρei1,6
ρei6,2 ρei6,1 ρei6,6


 =




1 0 ρei2,6
0 1 ρei1,6

ρei2,6 ρei1,6 1


 (4.5)

We denote the density function of the normal distribution with the correlation
matrix Σei

6,1,2 calculated from the normal vine specification as
φ(x̃6, x̃1, x̃2, ρ

ei
6,1, ρ

ei
6,2|1). Hence, given the value for re11,6 a relationship between

P e1
2 and re16,2|1 can be determined by transforming to ρe16,2|1 using formula 1.2 and

computing the triple integral (4.6):

3A similar example for the minimum information copula vs. Frank’s copula is presented in
Morales et al. [2008]
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Figure 4.3: P (X6 ≥ x6,q50 |X1 ≥ x1,q50 , X2 ≥ x2,q50) for the normal & Frank’s copulae
P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.33

1

0.5 · 0.5

∫ ∞

0

∫ ∞

0

∫ ∞

0

φ(x̃6, x̃1, x̃2, ρ
e1
6,1, ρ

e1
6,2|1)dx̃6dx̃1dx̃2 (4.6)

For other copulae (such as the Frank’s copula used in this example) the rela-
tionship may be computed through simulation. Simulations were done in matlab

R2007b following the copula-vine method [Kurowicka and Cooke, 2006, ch.6]. In
both cases, if P e1

2 = P e1
1 then the expert regards variables X2 and X6 as inde-

pendent given X1 and in this case re16,2|1 = 0.

An expert’s answer for P e1
2 > P e1

1 would correspond to re16,2|1 > 0 and accor-

dingly if P e1
2 < P e1

1 then re16,2|1 < 0. Notice that the fact that re16,2|1 < 0 (> 0)

does not imply that re16,2 < 0 (> 0). The sign of re16,2 would depend in general
on the graphical structure of the BBN and the experts’ previous answers. For
example, suppose that re11,2 = −0.9 and as before P e1

1 = 0.33. In this case for
re16,2|1 ∈ (−1, 1), re16,2 > 0 for both the normal and Frank’s copulae. The situation

may be observed in Figure 4.4.
For simplicity we go back to our example where rei1,2 = 0. Suppose further that

expert one answered P e1
2 = 0.25 then re16,2|1 equals −0.28 for the normal copula

and−0.32 for Frank’s copula. Next P e1
3 as a function of re16,3|1,2 may be computed

based on the expert’s previous answers and the structure of the BBN. The expert
would be asked: Suppose that not only variables X2 and X1 but also X3 were
observed above their medians. What is now your probability that also X4 will be
observed above its median value?
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Figure 4.4: r
e1
6,2 as a function of r

e1
6,2|1 for the normal & Frank’s copulae P (X6 ≥

x6,q50 |X1 ≥ x1,q50) = 0.33, re11,2 = −0.9

As before, the rank correlations re11,6 and re12,6 have been specified in questions
1 and 2 respectively. Again from Figure 3.2 it is observed that rei3,1 and rei2,3 are
both zero. For the normal copula approach it may be observed that the correlation
matrix of the joint normal distribution corresponding to the D-vine on X1, X2, X3

and X6 should look as in equation (4.7). The density of this four variate standard
normal distribution will be denoted as φ(x̃4, x̃3, x̃2, x̃1, ρ

e1
1,6, ρ

e1
2,6, ρ

e1
6,3|1,2).

Σei
6,3,2,1 =




ρei3,3 ρei2,3 ρei1,3 ρei3,6
ρei2,3 ρei2,2 ρei2,1 ρei2,6
ρei1,3 ρei2,1 ρei1,1 ρei1,6
ρei3,6 ρei2,6 ρei1,6 ρei6,6


 =




1 0 0 ρei3,6
0 1 0 ρei2,6
0 0 1 ρei1,6

ρei3,6 ρei2,6 ρei1,6 1


 (4.7)

The relationship between P ei
3 and rei6,3|1,2 will be determined by transforming

to the corresponding ρei6,3|1,2 with formula 1.2 and computing the four dimensional

integral 4.8. In the case of Frank’s copula it is determined by simulation from the
vine-copula method [Kurowicka and Cooke, 2006].

1

0.5 · 0.5 · 0.5

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

φ(x̃6, x̃3, x̃2, x̃1, ρ
ei
6,1, ρ

ei
6,2|1, ρ

ei
6,3|1,2)dx̃4dx̃3dx̃2dx̃1

(4.8)
This situation for expert e1 is pictured in Figure 4.5. For both copulae if

P e1
3 = P e1

2 then the expert regards variables X3 and X6 as independent given



70 Chapter 4

Figure 4.5: P (X6 ≥ x6,q50 |X1 ≥ x1,q50 , X2 ≥ x2,q50 , X3 ≥ x3,q50) for the normal &
Frank’s copulae P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.33, P (X6 ≥ x6,q50 |X1 ≥ x1,q50 , X2 ≥
x2,q50) = 0.25

X1 and X2 and in this case re16,3|2,1 = 0. An expert’s answer for P e1
3 > P e1

2

would correspond to re16,3|1,2 > 0 and accordingly if P e1
3 < P e1

2 then re16,3|1,2 < 0.

Again the sign of re16,3 would depend on the structure of the BBN and the expert’s
previous answers. In this case as before, the relationship between P ei

3 and rei6,3|1,2
is dependent on the choice of the copula.

Other relationships in 4.3 may be computed following the ideas discussed
thus far. Extensions to other BBNs or similar graphical models follow straight
away from this approach. In a real elicitation the bounds for each exceedence
probability (or any other probabilistic statement chosen for the elicitation) must
be computed in real time. If the expert’s estimates are not consistent with the
allowable bounds for each P ei

j for j = 2, ..., Pa(n) for a given node n, then the
estimate must be discussed with the expert and revised if necessary.

4.2.2.2 Direct Approach

Another option is to let experts directly assess a rank correlation. In particular,
for each child node (X6 in the example), we could let experts rank the parent
nodes (X1, ..., X5 in this case) according to rank correlation with X6 (in absolute
value). This ranking will in general be different for each expert. Experts could
then be queried the following five numbers:
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1. P ei
1 = P (X6 ≥ xei

6,q50
|X1 ≥ xei

1,q50
)

2. Rei
2 =

r
ei
6,2

r
ei
6,1

3. Rei
3 =

r
ei
6,3

r
ei
6,1

4. Rei
4 =

r
ei
6,4

r
ei
6,1

5. Rei
5 =

r
ei
6,5

r
ei
6,1

(4.9)

The first rank correlation is still elicited through a probabilistic statement and
may be computed as described before (Figure 4.2). Rei

2 in relation 4.9 denotes the
ratio of the second rank correlation to the largest rank correlation (in absolute
value) for expert ei. Similar notation is applied for other ratios. As before, the
recommended choice for the percentile used in P ei

1 in relation 4.9 is the median,
however any other percentile xei

j,qk
may be used. As stated before, other probabi-

listic statements could be elicited for P ei
1 in relation 4.9 according to the analyst’s

preference.

P ei
1 → rei6,1

Rei
2 → rei6,2|1

Rei
2 → rei6,3|1,2

Rei
2 → rei6,4|1,2,3

Rei
2 → rei6,5|1,2,3,4

(4.10)

Once the expert has given an estimate for P ei
1 the relationship between Rei

2 and
rei6,2|1 may be computed. The computation of the required conditional rank corre-

lations in relation 4.10 follows the same arguments as in section 4.2.2.1. For the
normal copula the fact that conditional correlation is equal to partial correlation,
the recursive formula for partial correlation and the known relationship between
rank correlation and product moment correlation is sufficient to determine Rei

2

as a function of rei6,2|1 given the graph structure and the experts’ assessment for

P ei
1 . For Frank’s copula, as before this relation may be obtained by simulation

[Kurowicka and Cooke, 2006].
In the case described thus far, the sign of Re1

2 depends on the experts’ answer
to P e1

1 . In our example re16,1 is negative. If the expert believes there is a negative
correlation between X2 and X6 then Re1

2 must be positive and its value depends
on the expert’s belief of the distance between re16,1 and re16,2. Obviously if expert 1
believes that re16,1 > re16,2 (re16,1 < re16,2) then Re1

2 < 1 (Re1
2 > 1).

Assume that for a given expert re16,1 = −0.49. According to Figure 4.2 this
would correspond to a value for P e1

1 equal to 0.33 for the normal copula and 0.31
for Frank’s copula. The relationship between Re1

2 and re16,2|1 is shown in Figure 4.6.

In our example Re1
2 ∈ (−1.71, 1.71). In general the interval containing Rei

j does
not need to be symmetric about zero. This would depend on the graph structure
and the expert’s previous estimates (see Figure 4.4). Observe that in this case
Re1

2 holds practically the same relationship with re16,2|1 for both copulae. Suppose

the expert’s assessment is Re1
2 = 1.3. This corresponds according to Figure 4.6
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to a value of re16,2 = −0.6358 and re16,2|1 = −0.749 for both Frank’s and normal

copulae.

Figure 4.6:
r6,2

r6,1
for the normal (P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.33) & Frank’s

(P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.31) copulae.

Once estimates for P e1
1 and Re1

2 are available, the relationship between re16,3|1,2
and Re1

3 may be computed. For the example described here this relationship is
shown Figure 4.7. In the example Re1

3 ∈ (−1.08, 1.10) for both the normal and
Frank’s copulae. Suppose that the expert would state Re1

3 = −0.8; in this case
re16,3|1,2 ≈ 0.73 for both copulae and both unconditional correlations would be

equal.
As before, in a real elicitation the bounds for each ratio of rank correlations

must be computed in real time. If the experts’ estimates are not consistent with
the allowable bounds for each Rei

j for j = 2, ..., Pa(n) for a given node n, then
the estimate must be discussed with the expert and revised if necessary.

The normal copula is the preferred choice because it possess the zero indepen-
dence property, it realizes a specified rank correlation without adding too much
information to the independent copula [Lewandowski, 2005], its density covers
the entire unit square and it offers important advantages for the computation
of joint distributions specified by graphical structures such as BBNs. The use
of other copulae is possible as long as they possess the zero independence pro-
perty as exemplified by the Frank’s copula. However the cost is a much higher
computational effort4.

4For some BBNS additionaly to obtaining estimates from experts through simulation, if the
vine copula method [Kurowicka and Cooke, 2006] is used to update the joint distribution after
computations have been done, numerical integrals might need to be calculated [Hanea et al.,
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Figure 4.7:
r6,3

r6,1
for the normal (P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.33) & Frank’s

(P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.31) copulae.
r6,2

r6,1
= 1.3

In chapters 5 and 6, results of the use of the techniques discussed in this section
will be presented. The probabilistic method was used in eliciting the rank and
conditional rank correlations required by the FCP model introduced in section
3.3.2.1. The direct method was used in the ATCP model introduced in section
3.3.2.2 and the model that will be discussed in chapter 6. One argument in favor
of the elicitation of probabilistic statements is that their elicitation has proven to
be feasible in previous studies [Kraan, 2002],[Morales et al., 2008] in real applica-
tions. Experts seem to be familiar with the elicitation of conditional probabilities.
However, when the number of conditioning variables is large (as in relation 4.2)
experts tend to object the elicitation of these exceedence probabilities. As men-
tioned previously this could be avoided by eliciting conditional probabilities with
smaller number of conditioning variables.

The direct method combines the elicitation of one probabilistic statement with
ratios of unconditional rank correlations. Based on our own experience we may say
that one advantage of this method is that experts may express somewhat easier
the ‘relative strength’ of each unconditional rank correlation (in the correlation
matrix) as expressed by its absolute value. Once the correlation matrix is available
for each expert any probabilistic statement may be computed (given the normal
copula assumption) for each expert’s estimates. The issue of combining their
opinions arises once estimates from each expert are available. The combination
of experts’ dependence estimates is discussed next.

2006]
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4.2.3 Combination of Experts’ Dependence Estimates

The combination of expert’s distributions for BBN’s poses specific challenges. If
every expert’s distribution satisfies the conditional independence statements im-
plied by the graph, then the linear pool individual densities in general will not.
The reason is that conditional independence is not preserved under convex com-
binations of distributions. To combine the dependence information elicited from
experts via conditional probabilities, it would be tempting to pool the conditio-
nal probabilities linearly to determine the conditional probability of the decision
maker. This strategy would work well if the medians of all experts were the same
which is not typically the case, for example if the marginal distributions come
from expert judgment. In order to combine the experts’ dependence information
a different strategy must be taken. An example is presented with the BBN in
Figure 3.2.

A strategy for combining experts’ dependence estimates has been proposed in
previous studies for bivariate distributions [Cooke and Goossens, 1999]. The pro-
cedure extended for multivariate distributions is presented in this section. First
the individual expert judgments for marginal distributions are combined accor-
ding to one of the linear pool weighting schemes [Cooke, 1991]. Later, the idea is
to compute the probabilities that each expert “would have stated” if he/she had
been asked probabilistic statements regarding the chosen quantile of the Decision
Maker such that his/her estimates for the rank correlations remain unchanged
(relation 4.11).

rei6,1 → P ei
1⋆

rei6,2|1 → P ei
2⋆

rei6,3|1,2 → P ei
3⋆

rei6,4|1,2,3 → P ei
4⋆

rei6,5|1,2,3,4 → P ei
5⋆

(4.11)

First the joint distribution for each expert ei is obtained by a procedure such
as the one described in subsection 4.2.2. For each expert the joint distribution
uses the estimated rank and conditional rank correlations obtained from relation
4.3 or relation 4.10 and the marginal distributions. Observe that in relation 4.10
the rank and conditional rank correlations computed for each expert could be
indexed differently according to each expert.

Once the joint distribution is available for each expert, relation 4.11 says that
some probabilistic statements are computed from the joint distribution of each
expert. For example the exceedence probabilities in relation 4.12 below could be
computed.
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(4.12)

As before the choice of the quantile of preference is the median, but any other
quantile might be used as well. Other probabilistic statements might be computed
in 4.12. For example conditional probabilities with smaller number of conditioning
variables might be one option. In fact any probabilistic statement might be used
as long as it is the same amongst experts. The reason is that these probabilistic
statements will be combined later to form the DM’s joint distribution5.

Consider the hypothetical example presented in Figure 4.8. Observe that the
medians of experts 1, 2 and the DM disagree for variable X1. The medians
are 50, 150 and 100 respectively for experts 1, 2 and the DM . It may also be
observed that F e1

X1
(100) = 0.66 and F e2

X1
(100) = 0.43. For simplicity assume that

all 3 experts agree on the median value of X6. This is the case if the marginal
distribution for X6 is obtained from data. Suppose that for the first probabilistic
statement elicited experts answered as in 4.13 below.

P e1
1 = P (X6 ≥ x6,q50 |X1 ≥ 50) = 0.75 → re16,1 = 0.7

P e2
1 = P (X6 ≥ x6,q50 |X1 ≥ 150) = 0.67 → re26,1 = 0.5

(4.13)

The probabilities obtained from each expert in 4.13 cannot be combined di-
rectly. This is because, as stated previously, the median value for X1 for each
expert and the decision maker differ. In other words, the probabilities in 4.13 are
taken over different events. According to 4.11 the analyst must compute a pro-
babilistic statement for each expert taken over the same event before combining
each expert’s individual assessment. With the rank correlations of each expert,
the analyst may compute an answer as in 4.14 below.

5If a method as in relation 4.10 is used, the assignment of rank and conditional rank cor-
relations to the arcs of the BBN might not be equal across experts. However once the joint
distribution is available for each expert, the same probabilistic statement may be computed for
all.
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Figure 4.8: Difference in median between e1, e2 and the DM for Variable X1

re16,1 = 0.7 → P e1
1⋆ = P (F ei

X6
(X6) ≥ 0.5|F e1

X1
(X1) ≥ 0.66) = 0.84

re16,1 = 0.4 → P e2
1⋆ = P (F ei

X6
(X6) ≥ 0.5|F e1

X1
(X1) ≥ 0.43) = 0.65

(4.14)
In Figure 4.9 the graphical representation of relation 4.14 is presented. Three

probabilities are computed as a function of r6,1. P (F ei
X6

(X6) ≥ 0.5|F ei
X1

(X1) ≥ 0.5)
is represented by a solid line and it is the function from which the original esti-
mates re16,1 and re26,1 in 4.13 are computed. P (F ei

X6
(X6) ≥ 0.5|F e1

X1
(X1) ≥ 0.66) and

P (F ei
X6

(X6) ≥ 0.5|F e2
X1

(X1) ≥ 0.43) differ from the solid line because F e1
X1

(100) =
0.66 and F e2

X1
(100) = 0.43. The estimates in relation 4.14 are computed from the

functions shown in Figure 4.9. Observe that P e1
1⋆ increases with respect to P e1

1

and P e2
1⋆ decreases with respect to P e2

1 . Observe also that the rank correlation
estimates remain equal.

When the probabilistic statements such as those suggested in relation 4.12
have been computed by the analyst, combining them is the next step. In analogy
to equation (4.1) the probabilistic statement for the decision maker is computed
as in 4.15.

PDM
j =

∑

i

weiP
ei
j⋆ (4.15)

The weights for each expert (wei) may be computed from the classical model
as described in subsection 4.2.1. Finally, as in subsection 4.2.2 the probabilistic
statements obtained for the DM may be translated to the (conditional) rank
correlations required by the model. In our example:
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Figure 4.9: P (F ei
X6

(X6) ≥ 0.5|F ei
X1

(X1) ≥ 0.5), P (F ei
X6

(X6) ≥ 0.5|F e1
X1

(X1) ≥ 0.66)
and P (F ei

X6
(X6) ≥ 0.5|F e2

X1
(X1) ≥ 0.43) for r6,1 ∈ (0,1)

PDM
1 → rDM

6,1

PDM
2 → rDM

6,2|1

PDM
3 → rDM

6,3|1,2

PDM
4 → rDM

6,4|1,2,3

PDM
5 → rDM

6,5|1,2,3,4

(4.16)

4.3 Final Comments

In summary, this chapter describes briefly the classical model for structured ex-
pert judgment. It is shown that optimal combination of experts’ dependence
estimates may be achieved by exploiting the classical model of expert judgments
in probabilistic statements of the DM . For this last step adjusting each experts
individual assessments to account for the same events is required.

The elicitation of rank and conditional rank correlations has been presented
using probabilistic or statistical measures. The sensitivity of experts’ dependence
assessments to the choice of the copulae realizing the joint distribution is shown
with a comparison between Frank’s and the normal copulae.

One of the advantages of NPCDBBN vs. discrete BBNs is that they are more
flexible with respect to modelling changes. For example when nodes are added
or removed (see section 3.1, Hanea et al. [2006] and [Cowell et al., 1999]). One
needs to be cautions in this respect.

Consider for example the BBN from Figure 3.1. Suppose an expert has given
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estimates for the 5 rank correlations required through the direct method. She
has stated that P (X6 ≥ x6,q50 |X1 ≥ x1,q50) = 0.33 which corresponds to r6,1 =
−0.49. For the second step she has answered

r6,2
r6,1

= −1.68 which corresponds to
r6,2|1 = 0.9297.

Suppose further that after the elicitation, the analysts have found from data
a positive rank correlation between X1 and X2 (r1,2 = 0.1). Of course since the
rank and conditional rank correlations attached to the arcs of a NPCDBBN are
algebraically independent, r6,1 = −0.49 and r6,2|1 = 0.9297 are valid choices in
this new model where X1 and X2 are not independent. P (X6 ≥ x6,q50 |X1 ≥
x1,q50) = 0.33 is also a valid choice since this estimate is not constraint by pre-
vious answers. However, since r1,2 = 0.1 then

r6,2
r6,1

∈ (−1.59, 1.83) and hence the

estimate previously elicited from expert knowledge is not valid anymore. New
estimates would be required from experts. Same kind of situations could happen
regardless of the choice of the copula or the elicitation of probabilistic estimates
as opposed to rank correlation ratios.

The elicitation of joint distributions by experts, as stated before, is still an
issue where not much literature is available. Exploring other methods or building
up in those hereby proposed and investigating the effect of assumptions made by
the analysts about the models are challenges that remain for future research. The
next part of this thesis deals with real applications that use the ideas expressed
in the current chapter.



CHAPTER 5

Structured Expert Judgment in Aviation

Safety1

In this chapter three models related to aviation safety developed in the context of
the CATS projet will be discussed. First the missed approach model is presented.
This model was developed by the CATS consortium with two purposes. First to
aid in exploring the techniques for elicitation of rank and conditional rank corre-
lations to be used throughout the rest of the project. Second, to be incorporated
in the CATS model if required. In the final CATS model presented in Figures
1.13 and 3.16, the controlled flight into terrain or missed approach was included
in ESD 35 (see table 3.5) and hence the model presented in section 5.1 was not
included in the final BBN. The model is however operational and because of its
relevance to the techniques discussed in previous chapters it is included here. Af-
ter the missed approach model, results from the elicitation in the FCP and the
ATCP models will be presented.

5.1 The Missed Approach Model

5.1.1 Introduction to the MA model.

In recent years, the Federal Aviation Authority and the Dutch Ministry of Trans-
port have used causal modelling techniques to investigate integrated safety in air
traffic. For this purpose in Roelen et al. [2002] discrete Bayesian Belief Networks
(BBN) were fully quantified for the cases of Missed approach (MA) and Flight crew
alertness. However, two disadvantages with discrete BBNs were encountered (see
also chapter 3 sections 3.1 and 3.2):

• When variables were discretized into a number of values considered repre-

1This chapter is based on Morales et al. [2008] and Morales-Nápoles et al. [2009b]
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sentive, the size of the conditional probability tables exploded. As a result
a drastic two-valued discretization (usually OK / Not OK) was forced;

• For many variables there was extensive data from the field. When using
discrete BBN’s, only the nodes without parents could be quantified with
field data; other nodes have their marginal distributions determined by the
conditional probability tables. Finding conditional probability tables that
were compatible with the existing marginal information was a daunting,
sometimes hopeless task.

Because of these problems, there was interest in finding a suitable alternative
to discrete BBN’s. In this section we will concentrate on the model for missed
approach.

5.1.2 Description of the MA model.

A missed approach should be initiated when a situation arises that would make
the continuation of the approach and landing unsafe. The purpose of a missed
approach is to abort a landing in unsafe circumstances to allow the crew to carry
out a new approach and landing under safer circumstances. According to [Roelen
et al., 2002] “the most common primal causal factor [of approach and landing
accidents] was judged to be the omission of action/inapropriate action”. Hence,
the missed approach model tries to capture the idea of a Failure to execute a
missed approach when conditions are present.

Figure 5.1: Original BBN of the Missed Approach Model.

Figure 5.1 presents the original discrete model for missed approach. All nodes
in this model have two states. The top events are:
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• Condition for missed approach that measures whether there is a condi-
tion during the approach or landing phase that requires a missed approach
according to the operator’s Aircraft Operating Manual, Basic Operating
Manual, and/or (inter)national regulations. The states for this node are
‘yes’ or ‘no’. This node is a deterministic node: an unfavorable condition of
either one of its parents, alone or in combination will result in a condition
for missed approach.

• Missed approach execution that describes whether the crew executes
or does not execute a missed approach under certain circumstances (states
‘yes’ and ‘no’). Compared to the Condition for missed approach, this node
has an extra parent. The In-flight crew alertness node reflects the fact that
the final decision to execute a missed approach is taken by the flight crew.

These two nodes are parents to the node Failure to execute a missed approach
when conditions are present in further modelling which takes into account a pos-
sible accident situation. As stated before, some of the variables in Figure 5.1 are
more naturally modelled as continuous quantities for example: visibility, wind
speed, fuel state, separation in air, etc. The variables are listed below according
to their labeling in Figure 5.2. The variables were quantified using field data.

Figure 5.2: Continuous Version of the BBN for the Missed Approach Model.

1. Fuel Weight: Measured in kilograms and is the remaining fuel at arrival
based on data for 172 flights of a Boeing 737 at Schiphol airport.

2. Visibility: Measured in meters and is based on a sample of 27 million
observations over Europe.

3. Crew Alertness: Measured by the Stanford Sleepiness Scale in an in-
creasing scale from 1 to 7, where 1 signifies “feeling active and vital; wide
awake” and 7 stands for “almost in reverie; sleep onset soon; struggle to
remain awake” the distribution used for this study comes from field studies
by the Aviation Medicine Group of TNO Human Factors in 1,295 flights.
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4. Speed Deviation at 500 ft: Deviation from bug speed2 at 500 ft. The
data comes from 13,753 approaches of a major European airline.

5. Mean Cross Wind: Usually expressed as a combination of speed (in knots)
and direction (compass course) of the wind at any direction not favorable
for the aircraft, the cross wind distribution comes from 380,000 takeoffs and
landings conducted on three large European airports.

6. Separation in Air: Longitudinal distance (in nautical miles) between
the landing aircraft and the preceding aircraft in the approach path. The
distribution was retrieved from a sample size of 2,382 landings at Schiphol
airport.

7. Missed Approach Execution: Number of missed Approach Executions
per 100,000 flights at Schiphol airport. The expectation of this variable
would be an estimate of the unconditional probability of executing a missed
approach maneuver.

5.1.3 Expert Elicitation Results of the MA Model

Information about the marginal distributions was available from different sources
and the unconditional and conditional rank correlations where elicited with the
procedure from section 4.2.2.1 from a single expert at the Dutch National Aeros-
pace Laboratory (NLR) on December 20th, 2005 in a 2.5 hours elicitation. The
expert is a pilot for a major European airline and researcher at NLR, in total the
expert answered 7 questions.

One marginal distribution for Missed Approach Execution per 100,000 Flights,
one unconditional rank correlation r7,6 and the 5 conditional rank correlations
from Figure 5.2 were elicited. For the marginal distribution the expert was asked:

1. Consider 100,000 thousand randomly chosen flights at Schiphol airport un-
der the current conditions. On how many of these flights will a missed

approach be executed? (To capture your uncertainty please provide the
5th, 25th, 50eth, 75th and 95th percentiles of your uncertainty distribution.)

A minimal informative distribution with respect to a log uniform background
measure was fit with the data provided by the expert. Next, the dependence
information was queried starting with the rank correlation r7,6 as follows3:

2. If 50,000 of the flights from the previous question were selected at random,
then the number of flights that execute a missed approach should be approxi-
mately 1

2 of your median estimate from previous question. Suppose that
instead of selecting those 50,000 flights at random, you select those where

2The bug speed is the target reference speed for the approach (calculated by the aircraft
crew) plus allowance for conditions such as crosswind.

3The specification of the rank correlations required in the model presented in Figure 5.2
is not unique (see equation (3.3)). For example instead of eliciting the (un)conditional rank
correlations presented Figure 5.2, one could also specify {r7,5, r7,6|5, ...}. In this case the order
in which the variables entered the model was provided by the expert.
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Separation in air is above its median value. What is your probability that,
in this situation, the number of missed approach executions will be larger
than 1

2 of your 50eth percentile estimate provided in the previous question?

The assessment from question 2 is equivalent to an estimate of
P1 = P (FX7(X7) ≥ 0.5|FX6(X6) ≥ 0.5). The expert’s assessment for this question
was P1 = 0.15 that from Figure 4.2 corresponds to r7,6 = −0.88. The conditional
rank correlation r7,5|6 was elicited as follows:

3. If 50,000 of the flights from question 1 were selected at random, then the
number of flights that execute a missed approach should be approximately 1

2
of your median estimate from question 1. Suppose that instead of selecting
those 50,000 flights at random you select those where both Separation in

air and Mean cross wind are both above their median values. What is
your probability that, in this situation, the number of missed approach

executions will be larger than 1
2 of your 50eth percentile estimate provided in

question 1? (bearing in mind that your new assessment should be ∈ (0, 0.3))

The expert’s assessment for question 3 is equivalent to an estimate of P2 =
P (FX7(X7) > 0.5|FX6(X6) > 0.5, FX5(X5) > 0.5). The expert’s answer to ques-
tion 3 was P2 = 0.18, and, with the methods described in 4.2.2.1 the corresponding
value for r7,5|6 = 0.20 was found. The upper and lower bounds provided in ques-
tion 3 , i.e the interval (0, 0.3) where also computed on-line with the methods
described in section 4.2.2.1.

Conditional Bounds for Correlation
Probability Pi

a

P1 0.15 (0, 1) r7,6 -0.88
P2 0.18 (0, 0.3) r7,5|6 0.20
P3 0.20 (0.01, 0.35) r7,4|6,5 0.12
P4 0.24 (0.02, 0.38) r7,3|6,5,4 0.23
P5 0.22 (0.04, 0.45) r7,2|6,5,4,3 -0.11
P6 0.24 (0.03, 0.40) r7,1|6,5,4,3,2 0.11

aEach Pi, i = {1, ..., 6} sequentially adds variables
to the model, for instance P1 = P (FX7 (X7) >

0.5|FX6 (X6) > 0.5), P2 = P (FX7 (X7) > 0.5|FX6 (X6) >

0.5, FX5 (X5) > 0.5), P3 = P (FX7 (X7) > 0.5|FX6 (X6) >

0.5, FX5 (X5) > 0.5, FX4 (X4) > 0.5), and so on.

Table 5.1: Results from Expert’s Elicitation of Conditional Rank Correlations

The rest of the conditional rank correlations where elicited in a similar way by
sequentially adding information about the variables entering the conditioning set.
The expert was provided with the upper and lower bounds for Pi (i = 1, ..., 6) at
each step in the elicitation only after he had provided his estimates to check for
consistency. This way of assessing conditional rank correlations helped the expert
understand the meaning of dependence and increased his “buy in” in the method.
The results of the elicitation for the 6 arcs in the BBN for missed approach are
summarized in table 5.1.
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Figure 5.3: Discretized BBN of the Missed Approach Model with continuous quantities
in Netica.

Figure 5.4: Continuous BBN of the Missed Approach Model with continuous quantities
in UniNet.

5.1.4 Updating beliefs in the MA Model

In Hanea et al. [2006] techniques to efficiently deal with the joint distribution
when evidence becomes available (updating the BBN) are discussed. The two
possibilities are:

• The Hybrid Method. To work with this method the information from
table 5.1 together with the marginal distributions for each variable were
used to create a large sample file by means of the normal copula. A discrete
version of the model can be built in order to take advantage of commercial
software to perform fast updating each time a new policy is evaluated.

• The Normal Copula Vine Approach. Since according to the methods
described in sections 3.2 and 4.2.2 all calculations are performed on a joint
normal vine, the conditional distribution can be computed analytically.
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To illustrate the Hybrid Method the professional software Netica c⃝ will be
used. For the normal copula vine approach the recently developed software ap-
plication UniNet4 will be used. Figures 5.3 and 5.4 show the representation of
the BBN for missed approach execution in Netica and UniNet respectively. The
rank correlations are included to stress the fact that both versions of the mo-
del introduced in Figure 5.2 preserve the dependence structure elicited from the
expert.

If instead of eliciting the 6 quantities in table 5.1, the expert would have been
asked to fill in the conditional probability table for X7 missed approach execution
per 100,000 flights with the discretization of its parent variables as in Figure 5.3,
then the expert would have had to provide over 1.2 million conditional probabi-
lities (equation (3.2)) that need to be consistent with the marginal distribution
from Figure 5.3 and still reflect the correct dependence information.

Figure 5.5 presents the distribution of missed approach executions per 100,000
flights given separation in air ∈ (0, 2) Nm and the mean cross wind ∈ (17.5, 20)
Kt from Netica. The reader may compare this distribution with the unconditio-
nal distribution in Figure 5.3. The unconditional mean is 200 Missed Approach
executions per 100,000 flights (standard deviation of 170), while the mean of
(X7|X6 ∈ (0, 2), X5 ∈ (17.5, 20)) is 470 Missed Approach executions per 100,000
flights (standard deviation 290).

Figure 5.6 presents the same conditional distribution as Figure 5.5 computed
analytically in UniNet. The unconditional distribution of X7 is shown in grey
behind the black histogram representing the conditional distribution of X7|X6 =
2, X5 = 20. In this case the conditional mean is 379 with standard deviation 47.7
missed approaches per 100,000 flights. While in Netica (Figure 5.5) one can only
condition in discretized states of each variable, UniNet allows for conditioning
in point values. This is the usual way in which evidence becomes available in real
situations.

4
UniNet has been developed for the CATS project commissioned by the Dutch Ministry of

Transport. Currently UniNet supports both the Hybrid Method with the support of Netica
and the analytical updating. The software is still under development.
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Figure 5.5: Conditional Distribution of Missed Approach Executions per 100,000 flights
given X6 ∈ (0, 2) Nm and X5 ∈ (17.5, 20) Kt.

Figure 5.6: Conditional Distribution of Missed Approach Executions per 100,000 flights
given X6 = 2 Nm and X5 = 20 Kt .

500,000 samples from the joint distribution represented by figures 5.4 and 5.6
were obtained with UniNet. The cumulative distribution function of X7 and
X7|X6 = 2, X5 = 20 were obtained and shown in Figure 5.7. Observe that both
Netica and UniNet show that P (X7 > 350) ≈ 8%. In the conditional distribution
computed with Netica this probability increases to ≈ 57% while the analytical
approach from UniNet shows that this value is as big as ≈ 75%.

The application to Missed Approach demonstrated that it is possible to eli-
cit unconditional and conditional rank correlations with intuitively meaningful
conditional probabilities of exceedence. The results motivate the choice of the
analytical updating (UniNet) vs. the hybrid method with Netica. The next
two sections present results regarding the elicitation for the human performance
models used in CATS. For the two models presented next more than one expert
participated in the elicitation. This is in contrast with the elicitation in the MA
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Figure 5.7: Cumulative Distribution function of X7 and X7|X6 = 2 Nm and X5 = 20
Kt.

model where as stated earlier only one expert participated.

5.2 The Flight Crew Performance Model

5.2.1 Expert Elicitation Results of the FCP Model

An elicitation protocol was designed for obtaining the marginal distributions
shown in table 3.2 and the dependence information required by the model (Fi-
gure 3.5). A total of 4 marginal distributions, 11 questions for retrieving the
dependence information and 8 calibration variables were asked to each expert5.
Summary results from the classical method are presented in table 5.2. Calcula-
tions are performed with the EXCALBIUR software developed at the TU Delft.

Table 5.2 shows the resulting scores for the five experts in this study plus
two DMs6. The first column gives the expert’s id; the second column gives the
calibration score. The ratio of highest to lowest score is about 13,000. It will be
noted that experts B and D had a score corresponding to a p-value above 5%.
Scores of experts E and C are marginal and for expert A rather low. Calibration
scores in the order 0.001 would fail to confer the requisite level of confidence in
the results.

The information scores for all items and for calibrations items are shown in

5In total 14 rank correlations are required in Figure 3.5 however r10,6 and r10,7|6 where
chosen such that r10,6 and r10,7 would be equal, positive and as large as possible. Variable 13
was elicited with a single expert after the elicitation described in this section was performed.
See Singuran [2008] for a more detailed description of node 13.

6The IWDM is not shown because in this case it is equal to the GWDM
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Experts’ Calibration Information Information Un-Normalized Normalized Normalized

Id. score score score weights weights weights

(all var.) (cal. var.) (without DM) (with DM)

A 0.02651 0.7119 0.4991 0 0 0
B 0.6638 0.95 0.574 0.381 1 0.5
C 0.001547 1.016 0.9689 0 0 0
D 0.185 1.317 1.029 0 0 0
E 5.115×10−05 1.049 1.06 0 0 0
GWDM 0.6638 0.95 0.574 0.381 - 0.5
EWDM 0.2224 0.1046 0.09945 0.02212 - -

Table 5.2: FCPM Experts’ Performance. Significance level: 0.6638 (Global Weights
DM).

columns 3 and 4 respectively. It will be noted that the overall information scores
are quite similar, within a factor 2. In this case the expert with the best calibration
score (B) also has one of the lowest information scores for the calibration variables
which is a recurrent pattern. Weights are constructed by the product of columns 2
and 4. If these weights were normalized and used to form weighted combinations,
experts A, D and B would be influential with (2.25, 32.49 and 64.98 per cent
respectively).

As it may be seen in table 5.2 the EWDM is better calibrated than each
expert individually except expert B. However information scores derived from the
EWDM are poor. They are the lowest amongst the 5 experts in both all variables
and calibration questions alone.

Table 5.2 also shows that the optimized decision maker gives all weight to
expert B. The calibration score of the GWDM is about 3 times higher than the
EWDM and the information score is about 9 times higher over all variables and
5.7 times higher in calibration questions alone. If no optimization was performed
in the GWDM then, after normalization of the weights, experts A, D, B and the
GWDM (not optimized) would be influential with 2.06, 29.66, 59.32 and 8.71 per
cent respectively. Though more experts enter the pool, the calibration score of the
(not optimized) GWDM is 4.58 times smaller than that of the optimized GWDM.
Similarly the information scores in all variables and calibration variables are 2.57
and 1.48 times higher in the optimized GWDM. The recommended choice for
the DM is the GWDM as it achieves better performance than the EWDM and
the GWDM without optimization combinations. Next, results of the dependence
information for the FCP model will be discussed.
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(Un)Conditional
Value

(Un)Conditional
Value

Rank Correlation Rank Correlation

r7,1 -0.95 r10,7|6 1.00
r7,3|1 0.86 r14,10 0.30
r7,2|1,3 0.24 r14,11|10 -0.32
r6,5 -0.95 r14,8|10,11 0.46
r6,3|5 0.86 r14,12|10,11,8 0.18
r6,4|5,3 0.24 r14,9|10,11,8,12 0.19
r10,6 0.71 r14,13|10,11,8,12,9 0.16

Table 5.3: GWDM Dependence estimates for the FCP Model.

5.2.2 Dependence in the FCP Model

To elicit the rank correlations a total of 11 questions were asked to each expert.
These were similar to those in relation 4.2 in subsection 4.2.2.1. From previous
subsection (5.2.1) it was observed that the global weight decision maker gave
weight 1 to expert B and hence no combination was necessary. The results of the
dependence elicitation are presented in table 5.3.

As explained in Hanea [2008, ch.5], the determinant of a correlation matrix is
a measure of the amount of ‘linear dependence’ in a joint distribution. If variables
are uncorrelated it takes value 1, and 0 when they are completely correlated. The
determinants of the correlation matrix of each expert are presented in the second
column of table 5.4. It may be observed that the GWDM dependence estimates
shown in table 5.3 present the rank correlation matrix with the lowest value of
the determinant among experts (expert B). One may see that there is a factor 70
between the highest and lowest determinant between experts.

Experts’ Expert’s

Id Determinant

A 4.936×10−6

B 2.011×10−6

C 7.173×10−4

D 1.427×10−4

E 7.562×10−5

Table 5.4: Experts’ Correlation Matrices Determinant

From this last subsection it may be seen that the elicitation of rank an conditio-
nal rank correlations through conditional probabilities of exceedence from domain
experts is possible. Next a similar model for Air Traffic Control performance will
be presented.
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5.3 The Air Traffic Control Performance Model

5.3.1 Expert Elicitation Results of the ATCP Model

An elicitation protocol was designed for obtaining the dependence information
required by the model shown in Figure 3.6. In total 1 marginal distribution7, 5
questions for retrieving the dependence information and 12 calibration variables
were asked to 6 experts8. Estimates of one expert could not be used because of
inconsistent estimates (ratios outside the allowable range). Summary results from
the classical method are presented in table 5.5. Calculations are performed with
the EXCALIBUR software developed at the TU Delft.

Experts’ Calibration Information Information Un-Normalized Normalized Normalized

Id. score score score weights weights weights

(all var.) (cal. var.) (without DM) (with DM)

A 0.1012 0.5633 0.5034 0.05095 0.5208 0.2004
B 0.04706 1.03 0.9588 0.04512 0.4612 0.1803
C 0.00131 1.423 1.349 0.001767 0.01806 0.006987
D 2.795×10−9 1.669 1.655 0.0 0.0 0.0
E 2.501×10−6 1.017 0.9624 0.0 0.0 0.0
GWDM 0.6827 0.3094 0.2271 0.1551 - 0.6131
IWDM 0.2441 0.4441 0.3757 0.0917 - -
EWDM 0.1242 0.2662 0.2472 0.0307 - -

Table 5.5: ATC Experts’ Performance. Significance level: 0.00131 (Global Weights
DM).

Table 5.5 shows the resulting scores for the five experts in this study plus three
Decision Makers. The first column gives the expert’s id; the second column gives
the calibration score. The ratio of highest to lowest score among the 5 experts is
about 3.62×107 (1.30×104 in the case of the FCP model experts). Only expert
A had a score corresponding to a p-value above 5%. Scores of experts D and E
are marginal and for expert C is rather low.

The information scores for all items and for calibrations items are shown in
columns 3 and 4 respectively. It will be noted that the overall information scores
are quite similar, within a factor 3. In this case (as in the FCP model) the expert
with the best calibration score (A) also has the lowest information scores. The
fifth column gives the “un-normalized weights”; this is the product of columns
2 and 4. If this column were normalized (among the experts) and used to form
weighted combinations, experts A, B and C would be influential with (52.07, 46.11
and 1.80 per cent respectively).

In Table 5.5 the 8th expert is identified as “EWDM”. It may be observed
that the EWDM is better calibrated than each expert individually. However in-
formation scores derived from the EWDM are poor. They are the lowest amongst

7The marginal distribution of error probability was elicited from each expert. Later on in
the project, data about the marginal distribution became available and it was used instead of
the one elicited from each expert.

8All experts are different from those participating in the FCPM. Only 10 calibration variables
could be used for the combination because of lack of response from some experts.
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all experts (that is including the EWDM as an expert) in both all variables and
calibration questions alone.

For the GWDM all experts with a calibration score less than the significance
level (0.00131) found by the optimization procedure are unweighed as reflected
by the zeros in columns 5, 6 and 7 in table 5.5.

From table 5.5 one can see that after the optimization procedure is applied,
3 experts have non-zero weight. One can see that the calibration score of the
GWDM is about 5.5 times higher than the EWDM. The information scores are
comparable for both decision makers in both all variables and calibration variables
alone. The calibration score of the GWDM is about 2.8 times larger than the
IWDM. The IWDM is slightly more informative than the GWDM. However the
gain in information is not a sufficient argument to justify a preference of the
IWDM over the GWDM.

The recommended choice of the decision maker is the global weight decision
maker as it achieves better performance than the equal weight and item weight
combinations. Future analysis will be performed based on the GWDM.

5.3.2 Dependence in the ATCP Model

As stated before, to elicit the rank correlations in Figure 3.6 a total of 6 questions
were asked to each expert. Experts were asked to rank each variable according
to the largest unconditional rank correlation with ATC error in absolute value 9.
Then for the variable which they regarded as having the largest rank correlation in
absolute value, experts would assess the usual probability of exceedence. Finally,
ratios of each of the remaining rank correlations to the one assessed through a
probability of exceedence were asked. This method is described in subsection
4.2.2.2 and relation 4.9.

From subsection 5.3.1 it could be observed that the GWDM was the recom-
mended choice for combining experts’ opinions in the ATC performance model.
The combination of the three expert’s individual assesments was done as descri-
bed in section 4.2.3. The results of the combination scheme are presented in table
5.6.

(Un)Conditional
Value

(Un)Conditional
Value

Rank Correlation Rank Correlation

r7,1 -0.180 r7,4|1,2,3 -0.060
r7,2|1 -0.206 r7,5|1,2,3,4 0.020
r7,3|1,2 0.134 r7,6|1,2,3,4,5 0.180

Table 5.6: GWDM Dependence estimates for the ATC Model.

The GWDM’s determinant is the second largest among the 6 experts (inclu-
ding the DM itself) in table 5.7. This may be explained because the GWDM is
dominated by experts A and B. Expert’s A opinion, which has the largest deter-

9The ranking from each expert could be different however once the full correlation matrix of
each expert is determined any probabilistic statement may be computed.
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minant across experts, contributes to the GWDM’s dependence estimates with
52.08% (table 5.5 column 6). Expert B, whose determinant is also large, contri-
butes 46.12%. On the other hand expert C has the lowest determinant across
experts, however his opinion contributes 1.8%. The ratio of highest to lowest
determinant (column 2 in table 5.7) is about 4.5. This is comparable to the ratio
of the GWDM’s determinant to expert’s C determinant which is 4.3. These two
ratios are small compared to those observed in the FCP model where differences
of the order of 70 were observed.

Experts’ Expert’s
Id Determinant
A 0.932304
B 0.751821
C 0.206152
D 0.344658
E 0.849824
GWDM 0.894683

Table 5.7: Experts’ Correlation Matrices Determinant & Comparison Vs. Optimized
determinants.

In summary, from this section it may be seen that the elicitation of rank an
conditional rank correlations with the direct method described in section 4.2.2.2
is possible. Experts’ belief that the relationship of the variables in table 3.3 to
the ATC error is highly non monotonic is expressed by the high values of the
determinant of the correlation matrices of each expert presented in table 5.7. It
is worth noting that from comparing tables 5.7 and 5.5 one may suppose that
expert’s tend to have a negative correlation between the determinant of the rank
correlation matrix in their individual BBN and their information score. However,
tables 5.4 and 5.3 show the opposite pattern.

NPCDBBNs have found application in this thesis outside the aviation sector.
In the next chapter an application in earth dams safety in central Mexico will be
presented. Next chapter shows the flexibility of Bayesian networks as tools for
modelling risks in different sectors.
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Dams Safety in the State of Mexico1

This chapter describes a demonstration model for earth dams safety. The aim of
the project was to develop a model to investigate environmental factors that could
contribute to different failure modes in earth dams in the highlands of central
Mexico. This model would serve as a demonstration model for a larger model
that would include larger structures and a countrywide coverage. NPCDBBNs
were identified as an appropriate tool for this research. The classical method for
structured expert judgment was used for model quantification in the absence of
field data. The project was financed by COMECYT (State of Mexico Council
for Science and Technology) for the Civil Engineering Faculty of the Autonomous
University of the State of Mexico. Our role in the project was to provide technical
support in the use of continuous BBNs and structured expert judgment for the
development and later use of the model.

6.1 Introduction

A dam is an artificial obstruction to natural water flows constructed for one or
more specific purposes such as accumulating water for farm irrigation, generating
electricity, creating artificial lakes for navigation and leisure activities, supplying
water to cities or industry, preventing floods, diverting river flows into canals and
keeping a reserve of fresh water.

Small dams are structures of less than 15 meters height. Large dams, in
contrast, are those with 15 meters or more from the foundation to the crest or,
between 5 to 15 meters with a capacity of more than 3 million m3. Based on their
structure, they can be categorized as: embankment (earth dams), gravity, arch
and buttress dams [Emiroglu et al., 2002].

Regardless of their construction materials, these buildings may fail. Figure

1This chapter is based on Delgado-Hernández et al. [2009] and Morales-Nápoles and Delgado-
Hernández [2009]
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6.1 shows the number of dams failures per 10 years period from 1891-1990 and
the proportion of total number of failures corresponding to embankment dams
[ICOLD, 1995, pp.38-45]. For every ten year period, between 50% (1891-1990) and
91.67% (1971-1980) of the failures correspond to embankment dams. However,
Donnelly [2006] stated that embankment dams are the most common type of
water retaining structures. In this sense, for the same data set, he noted that
2.6% of the concrete buttresses failed compared to 1.2% of embankments, 0.7%
of concrete arch and 0.3% of concrete gravity dams.
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Figure 6.1: Number of dams failures per 10 years period from 1891-1990. With data
from [ICOLD, 1995, pp.38-45]

The impacts of a dam collapse can be enormous, encompassing the destruction
of private housing, transport and public infrastructure, industrial facilities and
agricultural land. The losses may also include human harm and serious disruptions
in infrastructure operation, leading to significant total economic damages.

From the end of October and up to the end of November 2007 flooding was
produced in about 70% of the Tabasco flatlands affecting more than 1 million
people. The main cause of the flooding in Tabasco was the severity of the ru-
noff resulting from the uncontrolled De La Sierra basin and the coincidence and
duration of intense precipitation. Because of the exceptional rainfall, the release
of water through the spillway at Peñitas Dam additional to electricity genera-
tion at full had to be performed. Though, this operation was considered to be
appropriate, damages were enormous. The consequences were great in part due
to the vulnerability of the region and the lack of adequate and sufficient infra-
structure. As part of the recommendations the use of an integrated modelling
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system including hydrometeorlogical forecasting, rainfall-runoff relationships and
dam operation was proposed. For more details see Aparicio et al. [2009].

Literature reports studies within the dam industry. Most are centered on the
analysis of specific failure modes, and a few on mathematical models for dam risk
assessment, that make use of continuous BBNs (see for example [FEMA, 2007]
and [FEMA, 2008]). The central motivation for carrying out this investigation
was the lack of systematic research to date within the continuous BBN framework.

Overall the study aims to develop a model to assist dam engineers, in particular
those in Mexico, on their risk assessment practices. Selecting embankment dams,
and more specifically earth dams on the basis of their abundance, has provided a
focus. In this sense, the model is only limited to the analysis of natural events (e.g.
excessive rainfall or earthquakes) and disregards those intentionally produced (e.g.
terrorism or bomb attacks). It should be noted that this work is the starting point
for a bigger research project to develop a comprehensive model for assessing risk
in various types of dams in Mexico. The model will be referred to as the Dams
Safety demonstration model or simply DS model.

The next section presents the definitions of the concepts that have been used to
develop the model. Then, the selection process of seven dams in central Mexico is
described. The criteria that helped create the model will also be briefly described
together with its constituent elements. The application of the model in the seven
earth dams located in Mexico will be illustrated as well as some final remarks and
recommendations.

6.2 Earth Dams in the State of Mexico

Before we continue, we briefly introduce the components of a dam. Figure 6.2
shows a simplified graphical representation of such a structure showing its main
elements. They are: crest, reservoir, upstream slope (embankment), downstream
slope (embankment), river, outlet pipe, and spillway. Formal definitions may be
found in FEMA [2004].

In order to develop the model some dams located in the State of Mexico were
chosen. The State of Mexico is a territory in central Mexico that surrounds Mexico
City to the east, north and west. The criteria for such a selection were as follows:

(i) height: between 15 and 30 m

(ii) age: more than 30 years old and,

(iii) construction material: earth and rockfill dams.

These three conditions have significant influence in collapse events [Foster
et al., 2000] and [ICOLD, 1995].

In the exercise, seven dams were identified: Embajomuy (E), San Joaqúın (SJ),
José Trinidad Fabela (JTF), Dolores (D), José Antonio Alzate or San Bernabé
(JAA), Ignacio Ramı́rez or La Gavia (IR), and El Guarda (EG). Their heights
range from 15 to 24 m, their ages from 36 to 66 years, and their capacities from
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Figure 6.2: Simplified representation of a dam with main elements.

52,000 to 225,000 m3. Irrigation, flooding prevention and hydroelectric power
generation, can be listed among their main purposes [SRH, 1976].

After visiting each structure, it became evident that maintenance activities
are not frequent. Because of its relative location with respect to inhabited com-
munities downstream, the JAA dam is perhaps the most important structure of
the ones under study. All seven dams under study share the same basic design
characteristics being the main difference amongst them the amount of people li-
ving downstream. With regard to infrastructure it is common for them to have
highways, electrical transmission towers and some urban settlements downstream.
In addition land used for agricultural purposes is also observed in the region of
interest.

6.3 Description of the DS model.

6.3.1 Model variables & graph

Ten variables were identified as most relevant for this study. Their description,
units and source of the marginal distributions is detailed next.

1. Seismic frequency. It refers to the distribution of earthquakes > 5.5 per
year, in Richter magnitude scale, between 2000 and 2008 for the locations
of interest. Data is available from the Mexican National Seismographic
System.

2. Rainfall rate. It refers to the average value of the seven-basin (i.e. the
area of influence of the 7 dams of interest) five-days moving averages in
mm/day. Data is available from “ERIC” Mexican database from 1961 to
1998. A short overview of ERIC may be found in Carrera-Hernández and
Gaskin [2008].
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3. Maintenance. Is the number of years between maintenance activities
which would lead the dam to an “as good as new” condition. The marginal
distribution comes from structured expert judgment.

4. Overtopping. Water level from the crest during an event in which such
a level may increase beyond the total embankment height (mm). Marginal
distribution obtained from expert judgment.

5. Landslide. Distribution of the security factors (resisting moment/causing
moment), for each of the seven dams based on their design geometrical
features. The so called “Swedish method” is used for calculating such factors
[SRH, 1976].

6. Piping. Distribution of water flowing through the embankment that causes
its internal erosion apart from the spillway and outlet pipe torrents (lt/sec).
Data comes from expert judgment.

7. Breaching. Refers to the average breach width i.e. the mean of both
superior and inferior breach widths, due to embankment’s crest erosion (m).
Calculated with the methods reported in Wahl [1998] with data from SRH
[1976].

8. Flooding. Average water level per day in the downstream flooded area
during a dam failure event. Its marginal distribution is built by means of
expert judgement (mm/day).

9. Human costs. Both public and private total costs over a time period
equivalent to the maximum human remaining life span, due to all possible
damages, health and life losses, caused by a flooding, consequence of a
dam failure. It is measured in current USD and obtained through expert
judgment.

10. Economic cost. Both public and private total costs, due to all possible
damages in infrastructures (e.g. schools, hospitals, bridges, roads, transport
systems), fields (e.g. farms, crops), housing, supply, commercial and enter-
tainment centers, caused by a flooding, consequence of a dam failure. It is
measured in current USD and obtained through expert judgment.

Variables are broadly grouped into three categories: contributing factors (seis-
mic frequency, rainfall rate and maintenance), failure modes (landslide, piping,
overtopping and breaching), and consequences (flooding, human and economic
cost). The model was built based on such configuration.

Figure 6.3 shows a scheme of the model, which includes both the require-
ments previously established and the variables recognized. The Figure was taken
from UniNet. Arcs representing rank and conditional rank correlations between
variables are shown.

Arcs between both human costs and total costs, and economic costs and total
costs lack a rank correlation because the total costs are simply the sum of human
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Figure 6.3: Model for Earth Dam’s Risk Assessment.

and economic costs and hence the relationship is functional. To distinguish pro-
babilistic from functional nodes in the graph, two vertical lines in the extremes
of the node are drown. It should be recognized that there might be more interac-
tions among the nodes in Figure 6.3. However, they have not been expressed in
the model for the sake of simplicity and because it is thought that their exclusion
does not affect the patterns of relationship between the main variables.

6.3.2 Expert Elicitation Results of the DS Model

In total four experts participated in the elicitation. Three of the experts hold
positions at the National Water Commission (CONAGUA) in the State of Mexico.
The other expert holds a position in the Municipality of Zinacantepec as water
manager. Two of the experts are lecturers in civil engineering at the Autonomous
University of the State of Mexico (UAEM). A workshop was held on July 18 2008
in the faculty of engineering of UAEM. Individual interviews were held with each
expert during the months of July and August according to experts’ availability.
The questionnaire included 6 questions to elicit marginal distributions (see section
6.3.1), 20 to elicit the rank and conditional rank correlations from Figure 6.3 and
20 calibration variables.

As mentioned in chapter 4 calibration variables are those known to the analyst
but not to the experts at the moment of the elicitation. These are used to mea-
sure experts’ performance as uncertainty assessors. One example of a calibration
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variable for this elicitation is: Consider the 7 day moving average of the daily ave-
rage precipitation (mm) from the two stations related to Embajomuy Dam from
January 1961 to August 1999 in ERIC II of CONAGUA [Carrera-Hernández and
Gaskin, 2008]. What is the maximum moving average for the time period of refe-
rence?. In total three questions about seismicity, four over general characteristics
of the 7 selected dams, nine over precipitation and two about water discharge
were used as calibration variables. The results of the expert elicitation are sum-
marized in table 6.1. Calculations are performed with the EXCALIBUR software
developed at the TU Delft.

Experts’ Calibration Information Information Un-Normalized Normalized Normalized

Id. score score score weights weights weights

(all var.) (cal. var.) (without DM) (with DM)

A 0.00014 0.9154 0.8259 0.0001141 0.9973 0.1404
B 3.588×10−14 2.245 2.196 0 0 0
C 3.223×10−9 1.507 1.576 0 0 0
D 3.57×10−7 0.9291 0.8722 3.114×10−7 0.0027 0.00038
GWDM 0.0009 0.8415 0.7578 0.0006981 - 0.8592
EWDM 0.07164 0.2976 0.3283 0.02352 - -

Table 6.1: DS Experts’ Performance. Significance level: 3.57×10−7 (Global Weights
DM).

Table 6.1 shows the resulting scores for the four experts in this study plus
two DMs. The first column gives the expert’s id; the second column gives the
calibration score. The ratio of highest to lowest score among the 4 experts is about
3.85×109. For the air traffic control performance model this ratio is 3.62×107 and
1.30×104 in the case of the flight crew performance model (tables 5.3.1 and 5.2.1).
In this case no individual expert had a score corresponding to a p-value above
5%.

The information scores for all items and for calibrations items are shown in
columns 3 and 4 respectively. Information scores in columns 3 and 4 are within a
factor 2.5 for the four experts. Expert B had the lowest calibration score, however
was also the most informative. In contrast, expert A had the largest calibration
score and is the least informative. This is a recurrent pattern, however low in-
formativeness does not translate automatically into better calibration [Cooke and
Goossens, 2008, p.669]. The fifth column gives the “un-normalized weights” with
the GWDM2 This is the product of columns 2 and 4. Experts with a calibration
score less than the significance level are weighted with zero. If this column were
normalized (among the experts) and used to form weighted combinations, experts
A and D would be influential with 99.73% and 0.27% respectively.

The GWDM is better calibrated than each expert individually, however its
information scores are lower than the information scores of each expert indivi-
dually. The calibration score of the GWDM is still lower than 5% which fails to
confer the requisite level of confidence for the study. Last row of table 6.1 shows

2If the GWDM without optimization would be used instead, the results in table 6.1 would
be virtually unchanged. Results for the IWDM in this case are equal to the GWDM.
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the EWDM. This is the only expert with a p-value above 5%. For this reason the
EWDM is the recommended choice and further analysis will be conducted with
this combination. The cost of this choice is in the information scores (about 3
times smaller than the GWDM). Next results about the dependence elicitation
are presented.

6.3.3 Dependence in the DS Model

To elicit the rank correlations in Figure 6.3 a total of 20 questions were asked
to each expert. For each child node experts were asked to rank parent variable
according to the largest unconditional rank correlation with the child in absolute
value. Observe that the ranking for each expert could be different however once
the full correlation matrix of each expert is determined any probabilistic statement
may be computed. Then for the variable which they regarded as having the largest
rank correlation in absolute value, experts would assess the usual probability of
exceedence [Morales et al., 2008]. Next, ratios of each of the remaining rank
correlations to the one assessed through a probability of exceedence were asked.
This method is described in subsection 4.2.2.2 and relation 4.9.

A convex combination of the densities realized by the BBN quantified with
the individual estimates provided by each expert does not preserve the condi-
tional independence statements embedded in the graph. Another strategy has
to be considered in order to combine experts’ opinions. If all experts assessed
conditional probabilities of exceedence based on the same events then these pro-
babilities may be linearly pooled to use as the DMs estimate. When the marginal
distributions do not come from data then each expert provides estimates over
different events. The strategy to follow is then to compute the probabilities that
each expert “would have stated” if he/she had been asked probabilistic statements
regarding a given quantile of the Decision Maker such that his/her estimates for
the rank correlations remain unchanged (see relation 4.11). For a detailed expla-
nation of the procedure for combination of dependence estimates the reader may
see section 4.2.3.

From subsection 6.3.2 it could be observed that the EWDM was the recom-
mended choice for combining experts’ opinions in the DS model. The combination
of the four expert’s individual assesments was done as described in section 4.2.3.
The quantities combined were the conditional probability of each child node given
the corresponding parent. These numbers were later translated into the corres-
ponding rank and conditional rank correlations. The results of the combination
scheme are presented in table 6.2. For instance, r3,6 stands for the rank corre-
lation between variables X3 = maintenance and X6 = piping according to the
numbering shown in Figure 6.3.

In table 6.3 the determinants of the rank correlation matrices for each expert
and the DM are shown. The ratio of largest to smallest determinant is 3.95×105.
The EWDM’s determinant is the largest among the 5 experts (including the
DM itself). The reason is that marginal distributions assessed by experts differ
considerably and the EWDM’s combination tends to “fade away” the dependence.
Example 6.3.1 gives an intuitive explanation of this remark for the case of the rank
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(Un)Conditional
Value

(Un)Conditional
Value

Rank Correlation Rank Correlation

r3,6 0.1799 r7,6 0.5025
r2,6|3 0.1067 r7,5|6 0.5793
r4,3 -0.3996 r7,4|5,6 -0.4647
r4,2|3 -0.3164 r7,3|4,5,6 0.2212
r4,1|2,3 -0.4307 r8,7 0.1135
r5,4 -0.1278 r8,5|7 0.0669
r5,2|4 0.1711 r10,8 0.1384
r5,1|2,4 0.3025 r9,8 0.2281

Table 6.2: EWDM Dependence estimates for the DS Model.

correlation between Flooding and Economic costs.

Experts’ Expert’s
Id Determinant
A 4.5703×10−7

B 0.0224
C 6.2629×10−4

D 0.0160
EWDM 0.1806

Table 6.3: Experts’ Correlation Matrices Determinant.

Example 6.3.1. Table 6.4 presents a summary of estimates required by experts
to compute rei9,8 in Figure 6.3. Column 1 gives the expert’s id. Estimates given
by each expert to the question: Suppose that variable flooding was observed above
its median value, what is the probability that also economic costs were observed
above their median? are presented in column 2 of table 6.4. The rank correlation
realized by each expert’s estimate is shown in column 3.

For both variables Flooding and Economic costs the EWDM’s median realizes
a given percentile in each experts’ marginal distribution. Similarly to chapter 4,
the cumulative distribution function for variable Xj from expert ei will be denoted
as F ei

Xj
. The median value of variable Xj for expert ei is denoted as xei

j,0.5. Also,

the kth percentile of variable Xj is denoted as xei
j,0.k.

For example the EWDM’s median for Economic costs is 20.03 million usd.
According to the indexing shown in Figure 6.3, Economic costs = X10 and
FA
X10

(20.03) = 0.82. In other words the DM’s median realizes the 82th percentile
in expert’s A marginal distribution. In the same way the EWDM’s median for
Flooding realizes the 4th percentile in expert A’s marginal distribution. Hence
column 4 of table 6.4 shows the assessment that each expert “would have sta-
ted” if he/she had been asked probabilistic statements regarding the median of
the Decision Maker such that his/her estimates for the rank correlations remain
unchanged. For other experts the percentile realized by the EWDM’s median in
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each experts distribution may be read similarly. The relationship between r9,8
and P ei

1⋆ may be seen in Figure 6.4 for all four experts.

Expert P ei
1 rei9,8 P ei

1⋆

A 0.8 0.81 P (X9 > x9,0.82|X8 > x8,0.04) = 0.19
B 0.8 0.81 P (X9 > x9,0.05|X8 > x8,0.95) = 0.99
C 0.6 0.31 P (X9 > x9,0.16|X8 > x8,0.95) = 0.95
D 0.7 0.59 P (X9 > x9,0.96|X8 > x8,0.03) = 0.04

EWDM - 0.1384 P (X9 > x9,0.50|X8 > x8,0.50) = 0.55

Table 6.4: Combination of rank correlation r9,8 in Figure 6.3.
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Figure 6.4: Relationship between r9,8 and P
ei
1⋆

in table 6.4

The EWDM answer to P (X9 > x9,0.50|X8 > x8,0.50) = 1
4

4∑
i=1

P ei
1⋆ . It may be

observed that rei9,8 > 0.31 for all ei, however because of the large differences in

P ei
1⋆ the rEWDM

9,8 ≈ 0.14.�

Other estimates in table 6.2 behave similarly to example 6.3.1 and hence the
high value of the EWDM’s correlation matrix determinant.
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6.4 Discussion of the DS Model

One of the objectives of the model is to predict or diagnose the performance of
any of the seven Mexican structures under consideration. To limit the explanation
the use of the model will only be illustrated here with data from JAA.

Because of its geometry and year of construction there are two variables that
can immediately be fixed for the dam under study. Variable landslide is a dis-
tribution over the security factor of the dams under study (see subsection 6.3.1).
The security factor of JJA was calculated base on its geometry according to the
so called Swedish method [SRH, 1976]. Hence landslide = 1.95. Secondly, the age
of the dam is 46 years which can be associated with the number of years between
maintenance activities assuming that there has not been any conservation actions
since its final construction year.

Figure 6.5: Unconditional DS model.

Figure 6.5 shows the model from Figure 6.3 with the marginal distributions
from section 6.3.1. Means and standard deviations (after the ± sign) are shown.
Figure 6.6 presents the model adapted to the dam of interest (JAA). The original
marginal distributions are shown in Figure 6.6 in grey while the updated belief
is shown in black. According to the model, the effect of introducing evidence of
landslide = 1.95 and maintenance = 46 yrs is larger in overtopping and rainfall
rate than in other variables.

Suppose that additionally to the evidence previously entered, an extraordi-
nary rainfall rate of 15 mm

day in a 7 day average is observed. Also it is known that
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Figure 6.6: DS model given landslide = 1.95 and maintenance = 46.

the seismic frequency in this region corresponds to 8 earthquakes with intensity
higher than 5.5 in Richter scale per year. Figure 6.7 shows the results of the en-
tering additional evidence in the model. As can be seen, the anticipated flooding
value has increased from 1.71×103 mm

day (Figure 6.6) to 2.22×103 mm
day (Figure 6.7).

Similarly, the predicted human cost moved from 13.9 to 14.7 million USD, and the
economic loss in turn from 29.4 to 30.1 million USD. This means that the intensi-
fication of rain and the presence of earthquakes at the same time are expected to
produce higher levels of water in the potential flood area and consequently larger
amounts of both human and economic losses.

Similar analysis to the one described previously was conducted for all 7 dams
under study. The impact of an overtopping incident of 100 mm was employed
to analyze its effects not only in the flood water level downstream, but also in
human and economic costs. So for each of the seven structures three values were
fixed: landslide (security factor), maintenance (dam age using the assumption
above mentioned) and overtopping (100 mm).

Results show that given the landslide (security factor) for each dam and no
maintenance performed since its construction, an overtopping of 100mm increases
the expectation of a flooding by a factor 1.79 (EG) up to a factor 2.11 (SJ)
Delgado-Hernández et al. [2009]. However the total costs of such an increase are
not as sensitive as a flooding is (4 - 6% increase in expected costs). It may be
observed that the expert combination indicate that human costs increase more
than economic costs (7-9% compared to 3 or 4%); however the larger contribution
of economic costs drives the total cost increase.
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Figure 6.7: DS model given landslide = 1.95, maintenance = 46, seismic frequency =
8 and rainfall rate = 15.

Observe that differences in expected total costs are small, which can be ex-
plained by the values in the rank correlation matrix (table 6.5). Human and
economic costs are obviously highly correlated with total cost (r9,11 = 0.82 and
r9,11 = 0.48). Flooding is mainly correlated to human costs (r8,10 = 0.23), and
total and economic costs lag behind them. However the rank correlation between
flooding and total costs is still low (r8,11 = 0.22). All other variables are only
weakly correlated with the total consequences. Nevertheless, in Table 6.5, floo-
ding showed bigger variations than total costs. This means that, according to the
equal weight combination of the experts’ opinions used to build the model, once
a dam has failed flooding variations will be more important than those related
with total costs.

6.5 Final comments of the DS Model

The DS model could be used in a similar fashion as in section 6.4 to perform
analysis. In fact, a wide variety of scenarios could be constructed to determine
the level of impact of other particular incidents (such as piping or breaching), or
a combination of them in the expected consequences.

This chapter dealt with earth dams and their failure modes, emphasizing risk
assessment in a group of seven dams within the State of Mexico. The combination
of BBNs and expert judgment stemmed from the recognition that Mexican dam
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X1
a X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 1 0.00 0.00 -0.36 0.30 0.00 0.24 0.05 0.01 0.02 0.02
X2 1 -0.01 -0.28 0.19 0.10 0.22 0.04 0.00 0.01 0.01
X3 1 -0.41 -0.03 0.18 0.33 0.02 0.00 0.01 0.01
X4 1 -0.12 -0.11 -0.43 -0.05 0.00 -0.02 -0.01
X5 1 0.01 0.49 0.11 0.02 0.03 0.03
X6 1 0.51 0.04 0.01 0.01 0.02
X7 1 0.12 0.02 0.03 0.03
X8 1 0.14 0.23 0.22
X9 1 0.03 0.82
X10 1 0.48
X11 1

Table 6.5: Correlation matrix for the DS model.

aX1 = seismic frequency, X2 = rainfall rate, X3 = maintenance, X4 = landslide, X5 =
overtopping, X6 = piping, X7 = breaching, X8 = flooding, X9 = economic costs, X10 = human

costs, X11 = total costs

managers need simple, useful and practical tools for carrying out quantitative risk
assessment, based on a solid theoretical foundation. The tools should also be ap-
plicable to the context of their structures. In an effort to fulfill such requirements,
a model that considers some of the variables that have influenced dam failures
globally in the past has been proposed.

While the key objectives of the study have been achieved, there were a number
of limitations associated with the work. First of all, the number of experts was
somewhat low mainly because there is a lack of people with the required profile
to be considered as such. To find specialists aware of the current situation of
the dams under study proved to be a difficult task. In the event six people were
identified but only four could take part in the research.

The inclusion of more variables in the model should be considered. This is par-
ticularly relevant if some local cases have shown that other variables are important
in the risk evaluation apart from those reported in international statistics.

The equal weight combination was proposed as the preferred choice for the
decision maker. The choice was motivated mainly because of suboptimal perfor-
mance of each individual expert. This in turn led to a suboptimal performance
of the optimized decision makers. The training of experts in probabilistic as-
sessments is fundamental for the classical method for structure expert judgment.
Results from this study suggest that better training or a selection of seed variables
that characterizes better the expertise in the expert panel is desired for the follow
up of the project.

In spite of these observations, it is strongly believed that the methodology
utilized to build the model can be applied to carry out similar exercises in different
locations. Overall this research has demonstrated that the use of NPCDBBN in
Mexican dams’ risk assessment is not only feasible but also beneficial. Finally,
it should be emphasized that this research is hoped to be the starting point of
a bigger project aimed at developing a more comprehensive model applicable to
different types of dams in the country.



CHAPTER 7

Conclusions

7.1 About Vines

This thesis has dealt with applications of graphical models in risk and uncertainty
analysis. In particular, non-parametric continuous discrete Bayesian belief nets
are used to investigate risks in the aviation system and in earth dams. The theory
behind non-parametric continuous discrete Bayesian belief nets was built around
vines and for that reason the study of vines is the beginning of this thesis. For the
same reason some conclusions about the research presented in this thesis related
to vines will be presented first.

Vines have been investigated at least since the mid 1990’s. Graphical aspects
of vines have been less explored than their applications in simulation, statistics
and uncertainty analysis. In this thesis we have provided explicitly for the first
time results concerning the number of labeled vines on n nodes and the number
of labeled regular vines on n nodes. Algorithms for building both labeled vines
and labeled regular vines have been proposed. Though to our knowledge, no
applications have been published to this time for non regular vines, it is not
immediately clear that these objects will not find application in the future.

The value of obtaining
(
n
2

)
× (n−2)!×2

(n−2
2 )

as the number of labeled regular
vines on n nodes is more clearly recognized in recent applications. Obviously
this number grows extremely fast with n. Implementing the statistical techniques
proposed in the literature might be restrictive even for a modest value of n. Take
for example a data set with n = 7. According to table 2.1 there are 2,580,480
labeled regular vines of which one in principle could be the best fit to the data.
This number might be too large for a personal computer to perform the job. We
could think of restricting our choices to some class of tree-equivalent regular vine
in order to alleviate computational burden.

According to tables A.10 and A.11 in appendix A, there are 136 tree-equivalent
regular vines on 7 nodes. These are V33 (D-vine on 7 nodes) to V168 (C-vine on 7
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nodes). From tables A.10 and A.11 we see that if we would wish to fit only C-vines
or D-vines to our data set of 7 variables, the choices reduce to 2,520 possibilities
for either one. From the same tables we can see that besides D-vines and C-vines
9 other tree-equivalent regular vines admit also 2,520 labeled regular vines. In
other words, there are 11 tree equivalent regular vines that can be labeled in 2,520
different ways. These are V33 (D-vine on 7 nodes), V45, V48, V52, V86, V147,
V151, V154, V164, V167 and V168 (C-vine on 7 nodes) in tables A.10 and A.11.

Similarly, from tables A.10 and A.11, we may see that there are 24 tree-
equivalent regular vines that can be labeled in 5,040 different ways each. These
are V34, V35, V36, V38, V42, V49, V50, V53, V57 , V61, V74, V75, V76, V78,
V81, V103, V107, V110, V125, V148, V149, V155, V159 and V165. If we continue
in this way a distribution of tree-equivalent regular vines on 7 nodes according to
the number of admissible labellings may be obtained. The resulting distribution
is presented in Figure 7.1.
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Figure 7.1: Distribution of tree-equivalent regular vines on 7 nodes according to the
number of labeled regular vines admissible.

Of course the summation of the values observed in the vertical axis in Figure
7.1 is 136 which is the total number of tree-equivalent regular vines. As stated
before, C-vines and D-vines are included in the 11 tree-equivalent regular vines
that admit 2,520 labeled versions. There are however 134 other tree-equivalent
regular vines of which 9 admit also 2,520 labeled regular vines. Observe that if
we would choose any of V117 or V139 in in table A.11, there are 90,720 possible
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labeled regular vines for each, out of which one could be selected as the best fit
to the data. The choice of a subset of the 136 tree-equivalent regular vines to fit
data to it is not immediately evident.

In this thesis tree-equivalent vines were studied. For n ≥ 5 there are more
equivalence classes than tree-equivalent regular vines (see Joe [2010], Morales-
Nápoles [2010] and chapter 2). Equivalence classes of regular vines have recently
been characterized and a formula for dimension n ≥ 5 is presented in Joe et al.
[2010]. Whether using tree-equivalent or equivalence classes of regular vines for
statistical manipulation is also not entirely clear. In any case, this example shows
the need to think of using tree-equivalent regular vines or equivalence classes of
regular vines with criteria different than just their popularity.

In this thesis we have made a first step towards organizing vines and regular
vines in a more systematic way. We believe that this task is necessary in order
to progress more rapidly the space of applications for vines and make them more
accessible for people interested in the subject. Hence our recommendation is to
enhance efforts for a more systematic organization of vines including algorithms
for generating and storing them.

7.2 About Bayesian Networks and their Applications

7.2.1 Aviation Safety

The largest part of this thesis is concerned with the application of non-parametric
continuous-discrete Bayesian belief nets in aviation safety. A smaller application
is also presented for earth dams safety in the State of Mexico. We begin first by
discussing some conclusions about the applications presented. Then we turn our
attention to conclusions relative to Bayesian networks and elicitation of depen-
dence measures.

The Dutch ministry of transport, through the commission of a project of the
magnitude of CATS, has shown the importance that safety in the aviation sector
has for policy makers in the Netherlands. The CATS model can be a powerful tool
for risk and uncertainty analysts in their recommendations for policy makers. One
of the fundamental parts of the CATS model is the use of human reliability models.
The flight crew performance, air traffic control performance and maintenance
technician performance models are presented in chapter 3. Techniques for the
elicitation of rank and conditional rank correlations required for these models are
presented in chapter 4 and results from the actual elicitation which constitute the
basis of the models’ quantification are presented in chapter 5.

The techniques described in these chapters result in a large scale BBN with
1,504 nodes and 4,979 arcs. This can be readily used for risk and uncertainty
analyzes. Out of the 1,504 nodes included in the model, 45 represent the 3 hu-
man reliability models introduced in this thesis. These take account of all the
dependence in the model. The current version of CATS used in section 3.4 shows
that the variables in the flight crew and the maintenance technician models are
more highly correlated with accident probability than the variables in the air traf-
fic controllers model. From the 20 most highly correlated variables of the three
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human reliability models 16 correspond to flight crew performance, 3 to main-
tenance technician performance and 1 (aircraft generation) is shared by the two
models. These top 20 rank correlations range from roughly 0.1 to 0.3 in absolute
value. At first sight they might appear to be low values for rank correlations,
however their effect on accident probability can be very large.

Take for example Figure 7.2 where the 5th, 95th and mean value of the accident
distributions shown in Figure 3.17 are presented. Observe that the difference
between the 5th and 95th percentiles in the 3 cases span roughly 2 orders of
magnitude, hence the uncertainty over the 3 central estimates shown in Figure
7.2 is comparable. The first conditional distribution shows that the expectation
of accident probability given the oldest kind of aircrafts is larger than the 95th

percentile of the base line case. The expectation of the accident probability in
this case would be of 5 in a 100,000 flights. For the third conditional distribution
(with the additional condition of an unexperienced crew) the expectation is again
larger than the 95th percentile of the accident probability distribution given old
aircrafts. In this case we could expect about 3 accidents in 10,000 flights.
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1. Base Line
2. Conditional on oldest aircrafts
3. Conditional on oldest aircrafts and low experience crew

Figure 7.2: 5%-tile, mean and 95%-tile of the accident (fatal and non-fatal) distribution
from the CATS model. 1. Baseline; 2. Given aircraft generation = 1; 3. Given aircraft
generation = 1, captain experience = 9,467 hr. and first officer experience = 7,844 hr.
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The CATS model, which represents our pool of experts opinion, says that for
policy makers it would be of utmost importance to revise the number of flights
currently operating where unexperienced crew is flying the oldest kind of aircrafts.
Experienced pilots or new technology do not come in cheap. We can speculate that
these two risky conditions meet more often in world regions where the availability
of experienced pilots and new technology is scarce. Perhaps, if the aviation system
ought to be more safe, investments trying to correct this difference across regions
in the world should be considered.

7.2.2 Earth Dams Safety

Conclusions regarding the model for measuring earth dams risks have already
been discussed in chapter 6. The most important ones are briefly repeated next:
given the geometry of each of the dams under study and the assumption that no
maintenance is performed since its construction, an overtopping of 10 cm increases
the expectation of a flooding by a factor 1.79 in El Guarda up to a factor 2.11 in
San Joaq́ın. However, the total costs of such an overtopping are not as sensitive
as a flooding is (4 - 6% increase in expected costs). According to the equal weight
combination of the experts’ opinions used to build the model, once a dam has
failed, variations in the total costs will be minimal. In other words, according to
this combination of expert opinions if one or another dam under study fails with
an overtopping of 10 cm the consequences would end up in approximately the
same total costs.

This result is not strange given the fact that the 7 dams selected for the
demonstration model share similar characteristics. One of the objectives of this
model is to make it the basis for a larger model for investigating risks in larger
dams all over the country and not only in the State of Mexico. Such a model may
built significantly in the one presented in chapter 6.

7.2.3 About BBNs.

Bayesian networks have proved in this thesis to be a powerful tool for risk and un-
certainty analysis. In particular the vine-copula approach in which non-parametric
continuous-discrete BBNs relies require the use of rank and conditional rank corre-
lations. In this thesis methods for the quantification of these dependence measures
from experts have been proposed. Moreover, these methods have been used for
the quantification of rank correlations for inducing dependence in a large scale
model for air transport safety. The same kind of techniques have been used for
a smaller model for earth dams risks. The techniques proposed in chapter 4 are
flexible enough as to allow for some differences in the elicitation of such depen-
dence measures.

We have shown that one of the advantages of the vine-copula approach to
BBNs vs. discrete BBNs is that it makes them more flexible with respect to
modelling changes. For example when nodes are added or removed less parameters
might need to be re-elicited from experts. This however does not mean that in
general a re-elicitation would not be necessary.
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One observation that calls the attention is the fact that when marginal distri-
butions are very different across experts, the joint distribution obtained with the
method for combination described in chapter 4 of this thesis with equal weights
tends to ‘fade away’ the magnitude of the dependence even if individual experts
think bivariate rank correlations are of the same sign and magnitude. A simi-
lar situation could be observed in a combination within the class of performance
weight combinations. More research in this direction is advised.
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D. Delgado-Hernández, O. Morales-Nápoles, D. De-León-Escobedo, J. Rivero-
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APPENDIX A

Regular Vines Catalogue.

Lets go now from the zoo of reality to the zoo of
mythologies, the garden whose fauna is not of
lions but of sphinxes, griffins and centaurs. The
population of the second garden should exceed
that of the first; since a monster is no other
thing than a combination of elements of real
beings and the possibilities of the combinatorial
art border with the infinite.

Manual de zooloǵıa fantástica
J.L. Borges

Catalogues of trees on at most twelve nodes have been presented before. In
Moon [1967] pictures for trees with at most five nodes are presented. In Kasyanov
and Evstigneev [2000] a catalogue of tress with at most 8 nodes may be found1.
Harary [1969] presents trees on at most 10 nodes2. The 987 trees on at most 12
vertices (together with about 10,000 other graphs and many tables of interest for
graph theorists) may be found in Read and Wilson [2005].

Tables A.1 to A.4 presents the 48 trees on 8 nodes or less. These trees will
be used to present the tree sequences of tree-equivalent regular vines on at most
8 nodes. The purpose of this catalogue is to classify regular vines according
to their graphical structure. we hope that this catalogue will help researchers
interested in regular vines with their investigations. Like the authors of [Read and
Wilson, 2005] this author has “tried that the data is free of errors, but accept[s]
no responsibility for any loss of time, money, patience or temper occurring as
a result of any mistakes that may have crept into the pages of this [catalogue].

1This catalogue repeats a tree in eight nodes neglecting another one. In the same reference
tables with the number of non-isomorphic trees on less than 26 nodes may be found.

2Harary refers to Prins [1957] for diagrams of trees with at most 12 nodes. However this
reference is not available to the author at the moment of the publication of this catalogue.
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Furthermore, [the author] wishes it to be understood that any mistakes are entirely
the fault of the other author.”

Vines will be presented by pictures in next section and the names of the trees
from table A.1 and A.2 used in each level of each regular vine in tables A.8 to
A.11 will be displayed in order after the + sign. There is one tree-equivalent
regular vine on 3 nodes V3 = T3 + T2 + T1. Every regular vine on n nodes for
n > 3 must necessarily use V3 in its construction. For this reason T3 + T2 + T1
will be omitted when indicating the sequence of trees used in the construction of
different tree-equivalent regular vines. For example the D-vine on 4 nodes will be
V4 = T4 + V3 = T4. Next the catalogue is presented.
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Prüfer code
1 12 11 123

example

T1 T2 T3 T4 T5 T6
# Labeled Trees 1 1 3 12 4 60

# Regular Vines
1 1 1 1 3 1

per labeled tree

# Tree-Equivalent
1 1 1 1 1 1

Reg. Vines / tree

Prüfer code
112 111 1234 1123 1213 2244

example

T7 T8 T9 T10 T11 T12
# Labeled Trees 60 5 360 360 360 90

# Regular Vines
5 24 1 7 11 48

per labeled tree

# Tree-Equivalent
2 2 1 3 3 5

Reg. Vines / tree

Prüfer code
1112 1111 12345 12344 12234 12324

example

T13 T14 T15 T16 T17 T18
# Labeled Trees 120 6 2,520 2,520 5,040 840

# Regular Vines
75 480 1 9 19 33

per labeled tree

# Tree-Equivalent
5 5 1 4 7 3

Reg. Vines / tree

Table A.1: Trees with at most 7 nodes.
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Prüfer code
11233 11223 11123 12223

example

T19 T20 T21 T22
# Labeled Trees 630 2,520 840 1,260

# Regular Vines
80 168 168 342

per labeled tree

# Tree-Equivalent
9 17 12 17

Reg. Vines / tree

Prüfer code
11122 11112 11111

example

T23 T24 T25
# Labeled Trees 420 210 7

# Regular Vines
1,452 2,928 23,040

per labeled tree

# Tree-Equivalent
22 22 22

Reg. Vines / tree

Table A.2: Trees with at most 7 nodes (Continuation).
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Prüfer code
123456 123455 122345 123345 123435 112324

example

T26 T27 T28 T29 T30 T31
# Labeled Trees

20,160 20,160 40,320 20,160 20,160 10,080

# Regular Vines
1 11 29 39 71 820

per labeled tree

# Tree-Equivalent
1 5 12 8 10 44

Reg. Vines / tree

Prüfer code
112344 122344 122334 123344 112233 122324

example

T32 T33 T34 T35 T36 T37
# Labeled Trees 5,040 20,160 20,160 20,160 5,040 6,720

# Regular Vines
120 315 815 423 4,520 2,181

per labeled tree

# Tree-Equivalent
14 38 55 41 72 44

Reg. Vines / tree

Table A.3: Trees with at most 8 nodes.
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Prüfer code
244466 123444 123334 112333 122333 111222

example

T38 T39 T40 T41 T42 T43
# Labeled Trees 10,080 6,720 20,160 3,360 6,720 560

# Regular Vines
11,246 315 1,046 3,384 8,667 89,712

per labeled tree

# Tree-Equivalent
114 24 61 72 111 133

Reg. Vines / tree

Prüfer code
122223 123333 112222 122222 222222

example

T44 T45 T46 T47 T48
# Labeled Trees 3,360 1,680 840 336 8

# Regular Vines
27,222 11,160 117,072 279,000 2,580,480

per labeled tree

# Tree-Equivalent
114 83 136 136 136

Reg. Vines / tree

Table A.4: Trees with at most 8 nodes (Continuation).
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Prüfer code
2345678 2345578 2345668 2345677 2345658 2345478

example

T49 T50 T51 T52 T53 T54
# Labeled Trees 181,440 362,880 362,880 181,440 181,440 181,440

# Regular Vines
1 69 41 13 129 181

on each tree

# Tree-Equivalent
1 21 18 6 22 18

Reg. Vines / tree

Prüfer code
2345477 2335658 2343677 2335668 2344668 2245677

example

T55 T56 T57 T58 T59 T60
# Labeled Trees 181,440 181,440 90,720 181,440 362,880 45,360

# Regular Vines
2,651 5,390 1,708 1,646 2,708 168

on each tree

# Tree-Equivalent
164 203 104 125 221 20

Reg. Vines / tree

Prüfer code
2335677 2344677 2345577 2344478 2345558 2345666

example

T61 T62 T63 T64 T65 T66
# Labeled Trees 181,440 181,440 181,440 90,720 181,440 60,480

# Regular Vines
528 887 887 4,202 2,567 528

on each tree

# Tree-Equivalent
70 105 91 147 162 42

Reg. Vines / tree

Table A.5: Trees with 9 nodes.
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Prüfer code
2345448 2343638 2245577 2335577 2245477 2344438

example

T67 T68 T69 T70 T71 T72
# Labeled Trees 181,440 15,120 90,720 181,440 45,360 30,240

# Regular Vines
8,738 18,504 11,296 34,417 36,892 72,546

on each tree

# Tree-Equivalent
275 99 287 628 350 428

Reg. Vines / tree

Prüfer code
2343377 2225668 2333668 2344666 2225677 2333677

example

T73 T74 T75 T76 T77 T78
# Labeled Trees 90,720 60,480 181,440 60,480 30,240 90,720

# Regular Vines
120,444 20,904 99,028 34,143 6,756 32,812

on each tree

# Tree-Equivalent
724 332 840 439 166 516

Reg. Vines / tree

Prüfer code
2344477 2345555 2344448 2333637 2244666 2244477

example

T79 T80 T81 T82 T83 T84
# Labeled Trees 90,720 15,120 60,480 30,240 30,240 22,680

# Regular Vines
54,004 32,688 149,901 360,084 428,388 680,576

on each tree

# Tree-Equivalent
607 245 765 724 980 1,034

Reg. Vines / tree

Table A.6: Trees with 9 nodes (Continuation).
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Prüfer code
2225666 2333666 2245555 2333377

example

T85 T86 T87 T88
# Labeled Trees 5,040 30,240 7,560 30,240

# Regular Vines
262,080 1,232,820 414,432 1,919,610

on each tree

# Tree-Equivalent
465 1,328 735 1,328

Reg. Vines / tree

Prüfer code
2335555 2344444 2333338 2225555

example

T89 T90 T91 T92
# Labeled Trees 15,120 3,024 7,560 2,520

# Regular Vines
1,232,340 1,869,120 5,255,904 14,889,744

on each tree

# Tree-Equivalent
1,195 901 1,328 1,464

Reg. Vines / tree

Prüfer code
2244444 2333333 1111111

example

T93 T94 T95
# Labeled Trees 1,512 504 9

# Regular Vines
23,334,480 62,523,360 660,602,880

on each tree

# Tree-Equivalent
1,464 1,464 1,464

Reg. Vines / tree

Table A.7: Trees with 9 nodes (Continuation).
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V1 = T1 V2 = T2 V3 = T3+T2+T1 V4 = T4 V5 = T5

1 1 3 12 12

V6 = T6+T4 V7 = T7+T4 V8 = T7+T5

60 120 180

V9 = T8+T4 V10 = T8+T5 V11 = T9+T6+T4

60 60 360

V12 = T10+T6+T4 V13 = T10+T7+T4 V14 = T10+T7+T5

720 720 1,080

V15 = T11+T6+T4 V16 = T11+T7+T4 V17 = T11+T7+T5

360 1,440 2,160

Table A.8: Tree-equivalent regular vines with at most 6 nodes.
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V18 = T12+T6+T4 V19 = T12+T7+T4 V20 = T12+T7+T5

360 720 1,080

V21 = T12+T8+T4 V22 = T12+T8+T5 V23 = T13+T6+T4

1,080 1,080 720

V24 = T13+T7+T4 V25 = T13+T7+T5 V26 = T13+T8+T4

2,160 3,240 1,440

V27 = T13+T8+T5 V28 = T14+T6+T4 V29 = T14+T7+T4

1,440 360 720

V30 = T14+T7+T5 V31 = T14+T8+T4 V32 = T14+T8+T5

1,080 360 360

Table A.9: Tree-equivalent regular vines with at most 6 nodes (Continuation).
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Tree sequence & Tree sequence &

# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V33 = T15+T9+T6+T4 2,520 V68 = T20+T12+T8+T5 30,240
V34 = T16+T9+T6+T4 5,040 V69 = T20+T13+T6+T4 15,120
V35 = T16+T10+T6+T4 5,040 V70 = T20+T13+T7+T4 45,360
V36 = T16+T10+T7+T4 5,040 V71 = T20+T13+T7+T5 68,040
V37 = T16+T10+T7+T5 7,560 V72 = T20+T13+T8+T4 30,240
V38 = T17+T9+T6+T4 5,040 V73 = T20+T13+T8+T5 30,240
V39 = T17+T10+T6+T4 10,080 V74 = T21+T9+T6+T4 5,040
V40 = T17+T10+T7+T4 10,080 V75 = T21+T10+T6+T4 5,040
V41 = T17+T10+T7+T5 15,120 V76 = T21+T10+T7+T4 5,040
V42 = T17+T11+T6+T4 5,040 V77 = T21+T10+T7+T5 7,560
V43 = T17+T11+T7+T4 20,160 V78 = T21+T11+T6+T4 5,040
V44 = T17+T11+T7+T5 30,240 V79 = T21+T11+T7+T4 20,160
V45 = T18+T11+T6+T4 2,520 V80 = T21+T11+T7+T5 30,240
V46 = T18+T11+T7+T4 10,080 V81 = T21+T13+T6+T4 5,040
V47 = T18+T11+T7+T5 15,120 V82 = T21+T13+T7+T4 15,120
V48 = T19+T9+T6+T4 2,520 V83 = T21+T13+T7+T5 22,680
V49 = T19+T10+T6+T4 5,040 V84 = T21+T13+T8+T4 10,080
V50 = T19+T10+T7+T4 5,040 V85 = T21+T13+T8+T5 10,080
V51 = T19+T10+T7+T5 7,560 V86 = T22+T9+T6+T4 2,520
V52 = T19+T12+T6+T4 2,520 V87 = T22+T10+T6+T4 10,080
V53 = T19+T12+T7+T4 5,040 V88 = T22+T10+T7+T4 10,080
V54 = T19+T12+T7+T5 7,560 V89 = T22+T10+T7+T5 15,120
V55 = T19+T12+T8+T4 7,560 V90 = T22+T11+T6+T4 7,560
V56 = T19+T12+T8+T5 7,560 V91 = T22+T11+T7+T4 30,240
V57 = T20+T9+T6+T4 5,040 V92 = T22+T11+T7+T5 45,360
V58 = T20+T10+T6+T4 15,120 V93 = T22+T12+T6+T4 10,080
V59 = T20+T10+T7+T4 15,120 V94 = T22+T12+T7+T4 20,160
V60 = T20+T10+T7+T5 22,680 V95 = T22+T12+T7+T5 30,240
V61 = T20+T11+T6+T4 5,040 V96 = T22+T12+T8+T4 30,240
V62 = T20+T11+T7+T4 20,160 V97 = T22+T12+T8+T5 30,240
V63 = T20+T11+T7+T5 30,240 V98 = T22+T13+T6+T4 15,120
V64 = T20+T12+T6+T4 10,080 V99 = T22+T13+T7+T4 45,360
V65 = T20+T12+T7+T4 20,160 V100 = T22+T13+T7+T5 68,040
V66 = T20+T12+T7+T5 30,240 V101 = T22+T13+T8+T4 30,240
V67 = T20+T12+T8+T4 30,240 V102 = T22+T13+T8+T5 30,240

Table A.10: Tree-equivalent regular vines with 7 nodes.
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Tree sequence & Tree sequence &

# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V103 = T23+T9+T6+T4 5,040 V136 = T24+T12+T8+T5 30,240
V104 = T23+T10+T6+T4 10,080 V137 = T24+T13+T6+T4 20,160
V105 = T23+T10+T7+T4 10,080 V138 = T24+T13+T7+T4 60,480
V106 = T23+T10+T7+T5 15,120 V139 = T24+T13+T7+T5 90,720
V107 = T23+T11+T6+T4 5,040 V140 = T24+T13+T8+T4 40,320
V108 = T23+T11+T7+T4 20,160 V141 = T24+T13+T8+T5 40,320
V109 = T23+T11+T7+T5 30,240 V142 = T24+T14+T6+T4 12,600
V110 = T23+T12+T6+T4 5,040 V143 = T24+T14+T7+T4 25,200
V111 = T23+T12+T7+T4 10,080 V144 = T24+T14+T7+T5 37,800
V112 = T23+T12+T7+T5 15,120 V145 = T24+T14+T8+T4 12,600
V113 = T23+T12+T8+T4 15,120 V146 = T24+T14+T8+T5 12,600
V114 = T23+T12+T8+T5 15,120 V147 = T25+T9+T6+T4 2,520
V115 = T23+T13+T6+T4 20,160 V148 = T25+T10+T6+T4 5,040
V116 = T23+T13+T7+T4 60,480 V149 = T25+T10+T7+T4 5,040
V117 = T23+T13+T7+T5 90,720 V150 = T25+T10+T7+T5 7,560
V118 = T23+T13+T8+T4 40,320 V151 = T25+T11+T6+T4 2,520
V119 = T23+T13+T8+T5 40,320 V152 = T25+T11+T7+T4 10,080
V120 = T23+T14+T6+T4 25,200 V153 = T25+T11+T7+T5 15,120
V121 = T23+T14+T7+T4 50,400 V154 = T25+T12+T6+T4 2,520
V122 = T23+T14+T7+T5 75,600 V155 = T25+T12+T7+T4 5,040
V123 = T23+T14+T8+T4 25,200 V156 = T25+T12+T7+T5 7,560
V124 = T23+T14+T8+T5 25,200 V157 = T25+T12+T8+T4 7,560
V125 = T24+T9+T6+T4 5,040 V158 = T25+T12+T8+T5 7,560
V126 = T24+T10+T6+T4 15,120 V159 = T25+T13+T6+T4 5,040
V127 = T24+T10+T7+T4 15,120 V160 = T25+T13+T7+T4 15,120
V128 = T24+T10+T7+T5 22,680 V161 = T25+T13+T7+T5 22,680
V129 = T24+T11+T6+T4 7,560 V162 = T25+T13+T8+T4 10,080
V130 = T24+T11+T7+T4 30,240 V163 = T25+T13+T8+T5 10,080
V131 = T24+T11+T7+T5 45,360 V164 = T25+T14+T6+T4 2,520
V132 = T24+T12+T6+T4 10,080 V165 = T25+T14+T7+T4 5,040
V133 = T24+T12+T7+T4 20,160 V166 = T25+T14+T7+T5 7,560
V134 = T24+T12+T7+T5 30,240 V167 = T25+T14+T8+T4 2,520
V135 = T24+T12+T8+T4 30,240 V168 = T25+T14+T8+T5 2,520

Table A.11: Tree-equivalent regular vines with 7 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V169 = T26+T15+T9+T6+T4 20,160 V204 = T30+T17+T9+T6+T4 40,320
V170 = T27+T16+T10+T7+T5 60,480 V205 = T31+T22+T11+T6+T4 60,480
V171 = T27+T16+T10+T7+T4 40,320 V206 = T31+T22+T11+T7+T4 241,920
V172 = T27+T16+T10+T6+T4 40,320 V207 = T31+T22+T11+T7+T5 362,880
V173 = T27+T16+T9+T6+T4 40,320 V208 = T31+T22+T9+T6+T4 20,160
V174 = T27+T15+T9+T6+T4 40,320 V209 = T31+T22+T10+T7+T5 120,960
V175 = T28+T16+T9+T6+T4 80,640 V210 = T31+T22+T10+T7+T4 80,640
V176 = T28+T16+T10+T6+T4 80,640 V211 = T31+T22+T10+T6+T4 80,640
V177 = T28+T16+T10+T7+T4 80,640 V212 = T31+T22+T13+T7+T4 362,880
V178 = T28+T16+T10+T7+T5 120,960 V213 = T31+T22+T13+T7+T5 544,320
V179 = T28+T17+T10+T6+T4 80,640 V214 = T31+T22+T13+T6+T4 120,960
V180 = T28+T17+T10+T7+T4 80,640 V215 = T31+T22+T13+T8+T5 241,920
V181 = T28+T17+T10+T7+T5 120,960 V216 = T31+T22+T13+T8+T4 241,920
V182 = T28+T17+T9+T6+T4 40,320 V217 = T31+T22+T12+T6+T4 80,640
V183 = T28+T17+T11+T7+T4 161,280 V218 = T31+T22+T12+T7+T5 241,920
V184 = T28+T17+T11+T7+T5 241,920 V219 = T31+T22+T12+T7+T4 161,280
V185 = T28+T17+T11+T6+T4 40,320 V220 = T31+T22+T12+T8+T5 241,920
V186 = T28+T15+T9+T6+T4 40,320 V221 = T31+T22+T12+T8+T4 241,920
V187 = T29+T17+T10+T6+T4 80,640 V222 = T31+T20+T11+T7+T4 161,280
V188 = T29+T17+T10+T7+T4 80,640 V223 = T31+T20+T11+T7+T5 241,920
V189 = T29+T17+T10+T7+T5 120,960 V224 = T31+T20+T11+T6+T4 40,320
V190 = T29+T17+T11+T7+T4 161,280 V225 = T31+T20+T10+T7+T5 181,440
V191 = T29+T17+T11+T7+T5 241,920 V226 = T31+T20+T10+T7+T4 120,960
V192 = T29+T17+T11+T6+T4 40,320 V227 = T31+T20+T10+T6+T4 120,960
V193 = T29+T17+T9+T6+T4 40,320 V228 = T31+T20+T9+T6+T4 40,320
V194 = T29+T15+T9+T6+T4 20,160 V229 = T31+T20+T13+T7+T4 362,880
V195 = T30+T18+T11+T6+T4 60,480 V230 = T31+T20+T13+T7+T5 544,320
V196 = T30+T18+T11+T7+T4 241,920 V231 = T31+T20+T13+T6+T4 120,960
V197 = T30+T18+T11+T7+T5 362,880 V232 = T31+T20+T13+T8+T5 241,920
V198 = T30+T17+T11+T7+T4 161,280 V233 = T31+T20+T13+T8+T4 241,920
V199 = T30+T17+T11+T7+T5 241,920 V234 = T31+T20+T12+T7+T5 241,920
V200 = T30+T17+T11+T6+T4 40,320 V235 = T31+T20+T12+T7+T4 161,280
V201 = T30+T17+T10+T7+T5 120,960 V236 = T31+T20+T12+T6+T4 80,640
V202 = T30+T17+T10+T7+T4 80,640 V237 = T31+T20+T12+T8+T5 241,920
V203 = T30+T17+T10+T6+T4 80,640 V238 = T31+T20+T12+T8+T4 241,920

Table A.12: Tree-equivalent regular vines with 8 nodes.
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V239 = T31+T18+T11+T7+T5 362,880 V274 = T33+T16+T10+T7+T4 120,960
V240 = T31+T18+T11+T7+T4 241,920 V275 = T33+T16+T10+T7+T5 181,440
V241 = T31+T18+T11+T6+T4 60,480 V276 = T33+T20+T12+T7+T5 241,920
V242 = T31+T17+T11+T7+T4 161,280 V277 = T33+T20+T12+T7+T4 161,280
V243 = T31+T17+T11+T7+T5 241,920 V278 = T33+T20+T12+T6+T4 80,640
V244 = T31+T17+T11+T6+T4 40,320 V279 = T33+T20+T12+T8+T5 241,920
V245 = T31+T17+T10+T7+T5 120,960 V280 = T33+T20+T12+T8+T4 241,920
V246 = T31+T17+T10+T7+T4 80,640 V281 = T33+T20+T10+T6+T4 120,960
V247 = T31+T17+T10+T6+T4 80,640 V282 = T33+T20+T10+T7+T4 120,960
V248 = T31+T17+T9+T6+T4 40,320 V283 = T33+T20+T10+T7+T5 181,440
V249 = T32+T19+T10+T7+T5 60,480 V284 = T33+T20+T9+T6+T4 40,320
V250 = T32+T19+T10+T7+T4 40,320 V285 = T33+T20+T13+T8+T5 241,920
V251 = T32+T19+T10+T6+T4 40,320 V286 = T33+T20+T13+T8+T4 241,920
V252 = T32+T19+T9+T6+T4 20,160 V287 = T33+T20+T13+T7+T4 362,880
V253 = T32+T19+T12+T7+T5 60,480 V288 = T33+T20+T13+T7+T5 544,320
V254 = T32+T19+T12+T7+T4 40,320 V289 = T33+T20+T13+T6+T4 120,960
V255 = T32+T19+T12+T6+T4 20,160 V290 = T33+T20+T11+T7+T4 161,280
V256 = T32+T19+T12+T8+T5 60,480 V291 = T33+T20+T11+T7+T5 241,920
V257 = T32+T19+T12+T8+T4 60,480 V292 = T33+T20+T11+T6+T4 40,320
V258 = T32+T16+T9+T6+T4 40,320 V293 = T33+T17+T10+T6+T4 80,640
V259 = T32+T16+T10+T6+T4 40,320 V294 = T33+T17+T10+T7+T4 80,640
V260 = T32+T16+T10+T7+T4 40,320 V295 = T33+T17+T10+T7+T5 120,960
V261 = T32+T16+T10+T7+T5 60,480 V296 = T33+T17+T9+T6+T4 40,320
V262 = T32+T15+T9+T6+T4 20,160 V297 = T33+T17+T11+T7+T4 161,280
V263 = T33+T19+T10+T7+T5 241,920 V298 = T33+T17+T11+T7+T5 241,920
V264 = T33+T19+T10+T7+T4 161,280 V299 = T33+T17+T11+T6+T4 40,320
V265 = T33+T19+T10+T6+T4 161,280 V300 = T33+T15+T9+T6+T4 40,320
V266 = T33+T19+T9+T6+T4 80,640 V301 = T34+T20+T11+T7+T4 322,560
V267 = T33+T19+T12+T7+T5 241,920 V302 = T34+T20+T11+T7+T5 483,840
V268 = T33+T19+T12+T7+T4 161,280 V303 = T34+T20+T11+T6+T4 80,640
V269 = T33+T19+T12+T6+T4 80,640 V304 = T34+T20+T10+T7+T5 362,880
V270 = T33+T19+T12+T8+T5 241,920 V305 = T34+T20+T10+T7+T4 241,920
V271 = T33+T19+T12+T8+T4 241,920 V306 = T34+T20+T10+T6+T4 241,920
V272 = T33+T16+T9+T6+T4 120,960 V307 = T34+T20+T9+T6+T4 80,640
V273 = T33+T16+T10+T6+T4 120,960 V308 = T34+T20+T13+T7+T4 725,760

Table A.13: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V309 = T34+T20+T13+T7+T5 1,088,640 V344 = T34+T22+T11+T6+T4 120,960
V310 = T34+T20+T13+T6+T4 241,920 V345 = T34+T22+T11+T7+T4 483,840
V311 = T34+T20+T13+T8+T5 483,840 V346 = T34+T22+T11+T7+T5 725,760
V312 = T34+T20+T13+T8+T4 483,840 V347 = T34+T22+T9+T6+T4 40,320
V313 = T34+T20+T12+T7+T5 483,840 V348 = T34+T17+T10+T6+T4 80,640
V314 = T34+T20+T12+T7+T4 322,560 V349 = T34+T17+T10+T7+T4 80,640
V315 = T34+T20+T12+T6+T4 161,280 V350 = T34+T17+T10+T7+T5 120,960
V316 = T34+T20+T12+T8+T5 483,840 V351 = T34+T17+T9+T6+T4 40,320
V317 = T34+T20+T12+T8+T4 483,840 V352 = T34+T17+T11+T7+T4 161,280
V318 = T34+T19+T10+T7+T5 241,920 V353 = T34+T17+T11+T7+T5 241,920
V319 = T34+T19+T10+T7+T4 161,280 V354 = T34+T17+T11+T6+T4 40,320
V320 = T34+T19+T10+T6+T4 161,280 V355 = T34+T15+T9+T6+T4 20,160
V321 = T34+T19+T9+T6+T4 80,640 V356 = T35+T20+T12+T7+T5 241,920
V322 = T34+T19+T12+T7+T5 241,920 V357 = T35+T20+T12+T7+T4 161,280
V323 = T34+T19+T12+T7+T4 161,280 V358 = T35+T20+T12+T6+T4 80,640
V324 = T34+T19+T12+T6+T4 80,640 V359 = T35+T20+T12+T8+T5 241,920
V325 = T34+T19+T12+T8+T5 241,920 V360 = T35+T20+T12+T8+T4 241,920
V326 = T34+T19+T12+T8+T4 241,920 V361 = T35+T20+T10+T6+T4 120,960
V327 = T34+T16+T9+T6+T4 80,640 V362 = T35+T20+T10+T7+T4 120,960
V328 = T34+T16+T10+T6+T4 80,640 V363 = T35+T20+T10+T7+T5 181,440
V329 = T34+T16+T10+T7+T4 80,640 V364 = T35+T20+T13+T8+T5 241,920
V330 = T34+T16+T10+T7+T5 120,960 V365 = T35+T20+T13+T8+T4 241,920
V331 = T34+T22+T13+T7+T4 725,760 V366 = T35+T20+T13+T7+T4 362,880
V332 = T34+T22+T13+T7+T5 1,088,640 V367 = T35+T20+T13+T7+T5 544,320
V333 = T34+T22+T13+T6+T4 241,920 V368 = T35+T20+T13+T6+T4 120,960
V334 = T34+T22+T13+T8+T5 483,840 V369 = T35+T20+T11+T7+T4 161,280
V335 = T34+T22+T13+T8+T4 483,840 V370 = T35+T20+T11+T7+T5 241,920
V336 = T34+T22+T10+T6+T4 161,280 V371 = T35+T20+T11+T6+T4 40,320
V337 = T34+T22+T10+T7+T4 161,280 V372 = T35+T20+T9+T6+T4 40,320
V338 = T34+T22+T10+T7+T5 241,920 V373 = T35+T17+T10+T6+T4 161,280
V339 = T34+T22+T12+T7+T5 483,840 V374 = T35+T17+T10+T7+T4 161,280
V340 = T34+T22+T12+T7+T4 322,560 V375 = T35+T17+T10+T7+T5 241,920
V341 = T34+T22+T12+T6+T4 161,280 V376 = T35+T17+T11+T7+T4 322,560
V342 = T34+T22+T12+T8+T5 483,840 V377 = T35+T17+T11+T7+T5 483,840
V343 = T34+T22+T12+T8+T4 483,840 V378 = T35+T17+T11+T6+T4 80,640

Table A.14: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V379 = T35+T17+T9+T6+T4 80,640 V414 = T36+T23+T14+T8+T5 604,800
V380 = T35+T21+T13+T8+T5 241,920 V415 = T36+T23+T14+T8+T4 604,800
V381 = T35+T21+T13+T8+T4 241,920 V416 = T36+T23+T14+T7+T5 1,814,400
V382 = T35+T21+T13+T7+T4 362,880 V417 = T36+T23+T14+T7+T4 1,209,600
V383 = T35+T21+T13+T7+T5 544,320 V418 = T36+T23+T14+T6+T4 604,800
V384 = T35+T21+T13+T6+T4 120,960 V419 = T36+T21+T10+T6+T4 120,960
V385 = T35+T21+T11+T7+T4 483,840 V420 = T36+T21+T10+T7+T4 120,960
V386 = T35+T21+T11+T7+T5 725,760 V421 = T36+T21+T10+T7+T5 181,440
V387 = T35+T21+T11+T6+T4 120,960 V422 = T36+T21+T9+T6+T4 120,960
V388 = T35+T21+T10+T7+T5 181,440 V423 = T36+T21+T11+T7+T4 483,840
V389 = T35+T21+T10+T7+T4 120,960 V424 = T36+T21+T11+T7+T5 725,760
V390 = T35+T21+T10+T6+T4 120,960 V425 = T36+T21+T11+T6+T4 120,960
V391 = T35+T21+T9+T6+T4 120,960 V426 = T36+T21+T13+T7+T4 362,880
V392 = T35+T16+T10+T7+T5 60,480 V427 = T36+T21+T13+T7+T5 544,320
V393 = T35+T16+T10+T7+T4 40,320 V428 = T36+T21+T13+T6+T4 120,960
V394 = T35+T16+T10+T6+T4 40,320 V429 = T36+T21+T13+T8+T5 241,920
V395 = T35+T16+T9+T6+T4 40,320 V430 = T36+T21+T13+T8+T4 241,920
V396 = T35+T15+T9+T6+T4 40,320 V431 = T36+T20+T11+T7+T4 161,280
V397 = T36+T23+T12+T7+T5 362,880 V432 = T36+T20+T11+T7+T5 241,920
V398 = T36+T23+T12+T7+T4 241,920 V433 = T36+T20+T11+T6+T4 40,320
V399 = T36+T23+T12+T6+T4 120,960 V434 = T36+T20+T9+T6+T4 40,320
V400 = T36+T23+T12+T8+T5 362,880 V435 = T36+T20+T10+T7+T5 181,440
V401 = T36+T23+T12+T8+T4 362,880 V436 = T36+T20+T10+T7+T4 120,960
V402 = T36+T23+T10+T6+T4 241,920 V437 = T36+T20+T10+T6+T4 120,960
V403 = T36+T23+T10+T7+T4 241,920 V438 = T36+T20+T13+T7+T4 362,880
V404 = T36+T23+T10+T7+T5 362,880 V439 = T36+T20+T13+T7+T5 544,320
V405 = T36+T23+T9+T6+T4 120,960 V440 = T36+T20+T13+T6+T4 120,960
V406 = T36+T23+T13+T8+T5 967,680 V441 = T36+T20+T13+T8+T5 241,920
V407 = T36+T23+T13+T8+T4 967,680 V442 = T36+T20+T13+T8+T4 241,920
V408 = T36+T23+T13+T7+T4 1,451,520 V443 = T36+T20+T12+T7+T5 241,920
V409 = T36+T23+T13+T7+T5 2,177,280 V444 = T36+T20+T12+T7+T4 161,280
V410 = T36+T23+T13+T6+T4 483,840 V445 = T36+T20+T12+T6+T4 80,640
V411 = T36+T23+T11+T7+T4 483,840 V446 = T36+T20+T12+T8+T5 241,920
V412 = T36+T23+T11+T7+T5 725,760 V447 = T36+T20+T12+T8+T4 241,920
V413 = T36+T23+T11+T6+T4 120,960 V448 = T36+T19+T10+T7+T5 60,480

Table A.15: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V449 = T36+T19+T10+T7+T4 40,320 V484 = T37+T22+T12+T8+T5 483,840
V450 = T36+T19+T10+T6+T4 40,320 V485 = T37+T22+T12+T8+T4 483,840
V451 = T36+T19+T9+T6+T4 20,160 V486 = T37+T20+T11+T7+T4 322,560
V452 = T36+T19+T12+T7+T5 60,480 V487 = T37+T20+T11+T7+T5 483,840
V453 = T36+T19+T12+T7+T4 40,320 V488 = T37+T20+T11+T6+T4 80,640
V454 = T36+T19+T12+T6+T4 20,160 V489 = T37+T20+T10+T7+T5 362,880
V455 = T36+T19+T12+T8+T5 60,480 V490 = T37+T20+T10+T7+T4 241,920
V456 = T36+T19+T12+T8+T4 60,480 V491 = T37+T20+T10+T6+T4 241,920
V457 = T36+T16+T9+T6+T4 40,320 V492 = T37+T20+T9+T6+T4 80,640
V458 = T36+T16+T10+T6+T4 40,320 V493 = T37+T20+T13+T7+T4 725,760
V459 = T36+T16+T10+T7+T4 40,320 V494 = T37+T20+T13+T7+T5 1,088,640
V460 = T36+T16+T10+T7+T5 60,480 V495 = T37+T20+T13+T6+T4 241,920
V461 = T36+T17+T10+T7+T4 80,640 V496 = T37+T20+T13+T8+T5 483,840
V462 = T36+T17+T10+T7+T5 120,960 V497 = T37+T20+T13+T8+T4 483,840
V463 = T36+T17+T10+T6+T4 80,640 V498 = T37+T20+T12+T7+T5 483,840
V464 = T36+T17+T9+T6+T4 40,320 V499 = T37+T20+T12+T7+T4 322,560
V465 = T36+T17+T11+T7+T4 161,280 V500 = T37+T20+T12+T6+T4 161,280
V466 = T36+T17+T11+T7+T5 241,920 V501 = T37+T20+T12+T8+T5 483,840
V467 = T36+T17+T11+T6+T4 40,320 V502 = T37+T20+T12+T8+T4 483,840
V468 = T36+T15+T9+T6+T4 20,160 V503 = T37+T17+T9+T6+T4 40,320
V469 = T37+T22+T11+T7+T5 725,760 V504 = T37+T17+T10+T6+T4 80,640
V470 = T37+T22+T11+T7+T4 483,840 V505 = T37+T17+T10+T7+T4 80,640
V471 = T37+T22+T11+T6+T4 120,960 V506 = T37+T17+T10+T7+T5 120,960
V472 = T37+T22+T9+T6+T4 40,320 V507 = T37+T17+T11+T6+T4 40,320
V473 = T37+T22+T10+T7+T5 241,920 V508 = T37+T17+T11+T7+T4 161,280
V474 = T37+T22+T10+T7+T4 161,280 V509 = T37+T17+T11+T7+T5 241,920
V475 = T37+T22+T10+T6+T4 161,280 V510 = T37+T18+T11+T6+T4 20,160
V476 = T37+T22+T13+T7+T5 1,088,640 V511 = T37+T18+T11+T7+T4 80,640
V477 = T37+T22+T13+T7+T4 725,760 V512 = T37+T18+T11+T7+T5 120,960
V478 = T37+T22+T13+T6+T4 241,920 V513 = T38+T23+T12+T7+T5 1,088,640
V479 = T37+T22+T13+T8+T5 483,840 V514 = T38+T23+T12+T7+T4 725,760
V480 = T37+T22+T13+T8+T4 483,840 V515 = T38+T23+T12+T6+T4 362,880
V481 = T37+T22+T12+T7+T5 483,840 V516 = T38+T23+T12+T8+T5 1,088,640
V482 = T37+T22+T12+T7+T4 322,560 V517 = T38+T23+T12+T8+T4 1,088,640
V483 = T37+T22+T12+T6+T4 161,280 V518 = T38+T23+T10+T6+T4 725,760

Table A.16: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V519 = T38+T23+T10+T7+T4 725,760 V554 = T38+T19+T12+T8+T5 241,920
V520 = T38+T23+T10+T7+T5 1,088,640 V555 = T38+T19+T12+T8+T4 241,920
V521 = T38+T23+T9+T6+T4 362,880 V556 = T38+T16+T9+T6+T4 120,960
V522 = T38+T23+T13+T8+T5 2,903,040 V557 = T38+T16+T10+T6+T4 120,960
V523 = T38+T23+T13+T8+T4 2,903,040 V558 = T38+T16+T10+T7+T4 120,960
V524 = T38+T23+T13+T7+T4 4,354,560 V559 = T38+T16+T10+T7+T5 181,440
V525 = T38+T23+T13+T7+T5 6,531,840 V560 = T38+T20+T11+T7+T4 645,120
V526 = T38+T23+T13+T6+T4 1,451,520 V561 = T38+T20+T11+T7+T5 967,680
V527 = T38+T23+T11+T7+T4 1,451,520 V562 = T38+T20+T11+T6+T4 161,280
V528 = T38+T23+T11+T7+T5 2,177,280 V563 = T38+T20+T9+T6+T4 161,280
V529 = T38+T23+T11+T6+T4 362,880 V564 = T38+T20+T10+T7+T5 725,760
V530 = T38+T23+T14+T8+T5 1,814,400 V565 = T38+T20+T10+T7+T4 483,840
V531 = T38+T23+T14+T8+T4 1,814,400 V566 = T38+T20+T10+T6+T4 483,840
V532 = T38+T23+T14+T7+T5 5,443,200 V567 = T38+T20+T13+T7+T4 1,451,520
V533 = T38+T23+T14+T7+T4 3,628,800 V568 = T38+T20+T13+T7+T5 2,177,280
V534 = T38+T23+T14+T6+T4 1,814,400 V569 = T38+T20+T13+T6+T4 483,840
V535 = T38+T21+T10+T6+T4 241,920 V570 = T38+T20+T13+T8+T5 967,680
V536 = T38+T21+T10+T7+T4 241,920 V571 = T38+T20+T13+T8+T4 967,680
V537 = T38+T21+T10+T7+T5 362,880 V572 = T38+T20+T12+T7+T5 967,680
V538 = T38+T21+T9+T6+T4 241,920 V573 = T38+T20+T12+T7+T4 645,120
V539 = T38+T21+T11+T7+T4 967,680 V574 = T38+T20+T12+T6+T4 322,560
V540 = T38+T21+T11+T7+T5 1,451,520 V575 = T38+T20+T12+T8+T5 967,680
V541 = T38+T21+T11+T6+T4 241,920 V576 = T38+T20+T12+T8+T4 967,680
V542 = T38+T21+T13+T7+T4 725,760 V577 = T38+T17+T9+T6+T4 120,960
V543 = T38+T21+T13+T7+T5 1,088,640 V578 = T38+T17+T10+T6+T4 241,920
V544 = T38+T21+T13+T6+T4 241,920 V579 = T38+T17+T10+T7+T4 241,920
V545 = T38+T21+T13+T8+T5 483,840 V580 = T38+T17+T10+T7+T5 362,880
V546 = T38+T21+T13+T8+T4 483,840 V581 = T38+T17+T11+T6+T4 120,960
V547 = T38+T19+T10+T7+T5 241,920 V582 = T38+T17+T11+T7+T4 483,840
V548 = T38+T19+T10+T7+T4 161,280 V583 = T38+T17+T11+T7+T5 725,760
V549 = T38+T19+T10+T6+T4 161,280 V584 = T38+T15+T9+T6+T4 40,320
V550 = T38+T19+T9+T6+T4 80,640 V585 = T38+T22+T13+T7+T5 2,177,280
V551 = T38+T19+T12+T7+T5 241,920 V586 = T38+T22+T13+T7+T4 1,451,520
V552 = T38+T19+T12+T7+T4 161,280 V587 = T38+T22+T13+T6+T4 483,840
V553 = T38+T19+T12+T6+T4 80,640 V588 = T38+T22+T13+T8+T5 967,680

Table A.17: Tree-equivalent regular vines with 8 nodes (Continuation).



140 Appendix A

Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V589 = T38+T22+T13+T8+T4 967,680 V624 = T38+T24+T11+T7+T4 1,451,520
V590 = T38+T22+T12+T7+T5 967,680 V625 = T38+T24+T11+T7+T5 2,177,280
V591 = T38+T22+T12+T7+T4 645,120 V626 = T38+T24+T9+T6+T4 241,920
V592 = T38+T22+T12+T6+T4 322,560 V627 = T39+T21+T13+T8+T5 80,640
V593 = T38+T22+T12+T8+T5 967,680 V628 = T39+T21+T13+T8+T4 80,640
V594 = T38+T22+T12+T8+T4 967,680 V629 = T39+T21+T13+T7+T4 120,960
V595 = T38+T22+T11+T6+T4 241,920 V630 = T39+T21+T13+T7+T5 181,440
V596 = T38+T22+T11+T7+T4 967,680 V631 = T39+T21+T13+T6+T4 40,320
V597 = T38+T22+T11+T7+T5 1,451,520 V632 = T39+T21+T11+T7+T4 161,280
V598 = T38+T22+T10+T6+T4 322,560 V633 = T39+T21+T11+T7+T5 241,920
V599 = T38+T22+T10+T7+T4 322,560 V634 = T39+T21+T11+T6+T4 40,320
V600 = T38+T22+T10+T7+T5 483,840 V635 = T39+T21+T10+T7+T5 60,480
V601 = T38+T22+T9+T6+T4 80,640 V636 = T39+T21+T10+T7+T4 40,320
V602 = T38+T18+T11+T6+T4 120,960 V637 = T39+T21+T10+T6+T4 40,320
V603 = T38+T18+T11+T7+T4 483,840 V638 = T39+T21+T9+T6+T4 40,320
V604 = T38+T18+T11+T7+T5 725,760 V639 = T39+T17+T11+T7+T4 161,280
V605 = T38+T24+T14+T8+T5 604,800 V640 = T39+T17+T11+T7+T5 241,920
V606 = T38+T24+T14+T8+T4 604,800 V641 = T39+T17+T11+T6+T4 40,320
V607 = T38+T24+T14+T7+T5 1,814,400 V642 = T39+T17+T10+T7+T5 120,960
V608 = T38+T24+T14+T7+T4 1,209,600 V643 = T39+T17+T10+T7+T4 80,640
V609 = T38+T24+T14+T6+T4 604,800 V644 = T39+T17+T10+T6+T4 80,640
V610 = T38+T24+T13+T7+T5 4,354,560 V645 = T39+T17+T9+T6+T4 40,320
V611 = T38+T24+T13+T7+T4 2,903,040 V646 = T39+T16+T10+T7+T5 60,480
V612 = T38+T24+T13+T6+T4 967,680 V647 = T39+T16+T10+T7+T4 40,320
V613 = T38+T24+T13+T8+T5 1,935,360 V648 = T39+T16+T10+T6+T4 40,320
V614 = T38+T24+T13+T8+T4 1,935,360 V649 = T39+T16+T9+T6+T4 40,320
V615 = T38+T24+T12+T7+T5 1,451,520 V650 = T39+T15+T9+T6+T4 40,320
V616 = T38+T24+T12+T7+T4 967,680 V651 = T40+T22+T13+T7+T5 1,088,640
V617 = T38+T24+T12+T6+T4 483,840 V652 = T40+T22+T13+T7+T4 725,760
V618 = T38+T24+T12+T8+T5 1,451,520 V653 = T40+T22+T13+T6+T4 241,920
V619 = T38+T24+T12+T8+T4 1,451,520 V654 = T40+T22+T13+T8+T5 483,840
V620 = T38+T24+T10+T6+T4 725,760 V655 = T40+T22+T13+T8+T4 483,840
V621 = T38+T24+T10+T7+T4 725,760 V656 = T40+T22+T12+T7+T5 483,840
V622 = T38+T24+T10+T7+T5 1,088,640 V657 = T40+T22+T12+T7+T4 322,560
V623 = T38+T24+T11+T6+T4 362,880 V658 = T40+T22+T12+T6+T4 161,280

Table A.18: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V659 = T40+T22+T12+T8+T5 483,840 V694 = T40+T21+T13+T7+T4 362,880
V660 = T40+T22+T12+T8+T4 483,840 V695 = T40+T21+T13+T7+T5 544,320
V661 = T40+T22+T10+T6+T4 161,280 V696 = T40+T21+T13+T6+T4 120,960
V662 = T40+T22+T10+T7+T4 161,280 V697 = T40+T21+T11+T7+T4 483,840
V663 = T40+T22+T10+T7+T5 241,920 V698 = T40+T21+T11+T7+T5 725,760
V664 = T40+T22+T11+T7+T4 483,840 V699 = T40+T21+T11+T6+T4 120,960
V665 = T40+T22+T11+T7+T5 725,760 V700 = T40+T21+T10+T7+T5 181,440
V666 = T40+T22+T11+T6+T4 120,960 V701 = T40+T21+T10+T7+T4 120,960
V667 = T40+T22+T9+T6+T4 40,320 V702 = T40+T21+T10+T6+T4 120,960
V668 = T40+T20+T12+T7+T5 483,840 V703 = T40+T21+T9+T6+T4 120,960
V669 = T40+T20+T12+T7+T4 322,560 V704 = T40+T18+T11+T6+T4 120,960
V670 = T40+T20+T12+T6+T4 161,280 V705 = T40+T18+T11+T7+T4 483,840
V671 = T40+T20+T12+T8+T5 483,840 V706 = T40+T18+T11+T7+T5 725,760
V672 = T40+T20+T12+T8+T4 483,840 V707 = T40+T16+T10+T7+T5 120,960
V673 = T40+T20+T10+T6+T4 241,920 V708 = T40+T16+T10+T7+T4 80,640
V674 = T40+T20+T10+T7+T4 241,920 V709 = T40+T16+T10+T6+T4 80,640
V675 = T40+T20+T10+T7+T5 362,880 V710 = T40+T16+T9+T6+T4 80,640
V676 = T40+T20+T13+T8+T5 483,840 V711 = T40+T15+T9+T6+T4 40,320
V677 = T40+T20+T13+T8+T4 483,840 V712 = T41+T23+T13+T8+T5 322,560
V678 = T40+T20+T13+T7+T4 725,760 V713 = T41+T23+T13+T8+T4 322,560
V679 = T40+T20+T13+T7+T5 1,088,640 V714 = T41+T23+T13+T7+T4 483,840
V680 = T40+T20+T13+T6+T4 241,920 V715 = T41+T23+T13+T7+T5 725,760
V681 = T40+T20+T11+T7+T4 322,560 V716 = T41+T23+T13+T6+T4 161,280
V682 = T40+T20+T11+T7+T5 483,840 V717 = T41+T23+T11+T7+T4 161,280
V683 = T40+T20+T11+T6+T4 80,640 V718 = T41+T23+T11+T7+T5 241,920
V684 = T40+T20+T9+T6+T4 80,640 V719 = T41+T23+T11+T6+T4 40,320
V685 = T40+T17+T10+T6+T4 241,920 V720 = T41+T23+T10+T7+T5 120,960
V686 = T40+T17+T10+T7+T4 241,920 V721 = T41+T23+T10+T7+T4 80,640
V687 = T40+T17+T10+T7+T5 362,880 V722 = T41+T23+T10+T6+T4 80,640
V688 = T40+T17+T11+T7+T4 483,840 V723 = T41+T23+T9+T6+T4 40,320
V689 = T40+T17+T11+T7+T5 725,760 V724 = T41+T23+T14+T8+T5 201,600
V690 = T40+T17+T11+T6+T4 120,960 V725 = T41+T23+T14+T8+T4 201,600
V691 = T40+T17+T9+T6+T4 120,960 V726 = T41+T23+T14+T7+T5 604,800
V692 = T40+T21+T13+T8+T5 241,920 V727 = T41+T23+T14+T7+T4 403,200
V693 = T40+T21+T13+T8+T4 241,920 V728 = T41+T23+T14+T6+T4 201,600

Table A.19: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V729 = T41+T23+T12+T7+T5 120,960 V764 = T41+T21+T13+T8+T5 80,640
V730 = T41+T23+T12+T7+T4 80,640 V765 = T41+T21+T13+T8+T4 80,640
V731 = T41+T23+T12+T6+T4 40,320 V766 = T41+T21+T13+T7+T4 120,960
V732 = T41+T23+T12+T8+T5 120,960 V767 = T41+T21+T13+T7+T5 181,440
V733 = T41+T23+T12+T8+T4 120,960 V768 = T41+T21+T13+T6+T4 40,320
V734 = T41+T20+T11+T7+T4 161,280 V769 = T41+T21+T11+T7+T4 161,280
V735 = T41+T20+T11+T7+T5 241,920 V770 = T41+T21+T11+T7+T5 241,920
V736 = T41+T20+T11+T6+T4 40,320 V771 = T41+T21+T11+T6+T4 40,320
V737 = T41+T20+T10+T7+T5 181,440 V772 = T41+T21+T10+T7+T5 60,480
V738 = T41+T20+T10+T7+T4 120,960 V773 = T41+T21+T10+T7+T4 40,320
V739 = T41+T20+T10+T6+T4 120,960 V774 = T41+T21+T10+T6+T4 40,320
V740 = T41+T20+T9+T6+T4 40,320 V775 = T41+T21+T9+T6+T4 40,320
V741 = T41+T20+T13+T7+T4 362,880 V776 = T41+T17+T11+T7+T4 161,280
V742 = T41+T20+T13+T7+T5 544,320 V777 = T41+T17+T11+T7+T5 241,920
V743 = T41+T20+T13+T6+T4 120,960 V778 = T41+T17+T11+T6+T4 40,320
V744 = T41+T20+T13+T8+T5 241,920 V779 = T41+T17+T10+T7+T5 120,960
V745 = T41+T20+T13+T8+T4 241,920 V780 = T41+T17+T10+T7+T4 80,640
V746 = T41+T20+T12+T7+T5 241,920 V781 = T41+T17+T10+T6+T4 80,640
V747 = T41+T20+T12+T7+T4 161,280 V782 = T41+T17+T9+T6+T4 40,320
V748 = T41+T20+T12+T6+T4 80,640 V783 = T41+T15+T9+T6+T4 40,320
V749 = T41+T20+T12+T8+T5 241,920 V784 = T42+T23+T13+T8+T5 645,120
V750 = T41+T20+T12+T8+T4 241,920 V785 = T42+T23+T13+T8+T4 645,120
V751 = T41+T19+T10+T7+T5 120,960 V786 = T42+T23+T13+T7+T4 967,680
V752 = T41+T19+T10+T7+T4 80,640 V787 = T42+T23+T13+T7+T5 1,451,520
V753 = T41+T19+T10+T6+T4 80,640 V788 = T42+T23+T13+T6+T4 322,560
V754 = T41+T19+T9+T6+T4 40,320 V789 = T42+T23+T11+T7+T4 322,560
V755 = T41+T19+T12+T7+T5 120,960 V790 = T42+T23+T11+T7+T5 483,840
V756 = T41+T19+T12+T7+T4 80,640 V791 = T42+T23+T11+T6+T4 80,640
V757 = T41+T19+T12+T6+T4 40,320 V792 = T42+T23+T10+T7+T5 241,920
V758 = T41+T19+T12+T8+T5 120,960 V793 = T42+T23+T10+T7+T4 161,280
V759 = T41+T19+T12+T8+T4 120,960 V794 = T42+T23+T10+T6+T4 161,280
V760 = T41+T16+T9+T6+T4 80,640 V795 = T42+T23+T9+T6+T4 80,640
V761 = T41+T16+T10+T6+T4 80,640 V796 = T42+T23+T14+T8+T5 403,200
V762 = T41+T16+T10+T7+T4 80,640 V797 = T42+T23+T14+T8+T4 403,200
V763 = T41+T16+T10+T7+T5 120,960 V798 = T42+T23+T14+T7+T5 1,209,600

Table A.20: Tree-equivalent regular vines with 8 nodes (Continuation).



Regular Vines Catalogue. 143

Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V799 = T42+T23+T14+T7+T4 806,400 V834 = T42+T16+T10+T7+T4 120,960
V800 = T42+T23+T14+T6+T4 403,200 V835 = T42+T16+T10+T7+T5 181,440
V801 = T42+T23+T12+T7+T5 241,920 V836 = T42+T24+T14+T8+T5 403,200
V802 = T42+T23+T12+T7+T4 161,280 V837 = T42+T24+T14+T8+T4 403,200
V803 = T42+T23+T12+T6+T4 80,640 V838 = T42+T24+T14+T7+T5 1,209,600
V804 = T42+T23+T12+T8+T5 241,920 V839 = T42+T24+T14+T7+T4 806,400
V805 = T42+T23+T12+T8+T4 241,920 V840 = T42+T24+T14+T6+T4 403,200
V806 = T42+T20+T11+T7+T4 483,840 V841 = T42+T24+T13+T7+T5 2,903,040
V807 = T42+T20+T11+T7+T5 725,760 V842 = T42+T24+T13+T7+T4 1,935,360
V808 = T42+T20+T11+T6+T4 120,960 V843 = T42+T24+T13+T6+T4 645,120
V809 = T42+T20+T10+T7+T5 544,320 V844 = T42+T24+T13+T8+T5 1,290,240
V810 = T42+T20+T10+T7+T4 362,880 V845 = T42+T24+T13+T8+T4 1,290,240
V811 = T42+T20+T10+T6+T4 362,880 V846 = T42+T24+T12+T7+T5 967,680
V812 = T42+T20+T9+T6+T4 120,960 V847 = T42+T24+T12+T7+T4 645,120
V813 = T42+T20+T13+T7+T4 1,088,640 V848 = T42+T24+T12+T6+T4 322,560
V814 = T42+T20+T13+T7+T5 1,632,960 V849 = T42+T24+T12+T8+T5 967,680
V815 = T42+T20+T13+T6+T4 362,880 V850 = T42+T24+T12+T8+T4 967,680
V816 = T42+T20+T13+T8+T5 725,760 V851 = T42+T24+T10+T6+T4 483,840
V817 = T42+T20+T13+T8+T4 725,760 V852 = T42+T24+T10+T7+T4 483,840
V818 = T42+T20+T12+T7+T5 725,760 V853 = T42+T24+T10+T7+T5 725,760
V819 = T42+T20+T12+T7+T4 483,840 V854 = T42+T24+T11+T6+T4 241,920
V820 = T42+T20+T12+T6+T4 241,920 V855 = T42+T24+T11+T7+T4 967,680
V821 = T42+T20+T12+T8+T5 725,760 V856 = T42+T24+T11+T7+T5 1,451,520
V822 = T42+T20+T12+T8+T4 725,760 V857 = T42+T24+T9+T6+T4 161,280
V823 = T42+T19+T10+T7+T5 241,920 V858 = T42+T22+T13+T7+T4 1,451,520
V824 = T42+T19+T10+T7+T4 161,280 V859 = T42+T22+T13+T7+T5 2,177,280
V825 = T42+T19+T10+T6+T4 161,280 V860 = T42+T22+T13+T6+T4 483,840
V826 = T42+T19+T9+T6+T4 80,640 V861 = T42+T22+T13+T8+T5 967,680
V827 = T42+T19+T12+T7+T5 241,920 V862 = T42+T22+T13+T8+T4 967,680
V828 = T42+T19+T12+T7+T4 161,280 V863 = T42+T22+T10+T6+T4 322,560
V829 = T42+T19+T12+T6+T4 80,640 V864 = T42+T22+T10+T7+T4 322,560
V830 = T42+T19+T12+T8+T5 241,920 V865 = T42+T22+T10+T7+T5 483,840
V831 = T42+T19+T12+T8+T4 241,920 V866 = T42+T22+T12+T7+T5 967,680
V832 = T42+T16+T9+T6+T4 120,960 V867 = T42+T22+T12+T7+T4 645,120
V833 = T42+T16+T10+T6+T4 120,960 V868 = T42+T22+T12+T6+T4 322,560

Table A.21: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V869 = T42+T22+T12+T8+T5 967,680 V904 = T43+T25+T13+T6+T4 403,200
V870 = T42+T22+T12+T8+T4 967,680 V905 = T43+T25+T12+T8+T5 604,800
V871 = T42+T22+T11+T6+T4 241,920 V906 = T43+T25+T12+T8+T4 604,800
V872 = T42+T22+T11+T7+T4 967,680 V907 = T43+T25+T12+T7+T4 403,200
V873 = T42+T22+T11+T7+T5 1,451,520 V908 = T43+T25+T12+T7+T5 604,800
V874 = T42+T22+T9+T6+T4 80,640 V909 = T43+T25+T12+T6+T4 201,600
V875 = T42+T17+T10+T6+T4 161,280 V910 = T43+T25+T10+T7+T4 403,200
V876 = T42+T17+T10+T7+T4 161,280 V911 = T43+T25+T10+T7+T5 604,800
V877 = T42+T17+T10+T7+T5 241,920 V912 = T43+T25+T10+T6+T4 403,200
V878 = T42+T17+T9+T6+T4 80,640 V913 = T43+T25+T11+T7+T5 1,209,600
V879 = T42+T17+T11+T7+T4 322,560 V914 = T43+T25+T11+T7+T4 806,400
V880 = T42+T17+T11+T7+T5 483,840 V915 = T43+T25+T11+T6+T4 201,600
V881 = T42+T17+T11+T6+T4 80,640 V916 = T43+T25+T9+T6+T4 201,600
V882 = T42+T21+T13+T8+T5 80,640 V917 = T43+T24+T13+T7+T4 1,935,360
V883 = T42+T21+T13+T8+T4 80,640 V918 = T43+T24+T13+T7+T5 2,903,040
V884 = T42+T21+T13+T7+T4 120,960 V919 = T43+T24+T13+T6+T4 645,120
V885 = T42+T21+T13+T7+T5 181,440 V920 = T43+T24+T13+T8+T5 1,290,240
V886 = T42+T21+T13+T6+T4 40,320 V921 = T43+T24+T13+T8+T4 1,290,240
V887 = T42+T21+T11+T7+T4 161,280 V922 = T43+T24+T10+T7+T4 483,840
V888 = T42+T21+T11+T7+T5 241,920 V923 = T43+T24+T10+T7+T5 725,760
V889 = T42+T21+T11+T6+T4 40,320 V924 = T43+T24+T10+T6+T4 483,840
V890 = T42+T21+T10+T7+T5 60,480 V925 = T43+T24+T12+T7+T5 967,680
V891 = T42+T21+T10+T7+T4 40,320 V926 = T43+T24+T12+T7+T4 645,120
V892 = T42+T21+T10+T6+T4 40,320 V927 = T43+T24+T12+T6+T4 322,560
V893 = T42+T21+T9+T6+T4 40,320 V928 = T43+T24+T12+T8+T5 967,680
V894 = T42+T15+T9+T6+T4 40,320 V929 = T43+T24+T12+T8+T4 967,680
V895 = T43+T25+T14+T8+T5 201,600 V930 = T43+T24+T11+T7+T4 967,680
V896 = T43+T25+T14+T8+T4 201,600 V931 = T43+T24+T11+T7+T5 1,451,520
V897 = T43+T25+T14+T7+T5 604,800 V932 = T43+T24+T11+T6+T4 241,920
V898 = T43+T25+T14+T7+T4 403,200 V933 = T43+T24+T9+T6+T4 161,280
V899 = T43+T25+T14+T6+T4 201,600 V934 = T43+T24+T14+T8+T5 403,200
V900 = T43+T25+T13+T8+T5 806,400 V935 = T43+T24+T14+T8+T4 403,200
V901 = T43+T25+T13+T8+T4 806,400 V936 = T43+T24+T14+T7+T5 1,209,600
V902 = T43+T25+T13+T7+T5 1,814,400 V937 = T43+T24+T14+T7+T4 806,400
V903 = T43+T25+T13+T7+T4 1,209,600 V938 = T43+T24+T14+T6+T4 403,200

Table A.22: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V939 = T43+T23+T12+T7+T5 120,960 V974 = T43+T22+T13+T7+T4 725,760
V940 = T43+T23+T12+T7+T4 80,640 V975 = T43+T22+T13+T6+T4 241,920
V941 = T43+T23+T12+T6+T4 40,320 V976 = T43+T22+T13+T8+T5 483,840
V942 = T43+T23+T12+T8+T5 120,960 V977 = T43+T22+T13+T8+T4 483,840
V943 = T43+T23+T12+T8+T4 120,960 V978 = T43+T22+T10+T7+T4 161,280
V944 = T43+T23+T10+T6+T4 80,640 V979 = T43+T22+T10+T7+T5 241,920
V945 = T43+T23+T10+T7+T4 80,640 V980 = T43+T22+T10+T6+T4 161,280
V946 = T43+T23+T10+T7+T5 120,960 V981 = T43+T22+T9+T6+T4 40,320
V947 = T43+T23+T9+T6+T4 40,320 V982 = T43+T22+T12+T7+T5 483,840
V948 = T43+T23+T13+T8+T5 322,560 V983 = T43+T22+T12+T7+T4 322,560
V949 = T43+T23+T13+T8+T4 322,560 V984 = T43+T22+T12+T6+T4 161,280
V950 = T43+T23+T13+T7+T4 483,840 V985 = T43+T22+T12+T8+T5 483,840
V951 = T43+T23+T13+T7+T5 725,760 V986 = T43+T22+T12+T8+T4 483,840
V952 = T43+T23+T13+T6+T4 161,280 V987 = T43+T22+T11+T7+T5 725,760
V953 = T43+T23+T11+T7+T4 161,280 V988 = T43+T22+T11+T7+T4 483,840
V954 = T43+T23+T11+T7+T5 241,920 V989 = T43+T22+T11+T6+T4 120,960
V955 = T43+T23+T11+T6+T4 40,320 V990 = T43+T20+T12+T7+T5 241,920
V956 = T43+T23+T14+T8+T5 201,600 V991 = T43+T20+T12+T7+T4 161,280
V957 = T43+T23+T14+T8+T4 201,600 V992 = T43+T20+T12+T6+T4 80,640
V958 = T43+T23+T14+T7+T5 604,800 V993 = T43+T20+T12+T8+T5 241,920
V959 = T43+T23+T14+T7+T4 403,200 V994 = T43+T20+T12+T8+T4 241,920
V960 = T43+T23+T14+T6+T4 201,600 V995 = T43+T20+T10+T6+T4 120,960
V961 = T43+T21+T10+T6+T4 40,320 V996 = T43+T20+T10+T7+T4 120,960
V962 = T43+T21+T10+T7+T4 40,320 V997 = T43+T20+T10+T7+T5 181,440
V963 = T43+T21+T10+T7+T5 60,480 V998 = T43+T20+T9+T6+T4 40,320
V964 = T43+T21+T9+T6+T4 40,320 V999 = T43+T20+T13+T8+T5 241,920
V965 = T43+T21+T11+T7+T4 161,280 V1000 = T43+T20+T13+T8+T4 241,920
V966 = T43+T21+T11+T7+T5 241,920 V1001 = T43+T20+T13+T7+T4 362,880
V967 = T43+T21+T11+T6+T4 40,320 V1002 = T43+T20+T13+T7+T5 544,320
V968 = T43+T21+T13+T7+T4 120,960 V1003 = T43+T20+T13+T6+T4 120,960
V969 = T43+T21+T13+T7+T5 181,440 V1004 = T43+T20+T11+T7+T4 161,280
V970 = T43+T21+T13+T6+T4 40,320 V1005 = T43+T20+T11+T7+T5 241,920
V971 = T43+T21+T13+T8+T5 80,640 V1006 = T43+T20+T11+T6+T4 40,320
V972 = T43+T21+T13+T8+T4 80,640 V1007 = T43+T17+T10+T6+T4 80,640
V973 = T43+T22+T13+T7+T5 1,088,640 V1008 = T43+T17+T10+T7+T4 80,640

Table A.23: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1009 = T43+T17+T10+T7+T5 120,960 V1044 = T44+T24+T9+T6+T4 161,280
V1010 = T43+T17+T9+T6+T4 40,320 V1045 = T44+T24+T14+T8+T5 403,200
V1011 = T43+T17+T11+T7+T4 161,280 V1046 = T44+T24+T14+T8+T4 403,200
V1012 = T43+T17+T11+T7+T5 241,920 V1047 = T44+T24+T14+T7+T5 1,209,600
V1013 = T43+T17+T11+T6+T4 40,320 V1048 = T44+T24+T14+T7+T4 806,400
V1014 = T43+T19+T12+T8+T5 60,480 V1049 = T44+T24+T14+T6+T4 403,200
V1015 = T43+T19+T12+T8+T4 60,480 V1050 = T44+T23+T12+T8+T5 725,760
V1016 = T43+T19+T12+T7+T4 40,320 V1051 = T44+T23+T12+T8+T4 725,760
V1017 = T43+T19+T12+T7+T5 60,480 V1052 = T44+T23+T12+T7+T4 483,840
V1018 = T43+T19+T12+T6+T4 20,160 V1053 = T44+T23+T12+T7+T5 725,760
V1019 = T43+T19+T10+T7+T4 40,320 V1054 = T44+T23+T12+T6+T4 241,920
V1020 = T43+T19+T10+T7+T5 60,480 V1055 = T44+T23+T10+T7+T4 483,840
V1021 = T43+T19+T10+T6+T4 40,320 V1056 = T44+T23+T10+T7+T5 725,760
V1022 = T43+T19+T9+T6+T4 20,160 V1057 = T44+T23+T10+T6+T4 483,840
V1023 = T43+T16+T10+T7+T4 40,320 V1058 = T44+T23+T13+T8+T5 1,935,360
V1024 = T43+T16+T10+T7+T5 60,480 V1059 = T44+T23+T13+T8+T4 1,935,360
V1025 = T43+T16+T10+T6+T4 40,320 V1060 = T44+T23+T13+T7+T4 2,903,040
V1026 = T43+T16+T9+T6+T4 40,320 V1061 = T44+T23+T13+T7+T5 4,354,560
V1027 = T43+T15+T9+T6+T4 20,160 V1062 = T44+T23+T13+T6+T4 967,680
V1028 = T44+T24+T13+T8+T5 1,290,240 V1063 = T44+T23+T11+T7+T4 967,680
V1029 = T44+T24+T13+T8+T4 1,290,240 V1064 = T44+T23+T11+T7+T5 1,451,520
V1030 = T44+T24+T13+T7+T5 2,903,040 V1065 = T44+T23+T11+T6+T4 241,920
V1031 = T44+T24+T13+T7+T4 1,935,360 V1066 = T44+T23+T9+T6+T4 241,920
V1032 = T44+T24+T13+T6+T4 645,120 V1067 = T44+T23+T14+T8+T5 1,209,600
V1033 = T44+T24+T12+T8+T5 967,680 V1068 = T44+T23+T14+T8+T4 1,209,600
V1034 = T44+T24+T12+T8+T4 967,680 V1069 = T44+T23+T14+T7+T5 3,628,800
V1035 = T44+T24+T12+T7+T4 645,120 V1070 = T44+T23+T14+T7+T4 2,419,200
V1036 = T44+T24+T12+T7+T5 967,680 V1071 = T44+T23+T14+T6+T4 1,209,600
V1037 = T44+T24+T12+T6+T4 322,560 V1072 = T44+T21+T10+T7+T4 120,960
V1038 = T44+T24+T10+T7+T4 483,840 V1073 = T44+T21+T10+T7+T5 181,440
V1039 = T44+T24+T10+T7+T5 725,760 V1074 = T44+T21+T10+T6+T4 120,960
V1040 = T44+T24+T10+T6+T4 483,840 V1075 = T44+T21+T11+T7+T4 483,840
V1041 = T44+T24+T11+T7+T4 967,680 V1076 = T44+T21+T11+T7+T5 725,760
V1042 = T44+T24+T11+T7+T5 1,451,520 V1077 = T44+T21+T11+T6+T4 120,960
V1043 = T44+T24+T11+T6+T4 241,920 V1078 = T44+T21+T9+T6+T4 120,960

Table A.24: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1079 = T44+T21+T13+T7+T4 362,880 V1114 = T44+T22+T12+T7+T4 806,400
V1080 = T44+T21+T13+T7+T5 544,320 V1115 = T44+T22+T12+T6+T4 403,200
V1081 = T44+T21+T13+T6+T4 120,960 V1116 = T44+T22+T12+T8+T5 1,209,600
V1082 = T44+T21+T13+T8+T5 241,920 V1117 = T44+T22+T12+T8+T4 1,209,600
V1083 = T44+T21+T13+T8+T4 241,920 V1118 = T44+T19+T10+T7+T5 241,920
V1084 = T44+T20+T11+T7+T4 806,400 V1119 = T44+T19+T10+T7+T4 161,280
V1085 = T44+T20+T11+T7+T5 1,209,600 V1120 = T44+T19+T10+T6+T4 161,280
V1086 = T44+T20+T11+T6+T4 201,600 V1121 = T44+T19+T9+T6+T4 80,640
V1087 = T44+T20+T10+T7+T5 907,200 V1122 = T44+T19+T12+T7+T5 241,920
V1088 = T44+T20+T10+T7+T4 604,800 V1123 = T44+T19+T12+T7+T4 161,280
V1089 = T44+T20+T10+T6+T4 604,800 V1124 = T44+T19+T12+T6+T4 80,640
V1090 = T44+T20+T9+T6+T4 201,600 V1125 = T44+T19+T12+T8+T5 241,920
V1091 = T44+T20+T13+T7+T4 1,814,400 V1126 = T44+T19+T12+T8+T4 241,920
V1092 = T44+T20+T13+T7+T5 2,721,600 V1127 = T44+T16+T9+T6+T4 80,640
V1093 = T44+T20+T13+T6+T4 604,800 V1128 = T44+T16+T10+T6+T4 80,640
V1094 = T44+T20+T13+T8+T5 1,209,600 V1129 = T44+T16+T10+T7+T4 80,640
V1095 = T44+T20+T13+T8+T4 1,209,600 V1130 = T44+T16+T10+T7+T5 120,960
V1096 = T44+T20+T12+T7+T5 1,209,600 V1131 = T44+T17+T10+T6+T4 241,920
V1097 = T44+T20+T12+T7+T4 806,400 V1132 = T44+T17+T10+T7+T4 241,920
V1098 = T44+T20+T12+T6+T4 403,200 V1133 = T44+T17+T10+T7+T5 362,880
V1099 = T44+T20+T12+T8+T5 1,209,600 V1134 = T44+T17+T11+T7+T4 483,840
V1100 = T44+T20+T12+T8+T4 1,209,600 V1135 = T44+T17+T11+T7+T5 725,760
V1101 = T44+T22+T11+T7+T5 1,814,400 V1136 = T44+T17+T11+T6+T4 120,960
V1102 = T44+T22+T11+T7+T4 1,209,600 V1137 = T44+T17+T9+T6+T4 120,960
V1103 = T44+T22+T11+T6+T4 302,400 V1138 = T44+T18+T11+T6+T4 60,480
V1104 = T44+T22+T9+T6+T4 100,800 V1139 = T44+T18+T11+T7+T4 241,920
V1105 = T44+T22+T10+T7+T5 604,800 V1140 = T44+T18+T11+T7+T5 362,880
V1106 = T44+T22+T10+T7+T4 403,200 V1141 = T44+T15+T9+T6+T4 20,160
V1107 = T44+T22+T10+T6+T4 403,200 V1142 = T45+T24+T14+T8+T5 100,800
V1108 = T44+T22+T13+T7+T5 2,721,600 V1143 = T45+T24+T14+T8+T4 100,800
V1109 = T44+T22+T13+T7+T4 1,814,400 V1144 = T45+T24+T14+T7+T5 302,400
V1110 = T44+T22+T13+T6+T4 604,800 V1145 = T45+T24+T14+T7+T4 201,600
V1111 = T44+T22+T13+T8+T5 1,209,600 V1146 = T45+T24+T14+T6+T4 100,800
V1112 = T44+T22+T13+T8+T4 1,209,600 V1147 = T45+T24+T13+T7+T5 725,760
V1113 = T44+T22+T12+T7+T5 1,209,600 V1148 = T45+T24+T13+T7+T4 483,840

Table A.25: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1149 = T45+T24+T13+T6+T4 161,280 V1184 = T45+T20+T12+T8+T5 241,920
V1150 = T45+T24+T13+T8+T5 322,560 V1185 = T45+T20+T12+T8+T4 241,920
V1151 = T45+T24+T13+T8+T4 322,560 V1186 = T45+T20+T10+T6+T4 120,960
V1152 = T45+T24+T12+T7+T5 241,920 V1187 = T45+T20+T10+T7+T4 120,960
V1153 = T45+T24+T12+T7+T4 161,280 V1188 = T45+T20+T10+T7+T5 181,440
V1154 = T45+T24+T12+T6+T4 80,640 V1189 = T45+T20+T13+T8+T5 241,920
V1155 = T45+T24+T12+T8+T5 241,920 V1190 = T45+T20+T13+T8+T4 241,920
V1156 = T45+T24+T12+T8+T4 241,920 V1191 = T45+T20+T13+T7+T4 362,880
V1157 = T45+T24+T10+T6+T4 120,960 V1192 = T45+T20+T13+T7+T5 544,320
V1158 = T45+T24+T10+T7+T4 120,960 V1193 = T45+T20+T13+T6+T4 120,960
V1159 = T45+T24+T10+T7+T5 181,440 V1194 = T45+T20+T11+T7+T4 161,280
V1160 = T45+T24+T11+T6+T4 60,480 V1195 = T45+T20+T11+T7+T5 241,920
V1161 = T45+T24+T11+T7+T4 241,920 V1196 = T45+T20+T11+T6+T4 40,320
V1162 = T45+T24+T11+T7+T5 362,880 V1197 = T45+T20+T9+T6+T4 40,320
V1163 = T45+T24+T9+T6+T4 40,320 V1198 = T45+T17+T10+T6+T4 161,280
V1164 = T45+T22+T13+T7+T5 1,088,640 V1199 = T45+T17+T10+T7+T4 161,280
V1165 = T45+T22+T13+T7+T4 725,760 V1200 = T45+T17+T10+T7+T5 241,920
V1166 = T45+T22+T13+T6+T4 241,920 V1201 = T45+T17+T11+T7+T4 322,560
V1167 = T45+T22+T13+T8+T5 483,840 V1202 = T45+T17+T11+T7+T5 483,840
V1168 = T45+T22+T13+T8+T4 483,840 V1203 = T45+T17+T11+T6+T4 80,640
V1169 = T45+T22+T12+T7+T5 483,840 V1204 = T45+T17+T9+T6+T4 80,640
V1170 = T45+T22+T12+T7+T4 322,560 V1205 = T45+T18+T11+T6+T4 60,480
V1171 = T45+T22+T12+T6+T4 161,280 V1206 = T45+T18+T11+T7+T4 241,920
V1172 = T45+T22+T12+T8+T5 483,840 V1207 = T45+T18+T11+T7+T5 362,880
V1173 = T45+T22+T12+T8+T4 483,840 V1208 = T45+T21+T13+T8+T5 80,640
V1174 = T45+T22+T10+T6+T4 161,280 V1209 = T45+T21+T13+T8+T4 80,640
V1175 = T45+T22+T10+T7+T4 161,280 V1210 = T45+T21+T13+T7+T4 120,960
V1176 = T45+T22+T10+T7+T5 241,920 V1211 = T45+T21+T13+T7+T5 181,440
V1177 = T45+T22+T11+T7+T4 483,840 V1212 = T45+T21+T13+T6+T4 40,320
V1178 = T45+T22+T11+T7+T5 725,760 V1213 = T45+T21+T11+T7+T4 161,280
V1179 = T45+T22+T11+T6+T4 120,960 V1214 = T45+T21+T11+T7+T5 241,920
V1180 = T45+T22+T9+T6+T4 40,320 V1215 = T45+T21+T11+T6+T4 40,320
V1181 = T45+T20+T12+T7+T5 241,920 V1216 = T45+T21+T10+T7+T5 60,480
V1182 = T45+T20+T12+T7+T4 161,280 V1217 = T45+T21+T10+T7+T4 40,320
V1183 = T45+T20+T12+T6+T4 80,640 V1218 = T45+T21+T10+T6+T4 40,320

Table A.26: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1219 = T45+T21+T9+T6+T4 40,320 V1254 = T46+T24+T10+T6+T4 846,720
V1220 = T45+T16+T10+T7+T5 60,480 V1255 = T46+T24+T12+T7+T5 1,693,440
V1221 = T45+T16+T10+T7+T4 40,320 V1256 = T46+T24+T12+T7+T4 1,128,960
V1222 = T45+T16+T10+T6+T4 40,320 V1257 = T46+T24+T12+T6+T4 564,480
V1223 = T45+T16+T9+T6+T4 40,320 V1258 = T46+T24+T12+T8+T5 1,693,440
V1224 = T45+T15+T9+T6+T4 40,320 V1259 = T46+T24+T12+T8+T4 1,693,440
V1225 = T46+T25+T14+T8+T5 302,400 V1260 = T46+T24+T11+T7+T5 2,540,160
V1226 = T46+T25+T14+T8+T4 302,400 V1261 = T46+T24+T11+T7+T4 1,693,440
V1227 = T46+T25+T14+T7+T5 907,200 V1262 = T46+T24+T11+T6+T4 423,360
V1228 = T46+T25+T14+T7+T4 604,800 V1263 = T46+T24+T9+T6+T4 282,240
V1229 = T46+T25+T14+T6+T4 302,400 V1264 = T46+T24+T14+T8+T5 705,600
V1230 = T46+T25+T13+T8+T5 1,209,600 V1265 = T46+T24+T14+T8+T4 705,600
V1231 = T46+T25+T13+T8+T4 1,209,600 V1266 = T46+T24+T14+T7+T5 2,116,800
V1232 = T46+T25+T13+T7+T5 2,721,600 V1267 = T46+T24+T14+T7+T4 1,411,200
V1233 = T46+T25+T13+T7+T4 1,814,400 V1268 = T46+T24+T14+T6+T4 705,600
V1234 = T46+T25+T13+T6+T4 604,800 V1269 = T46+T23+T12+T7+T5 483,840
V1235 = T46+T25+T12+T8+T5 907,200 V1270 = T46+T23+T12+T7+T4 322,560
V1236 = T46+T25+T12+T8+T4 907,200 V1271 = T46+T23+T12+T6+T4 161,280
V1237 = T46+T25+T12+T7+T4 604,800 V1272 = T46+T23+T12+T8+T5 483,840
V1238 = T46+T25+T12+T7+T5 907,200 V1273 = T46+T23+T12+T8+T4 483,840
V1239 = T46+T25+T12+T6+T4 302,400 V1274 = T46+T23+T10+T6+T4 322,560
V1240 = T46+T25+T10+T7+T4 604,800 V1275 = T46+T23+T10+T7+T4 322,560
V1241 = T46+T25+T10+T7+T5 907,200 V1276 = T46+T23+T10+T7+T5 483,840
V1242 = T46+T25+T10+T6+T4 604,800 V1277 = T46+T23+T9+T6+T4 161,280
V1243 = T46+T25+T11+T7+T5 1,814,400 V1278 = T46+T23+T13+T8+T5 1,290,240
V1244 = T46+T25+T11+T7+T4 1,209,600 V1279 = T46+T23+T13+T8+T4 1,290,240
V1245 = T46+T25+T11+T6+T4 302,400 V1280 = T46+T23+T13+T7+T4 1,935,360
V1246 = T46+T25+T9+T6+T4 302,400 V1281 = T46+T23+T13+T7+T5 2,903,040
V1247 = T46+T24+T13+T7+T5 5,080,320 V1282 = T46+T23+T13+T6+T4 645,120
V1248 = T46+T24+T13+T7+T4 3,386,880 V1283 = T46+T23+T11+T7+T4 645,120
V1249 = T46+T24+T13+T6+T4 1,128,960 V1284 = T46+T23+T11+T7+T5 967,680
V1250 = T46+T24+T13+T8+T5 2,257,920 V1285 = T46+T23+T11+T6+T4 161,280
V1251 = T46+T24+T13+T8+T4 2,257,920 V1286 = T46+T23+T14+T8+T5 806,400
V1252 = T46+T24+T10+T7+T4 846,720 V1287 = T46+T23+T14+T8+T4 806,400
V1253 = T46+T24+T10+T7+T5 1,270,080 V1288 = T46+T23+T14+T7+T5 2,419,200

Table A.27: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1289 = T46+T23+T14+T7+T4 1,612,800 V1324 = T46+T20+T10+T7+T4 241,920
V1290 = T46+T23+T14+T6+T4 806,400 V1325 = T46+T20+T10+T6+T4 241,920
V1291 = T46+T21+T10+T6+T4 161,280 V1326 = T46+T20+T9+T6+T4 80,640
V1292 = T46+T21+T10+T7+T4 161,280 V1327 = T46+T20+T13+T7+T4 725,760
V1293 = T46+T21+T10+T7+T5 241,920 V1328 = T46+T20+T13+T7+T5 1,088,640
V1294 = T46+T21+T9+T6+T4 161,280 V1329 = T46+T20+T13+T6+T4 241,920
V1295 = T46+T21+T11+T7+T4 645,120 V1330 = T46+T20+T13+T8+T5 483,840
V1296 = T46+T21+T11+T7+T5 967,680 V1331 = T46+T20+T13+T8+T4 483,840
V1297 = T46+T21+T11+T6+T4 161,280 V1332 = T46+T20+T12+T7+T5 483,840
V1298 = T46+T21+T13+T7+T4 483,840 V1333 = T46+T20+T12+T7+T4 322,560
V1299 = T46+T21+T13+T7+T5 725,760 V1334 = T46+T20+T12+T6+T4 161,280
V1300 = T46+T21+T13+T6+T4 161,280 V1335 = T46+T20+T12+T8+T5 483,840
V1301 = T46+T21+T13+T8+T5 322,560 V1336 = T46+T20+T12+T8+T4 483,840
V1302 = T46+T21+T13+T8+T4 322,560 V1337 = T46+T19+T10+T7+T5 120,960
V1303 = T46+T22+T11+T6+T4 181,440 V1338 = T46+T19+T10+T7+T4 80,640
V1304 = T46+T22+T11+T7+T4 725,760 V1339 = T46+T19+T10+T6+T4 80,640
V1305 = T46+T22+T11+T7+T5 1,088,640 V1340 = T46+T19+T9+T6+T4 40,320
V1306 = T46+T22+T9+T6+T4 60,480 V1341 = T46+T19+T12+T7+T5 120,960
V1307 = T46+T22+T10+T7+T5 362,880 V1342 = T46+T19+T12+T7+T4 80,640
V1308 = T46+T22+T10+T7+T4 241,920 V1343 = T46+T19+T12+T6+T4 40,320
V1309 = T46+T22+T10+T6+T4 241,920 V1344 = T46+T19+T12+T8+T5 120,960
V1310 = T46+T22+T13+T7+T4 1,088,640 V1345 = T46+T19+T12+T8+T4 120,960
V1311 = T46+T22+T13+T7+T5 1,632,960 V1346 = T46+T16+T9+T6+T4 80,640
V1312 = T46+T22+T13+T6+T4 362,880 V1347 = T46+T16+T10+T6+T4 80,640
V1313 = T46+T22+T13+T8+T5 725,760 V1348 = T46+T16+T10+T7+T4 80,640
V1314 = T46+T22+T13+T8+T4 725,760 V1349 = T46+T16+T10+T7+T5 120,960
V1315 = T46+T22+T12+T6+T4 241,920 V1350 = T46+T17+T10+T7+T4 161,280
V1316 = T46+T22+T12+T7+T5 725,760 V1351 = T46+T17+T10+T7+T5 241,920
V1317 = T46+T22+T12+T7+T4 483,840 V1352 = T46+T17+T10+T6+T4 161,280
V1318 = T46+T22+T12+T8+T5 725,760 V1353 = T46+T17+T9+T6+T4 80,640
V1319 = T46+T22+T12+T8+T4 725,760 V1354 = T46+T17+T11+T7+T4 322,560
V1320 = T46+T20+T11+T7+T4 322,560 V1355 = T46+T17+T11+T7+T5 483,840
V1321 = T46+T20+T11+T7+T5 483,840 V1356 = T46+T17+T11+T6+T4 80,640
V1322 = T46+T20+T11+T6+T4 80,640 V1357 = T46+T18+T11+T7+T5 362,880
V1323 = T46+T20+T10+T7+T5 362,880 V1358 = T46+T18+T11+T7+T4 241,920

Table A.28: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1359 = T46+T18+T11+T6+T4 60,480 V1394 = T47+T24+T10+T7+T5 907,200
V1360 = T46+T15+T9+T6+T4 40,320 V1395 = T47+T24+T10+T6+T4 604,800
V1361 = T47+T25+T14+T8+T5 120,960 V1396 = T47+T24+T11+T7+T4 1,209,600
V1362 = T47+T25+T14+T8+T4 120,960 V1397 = T47+T24+T11+T7+T5 1,814,400
V1363 = T47+T25+T14+T7+T5 362,880 V1398 = T47+T24+T11+T6+T4 302,400
V1364 = T47+T25+T14+T7+T4 241,920 V1399 = T47+T24+T9+T6+T4 201,600
V1365 = T47+T25+T14+T6+T4 120,960 V1400 = T47+T24+T14+T8+T5 504,000
V1366 = T47+T25+T13+T8+T5 483,840 V1401 = T47+T24+T14+T8+T4 504,000
V1367 = T47+T25+T13+T8+T4 483,840 V1402 = T47+T24+T14+T7+T5 1,512,000
V1368 = T47+T25+T13+T7+T5 1,088,640 V1403 = T47+T24+T14+T7+T4 1,008,000
V1369 = T47+T25+T13+T7+T4 725,760 V1404 = T47+T24+T14+T6+T4 504,000
V1370 = T47+T25+T13+T6+T4 241,920 V1405 = T47+T23+T12+T8+T5 604,800
V1371 = T47+T25+T12+T8+T5 362,880 V1406 = T47+T23+T12+T8+T4 604,800
V1372 = T47+T25+T12+T8+T4 362,880 V1407 = T47+T23+T12+T7+T4 403,200
V1373 = T47+T25+T12+T7+T4 241,920 V1408 = T47+T23+T12+T7+T5 604,800
V1374 = T47+T25+T12+T7+T5 362,880 V1409 = T47+T23+T12+T6+T4 201,600
V1375 = T47+T25+T12+T6+T4 120,960 V1410 = T47+T23+T10+T7+T4 403,200
V1376 = T47+T25+T10+T7+T4 241,920 V1411 = T47+T23+T10+T7+T5 604,800
V1377 = T47+T25+T10+T7+T5 362,880 V1412 = T47+T23+T10+T6+T4 403,200
V1378 = T47+T25+T10+T6+T4 241,920 V1413 = T47+T23+T13+T8+T5 1,612,800
V1379 = T47+T25+T11+T7+T5 725,760 V1414 = T47+T23+T13+T8+T4 1,612,800
V1380 = T47+T25+T11+T7+T4 483,840 V1415 = T47+T23+T13+T7+T4 2,419,200
V1381 = T47+T25+T11+T6+T4 120,960 V1416 = T47+T23+T13+T7+T5 3,628,800
V1382 = T47+T25+T9+T6+T4 120,960 V1417 = T47+T23+T13+T6+T4 806,400
V1383 = T47+T24+T13+T8+T5 1,612,800 V1418 = T47+T23+T11+T7+T4 806,400
V1384 = T47+T24+T13+T8+T4 1,612,800 V1419 = T47+T23+T11+T7+T5 1,209,600
V1385 = T47+T24+T13+T7+T5 3,628,800 V1420 = T47+T23+T11+T6+T4 201,600
V1386 = T47+T24+T13+T7+T4 2,419,200 V1421 = T47+T23+T9+T6+T4 201,600
V1387 = T47+T24+T13+T6+T4 806,400 V1422 = T47+T23+T14+T8+T5 1,008,000
V1388 = T47+T24+T12+T8+T5 1,209,600 V1423 = T47+T23+T14+T8+T4 1,008,000
V1389 = T47+T24+T12+T8+T4 1,209,600 V1424 = T47+T23+T14+T7+T5 3,024,000
V1390 = T47+T24+T12+T7+T4 806,400 V1425 = T47+T23+T14+T7+T4 2,016,000
V1391 = T47+T24+T12+T7+T5 1,209,600 V1426 = T47+T23+T14+T6+T4 1,008,000
V1392 = T47+T24+T12+T6+T4 403,200 V1427 = T47+T21+T10+T7+T4 161,280
V1393 = T47+T24+T10+T7+T4 604,800 V1428 = T47+T21+T10+T7+T5 241,920

Table A.29: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1429 = T47+T21+T10+T6+T4 161,280 V1464 = T47+T20+T13+T7+T5 2,177,280
V1430 = T47+T21+T11+T7+T4 645,120 V1465 = T47+T20+T13+T6+T4 483,840
V1431 = T47+T21+T11+T7+T5 967,680 V1466 = T47+T20+T13+T8+T5 967,680
V1432 = T47+T21+T11+T6+T4 161,280 V1467 = T47+T20+T13+T8+T4 967,680
V1433 = T47+T21+T9+T6+T4 161,280 V1468 = T47+T20+T12+T7+T5 967,680
V1434 = T47+T21+T13+T7+T4 483,840 V1469 = T47+T20+T12+T7+T4 645,120
V1435 = T47+T21+T13+T7+T5 725,760 V1470 = T47+T20+T12+T6+T4 322,560
V1436 = T47+T21+T13+T6+T4 161,280 V1471 = T47+T20+T12+T8+T5 967,680
V1437 = T47+T21+T13+T8+T5 322,560 V1472 = T47+T20+T12+T8+T4 967,680
V1438 = T47+T21+T13+T8+T4 322,560 V1473 = T47+T19+T10+T7+T5 241,920
V1439 = T47+T22+T11+T7+T5 1,451,520 V1474 = T47+T19+T10+T7+T4 161,280
V1440 = T47+T22+T11+T7+T4 967,680 V1475 = T47+T19+T10+T6+T4 161,280
V1441 = T47+T22+T11+T6+T4 241,920 V1476 = T47+T19+T9+T6+T4 80,640
V1442 = T47+T22+T9+T6+T4 80,640 V1477 = T47+T19+T12+T7+T5 241,920
V1443 = T47+T22+T10+T7+T5 483,840 V1478 = T47+T19+T12+T7+T4 161,280
V1444 = T47+T22+T10+T7+T4 322,560 V1479 = T47+T19+T12+T6+T4 80,640
V1445 = T47+T22+T10+T6+T4 322,560 V1480 = T47+T19+T12+T8+T5 241,920
V1446 = T47+T22+T13+T7+T5 2,177,280 V1481 = T47+T19+T12+T8+T4 241,920
V1447 = T47+T22+T13+T7+T4 1,451,520 V1482 = T47+T16+T9+T6+T4 120,960
V1448 = T47+T22+T13+T6+T4 483,840 V1483 = T47+T16+T10+T6+T4 120,960
V1449 = T47+T22+T13+T8+T5 967,680 V1484 = T47+T16+T10+T7+T4 120,960
V1450 = T47+T22+T13+T8+T4 967,680 V1485 = T47+T16+T10+T7+T5 181,440
V1451 = T47+T22+T12+T7+T5 967,680 V1486 = T47+T17+T9+T6+T4 120,960
V1452 = T47+T22+T12+T7+T4 645,120 V1487 = T47+T17+T10+T6+T4 241,920
V1453 = T47+T22+T12+T6+T4 322,560 V1488 = T47+T17+T10+T7+T4 241,920
V1454 = T47+T22+T12+T8+T5 967,680 V1489 = T47+T17+T10+T7+T5 362,880
V1455 = T47+T22+T12+T8+T4 967,680 V1490 = T47+T17+T11+T6+T4 120,960
V1456 = T47+T20+T11+T7+T4 645,120 V1491 = T47+T17+T11+T7+T4 483,840
V1457 = T47+T20+T11+T7+T5 967,680 V1492 = T47+T17+T11+T7+T5 725,760
V1458 = T47+T20+T11+T6+T4 161,280 V1493 = T47+T18+T11+T6+T4 60,480
V1459 = T47+T20+T10+T7+T5 725,760 V1494 = T47+T18+T11+T7+T4 241,920
V1460 = T47+T20+T10+T7+T4 483,840 V1495 = T47+T18+T11+T7+T5 362,880
V1461 = T47+T20+T10+T6+T4 483,840 V1496 = T47+T15+T9+T6+T4 40,320
V1462 = T47+T20+T9+T6+T4 161,280 V1497 = T48+T25+T14+T8+T5 20,160
V1463 = T47+T20+T13+T7+T4 1,451,520 V1498 = T48+T25+T14+T8+T4 20,160

Table A.30: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1499 = T48+T25+T14+T7+T5 60,480 V1534 = T48+T24+T11+T6+T4 60,480
V1500 = T48+T25+T14+T7+T4 40,320 V1535 = T48+T24+T9+T6+T4 40,320
V1501 = T48+T25+T14+T6+T4 20,160 V1536 = T48+T24+T14+T8+T5 100,800
V1502 = T48+T25+T13+T8+T5 80,640 V1537 = T48+T24+T14+T8+T4 100,800
V1503 = T48+T25+T13+T8+T4 80,640 V1538 = T48+T24+T14+T7+T5 302,400
V1504 = T48+T25+T13+T7+T5 181,440 V1539 = T48+T24+T14+T7+T4 201,600
V1505 = T48+T25+T13+T7+T4 120,960 V1540 = T48+T24+T14+T6+T4 100,800
V1506 = T48+T25+T13+T6+T4 40,320 V1541 = T48+T23+T12+T8+T5 120,960
V1507 = T48+T25+T12+T8+T5 60,480 V1542 = T48+T23+T12+T8+T4 120,960
V1508 = T48+T25+T12+T8+T4 60,480 V1543 = T48+T23+T12+T7+T4 80,640
V1509 = T48+T25+T12+T7+T4 40,320 V1544 = T48+T23+T12+T7+T5 120,960
V1510 = T48+T25+T12+T7+T5 60,480 V1545 = T48+T23+T12+T6+T4 40,320
V1511 = T48+T25+T12+T6+T4 20,160 V1546 = T48+T23+T10+T7+T4 80,640
V1512 = T48+T25+T10+T7+T4 40,320 V1547 = T48+T23+T10+T7+T5 120,960
V1513 = T48+T25+T10+T7+T5 60,480 V1548 = T48+T23+T10+T6+T4 80,640
V1514 = T48+T25+T10+T6+T4 40,320 V1549 = T48+T23+T13+T8+T5 322,560
V1515 = T48+T25+T11+T7+T5 120,960 V1550 = T48+T23+T13+T8+T4 322,560
V1516 = T48+T25+T11+T7+T4 80,640 V1551 = T48+T23+T13+T7+T4 483,840
V1517 = T48+T25+T11+T6+T4 20,160 V1552 = T48+T23+T13+T7+T5 725,760
V1518 = T48+T25+T9+T6+T4 20,160 V1553 = T48+T23+T13+T6+T4 161,280
V1519 = T48+T24+T13+T8+T5 322,560 V1554 = T48+T23+T11+T7+T4 161,280
V1520 = T48+T24+T13+T8+T4 322,560 V1555 = T48+T23+T11+T7+T5 241,920
V1521 = T48+T24+T13+T7+T5 725,760 V1556 = T48+T23+T11+T6+T4 40,320
V1522 = T48+T24+T13+T7+T4 483,840 V1557 = T48+T23+T9+T6+T4 40,320
V1523 = T48+T24+T13+T6+T4 161,280 V1558 = T48+T23+T14+T8+T5 201,600
V1524 = T48+T24+T12+T8+T5 241,920 V1559 = T48+T23+T14+T8+T4 201,600
V1525 = T48+T24+T12+T8+T4 241,920 V1560 = T48+T23+T14+T7+T5 604,800
V1526 = T48+T24+T12+T7+T4 161,280 V1561 = T48+T23+T14+T7+T4 403,200
V1527 = T48+T24+T12+T7+T5 241,920 V1562 = T48+T23+T14+T6+T4 201,600
V1528 = T48+T24+T12+T6+T4 80,640 V1563 = T48+T21+T10+T7+T4 40,320
V1529 = T48+T24+T10+T7+T4 120,960 V1564 = T48+T21+T10+T7+T5 60,480
V1530 = T48+T24+T10+T7+T5 181,440 V1565 = T48+T21+T10+T6+T4 40,320
V1531 = T48+T24+T10+T6+T4 120,960 V1566 = T48+T21+T11+T7+T4 161,280
V1532 = T48+T24+T11+T7+T4 241,920 V1567 = T48+T21+T11+T7+T5 241,920
V1533 = T48+T24+T11+T7+T5 362,880 V1568 = T48+T21+T11+T6+T4 40,320

Table A.31: Tree-equivalent regular vines with 8 nodes (Continuation).
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Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines

V1569 = T48+T21+T9+T6+T4 40,320 V1604 = T48+T20+T12+T7+T5 241,920
V1570 = T48+T21+T13+T7+T4 120,960 V1605 = T48+T20+T12+T7+T4 161,280
V1571 = T48+T21+T13+T7+T5 181,440 V1606 = T48+T20+T12+T6+T4 80,640
V1572 = T48+T21+T13+T6+T4 40,320 V1607 = T48+T20+T12+T8+T5 241,920
V1573 = T48+T21+T13+T8+T5 80,640 V1608 = T48+T20+T12+T8+T4 241,920
V1574 = T48+T21+T13+T8+T4 80,640 V1609 = T48+T19+T10+T7+T5 60,480
V1575 = T48+T22+T11+T7+T5 362,880 V1610 = T48+T19+T10+T7+T4 40,320
V1576 = T48+T22+T11+T7+T4 241,920 V1611 = T48+T19+T10+T6+T4 40,320
V1577 = T48+T22+T11+T6+T4 60,480 V1612 = T48+T19+T9+T6+T4 20,160
V1578 = T48+T22+T9+T6+T4 20,160 V1613 = T48+T19+T12+T7+T5 60,480
V1579 = T48+T22+T10+T7+T5 120,960 V1614 = T48+T19+T12+T7+T4 40,320
V1580 = T48+T22+T10+T7+T4 80,640 V1615 = T48+T19+T12+T6+T4 20,160
V1581 = T48+T22+T10+T6+T4 80,640 V1616 = T48+T19+T12+T8+T5 60,480
V1582 = T48+T22+T13+T7+T5 544,320 V1617 = T48+T19+T12+T8+T4 60,480
V1583 = T48+T22+T13+T7+T4 362,880 V1618 = T48+T16+T9+T6+T4 40,320
V1584 = T48+T22+T13+T6+T4 120,960 V1619 = T48+T16+T10+T6+T4 40,320
V1585 = T48+T22+T13+T8+T5 241,920 V1620 = T48+T16+T10+T7+T4 40,320
V1586 = T48+T22+T13+T8+T4 241,920 V1621 = T48+T16+T10+T7+T5 60,480
V1587 = T48+T22+T12+T7+T5 241,920 V1622 = T48+T17+T9+T6+T4 40,320
V1588 = T48+T22+T12+T7+T4 161,280 V1623 = T48+T17+T10+T6+T4 80,640
V1589 = T48+T22+T12+T6+T4 80,640 V1624 = T48+T17+T10+T7+T4 80,640
V1590 = T48+T22+T12+T8+T5 241,920 V1625 = T48+T17+T10+T7+T5 120,960
V1591 = T48+T22+T12+T8+T4 241,920 V1626 = T48+T17+T11+T6+T4 40,320
V1592 = T48+T20+T11+T7+T4 161,280 V1627 = T48+T17+T11+T7+T4 161,280
V1593 = T48+T20+T11+T7+T5 241,920 V1628 = T48+T17+T11+T7+T5 241,920
V1594 = T48+T20+T11+T6+T4 40,320 V1629 = T48+T18+T11+T6+T4 20,160
V1595 = T48+T20+T10+T7+T5 181,440 V1630 = T48+T18+T11+T7+T4 80,640
V1596 = T48+T20+T10+T7+T4 120,960 V1631 = T48+T18+T11+T7+T5 120,960
V1597 = T48+T20+T10+T6+T4 120,960 V1632 = T48+T15+T9+T6+T4 20,160
V1598 = T48+T20+T9+T6+T4 40,320
V1599 = T48+T20+T13+T7+T4 362,880
V1600 = T48+T20+T13+T7+T5 544,320
V1601 = T48+T20+T13+T6+T4 120,960
V1602 = T48+T20+T13+T8+T5 241,920
V1603 = T48+T20+T13+T8+T4 241,920

Table A.32: Tree-equivalent regular vines with 8 nodes (Continuation).



Summary

Bayesian Belief Nets and Vines
in aviation safety and other applications

Oswaldo Morales Nápoles.

The relationship between probability theory and graph theory has enabled
great improvements for both. In particular, probability theory has benefitted
from graph theory for the representation of multivariate distributions. Two such
possible representations are Bayesian Belief Nets (BBNs) and Vines. The main
interest of this thesis is in the description of applications of BBNs and vines to
problems in which quantifying uncertainty is of prime importance. Two such
problems studied in this thesis are in the identification and measurement of risks
in the aviation industry and earth dams.

Vines and BBNs are closely related. Despite of this fact, graphical properties
of BBNs have been more studied than vines. Before presenting applications of
BBNs and vines in aviation and earth dam safety, this thesis presents a study of
vines as graphs. This study (chapter 2) represents a first step towards a more
systematic approach to studying vines as graphs.

The largest part of the thesis is concerned with aviation safety. The aviation
sector is generally recognized for its high levels of safety. In fact the fatal and
non-fatal accident rate worldwide has not reached the levels of 1996 in any year
in the period from 1997 to 2007. However, the total number of flights for the
same period has grown from about 31 million in 1996 to about 48 in 2007. If
this growth trend continues, the accident rate must decrease further in order to
maintain low the total number of accidents.

Different studies have shown that accidents in the aviation industry have hu-
mans as their main contributing factor. A model that aspires to improve safety
in the aviation industry should include human error and all its other components.
The Netherlands Ministry of Transport and Water Management commissioned the
construction of a model for comparing alternatives, strengthening safety measures
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and finding causes of incidents and accidents and for quantifying the probability
of adverse events in the aviation system. This model is known as the Causal
Model for Air Transport Safety or CATS.

The CATS model is in fact a BBN that consists of 1,504 nodes and 4,976 arcs.
The construction of such a model was a great challenge that was undertaken with
the effort of many people. The major focus of this thesis is in the description of the
quantification of such a BBN. Emphasis is placed in the techniques used for the
quantification of dependence for Non Parametric Continuous-Discrete BBNs. For
the CATS model this was done mainly through the use of structured expert judg-
ment in human error models for flight crew, air traffic control and maintenance
crew.

BBNs are tools flexible enough to be used in different fields. This is shown in
the 6th chapter of this thesis where a BBN for earth dams safety in the State of
Mexico is presented. From the end of October and up to the end of November
2007 flooding was observed in about 70% of the Tabasco flatland affecting more
than 1 million people. The model described in chapter 6 may be of assistance for
earth dam engineers in the State of Mexco in preventing situations such as the
one observed in Tabasco.

The main conclusions of these thesis summarized in chapter 7 concern vines,
BBNs and the applications discussed. For vines the need to study them in a
systematic way as graphical structures is discussed. Taking this step could help
increase its range of applications. BBNs have proved in this thesis to be a powerful
tool for risk and uncertainty analysis. Methods successfully used in practice to
quantify them from experts have been advanced. Further research in combination
of individual experts’ dependence estimates is suggested.

With regards to applications, according to the CATS BBN, experienced crews
and newer aircrafts lead to a greater reduction of the accident rate than measures
concerning maintenance technicians or air traffic controllers. This does not entail
that investments in air traffic control and maintenance crew are discouraged. It
does suggest however that investments pointing towards experienced crew and
aircraft fleet renewal might deserve priority. Finally with respect to earth dam
safety in the State of Mexico this thesis shows the experts’ belief that given a
dam failure, the economic consequences are approximately constant regardless of
the size of a flooding. Thus, the occurrence of a failure should be avoided if costs
are to remain minimum.



Samenvatting

Bayesiaanse Netwerken en Vines
in veiligheid van de luchtvaart en andere toepassingen

Oswaldo Morales Nápoles.

De relatie tussen de kansrekening en grafentheorie heeft grote verbeteringen
voor beide mogelijk gemaakt. In het bijzonder, heeft kansrekening profiteerd van
de grafentheorie voor de vertegenwoordiging van hoog dimensionale verdelingen.
Twee van zulke mogelijke voorstellingen zijn Bayesiaanse Netwerken (BBN) en
Vines. Het voornaamste belang van dit proefschrift is de beschrijving van toepas-
singen van BBNs en Vines in problemen waarin het kwantificeren van onzekerheid
van het grootste betekenis is. Twee van dergelijke problemen onderzocht in dit
proefschrift zijn de identificatie en meting van risico’s in de luchtvaartindustrie
en bij dijken.

Vines en BBN’s hebben een nauwe relatie. Ondanks van dit feit, zijn grafische
eigenschappen van BBN’s meer onderzocht dan Vines. Voor het behandelen van
BBNs en Vines in de luchtvaart en dijk veiligheid, presenteert dit proefschrift een
studie van Vines als grafieken. Deze studie (hoofdstuk 2) vormt een eerste stap
naar een meer systematische aanpak van het bestuderen van vines als grafieken.

Het grootste deel van het proefschrift houdt zich bezig met veiligheid in de
luchtvaart. De luchtvaartsector is bekend oom zijn hoge mate van veiligheid.
In feite, heeft in de periode van 1997 tot 2007 het aantal fatale en niet-fatale
ongevallen cijfer per jaar wereldwijd niet de hoogte bereikt van 1996. Echter, het
totale aantal vluchten is in dezelfde periode gegroeid van ongeveer 31 miljoen in
1996 tot ongeveer 48 in 2007. Als deze groei trend doorzet, moet het ongevallen
cijfer verder afnemen om het totale aantal ongevallen laag te houden.

Verschillende studies hebben aangetoond dat ongevallen in de luchtvaartin-
dustrie menselijk factoren als belangrijkste oorzak hebben. Een model dat streeft
naar verbetering van de veiligheid in de luchtvaartsector moet ook menselijke fou-
ten en alle andere componenten bevatten opnemen. De Nederlandse Ministerie
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van Verkeer en Waterstaat heeft opdracht gegeven voor de constructie van een
model voor het vergelijken van alternatieven, aanscherping van de veiligheidsmaa-
tregelen, en het vinden van oorzaken van incidenten en ongevallen en voor het
kwantificeren van de kans op ongewenste voorvallen in de luchtvaart. Dit model
staat bekend als het Causal Model for Air Transport Safety of CATS.

Het CATS-model is in feite een BBN dat bestaat uit 1.504 knooppunten en
4.976 bogen. De bouw van een dergelijk model is een grote uitdaging die werd
gerealiseerd door de inspanning van velen. De belangrijkste focus van dit proef-
schrift ligt op de beschrijving van de kwantificering van een dergelijke BBN. De
nadruk wordt gelegd op de technieken gebruikt voor de kwantificering van de af-
hankelijkheid voor niet-parametrische continue-discrete BBN’s. Voor het CATS-
model was dit vooral gedaan door het gebruik van gestructureerde expert mening
in menselijke fout modellen voor de cockpitpersoneel, de luchtverkeersleiding en
onderhoud technici.

BBNs zijn tools die flexibel genoeg zijn om gebruikt te worden in verschillende
gebieden. Dit wordt weergegeven in het 6de hoofdstuk van dit proefschrift waar
een BBN voor dijken veiligheid in de Staat van Mexico wordt gepresenteerd. Vanaf
eind oktober tot eind november 2007 werden er overstromingen waargenomen in
ongeveer 70% van de lage gebeid van Tabasco. Dit heb meer dan 1 miljoen mensen
getroffen. Het model beschreven in hoofdstuk 6 kan worden van een hulpmiddel
voor civile techniche ingenieurs in de Staat van Mexco bij het voorkomen van
situaties zoals die zijn waargenomen in Tabasco.

De belangrijkste conclusies van dit proefschrift samengevat in hoofdstuk 7 be-
treffen Vines, BBN’s en de besproken toepassingen. De noodzaak om Vines te
bestuderen op een systematische manier als grafische structuren wordt besproken.
Het nemen van deze stap zou de mogelijke toepassing kunnen helpen vergroten.
BBNs hebben bewezen in dit proefschrift een krachtig instrument voor risico en
onzekerheidsanalyze te zijn. Methoden die met succes in de praktijk zijn gebruikt
om ze te kwantificeren van experts zijn geavanceerd. Verder onderzoek over de
combinatie van de individueel afhankelijkheid beoordelen van experts is gesugge-
reerd.

Met betrekking tot de toepassingen, zouden volgens de CATS BBN, ervaren
cockpitpersoneel en nieuwere vliegtuigen het ongevallen cijfer meer verminderen
dan maatregelen met betrekking tot de onderhoud technici of luchtverkeersleiders.
Dit houdt niet in dat investeringen in de luchtverkeersleiding en onderhoudbe-
manning worden afgeraden. Er wordt echter gesuggereerd dat de investeringen
die gericht zij op ervaren bemanning en vliegtuig vernieuwing van de vloot prio-
riteit zou kunnen verdien. Tenslotte toont dit proefschrift, met betrekking tot de
veiligheid van de dijken in de Staat van Mexico aan, dat expert geloven dat de
economische gevolgen ongeveer constant zijn, ongeacht de grootte van een overs-
troming. Daarom moet er overstromingen worden voorkomen zodat de kosten
minimaal blijven.
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