

Propositions

accompanying the thesis

Bayesian Belief Nets and Vines in Aviation Safety and other Applications.

Oswaldo Morales Nápoles.

(1) The algorithm proposed in Aas et al. [2009, p.189] suggests that operations to assign the 'best' regular vine to a data set should begin by selecting the first tree and iteratively selecting subsequent trees of the regular vine. Algorithm 2.3.2. in this thesis (Morales Nápoles [2009]) is the most advantageous in this case if regular vines are to be generated "on the fly".
(2) The notion of natural order for regular vines presented in this thesis has helped to enumerate the number of equivalence classes of regular vines on n nodes [Joe et al., 2010]. This same notion should shed light on other graphical properties of regular vines such as the number of tree-equivalent classes, the degree sequence, the typical distance and the diameter of each tree in every level of the vine. Moreover, these properties should be further studied.
(3) The subject of random vines should be developed. One example is the random vine $V(n)$ taken at random from the collection of all vines on n nodes. A second example, more important for present applications [Kurowicka and Cooke, 2006], could be the random regular vine $R V(n, p)$ on n nodes where each of the $n(n-1) / 2$ edges realizes independently a partial correlation equal to zero with probability p. Moreover, p could be related to the ratio of the number of labeled elements in each equivalent or tree-equivalent class to the total number of labeled regular vines on n nodes.
(4) The construction of a large data base with all possible labeled regular vines on n nodes for a sufficiently large n that includes all known graphical properties is, at this stage, as important for applications as algorithms for generating them.
(5) The number of stars in the Milky Way as computed from Schneider [2006, p.5] is approximately equal to the number of labeled vines on 7 nodes.
(6) According to the CATS BBN presented in this thesis (Morales Nápoles [2009]), it is possible to reduce the accident rate to a value approximately 6 times smaller than the current value. In order to do this, the flight crew should increase their levels of experience to a value equal to the $97^{t h}$ percentile of their distributions. The aviation sector cannot support this change in the short run. In order to achieve a reduction in the accident rate of similar magnitude, a combination of policies is required. Investigating these possible policies should be at least one of the immediate goals of the CATS BBN.
(7) Non-Parametric Continuous-Discrete $B B N s$ are more flexible with respect to changes in modelling than discrete, Gaussian and discrete-Gaussian BBNs. However, adding or deleting nodes or arcs in the graph could still lead to a re-quantification.
(8) The assessment of conditional rank correlations through ratios of unconditional rank correlations is easier for experts than its assessment through probabilities of exceedence with a large number of conditions.
(9) The consequences of an earth dam failure in the State of Mexico will be approximately constant regardless of the size of the failure.
(10) When the univariate marginal distributions are very different across experts, the joint distribution obtained with the method for combination described in this thesis (Morales Nápoles [2009, Ch.4]) with equal weights tends to suppress the magnitude of the dependence even if individual experts think bivariate rank correlations are of the same sign and magnitude. This is an advantage of combining rank correlations through exceedence probabilities.
(11) The number of hairs in a cow's tail is a random variable with mean 2,872 (Fauvel and Gerdes [1990]). Efforts to adequately characterize this quantity would lead to a better world.

These propositions are considered opposable and defendable and as such have been approved by the supervisor prof. dr. R.M. Cooke.

References

[^0]Stellingen
behorende bij het proefschrift

Bayesiaanse Netwerken en Vines in veiligheid van de luchtvaart en andere toepassingen.

Oswaldo Morales Nápoles.

(1) Het algoritme voorgesteld in Aas et al. [2009, p.189] suggereert dat activiteiten, om de "beste" (regular vine) aan een reeks gegevens toe te wijzen, moeten beginnen met het selecteren van de eerste boom en daarna iteratief selecteren van latere bomen van de (regular vine). Algoritme 2.3.2. in dit proefschrift (Morales Nápoles [2009]) is de meest voordelige in dit geval, waarin reguliere takken per direct gegenereerd worden.
(2) Het begrip dat regular vines aan een natuurlijke orde voldoen, zoals gepresenteerd in dit proefschrift, heeft bijgedragen aan de mogelijkheid om het aantal equivalentie klassen van reguliere takken op n knopen op te sommen [Joe et al., 2010]. Dit begrip zou tevens licht moeten werpen op andere grafische eigenschappen van reguliere takken, zoals het aantal boom-gelijkwaardige klassen, de graad volgorde, de typische afstand en de diameter van elke boom in elk niveau van de vine. Bovendien moeten deze eigenschappen verder worden onderzocht.
(3) Het onderwerp van willekeurige vines moet verder worden ontwikkeld. Een voorbeeld hiervan is de willekeurige vine $V(n)$ die willekeurig uit de verzameling van alle vines op n knooppunten getrokken wordt. Een tweede voorbeeld, dat belangrijker is voor de huidige toepassingen [Kurowicka and Cooke, 2006], zou de willekeurige reguliere vine $R V(n, p)$ op n knopen kunnen zijn, waarbij elk van de $n(n-1) / 2$ randen onafhankelijk een partiële correlatie gelijk aan nul met kans p realiseert. Bovendien zou p gerelateerd kunnen worden aan de verhouding tussen het aantal gelabelde elementen in elke equivalente klasse of boom-equivalente klasse en het totale aantal gelabelde regular vines op n knopen.
(4) Het maken van een grote databank, met alle mogelijke gelabelde regular vines op n knooppunten voor een voldoend grote n, dat alle bekende grafische eigenschappen bevat, is, in dit stadium, van hetzelfde belang voor toepassingen als algoritmen zijn voor het genereren van vines.
(5) Het aantal sterren in de Melkweg zoals berekend van Schneider [2006, p.5] is ongeveer gelijk aan het aantal gelabelde vines op 7 knooppunten.
(6) Volgens de CATS BBN gepresenteerd in dit proefschrift (Morales Nápoles [2009]), is het mogelijk om het aantal ongevallen te verminderen tot een waarde die ongeveer 6 maal kleiner is dan het huidige aantal. Om dit te doen, moet het cockpitpersoneel hun ervaringsniveau opvoeren naar een niveau gelijk aan het 97 ste percentiel van hun verdelingen. De luchtvaartsector kan op korte termijn niet voldoen aan deze wijziging. Om een gelijkwaardig grote reductie in het aantal ongevallen te verkrijgen is een combinatie van maatregelen nodig. Het onderzoeken van deze mogelijke
maatregelen zou ten minste n van de doelen van de CATS BBN moeten zijn.
(7) Niet-parametrische continue-distcrete BBN zijn flexibeler met betrekking tot veranderingen in modellering dan discrete, Gaussische en discreteGaussische BBNs. Echter, het toevoegen of verwijderen van knooppunten of bogen in de grafiek kan nog leiden tot een nieuwe kwantificering.
(8) De beoordeling van de voorwaardelijke rang correlaties door middel van vehoudingen van onvoorwaardelijke rang correlaties is eenvoudiger voor experts dan het beoordelen met behulp van kansen op overschrijding met een groot aantal voorwaarden.
(9) De gevolgen van het falen van een dijk in de Staat van Mexico zal ongeveer constant zijn, onafhankelijk van de omvang van het falen.
(10) Wanneer de één-dimensionale verdelingen zeer verschillend zijn over verscheidene experts, zal de gezamenlijke verdeling, verkregen met de methode voor de combinatie beschreven in dit proefschrift (Morales Nápoles [2009, Ch.4]), met gelijke gewichten de neiging hebben om de grootte van afhankelijkheid te onderdrukken. Zelfs als individuele experts denken dat rang twee dimensionale correlaties van hetzelfde teken en dezelfde omvang zijn. Dit is een voordeel van het combineren van rang correlaties door overschrijdende kansen.
(11) Het aantal haren in de staart van een koe is een willekeurige variabele met een gemiddelde van 2.872 (Fauvel and Gerdes [1990]). Inspanningen om deze hoeveelheid adequaat te kwantificeren zou een betere wereld tot gevolg hebben.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedkeurd door de promotor prof. dr. R.M. Cooke.

References

[^1]
BAYESIAN BELIEF NETS AND VINES IN AVIATION SAFETY AND OTHER APPLICATIONS

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op maandag 15 februari 2010 om 10:00 uur
door

Oswaldo MORALES NÁPOLES

Master of Science in Applied Mathematics
geboren te Toluca, México.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. R.M. Cooke

Samenstelling promotiecommissie:
Rector Magnificus voorzitter
Prof. dr. R.M. Cooke
Dr. D. Kurowicka
Prof. dr. B.J.M. Ale
Prof. dr. H. Joe University of British Columbia, Vancouver
Dr. D. de León Escobedo Universidad Autónoma del Estado de México, Toluca
Prof. dr. A. Mosleh
University of Maryland, Maryland
Prof. dr. M.J.L. van Tooren
Technische Universiteit Delft
Prof. dr. G. Jongbloed Technische Universiteit Delft, reservelid

ISBN

Copyright © 2010 by O. Morales Nápoles.
All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission of the author.

Cover designed by Sandra Gaytan, Diana Garcia \& the author.
Printed in the Netherlands by Wöhrmann Print Service.

Contents

1 Introduction 1
1.1 Probability \& uncertainty 1
1.2 Copulae 2
1.2.1 Dependence Measures 2
1.2.2 Two examples of copulae 3
1.3 Overview of the development of vines \& BBNs 5
1.3.1 Graph Theory 5
1.3.2 Bayesian belief networks and influence diagrams 6
1.3.3 Undirected Graphs and Vines 8
1.4 Introduction to the Causal Model for Air transport Safety 9
2 About The Number of Vines and Regular Vines on n Nodes. 17
2.1 Introduction 17
2.2 Trees 18
2.2.1 The Number of Labeled Trees on n Nodes and the Prüfer Code 18
2.3 Vines 20
2.3.1 The Number of Vines on n Nodes and the Prüfer Code 20
2.3.2 Regular vines and the line graph 22
2.4 The Number of Regular Vines on n Nodes. 26
2.5 Final Comments 33
3 BBNs in Aviation Safety 35
3.1 Discrete BBNs 35
3.2 Non-Parametric Continuous-Discrete BBNs 37
3.3 Causal Model for Air transport Safety (CATS) 40
3.3.1 Event Sequence Diagrams \& Fault Trees 40
3.3.2 Human Reliability Models 42
3.3.2.1 FCP Model Description 42
3.3.2.2 ATCP Model Description 44
3.3.2.3 MNTP Model Description. 47
3.3.3 The CATS Model in UniNet 47
3.3.3.1 ESDs \& FTs for the CATS model in UniNet 47
3.3.3.2 The error distributions in UniNet 47
3.3.3.3 The complete model 51
3.4 Model Use 56
4 Elicitation and Combination of Dependence. 61
4.1 Introduction 61
4.2 Structured Expert Judgment 62
4.2.1 The Classical Model for Structured Expert Judgment 63
4.2.2 Dependence Elicitation 64
4.2.2.1 Probabilistic Approaches 64
4.2.2.2 Direct Approach 70
4.2.3 Combination of Experts' Dependence Estimates 74
4.3 Final Comments 77
5 Structured Expert Judgment in Aviation Safety 79
5.1 The Missed Approach Model 79
5.1.1 Introduction to the MA model. 79
5.1.2 Description of the MA model. 80
5.1.3 Expert Elicitation Results of the MA Model 82
5.1.4 Updating beliefs in the MA Model 84
5.2 The Flight Crew Performance Model 87
5.2.1 Expert Elicitation Results of the FCP Model 87
5.2.2 Dependence in the FCP Model 89
5.3 The Air Traffic Control Performance Model 90
5.3.1 Expert Elicitation Results of the ATCP Model 90
5.3.2 Dependence in the ATCP Model 91
6 Dams Safety in the State of Mexico 93
6.1 Introduction 93
6.2 Earth Dams in the State of Mexico 95
6.3 Description of the DS model. 96
6.3.1 Model variables \& graph 96
6.3.2 Expert Elicitation Results of the DS Model 98
6.3.3 Dependence in the DS Model 100
6.4 Discussion of the DS Model 103
6.5 Final comments of the DS Model 105
7 Conclusions 107
7.1 About Vines 107
7.2 About Bayesian Networks and their Applications 109
7.2.1 Aviation Safety 109
7.2.2 Earth Dams Safety 111
7.2.3 About BBNs 111
References 113
Appendicies
A Regular Vines Catalogue. 121
Summary 155
Samenvatting 157
Acknowledgments 159
Curriculum Vitae 161

CHAPTER 1

Introduction

1.1 Probability \& uncertainty

This thesis explores some properties of graphs and their relation to probability distributions in order to show their use in current applications in risk and uncertainty analysis.

According to David [1955] games of chance were invented some time between 40,000 years ago and the third millennium before Christ. About 960 A.D. the earliest work which mentions the number of ways in which three dice thrown together (or one dice thrown three times) may fall, irrespective of order, is presented by a certain bishop Wibold. In his presentation no attempt to assess relative probabilities may be visualized [Kendall, 1956].

Games of chances were studied by mathematicians such as Cardano, Galileo Galilei, Pascal, Fermat and Huygens until the middle of the $17^{\text {th }}$ century. Concepts such as fair coins, honest dice, equal case of occurrence, equal conditions and others were in the minds of scientists at the time. But it is not until the works of De Moivre and Jacob Bernoulli that a more modern version of the theory is encountered. It appears to be the latter the first who thought of applying the doctrine of chances to the art of conjecture [Kendall, 1956]. Applications of probability theory to the actuarial sciences begin also with the works of Halley and later Montmort and Nicholas Bernoulli [Sheynin, 1968].

From the 1700s on, the development of probability theory and its applications in many fields has progressed rapidly. In particular this thesis is interested in the description of applications of Bayesian belief networks (BBNs) and vines to specific problems in which quantifying uncertainty is of prime importance. BBNs and vines are graphical models used to represent multivariate probability distributions. BBNs will find their application in this thesis in the identification and measurement of risks in the aviation industry and earth dams.

1.2 Copulae

Representing multivariate probability distributions for certain phenomena can be a challenging task. Perhaps the multivariate model which is most widely used is the joint normal distribution. However, many phenomena behave far from normal. This is one of the reasons for researchers to have recourse to alternative models such as copulae.

The use of copulae can be traced back to the 1940s in the work of Hoeffding and the 1950s with the work of Fréchet and Sklar [Nelsen, 1998, p.2]. Copulae are multivariate distributions with uniform margins on (0,1). This suggest immediately the possibility of inducing a certain dependence structure to given one dimensional margins. Its possibilities for applications in statistics and simulation become evident and today many references can be found for them.

Copulae are part of the building blocks of the graphical models to be used in this thesis and for that reason basic concepts and definitions regarding them are introduced. The book by Nelsen [1998] presents an introduction to the subject. A larger account of the ideas briefly discussed in this section may be found in Kurowicka and Cooke [2006].

Bivariate copulae will be of special interest for us. By copula (or copulae) we mean a bivariate copula (or bivariate copulae) unless otherwise specified. The bivariate copula or simply the copula of two continuous random variables X and Y is the function C such that their joint distribution can be written as:

$$
F_{X, Y}(x, y)=C\left(F_{X}(x), F_{Y}(y)\right)
$$

Copulae are functions that allow naturally the investigation of association between random variables. Measures of association such as the rank correlation or Kendall's tau may be expressed in terms of copulae [Nelsen, 1998]. The measures of association to be used in this thesis are described next.

1.2.1 Dependence Measures

In this section we briefly present basic concepts and definitions about the measures of association used later on in the thesis. The product moment correlation of random variables X and Y with finite expectations $E(X), E(Y)$ and finite variances $\operatorname{var}(X), \operatorname{var}(Y)$ is:

$$
\rho_{X, Y}=\frac{E(X Y)-E(X) E(Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}} .
$$

The rank correlation of random variables X, Y with cumulative distribution functions F_{X} and F_{Y} is:

$$
r_{X, Y}=\rho_{F_{X}(X), F_{Y}(Y)}=\frac{E\left(F_{X}(X) F_{Y}(Y)\right)-E\left(F_{X}(X)\right) E\left(F_{Y}(Y)\right)}{\sqrt{\operatorname{var}\left(F_{X}(X)\right) \operatorname{var}\left(F_{Y}(Y)\right)}} .
$$

The rank correlation is the product moment correlation of the ranks of variables X and Y, and measures strength of monotonic relationship between variables. The conditional rank correlation of X and Y given Z is:

$$
r_{X, Y \mid Z}=r_{\tilde{X}, \tilde{Y}}
$$

where $(\widetilde{X}, \widetilde{Y})$ has the distribution of (X, Y) given $Z=z$.
The (conditional) rank correlation is the dependence measure of interest because of its close relationship with conditional copulae used in vines (chapter 2) and non-parametric continuous-discrete BBNs (chapter 3). One disadvantage of this measure however is that it fails to capture non-monotonic dependencies.

Rank correlations may be realized by copulae, hence the importance of these functions in dependence modeling. Partial correlations will also be of interest in this thesis. These can be defined in terms of partial regression coefficients. Consider variables X_{i} with mean zero and standard deviation σ_{i} for $i=1, \ldots, n$ and let the numbers $b_{1,2 ; 3, \ldots, n}, \ldots, b_{1, n ; 2, \ldots, n-1}$ minimize:

$$
E\left[\left(X_{1}-b_{1,2 ; 3, \ldots, n} X_{2}-\ldots-b_{1, n ; 2, \ldots, n-1} X_{n}\right)^{2}\right]
$$

The partial correlation of X_{1} and X_{2} based on X_{3}, \ldots, X_{n} is:

$$
\rho_{1,2 ; 3, \ldots, n}=\operatorname{sgn}\left(b_{1,2 ; 3, \ldots, n}\right)\left(b_{1,2 ; 3, \ldots, n} b_{2,1 ; 3, \ldots, n}\right)^{1 / 2}
$$

Partial correlations can be computed recursively from correlations [Yule and Kendall, 1965.]:

$$
\begin{equation*}
\rho_{1,2 ; 3, \ldots, n}=\frac{\rho_{1,2 ; 4, \ldots, n}-\rho_{1,3 ; 4, \ldots, n} \cdot \rho_{2,3 ; 4, \ldots, n}}{\left(\left(1-\rho_{1,3 ; 4, \ldots, n}^{2}\right) \cdot\left(1-\rho_{2,3 ; 4, \ldots, n}^{2}\right)\right)^{1 / 2}} \tag{1.1}
\end{equation*}
$$

Next two examples of copulae that will appear later in this thesis are presented.

1.2.2 Two examples of copulae

A unique copula that corresponds to any given continuous joint distribution may always be found. In this section two such copulae will be presented. Denote by Φ_{ρ} the bivariate standard normal cumulative distribution function with correlation ρ and Φ^{-1} the inverse of the univariate standard normal distribution function then

$$
C_{\rho}(u, v)=\Phi_{\rho}\left(\Phi^{-1}(u), \Phi^{-1}(v)\right) ;(u, v) \in[0,1]^{2}
$$

is called the normal copula. Notice that ρ is a parameter of the normal copula. The relationship between the correlation of the normal copula r (the rank correlation of the normal variables) and the parameter ρ (the product moment correlation of the normal variables) is known and given by the following formula [Kurowicka and Cooke, 2005, p.55]:

$$
\begin{equation*}
\rho=2 \sin \left(\frac{\pi}{6} r\right) \tag{1.2}
\end{equation*}
$$

In this thesis rank and conditional rank correlations will be of special importance. In general partial correlation is not equal to conditional correlation,
however, for the joint normal distribution the partial and conditional correlations are equal.

A second example of a copula that will be used in this thesis is Frank's copula. Frank's copula [Frank, 1979] is an Archimedean copula that has closed form for the density, conditional and inverse conditional distribution. Additionally, it has the property of reflection symmetry [Kurowicka and Cooke, 2005, p.49]. Frank's copula is:

$$
\begin{equation*}
C_{\theta}(u, v)=-\frac{1}{\theta} \ln \left[1+\frac{\left(e^{-\theta u}-1\right)\left(e^{-\theta v}-1\right)}{e^{-\theta}-1}\right] ;(u, v) \in[0,1]^{2} \tag{1.3}
\end{equation*}
$$

The parameter θ in equation (1.3) may be expressed in terms of rank correlation. For the Normal copula zero correlation entails independence. For Frank's copula the limit $\theta \longrightarrow 0$ yields $C_{\theta}(u, v)=u \cdot v$. The property that zero correlation implies independence is called the zero independence property and is of special importance for continuous non-parametric BBNs [Hanea et al., 2006].

Figure 1.1: Density of the normal copula with rank correlation 0.7859

Figure 1.3: Contour plot of Figure 1.1

Figure 1.2: Density of Frank's copula with rank correlation 0.7859

Figure 1.4: Contour plot of Figure 1.2

The densities of the normal and Frank's copulae with correlation 0.7859 are presented in Figures 1.1 and 1.2 respectively. At first sight the densities seem
to be almost identical. The differences between the two densities become more evident in Figures 1.3 and 1.4 where contour plots are shown for each of them.

The advantages of using the normal copula for the methods proposed in this thesis will become evident in chapters 3 an 4 . The differences that may arise by the choice of a copula in the modeling process will be illustrated comparing these two copulae. Copulae are used in the graphical models discussed in this thesis (vines and BBNs) to construct multidimensional probability distributions. Before discussing vines and BBNs more formally a small overview of the development of such models will be presented.

1.3 Overview of the development of vines \& BBNs

1.3.1 Graph Theory

As previously mentioned, vines and BBNs combine graph theory with probability theory. For that reason we begin this thesis with an overview of graph theory. Some concepts and definitions additional to those presented in section 1.2 will be required. They will be presented in this section.

Because of his discussion of a famous problem called the Königsberg bridge problem, Leonhard Euler is acknowledged as the father of graph theory. This problem appears in almost any modern text book on graph theory. Euler's original paper is written in Latin, for a translation to English the reader is referred to [Biggs et al., 1986]. Like many problems in probability theory, some of the early developments of graph theory originated from games. One of these was the hamiltonian game invented by Sir William Hamilton. The hamiltonian game will be used to introduce some definitions and notation that will be used later in the rest of the thesis.

An undirected graph $G=(N, E)$ consists of a finite non empty set N of nodes, also called (points or vertices) and a possibly empty set E of edges (lines or arcs) where each element is an unordered pair $\left(\alpha_{1}, \alpha_{2}\right)$, where α_{1} and $\alpha_{2} \neq \alpha_{1}$ are elements of N. Without loss of generality in this thesis when $N=\{1,2, \ldots, n\}$ we speak of labeled graphs. It will be assumed that two distinct edges do not join the same pair of nodes; graphs in which this is allowed are called multigraphs). Observe that no self-loops are permitted that is, edges joining nodes with itself. If the pair $\left(\alpha_{1}, \alpha_{2}\right)$ is ordered then G is a directed graph and the pair $\left(\alpha_{1}, \alpha_{2}\right)$ will be represented as $\alpha_{1} \rightarrow \alpha_{2}$. In this case α_{1} will be called a parent node of the child node α_{2}. Examples of undirected and directed graphs are shown in Figures 1.5 and 1.6 respectively.

The cardinality of N is called the order of the graph. If the pair $\left(\alpha_{1}, \alpha_{2}\right) \in E$ then the two nodes α_{1} and α_{2} are adjacent and each one is incident with the pair $\left(\alpha_{1}, \alpha_{2}\right) \in E$. The degree of a node is the number of edges incident with it. A complete graph $C G$ has every node adjacent to each other. A path of length n from α to β is a sequence $\alpha=\alpha_{0}, \ldots, \alpha_{n}=\beta$ of distinct nodes such that $\left(\alpha_{i-1}, \alpha_{i}\right) \in E$ for all $i=1, \ldots, n$. A cycle is a path such that $\alpha=\beta$. If every pair $\left(\alpha_{i-1}, \alpha_{i}\right)$ in a cycle of a directed graph is ordered as in E then it is a directed cycle otherwise it is an undirected cycle. If a directed graph has no directed cycles, then it is a

Figure 1.5: Undirected graph of order 20

Figure 1.6: Directed graph of order 20 with a cycle.

directed acyclic graph.

Hamilton proposed a graph like the one in Figure 1.5 where each node represented a city of the world and the edges connections between the cities. The object of the game was to travel "Around the World" by finding a route that passes through each node exactly once. In other words, the object of the game was to find a cycle of the graph in Figure 1.5 such that all nodes in N are contained in the cycle. One possible such cycle is represented by the directed graph in Figure 1.6. According to Harary [1967, p.5] "Hamilton sold this idea to a game manufacturer in Dublin for about twenty-five guineas which was wise of him since it was not a commercial success" ${ }^{1}$.

Since the introduction of graphs by Euler, its applications to many fields of science has grown. Probability theory has also relied on graphs to advance its methods. Two types of graphs will be of special importance in this thesis: directed acyclic graphs and trees. The presentation continues with a short overview of the development of vines and BBNs.

1.3.2 Bayesian belief networks and influence diagrams

Most of the literature on graphical models reflects the idea of using graphical representations for probabilistic information can be traced to the work of Sewal Wright in the 1920s (See for example Pearl [1988, p.131] and Cowell et al. [1999, p.81]). Figure 1.7 taken from Wright [1921] shows the diagram that Wright used in his guinea pigs example for introducing his method of path coefficients. Wright though of the boxes in Figure 1.7 as variables that are correlated with each other. He thought it was convenient to use a diagram such as the one in Figure 1.7 to represent relations in which the paths of influence between variables are shown by arrows. The sign of the correlations between variables is shown in the arcs of the network. This kind of diagrams have a close relationship to those that will

[^2]be used later in this thesis. Wright's method was criticized by Neils [1922] and perhaps that critique contributed to delay the development of graphical models in probability theory [Pearl, 1988, p.131] ${ }^{2}$.

Figure 1.7: Wright's diagram showing the interrelation among the factors determining the weight of guinea pigs at birth and at 33 days.

The use of directed acyclic graphs in combination with probability theory appears to be parallel in decision analysis and artificial intelligence in the late 70s and early 80s [Pearl, 1993]. In Pearl [1982] inference nets where nodes represent discrete variables and arcs conditional probabilities of the child variable given the parents are introduced ${ }^{3}$. These were extended by Kim and Pearl [1983] and later, in Pearl [1985] a more formal concept of Bayesian Networks is introduced that would lead finally to its formalization in Pearl [1986] and Pearl [1988]. In fact, Pearl [1986, p.246] states that the names "belief networks, Bayesian networks or influence networks [will be used] interchangeably, the former two to emphasize the judgmental origin and the probabilistic nature of the quantifiers, the later to reflect the directionality of the links. When the nature of the interaction is perceived to be causal, then the term, causal network may also be appropriate". Future developments of discrete Bayesian networks where in the direction of techniques for network updating of which probably the one by Lauritzen and Spiegelhalter [1988] is the most used to date. This technique has been improved however over the years[Cowell et al., 1999, p.123] and [Pearl, 1993, p.55].

Influence diagrams where introduced by Howard and Matheson [1984/2005] as an attempt to form a bridge between qualitative description and quantitative

[^3]specification. According to Boutlier [2005], these had their share of influence in artificial intelligence. Pearl [2005] views influence diagrams as informal precursors of belief networks. They might have had a larger impact in representing joint distributions with continuous variables as observed in Pearl [1988] and Schachter and Kenley [1989]. Networks with continuous nodes where restricted to this point to variables with joint normal distributions or discretizing continuous nodes to a finite number of states. Mixed discrete-gaussian models where also made available later Cowell et al. [1999].

Bayesian belief networks ${ }^{4}$ bear the name of the celebre reverend Thomas Bayes ${ }^{5}$ however Baysian networks as such were not a subject of discussion in his work. Because of his essay [Barnard and Bayes, 1958] he is acknowledged as one of the mayor exponents of the philosophy of induction ${ }^{6}$. Thus the name Bayesian belief networks emphasizes the continuous use of Bayes's rule and inverse probability in the philosophy behind these objects ${ }^{7}$. A recent work by Hanea [2008] compares basic characteristics of these models (discrete BBNs, Gaussian and Discrete-Gaussian BBNs and non-parametric BBNs) and hence that will not be done in the present work. However some concepts and definitions will be repeated for completeness.

1.3.3 Undirected Graphs and Vines

Vines are undirected graphs that specify a multivariate joint distribution. According to Cowell et al. [1999, p.81] undirected models can be traced back to the work of Bartlett [1935] in contingency tables. However the use of undirected graphical models to represent multivariate interactions were formally introduced in Darroch et al. [1980] for discrete variables specified by multidimensional contingency tables. In Speed and Kiiveri [1986] the continuous counterpart is presented for jointly Gaussian random variables. These references make use of undirected graphs to specify conditional independence, however we shall not deal with these kind of models in this thesis ${ }^{8}$.

A more direct ancestor of vines may be found in trees (see section 2.2). Trees were used by Darroch et al. [1980] and Speed and Kiiveri [1986] as special cases of graphical models, however undirected graphs with cycles were also used. Trees were also used in Chow and Liu [1968] to infer discrete distributions ${ }^{9}$ from data. The direct parents of vines are however Markov or Dependence Trees [Meeuwissen, 1993] and [Meeuwissen and Cooke, 1994]. These were used to specify multivariate

[^4]distributions for use in uncertainty analysis. Their suitability for Montecarlo Simulation made them appealing for applications. The concept of a tree was later extended to allow for more complicated dependence structures.

Vines use sequences of conditional distributions to build a multivariate distribution where conditional bivariate constraints are satisfied. The first model with such characteristics was presented in Joe [1996] with no specific relation to graphs. Cooke [1997] introduced independently the formal concept of a vine as a graphical object that uses sequences of trees to build the joint distribution and Bedford and Cooke [2002] developed it further. Vines as graphical models will be discussed in more detail in chapter 2. Relevant information for researchers interested in vines is presented additionally in appendix A.

Vines and continuous BBNs are closely related. This was investigated in Kurowicka and Cooke [2005], Hanea et al. [2006] and Kurowicka and Cooke [2006]. In particular the theory behind Non-parametric Continuous-discrete BBNs (NPCDBBNs) was built around vines. Theorem 1.3.1 shows the main result of the copula vine approach to non-parametric continuous BBNs.

Theorem 1.3.1. [Hanea et al., 2006] Given:

- A directed acyclic graph with n nodes specifying conditional independence relationships in a BBN;
- n variables, assigned to the nodes, with invertible distribution functions;
- the specification in equation (3.3) of conditional rank correlations on the arcs of the BBN and;
- a copula realizing all correlations $[-1,1]$ for which zero correlation entails independence;
the joint distribution of the n variables is uniquely determined. This joint distribution satisfies the conditional independence statements implied by the BBN and the conditional rank correlations in 3.3 are algebraically independent.

In the prove of theorem 1.3.1 D-vines (see chapter 2) were used[Hanea, 2008]. NPCDBBNs will be discussed in more detail in chapter 3. Emphasis will be made on the elicitation of rank and conditional rank correlations attached to the arcs of the BBN. The main application driving the ideas discussed in this thesis consists of a large scale NPCDBBN for measuring risks in the aviation industry. For its importance in this thesis the model will be briefly introduced in next section. The model will be explained in more detail in chapters 3 and 5 .

1.4 Introduction to the Causal Model for Air transport Safety

As mentioned in section 1.1, BBNs will find their main application in this thesis in modeling risks in the aviation industry. The aviation sector is generally acknowledged for its impressive levels of safety. According to data from the Dutch National Aerospace Laboratory (NLR) [CAANL, 2008], the number of flights
worldwide has roughly doubled from 1980 to 2007. The number of fatal accidents on the other hand has not. Figure 1.8 presents the number of flights and the number of fatal accidents per year for the period between 1993 and 2007. The number of accidents per flight is decreasing, both world wide and for European Air Safety Agency (EASA) countries. Whereas worldwide, the fatal accident rate has been deceasing by 3.5% per year, for EASA countries, the fatal accident rate is deceasing by 5.3% per year (Figure 1.9).

The worldwide and EASA fatal and non-fatal accident frequencies are shown in Figure 1.10. The fatal and non-fatal accident frequency worldwide is deceasing by 1.8% per year. For EASA countries it is deceasing by 1.0% per year. The FAA forecasts growth in civil air transportation volume: "The active general aviation fleet is projected to increase at an average annual rate of 1.0 percent over the 17 -year forecast period, growing from an estimated 234,015 in 2008 to 275,230 aircraft by $2025 "$ " $F A A, 2009$, p.41]. If historical trends continue, this growth in volume must be accompanied with a decrease in the accident rate per flight in order to keep the absolute number of accidents minimum.

Human error plays an important role in aviation safety. About 56% of the accidents have humans as their main contributing factor (Figure 1.11^{10}). The main causal contributor for accident is "cockpit crew". Many responsible agencies have concluded that further improvements in safety would be served by a comprehensive system-wide risk model for civil aviation. This model should enable the disaggregation of fatal accidents into their causal components, including, in particular, human error.

The Netherlands ministry of Transport and Water Management commissioned a project for the realization of a causal model to be used for comparing alternatives for strengthening safety measures, for finding causes of incidents and accidents and for quantification of the probability of adverse events in the aviation system [Ale et al., 2006]. The model is being developed by a consortium including Delft University of Technology (TUD), Det Norske Veritas (DNV), the National Aerospace Laboratory (NLR) and White Queen (WQ). These organizations have been involved in the process of building the appropriate tools for the delivery of the model. The final product should be delivered in the form of a computer assisted decision tool supported by reports on the underlying technology and data [Ale et al., 2007].

Originally the The Causal Model for Air Transport Safety (CATS) comprised 3 different kinds of techniques: Fault Trees (FTs), Event Sequence Diagrams (ESDs) and BBNs. A schematic representation of the CATS model is presented in Figure 1.12.

The ESDs represent generic accident scenarios. Fault Trees link to the initiating events and pivotal events of the ESDs and describe them in a more detailed manner as a sequence of barrier failures. The base events of the fault trees include events representing human reliability, such as for instance 'autopilot incorrectly used by flight crew', 'pilot disregards cross wind limit per severe wind', 'failure of

[^5]

Figure 1.8: Worldwide number of flights and fatal accidents 1993-2007 CAANL [2008]. Commercial operated aircrafts with take-off weight $\geq 5,700 \mathrm{~kg}$.

Figure 1.9: Worldwide and EASA fatal accidents per million flights 1993-2007 CAANL [2008]. Commercial operated aircrafts with take-off weight $\geq 5,700 \mathrm{~kg}$.

Figure 1.10: Worldwide and EASA fatal and non-fatal accidents per million flights 1993-2007 CAANL [2008]. Comm. op. aircrafts with take-off weight $\geq 5,700 \mathrm{~kg}$.

Figure 1.11: Relative importance of contributing factors in fatal accidents 1993-2007 CAANL [2008]. Commercial operated aircrafts with take-off weight $\geq 5,700 \mathrm{~kg}$.

Figure 1.12: Schematic representation of the CATS model with ESDs, FTs and BBNs
air traffic controller to advise pilot per windshear on take off with LLWAS ${ }^{11}$, or 'breaks not applied correctly by flight crew per control following encounter with unexpected wind'. Base events involving human reliability are detailed further as Bayesian Belief Nets. BBNs are more general models than FTs and ESDs, hence ultimately these were also represented through functions as part of a large scale BBN. For this purpose UniNet [Cooke et al., 2007], a stand-alone software package is being developed at the Delft Institute of Applied Mathematics of the Delft University of Technology for dealing with large scale BBNs.

Figure 1.13 shows the BBN representing the CATS model. The graph in Figure 1.13 at the moment of publication consists of 1,504 nodes and 4,979 arcs. It is evident that the simple idea represented in Figure 1.12 becomes a very complicated graphical structure once all the elements of the model are finally quantified and integrated into a single BBN.

Building a Bayesian network with about 1.5 thousand nodes and 5 thousand arcs is a very complex task. Robinson [1977] presents results about unlabeled and labeled acyclic directed graphs. The number of unlabeled directed acyclic graphs ${ }^{12}$ grows extremely fast with the number of nodes. Just to give an idea, the largest number of nodes for which unlabeled directed acyclic graphs has been computed is 18 and it is in the order of 1.55×10^{43}. The number of BBNs that one could construct with 1.5 thousand nodes are mind boggling. The CATS consortium brought together efforts from many professionals from different disciplines in order to construct the model shown in Figure 1.13. The major focus of this thesis is in the description of the quantification of the model in Figure 1.13. Emphasis is placed in the techniques used for the quantification of the dependence measures required by NPCDBBNs. Three human error models were quantified through structured expert judgment for the CATS model: flight crew, air traffic control and maintenance technician.

In the case of the CATS model, the distributions of the individual variables (marginal distributions) were almost all retrieved from data. The quantification and combination of dependence through expert opinion were a crucial step in

[^6]

Figure 1.13: $T h e ~ C A T S$ model in UniNet.
the CATS model as it provides a powerful tool for the analysis of the aviation system. This will be seen in the thesis through examples of model use. We can be confident that the joint distribution represents a validated expert belief about the influences of various variables on the accident probability. Further empirical validation of the CATS model should be a major goal in the future of the project.

Results from the CATS model that will be discussed in this thesis reflect the fact that the human error plays a mayor role in aviation safety. From the human actors involved in the aviation system and considered in the model, the cockpit crew and maintenance personnel appear more important than the air traffic control crew.

In particular, from the variables that measure human's performance at a basic level captain's and first officer's experience are the most highly rank correlated with accident probability (≈-0.22 for each). This rank correlation is comparable to the correlation between aircraft generation and accident probability (-0.24). From the variables included for cockpit crew, training is the least important. The sample rank correlation between accident probability and training for both captain and first officer is close to zero (<0.01).

Crew experience is immediately followed by maintenance technician experience in regards to absolute rank correlation with accident probability (≈-0.21). Again this rank correlation is comparable to the one between accident probability and aircraft generation or fatigue. The rank correlation between maintenance crew and accident probability is smaller than 0.1 in absolute value for all other variables
related to maintenance crew.
In contrast with the flight crew or maintenance crew experience, the rank correlation between the accident probability and experience of air traffic controllers is about a factor 260 smaller than the correlation between accident probability and cockpit crew experience. For air traffic controllers the most important variable is the communication with cockpit crew. This is expressed through a rank correlation of 0.1 between total transmission time and accident probability. There are some applications where inferences with small correlations are not much different than those with independence. At first sight this could appear to be the case in the CATS model. However, as it will be seen next and later in chapters 3 and 7 the effect of model variables on accident probability can be large.

To illustrate the use of the model and the effect of rank correlations of the magnitude described previously, Table 1.1 is presented. Table 1.1 shows the result of conditionalizing on selected variables. For all three conditioning variables the $97^{\text {th }}$ percentile if its distribution is used. Observe that though the rank correlation between accident probability and captain's experience is almost equal to the rank correlation between accident probability and maintenance technician experience the conditional distributions may differ significantly. The conditional mean of the accident probability when captain's experience is set to $17,016 \mathrm{hrs}$. is ≈ 3 times smaller that the original accident probability. The effect of captain's experience in accident probability is larger than the two other cases. The conditional mean of the accident probability given maintenance technician experience is 24 yrs. is ≈ 1.2 times smaller that the original accident probability. Finally, the conditional probability of accident given the air-ground transmission time is 100 sec. is ≈ 1.76 times larger than the unconditional mean. Conclusions similar to those briefly presented here are examples of possible use of the BBN representing the CATS model.

Uncond. Prob. of accident/flight	5%	50%	95%	mean
	8.58×10^{-8}	4.59×10^{-7}	8.98×10^{-6}	3.18×10^{-6}
Conditioning variable	\min	\max	conditioned value	
Captain's experience (hrs)	3,069	27,913	2.016	
Cond. Prob. of accident/flight	5%	50%	95%	mean
	6.95×10^{-8}	2.92×10^{-7}	2.88×10^{-6}	9.84×10^{-7}
Conditioning variable	\min	\max	conditioned value	
Maintenance technician experience (yrs)	0.6	31	24	
Cond. Prob. of accident/flight	5%	50%	95%	mean
	6.66×10^{-8}	2.97×10^{-7}	7.05×10^{-6}	2.66×10^{-6}
Conditioning variable	\min	\max	conditioned value	
Air/ground total transmission time (sec)	17.5	306.5		100
Cond. Prob. of accident/flight	5%	50%	95%	mean
	1.02×10^{-7}	6.14×10^{-7}	1.69×10^{-5}	5.60×10^{-6}

Table 1.1: Unconditional probability of accident / flight, and conditional probability for selected variables.

The rest of the thesis is divided as follows: in chapter 2 the problem of enumerating regular vines is investigated. This section is of interest because in the last years the problem of finding an 'optimal' vine for data sets has been investigated. This requires a classification of regular vines and algorithms for generating them.

A result concerning the number of regular vines on n nodes is also discussed in chapter 2. Chapter 3 presents discrete BBNs and non parametric continuous discrete BBNs. The relationship between D-Vines and BBNs is also briefly discussed in chapter 3. The process of building the BBN from Figure 1.13 and examples of model use are presented in chapter 3 as well. In this thesis special attention is payed to the techniques for eliciting and combining rank and conditional rank correlations from domain experts as input for NPCDBBNs. This is discussed in chapter 4 . The quantification of human reliability models used in the CATS model will be discussed in chapter 5. Chapter 6 presents an application of the same type of techniques used for measuring risks in the aviation system in measuring earth dams risks in Mexico. Finally, conclusions are presented in chapter 7.

CHAPTER 2

About The Number of Vines and Regular Vines on n Nodes. ${ }^{1}$

2.1 Introduction

Man has always been fascinated by counting all sorts of different objects ${ }^{2}$. The problem of counting graphs has been undertaken in the past [Harary and Palmer, 1973.]. Labeled trees find application in probability theory. Trees are the immediate ancestors of vines (section 1.3.3). These objects were first successfully counted by Cayley [1889].

Vines are graphical models that extend the idea of a tree. These objects have found application in probability theory and uncertainty analysis. More recently they are becoming popular in statistical analysis of data [Aas et al., 2009], [Aas and Berg, 2009], [Min and Czado, 2008], [Kolbjornsen and Stien, 2008], [Chollete et al., 2009].

In this chapter previous results concerning the number of trees on n nodes are briefly discussed in section 2.2. Section 2.3 presents two ways to characterize vines on n variables. The first method counts the total number of vines on n nodes and extracts regular vines by discarding those vines which are non-regular. The

[^7]second method constructs all possible regular vines on n nodes using line graphs at each level in the vine. Neither method yields the number of regular vines on n nodes as a function of n.

Section 2.4 characterizes regular vines as triangular arrays, and finds the number of regular vines on n nodes by extending a regular vine on $n-1$ nodes. This enables us to express the number of regular vines on n nodes as $\binom{n}{2} \times(n-2)!\times 2^{\binom{n-2}{2}}$. The results from section 2.3 may be contrasted with the result from section 2.4 . For example, there are 11 unlabeled trees on 7 nodes each of which admits a number of regular vines. From these 11 trees, the one where every node has degree at most equal to 2 admits only one regular vine and can be labeled in 2,520 different ways. Other trees may be analyzed similarly to enumerate regular vines. In general for trees on seven nodes there are $2,520 \times 1+9 \times 2,520+19 \times 5,040+$ $840 \times 33+630 \times 80+2,520 \times 168+840 \times 168+1,260 \times 342+420 \times 1,452+210 \times$ $2,928+7 \times 23,040=2,580,480=\binom{7}{2} \times 5!\times 2^{\binom{7}{2}}$. Interestingly, the number of extensions of a regular vine on $n-1$ nodes to a regular vine on n nodes does not depend on the particular regular vine on $n-1$ nodes being extended. Section 2.5 gathers some conclusions and final comments.

2.2 Trees

A tree is an undirected acyclic graph. The graph isomorphism problem consist on deciding whether there exists a mapping from the nodes of one graph to the nodes of a second graph such that the edge adjacencies are preserved.

Definition 2.2.1. Two labeled graphs $G_{i}=\left(E_{i}, N_{i}\right)$ and $G_{j}=\left(E_{j}, N_{j}\right)$ are isomorphic if there is a bijection $\varphi: N_{i} \rightarrow N_{j}$ such that for all pairs $(a, b) \in E_{i} \Longleftrightarrow(\varphi(a), \varphi(b)) \in E_{j}$. If two graphs are isomorphic they are the same unlabeled graph.

A connected graph $T=(N, E)$ is called a labeled tree with nodes $N=$ $\{1,2, \ldots, n\}$ and edges E, where E is a subset of pairs of N with no cycle.

In this section labeled trees will be briefly discussed. These structures have been used to represent high dimensional probability distributions [Cooke, 1997] and they are often called dependence trees. This section however will be concerned with the properties of trees only as graphs. For an account of dependence trees see Kurowicka and Cooke [2006]. We begin our presentation with a well known result about trees.

2.2.1 The Number of Labeled Trees on n Nodes and the Prüfer Code

Two different labeled trees on 5 nodes are presented in Figures 2.1 and 2.2. The reader may observe that permuting nodes 1 and 5 in T_{1} transforms it into T_{2} and hence they would be the same unlabeled tree. In this section the interest will be mainly in labeled trees.

The first proof about the number of labeled trees on n nodes is due to Cayley [1889]. Since then several proofs have been presented [Moon, 1967].

Figure 2.1: T_{1} a tree on 5 nodes.

Figure 2.2: T_{2} a tree on 5 nodes.

Theorem 2.2.1. The number of labeled trees on n nodes is n^{n-2}.
One of various proofs due to Prüfer [1918] of this theorem provides a very useful result for representing labeled trees. The argument is to notice that there is a one-to-one correspondence between the set of trees with n labeled nodes and the set of ordered $(n-2)$-tuples $\left(A_{1}, A_{2}, \ldots, A_{n-2}\right)$ where each A_{i} is an integer not greater than n.

Definition 2.2.2. Every sequence of numbers $R(T)=\left(A_{1}, A_{2}, \ldots, A_{n-2}\right)$ where each A_{i} is an integer not greater than n is a Prüfer Code for some labeled tree T on n nodes.

In his paper Prüfer obtains the correspondence by the following procedure: For a given tree, remove the endpoint ${ }^{3}$ with the smallest label (other than the root^{4}) and let A_{1} be the label of the unique node which is adjacent to it. Remove the endpoint and the edge adjacent to it and a tree on $n-1$ nodes is obtained. Repeat the operation with the new tree on $n-1$ nodes to obtain A_{2} and so on. The process is terminated when a tree on two nodes has been found. The reader may check that the trees from Figures 2.1 and 2.2 have Prüfer codes $R\left(T_{1}\right)=(4,1,1)$ and $R\left(T_{2}\right)=(5,4,5)$ respectively. The procedure described above may be easily reversed, that is, suppose you start with a sequence of $(n-2)$-tuples $R(T)=\left(A_{1}, A_{2}, \ldots, A_{n-2}\right)$ then to obtain the only tree corresponding to the sequence one applies algorithm 2.2.1:

Algorithm 2.2.1. Decoding a Prüfer code.

1. Take a sequence $R\left(T_{k}\right)=\left(A_{1}, A_{2}, \ldots, A_{n-2}\right)$ for $k=1,2, . ., n^{n-2}$ where each $A_{i}, i=1,2, \ldots, n-2$ is an integer not greater than n.
2. Write the root in the right most position of $R\left(T_{k}\right)$. Notice that $R\left(T_{k}\right)$ has now length $n-1$ which is $|E|$.
3. Write another row of integers on the bottom of R_{k} from left to right. Each entry B_{i} in this new row is the smallest integer that has not been already written in this new row (the row of $B_{i}^{\prime} s$) nor in the first row (the row of $\left.A_{i}^{\prime} s\right)$ in the position exactly above it or every other position to the right.

[^8]4. The resulting code $S\left(T_{k}\right)$ is the Extended Prüfer Code. Each column in the extended Prüfer code represents an arc in the unique labeled tree corresponding to it.
\[

S\left(T_{k}\right)=\left($$
\begin{array}{ccccc}
A_{1} & A_{2} & A_{3} & \ldots & n \\
B_{1} & B_{2} & B_{3} & \ldots & B_{n-1}
\end{array}
$$\right)
\]

Take the two Prüfer codes $R\left(T_{1}\right)=(4,1,1)$ and $R\left(T_{2}\right)=(5,4,5)$. Apply algorithm 2.2.1 to decode each sequence into the extended Prüfer code. The reader may check in equation (2.2.1) that $S\left(T_{1}\right)$ corresponds to Figure 2.1 and $S\left(T_{2}\right)$ to Figure 2.2.

$$
S\left(T_{1}\right)=\left(\begin{array}{llll}
4 & 1 & 1 & 5 \tag{2.1}\\
2 & 3 & 4 & 1
\end{array}\right), S\left(T_{2}\right)=\left(\begin{array}{cccc}
5 & 4 & 5 & 5 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Prüfer then gives an induction argument to show that for each ($n-2$)-tuple there is some tree which determines the given sequence by the above procedure. From the code one can see that a node with degree m would occur exactly $m-1$ times in the code. Labeled trees are interesting not only as objects that can be counted and subject of combinatorial problems. They find application in optimization, probability theory and uncertainty analysis ([Cooke, 1997], [Kurowicka and Cooke, 2006]). In next section vines will be discussed and the ideas presented in this section will be extended to deal with these graphical objects.

2.3 Vines

A vine [Cooke, 1997] is a set of nested trees. Just as labeled trees, vines have been used to represent high dimensional probability distributions [Bedford and Cooke, 2002] and [Kurowicka and Cooke, 2006] with applications in uncertainty analysis. More recently they are being applied in statistical analysis of multivariate data sets [Aas et al., 2009], [Min and Czado, 2008], [Aas and Berg, 2009] and [Chollete et al., 2009]. These last references are concerned with choosing an optimal vine to represent multivariate data sets. Algorithms for enumerating all possible regular vines on n nodes will be needed for this purpose. All trees in a vine may be thought of as labeled trees. In this section some results about the number of vines on n nodes will be presented.

2.3.1 The Number of Vines on n Nodes and the Prüfer Code

The ideas presented in section 2.2 .1 can be extended to count the number of vines (and regular vines) that are possible on n variables. This will be shown in the present subsection. This subsection begins with the definitions of vine and regular vine.

Definition 2.3.1. $V(n)$ is a labeled vine on n elements if:

$$
\text { 1. } V(n)=\left(T_{1}, T_{2}, T_{3}, T_{4}, \ldots, T_{n}\right)
$$

2. T_{1} is a labeled tree with nodes $N_{1}=1,2, \ldots, n$ and edges E_{1}. For $i=2, \ldots, n$, T_{i} is a labeled tree with nodes $N_{i}=E_{i-1} . E_{i-1}$ has been given a unique labeling.

If in addition for $i=2, \ldots, n-1$, if $(a, b) \in E_{i}$, then $|a \triangle b|=2$, where \triangle denotes the symmetric difference, then $V(n)$ is a labeled regular vine. In other words, if a and b are nodes of T_{i} connected by an edge in T_{i}, where $a=\left\{a_{1}, a_{2}\right\}$ and $b=\left\{b_{1}, b_{2}\right\}$, then exactly one of the a_{i} equals one of the b_{i}. This condition is called the proximity condition.

The nodes reachable from a given edge in a regular vine are called the constraint set of that edge. When two edges are joined by an edge in tree T_{i}, the intersection of the respective constraint sets form the conditioning set. The symmetric difference of the constraint sets is the conditioned set. Formal definitions may be found in Kurowicka and Cooke [2006]. Vines (and regular vines) may be classified according to the unlabeled tree used at each level in the vine. For this reason the following definition is introduced.

Definition 2.3.2. If a bijection as in definition 2.2.1 may be found for each $T_{i} \in V_{k}(n)$ and $T_{i} \in V_{j}(n)$ then we speak of the same tree-equivalent vine and accordingly the same tree-equivalent regular vine when the proximity condition holds.

Figure 2.3: Non-regular vine on 5 nodes.

Figure 2.4: Regular vine on 5 nodes.

In Figures 2.3 and 2.4 respectively a non-regular and a regular vine on five nodes are generated. The edge that makes Figure 2.3 a non-regular vine is indicated by an arrow. The conditioned set is separated from the conditioning set by a vertical line " \mid " in Figure 2.4. Obviously these two vines are different labeled vines. However, according to definition 2.3.2 they are the same tree-equivalent vine. Observe that by permuting the numbers in T_{1} in Figure 2.4 we would generate different labeled regular vines but according to definition 2.3.2 the same tree-equivalent regular vine.

Since every labeled tree can be represented by a Prüfer code, then every subtree in the vine may also be represented by a Prüfer code and in this way the vine may be generated. A way to write all possible vines on n nodes is presented in algorithm 2.3.1.
Algorithm 2.3.1. Constructing all possible vines on n nodes.

1. Set $i=1$.
2. Construct all Prüfer codes possible for T_{i}.
3. The edges of each one of the $n^{n-(i+1)}$ trees in step 2 become nodes in T_{i+1}. Hence, for each tree in step (2):
(i) Label the $n-i$ edges of each tree giving the label 1 to the edge appearing in the first column in its extended Prüfer code, 2 to the edge in the second column and so on until all edges have been labeled ${ }^{5}$.
(ii) Construct all Prüfer codes possible for T_{i+1} and connect the new labeled edges (from T_{i}) as nodes according to these new Prüfer codes.
4. Set $i:=i+1$ and go to step (3) until two edges must be connected in the last tree. At this point there is only one way to connect them and no Prüfer code is required.

From algorithm 2.3.1 it may be observed that to write any vine on n nodes all is required are $n-2$ Prüfer codes. The first one of length $n-2$, the second one of length $n-3$ and so on until the last one of length 1 . A vine on n nodes may be represented by an upper triangular array of size $(n-2) \times(n-2)$ whose first row represents the Prüfer code of the first tree in the vine, the second row the second tree of the vine and so on. For example $V_{1}(5)$ represents the vine from Figure 2.3 and $V_{2}(5)$ the one in 2.4 :

$$
V_{1}(5)=\left(\begin{array}{lll}
4 & 1 & 1 \tag{2.2}\\
& 3 & 2 \\
& & 1
\end{array}\right), V_{2}(5)=\left(\begin{array}{ccc}
4 & 1 & 1 \\
& 3 & 2 \\
& & 2
\end{array}\right)
$$

Corollary 2.3.1. The number of vines on n nodes is $\prod_{i=1}^{n} i^{i-2}$.
Proof. The proof is in fact algorithm 2.3.1. This is a consequence of theorem 2.2.1 and definition 2.3.1.

Regular vines are most interesting in uncertainty analysis. Implementing Algorithm 2.3 .1 in a computer is very easy and it provides a simple way to construct all possible regular vines on n nodes by simply discarding those that are not regular. However, this method incurs an excessive burden of searching all vines (see table 2.1). According to corollary 2.3 .1 the number of vines grows extremely fast with n and it could be very restrictive in time to find all regular vines even for a modest number of nodes (8 or 9). Another possibility to construct only regular vines will be discussed in the next subsection.

2.3.2 Regular vines and the line graph

As stated at the end of previous section, another possibility is available to produce only regular vines as opposed to producing all possible vines and discarding those

[^9]that are not regular as in algorithm 2.3.1. The idea is to use the line graph ${ }^{6}$ of each tree in the vine. Harary notes in [Harary, 1969] that the concept of the line graph of a given graph is so natural that is has been rediscovered independently by many authors.

Definition 2.3.3. [Beineke, 2006] The line graph $L G(G)$ of a graph G has as its nodes the edges of G, with two nodes being adjacent in $L G$ if the corresponding edges are adjacent in G.

If the edges of the first tree of Figure 2.4 are labeled according to the second step in algorithm 2.3.1 then the line graph of this tree can be found according to definition 2.3.3. This line graph corresponds to Figure 2.5. Nodes 1, 2, 3 and 4 in Figure 2.5 corresponds to edges $(4,1),(1,3),(1,4)$ and $(5,1)$ respectively in Figure 2.4.

If in the same way we label the nodes of the second tree in the vine in Figure 2.4 accordingly, then the line graph in Figure 2.6 may be obtained. In this new line graph, nodes $1,2,3$ correspond respectively to nodes $(2,1 \mid 4),(3,4 \mid 2)$ and $(3,5 \mid 1)$ in Figure 2.4.

Figure 2.5: Line Graph of the first tree in Figure 2.4

Figure 2.6: Line Graph of the second tree of the vine from Figure 2.4.

Definition 2.3.4. [Harary, 1967] A spanning subgraph T of a graph G is a subgraph with the same set of nodes as G. If T is a tree, it is called a spanning tree of G.

It is clear from definitions 2.3.3 and 2.3.4 that in order to find all regular vines on n nodes, all the spanning trees of the line graphs of all subtrees in the vine must be found. This result is summarized in algorithm 2.3.2.

Algorithm 2.3.2. Constructing all possible regular vines on n nodes.

1. Set $i=1$.
2. Construct all Prüfer codes possible for T_{i}.
3. The edges of each one of the $n^{n-(i+1)}$ trees in step 2 become nodes in T_{i+1}. Hence, for each tree in step (2):
[^10]| Nodes | Trees | | Vines | | |
| :---: | :---: | ---: | ---: | ---: | ---: |
| | A^{a} | $\mathrm{~B}^{b}$ | C^{c} | D^{d} | E^{e} |
| 3 | 1 | 3 | 3 | 3 | 1 |
| 4 | 2 | 16 | 48 | 24 | 2 |
| 5 | 3 | 125 | 6,000 | 480 | 5 |
| 6 | 6 | 1,249 | $7,776,000$ | 23,040 | 22 |
| 7 | 11 | 16,807 | $130,691,232,000$ | $2,580,480$ | 136 |
| 8 | 23 | 262,144 | $34,259,922,321,408,000$ | $660,602,880$ | 1,464 |
| 9 | 47 | $4,782,969$ | $1.63864146405703 \times 10^{23}$ | $380,507,258,880$ | 24,115 |

Table 2.1: Number of unlabeled and labeled trees, vines, regular vines and treeequivalent classes of regular vines in 3, 4, 5, 6, 7, 8 and 9 nodes.

[^11](i) Label the edges of each tree giving label 1 to the edge appearing in the first column in its extended Prüfer code, 2 to the edge in the second column and so on until all edges have been labeled ${ }^{7}$.
4. Construct the line graph of each one of the trees from step 2.
5. For each line graph from step 3 find all possible spanning trees. Connect the edges of each tree in step 1 according to all spanning trees from its line graph. This will give all possible T_{i+1} for each T_{i}.
6. Set $i:=i+1$ and go to step (2) until two edges must be connected in the last tree. At this point there is only one way to connect them and no Prüfer code is required.

Notice that the vines generated by this procedure may still be stored in an $(n-2) \times(n-2)$ upper triangular array as in equations (2.2) once a way of labeling the edges from each tree in the vine is specified. Algorithm 2.3.2 does not produce any irregular vine as opposed to algorithm 2.3.1. However it involves a greater programming effort and more operations as all possible spanning trees of the line graphs in all trees in the vine must be found. Several algorithms for finding all spanning trees of a given graph have been proposed and examined [Minty, 1965], [Mayeda and Seshu, 1967], [Read and Tarjan, 1975], [Smith, 1997] and [Shioura et al., 1994]. In general finding all possible spanning trees of a given graph other than a complete graph ${ }^{8}$ is demanding in terms of time and space [Smith, 1997].

Table 2.1 presents a summary with the number of labeled trees, vines and regular vines on $3,4,5,6,7,8$ and 9 nodes 9. The second column presents the

[^12]number of unlabeled trees on n nodes. The third column corresponds to the values obtained by applying the formula in theorem 2.2.1 and the fourth to values obtained by applying the formula in corollary 2.3.1. Algorithms 2.3.1 and 2.3.2 allow to count the number of regular vines on n nodes. The number of regular vines on up to 7 nodes was found using algorithm 2.2 .1 and the values for 8 and 9 nodes using algorithm 2.3.2 ${ }^{10}$. The results of counting regular vines with algorithms 2.2.1 and 2.3.2 are presented in column 5. To implement algorithm 2.3.2, MATGRAPH [Sheinerman, 2009] was used to find line graphs for each of the 23 and 47 unlabeled trees on 8 and 9 nodes. A version of the Mayeda-Seshu algorithm was used [Smith, 1997, p.10] to find all spanning trees of each of the 70 line graphs.

Column six in table 2.1 presents the number of tree-equivalent regular vines on n nodes. Also, algorithm 2.3.1 may be used to list the number of tree-equivalent vines (or tree-equivalent regular vines) on n nodes by checking for isomorphism at each level in the vine. Also, algorithm 2.3.2 can be used to count the number of tree-equivalent regular vines on n nodes by checking tree isomorphism at each level of the vine ${ }^{11}$. Appendix A presents a catalogue with non-isomorphic trees on $1,2,3,4,5,6,7,8$ and 9 nodes and some relevant characteristics of each one. In particular an example of Prüfer code, the number of labeled trees, the number of regular vines per labeled tree and the number of tree-equivalent regular vines is shown.

A similar catalogue was presented in Moon [1967] for trees with at most five nodes. In Kasyanov and Evstigneev [2000] a catalogue of non-isomorphic tress with at most 8 nodes may be found ${ }^{12}$. None of the above catalogues presents results for vines.

Tables A. 1 to A. 4 present the 48 trees on 8 nodes or less. These trees will be used to present pictures of tree-equivalent regular vines on at most 6 nodes in tables A. 8 and A.9. Finally tables A. 10 to A. 32 present tree-equivalent regular vines on 7 and 8 nodes.

The concept of the line graph also allows to obtain bounds for the number of regular vines admissible by unlabeled trees on n nodes. These results are presented next as lemmas. Lemma 2.3.3 that is rather evident has been stated in Cooke [1997] without a proof.
Lemma 2.3.2. If the first tree of a vine on n nodes has one node with maximal degree, then the number of labeled regular vines possible with this tree equals the number of labeled regular vines on $(n-1)$ nodes.

Proof. Since every edge in T_{1} is adjacent to each other then the line graph

[^13]of this tree is a complete graph on $(n-1)$ nodes that has $(n-1)^{n-3}$ possible spanning trees. These are all possible labeled trees on $n-1$ nodes each of which admits a fixed number of labeled regular vines.

Lemma 2.3.3. If the first tree of a vine on n nodes has $(n-2)$ nodes with degree 2, then the number of regular vines possible with this tree equals 1.

Proof. Observe that the line graph of T_{1} will be also a tree on $n-1$ nodes with $(n-3)$ nodes with degree 2 . Hence its only possible spanning tree will be itself and to preserve regularity this tree should be used in T_{2}. The same argument holds for all $j \geq 2$ and hence only one regular vine is possible.

Lemma 2.3.3 provides a lower bound for the number of regular vines possible for a given unlabeled tree T_{1}. In the same way lemma 2.3 .2 provides an upper bound. This result may be observed in tables A. 1 to A. 11 in appendix A. A more general result for counting labeled regular vines is dealt with in next section.

In applications two kind of regular vines have been most widely used. C Vines are regular vines for which each tree in the vine has one node with maximal degree. \boldsymbol{D}-Vines are regular vines for which the first tree of the vine has $(n-2)$ nodes with degree 2. Next results about the number of D-vines and C-vines on n nodes are presented. Both results where presented in Aas et al. [2009] with proofs that are slightly different to the ones presented here.

Lemma 2.3.4. The number of C -vines on n nodes equals the number of D -vines on n nodes and is ($n!/ 2$)

Proof. For C-vines observe that there are n possible labeled trees on n nodes for which a single node has maximal degree. Once the first tree has been fixed any of the $(n-1)$ edges may be chosen so as to construct any of the $(n-1)$ possible labeled trees on $(n-1)$ nodes for which a single node has maximal degree. Any of these would preserve regularity. The same argument holds for all other trees on the vine until two edges need to be connected as nodes in T_{n-1}. Hence there are $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(3)=(n!/ 2)$ C-vines on n nodes.

For D-vines observe that from lemma 2.3.3, $T_{1} \in V$ completely determines the vine. And since there are ($n!/ 2$) ways of choosing it the result follows.

2.4 The Number of Regular Vines on n Nodes.

So far the number of vines has been obtained from Cayley's theorem in corollary 2.3.1. Results concerning the number of tree-equivalent and labeled regular vines on at most 8 nodes have been presented by using Prüfer codes and line graphs. This section derives a formula for the number of regular vines on n nodes.

Definition 2.4.1. If node e is an element of node f in a regular vine, we say that e is an \mathbf{m}-child of f; similarly, if e is reachable from f via the membership relation: $e \in e_{1} \in \ldots \in f$, we say that e is an \mathbf{m}-descendent of f.

Lemma 2.4.1. Kurowicka and Cooke [2006] For any node M of order $k>0$ in a regular vine, if node i is a member of the conditioned set of M, then i is a member of the conditioned set of exactly one of the m-children of M, and the conditioning set of an m-child of M is a subset of the conditioning set of M.

Definition 2.4.2. If element a occurs with element b as conditioned variables in tree k, then a and b are termed k-partners. Nodes A and B are siblings if they are m-children of a common parent.

Regularity ${ }^{13}$ means that every node in $T_{i}, i \geq n-1$ must have a sibling and a common child with its sibling. In this section, another triangular array representing a regular vine will be introduced. In this section another triangular array representing a regular vine will be introduced. One disadvantage of using a triangular array such as the one used in section 2.3.1 is that the information regarding the label of nodes in the first tree of a regular vine is lost when assigning new labels to its edges when they become nodes of the next tree. The same happens as more trees are added to a regular vine. This means that conditioned and conditioning sets are not immediately visible anymore. The idea of the construction presented here is to preserve the information concerning the labels of the first tree as lower trees in the vine are added. In analogy to a Prüfer code a sequence of n-tuples $\left(A_{n}, A_{n-1}, \ldots, A_{1}\right)$ where each A_{i} is an integer not greater than n will be called a natural order. This is defined next.

Definition 2.4.3. A natural order of the elements of a regular vine on n elements is a sequence of numbers $N O(V(n))=\left(A_{n}, A_{n-1}, \ldots, A_{1}\right)$ where each A_{i} is an integer not greater than n obtained as follows: Take one conditioned element of the last tree of a regular vine (a tree with a single node and no edges) and assign it position n; assign the other conditioned element of the top node position ($n-1$). Element A_{n-1} occurs in one m-child of the top node with an ($n-1$)-partner in the conditioned set. Give this $(n-1)$-partner position $(n-2)$ and iterate this process until all elements have been assigned a position.

Observe that there are two natural orders for every regular vine. A representation of the regular vine in Figure 2.4 using a directed graph is presented in Figure 2.7. This representation will be useful in the rest of the chapter for explaining some of the concepts introduced. The nodes of each tree in the regular vine are nodes in the directed graph. Observe that every parent node has exactly two children. The conditioned set is presented to the left of a vertical line (| sign) and the conditioning set to its right.

The element in position n occurs as conditioned variable in tree T_{n} (this tree has one node and no edges). The element in position $(n-j)$ occurs in the unique node of tree T_{n-j} with conditioned set $\left\{A_{n-(j+1)}, A_{n-j}\right\}$. If 5 is chosen as A_{n}, then by definition 2.4.3 the natural order of the regular vine would be $N O_{1}\left(V_{2}(5)\right)=(5,2,3,4,1)$ for $j=1, \ldots, n-2$. In the same way if node 2 was chosen as element A_{n} then the natural order would be $\mathrm{NO}_{2}\left(V_{2}(5)\right)=(2,5,4,3,1)$. A regular vine may be coded as a lower triangular array with the natural ordering

[^14]on the diagonal. The natural order will be used in a triangular array similar to the one introduced in section 2.3 .1 but that preserves all the information regarding conditioned and conditioning sets in the regular vine.

Figure 2.7: Representation of the regular vine in Figure 2.4

Definition 2.4.4. A regular vine array $\boldsymbol{T A}(\boldsymbol{V}(\boldsymbol{n}))=\left\{A_{i, j}\right\}$ for $i, j=1, \ldots, n$ and $j \geq i$ is a lower triangular matrix with elements in $\{1, \ldots, n\}$ indexed in 'reverse order' (see equation (2.3)), where $A_{j, j}$ equals the element in position j in $N O(V(n))$ and $A_{j-1, j}$ equals the element in position $j-1$ in the same natural order. The echelon of element $A_{i, j}$ is i and element $A_{i, j}$ codes the node $\left(A_{j, j}, A_{i, j} \mid A_{i-1, j}, \ldots, A_{1, j}\right)$

The regular vine array $T A\left(V_{2}(5)\right)$ array corresponding to the regular vine $V_{2}(5)$ in equation (2.2) (Figures 2.4 and 2.7) using $N O_{1}\left(V_{2}(5)\right)$ is presented in equation (2.3). Observe that the row and column indices are in their usual position but their sense is reversed (with respect to traditional matrix indexing) in order to facilitate adding new variables to the left. From definition 2.4.4, we may speak unambiguously of "node", "element" or "variable" $A_{i, j}$. Thus the "node $A_{i, j}$ " is the set of elements " $\left(A_{i, j}, A_{j, j} \mid A_{i-1, j}, \ldots A_{1, j}\right)$ ", arranged to separate the conditioned elements from the conditioning elements by ".

$$
T A\left(V_{2}(5)\right)=\left(\begin{array}{ccccc}
A_{5,5} & & & & \tag{2.3}\\
A_{4,5} & A_{4,4} & & & \\
A_{3,5} & A_{3,4} & A_{3,3} & & \\
A_{2,5} & A_{2,4} & A_{2,3} & A_{2,2} & \\
A_{1,5} & A_{1,4} & A_{1,3} & A_{1,2} & A_{1,1}
\end{array}\right)=\left(\begin{array}{llll}
5 & & & \\
2 & 2 & & \\
4 & 3 & 3 & \\
3 & 1 & 4 & 4 \\
1 & 4 & 1 & 1
\end{array}\right)
$$

From Figure 2.7 and equation (2.3) it may be observed that a regular vine may be represented by a triangular array as described in definition 2.4.4, in which the
nodes of each tree in a regular vine have children in the immediate lower order tree. Conditions for child nodes in the triangular array are given next.

Definition 2.4.5. Node $A_{i-1, h}$ is a child of node $A_{i, j}$ if:
(i) $\left\{A_{h, h}, A_{i-1, h}, A_{i-2, h}, \ldots, A_{1, h}\right\} \subset\left\{A_{j, j}, A_{i, j}, A_{i-1, j}, A_{i-2, j}, \ldots, A_{1, j}\right\}$
(ii) $\left|\left\{A_{h, h}, A_{i-1, h}, A_{i-2, h}, \ldots, A_{1, h}\right\}\right|=\left|\left\{A_{j, j}, A_{i, j}, A_{i-1, j}, A_{i-2, j}, \ldots, A_{1, j}\right\}\right|-1$
(iii) $\left|\left\{A_{h, h}, A_{i-2, h}\right\} \cap\left\{A_{j, j}, A_{i-1, j}\right\}\right|=1$

The reader may check for example that according to definition 2.4.5 $A_{2,4}=$ $(2,1 \mid 4)$ and $A_{2,3}=(3,4 \mid 1)$ in 2.3 are children of $A_{3,4}=(2,3 \mid 1,4)$. According to definition 2.4.2, $A_{3,4}=(2,3 \mid 1,4)$ and $A_{3,5}=(5,4 \mid 3,1)$ are siblings because they are children of the common parent $A_{4,5}=(5,2 \mid 4,3,1)$. Similarly $A_{2,3}=(3,4 \mid 1)$ and $A_{2,5}=(5,3 \mid 1)$ are children of $A_{3,5}=(5,4 \mid 3,1)$ and hence siblings. Other elements may be also checked by the reader. Next it will be shown that a matrix such as the one in definition 2.4.4 represents a regular vine.

We characterize first those triangular arrays which represent regular vines.
Theorem 2.4.2. $T A(V(n))$ represents a regular vine $\Longleftrightarrow T A(V(n))$ satisfies condition \boldsymbol{R}. That is, for all $i \geq 2$, element $A_{i, j}=A_{h, h}$ or $A_{i, j}=A_{i-1, h}$ for some h such that $i \leq h<j$ and $\left\{A_{j, j}, \ldots, A_{i+1, j}\right\} \cap\left\{A_{i-1, h}, \ldots, A_{1, h}\right\}=\varnothing$

Proof. \Rightarrow If $V(n)$ is a regular vine then every node $A_{i, j}$ in $T A(n)$ has two children in echelon $i-1$ one of which is $A_{i-1, j}$. Suppose the other child is in column h, then condition R follows from (i), (ii), (iii) in definition 2.4.5.
\Leftarrow Let $T A(k)$ be a regular vine array satisfying condition R. If $k=3$, the nodes of $T A(k)$ clearly satisfy regularity. Suppose the theorem holds for $k=n-1$. Node $A_{n-1, n}$ satisfies regularity by definition 2.4.4. An induction will show that nodes $A_{n-1, n}, \ldots, A_{1, n}$ satisfy regularity. We show first that node $A_{n-2, n}$ has a sibling and has a common child with this sibling. By condition R element $A_{n-2, n}$ is equal to element $A_{n-2, n-2}$ or $A_{n-3, n-2}$. In either case, node $A_{n-3, n-2}$ is a child of node $A_{n-2, n}$ and hence node $A_{n-2, n}$ satisfies regularity.

Suppose that for every $j=n-2, \ldots, k+1$, every node $A_{j, n}$, satisfies regularity. We claim that $A_{k, n}$ must also satisfy regularity.

Node $A_{k, n}$ is a child of node $A_{k+1, n}$ and by the induction hypothesis, node $A_{k+1, n}$ satisfies regularity, therefore, it has a second child node $A_{k, h}$ and relation 2.4 must hold according to condition R.

$$
\begin{equation*}
\left\{A_{h, h}, A_{k, h}, A_{k-1, h}, \ldots, A_{1, h}\right\}=\left\{A_{k+1, n}, A_{k, n}, \ldots, A_{1, n}\right\} \tag{2.4}
\end{equation*}
$$

Two situations are possible:
(i) $A_{k+1, n}=A_{h, h}$ or,
(ii) $A_{k+1, n}=A_{k, h}$

By induction node $A_{k, h}$ has two children, one of which is node $A_{k-1, h}$. It will be shown that one of these children must be a child of node $A_{k, n}$. In other words
it will be shown that $A_{k, n}$ and $A_{k, h}$ are siblings and have a common child which is the condition for regularity.

In case (i) node $A_{k-1, h}$ cannot be a child of node $A_{k, n}$ since node $A_{k-1, h}$ contains element $A_{h, h}=A_{k+1, n}$ in its conditioned set, and element $A_{k+1, n}$ cannot belong to the constraint set of node $A_{k, n}$. The other child of node $A_{k, h}$ must be node $A_{k-1, m}$ for some $k \leq m<h$. This child cannot contain element $A_{h, h}$, and:

$$
\begin{equation*}
\left\{A_{m, m}, A_{k-1, m}, \ldots, A_{1, m}\right\}=\left\{A_{k, h}, A_{k-1, h}, \ldots, A_{1, h}\right\} \tag{2.5}
\end{equation*}
$$

By induction, node $A_{k, h}$ satisfies regularity; therefore either element $A_{k, h}=$ element $A_{m, m}$ or element $A_{k, h}=$ element $A_{k-1, m}$, in either case by combining 2.4 and 2.5 we see that node $A_{k-1, m}$ is a child of node $A_{k, n}$.

In case (ii) element $A_{k+1, n} \neq$ element $A_{h, h}$, and equation (2.4) must still hold and by induction $A_{k, n}=A_{h, h}$ or $A_{k, n}=A_{k-1, h}$; in either case node $A_{k-1, h}$ will be a child of node $A_{k, n}$ and the latter will satisfy regularity.a

We now count the number of ways of extending an $n-1$ regular vine with a fixed natural ordering. This is equivalent to adding an additional column to the left of a regular vine in the triangular array.

Evidently the top two elements of this new column are fixed, and the last element is fixed by the choices for the elements above it. If there are n elements in the new column, there are $n-3$ elements to be chosen. It will be seen that the number of extensions is in fact 2^{n-3} regardless of the regular vine being extended.
Theorem 2.4.3. For any vine on $n-1$ elements, the number of regular n vines which extend this vine, preserving the natural ordering of the $n-1$ vine is 2^{n-3}.

Proof. Let $V(n-1)$ be an arbitrary regular vine on $n-1$ elements with a natural order and $T A(V(n-1))$ its triangular array. $T A(V(n-1))$ will be extended by adding a column of n elements to the left whose top two entries are $A_{n, n}, A_{n-1, n}$. The goal is to count the number of ways of adding a column to the left of $T A(V(n-1))$, so as to preserve regularity. Node $A_{k, n}$ satisfies regularity if it has a sibling which is a child of node $A_{k+1, n}$ and has a child which is also a child of its sibling. This latter child must be a node in $V(n-1)$. If each node $A_{k, n}$ for $k=2, \ldots, n-2$, satisfies regularity, then $T A(V(n))$ (the extended triangular array) codes a regular vine which extends the original regular vine $V(n-1)$.
$V(n-1)$ has trees T_{n-1}, \ldots, T_{1} where T_{n-1} has one node and no edges, T_{1} has $n-1$ nodes and $n-2$ edges; in general for $j=1, \ldots, n-1$ tree T_{n-j} has j nodes and $j-1$ edges. After adding node $A_{n, n}, T_{1}$ will have n nodes and $n-1$ edges, T_{2} will have $n-1$ nodes and $n-2$ edges and so on until tree n that will have a single node $A_{n-1, n}=\left(A_{n, n}, A_{n-1, n} \mid A_{n-2, n}, \ldots, A_{1, n}\right)$ This node must have two children. One child must be, evidently, node $A_{n-2, n}=$ $\left(A_{n, n}, A_{n-2, n} \mid A_{n-3, n}, \ldots, A_{1, n}\right)$ and the other is the top node of $V(n-1)$ which is $A_{n-2, n-1}=\left(A_{n-1, n-1}, A_{n-1, n-2} \mid A_{n-3, n-1}, \ldots, A_{1, n-1}\right)$. To satisfy regularity, nodes $A_{n-2, n}$ and $A_{n-2, n-1}$ must have a common child. This common child cannot contain element $A_{n-1, n}=A_{n-1, n-1}$ since it does not belong to node $A_{n-2, n}$ and hence the child must be of the form:

$$
\left(A_{n-3, n-2}, A_{n-2, n-2} \mid A_{n-4, n-2}, \ldots, A_{1, n-2}\right)
$$

The situation is pictured in Figure 2.8.

Figure 2.8: Regular Vine Growing 1.
Since element $A_{n-2, n}$ must be in exactly one of the children of the node $A_{n-2, n-1}$ it follows that element $A_{n-2, n}$ must be element $A_{n-2, n-2}$ or element $A_{n-3, n-2}$ either choice satisfying regularity.

Assume that variables $A_{n-1, n}, \ldots, A_{k+1, n}$ satisfying regularity have been found. We show that variable $A_{k, n}$ can be found such that node $A_{k, n}$ satisfies regularity, and that there are exactly two choices for this element. Node $A_{k+1, n}$ may be written $A_{k+1, n}=\left(A_{n, n}, a \mid b, c, d, \ldots, e\right)$ with children as in Figure 2.9.

Figure 2.9: Regular Vine Growing 2.
Node $(a, f \mid\{b, c, d, \ldots, e\} \backslash f)$ exists in the original vine $V(n-1)$ by assumption. Node $\left(A_{n, n}, X \mid\{b, c, d, \ldots, e\} \backslash X\right)$ satisfies regularity if $X=f$ or $X=g$, either choice being possible. No other choice is possible, as no other node can have constraint set $\{b, c, d, \ldots, e\}$. Note that if $k=2$ then $\{\{b, c, d, \ldots, e\} \backslash f\} \backslash g)=$ $\{\{b, c, d, \ldots, e\} \backslash f\} \backslash h)=\varnothing$.

It follows that for each node $A_{n-2, n}, \ldots, A_{2, n}$ there is a choice among 2 alternatives. Hence there are 2^{n-3} extensions of $V(n-1)$ to a regular vine on n elements.

For the example from Figure 2.7 the 2^{6-3} possible extensions of the triangular array from example 2.3 are given by the tree in Figure 2.10 below. Corollary 2.4.4 follows immediately from theorem 2.4.3.

Figure 2.10: 8 Possible Extensions of $T A\left(V_{2}(5)\right)$ in equation (2.3) Representing the Vine in Figure 2.4

Corollary 2.4.4. The number of regular vines possible with a fixed natural order $N O(n)=A_{n, n}, A_{n-1, n-1}, \ldots, A_{1,1}$ is: $\prod_{j=1}^{n-3} 2^{j}=2^{\binom{n-2}{2}}$

Proof. Start with a regular vine on three nodes with an arbitrary natural order and extend it to a regular vine on four nodes. Elements $A_{4,4}, A_{3,4}$ and $A_{1,4}$ are fixed by the natural order and hence only element $A_{2,4}$ may be chosen in 2 distinct ways. For each one of the 2 choices of $A_{2,4}$, from theorem 2.4 .3 an extension to a regular vine on 5 nodes leaves two choices for each of the two elements $A_{3,5}$ and $A_{2,5}$. Continue this way until a regular vine on n nodes is formed and the result follows. \quad

Observe that corollary 2.4.4 implies that no regular vine would be counted twice once the natural order has been fixed. Obviously two triangular arrays that are equal will represent the same vine. Once the number of regular vines that may be obtained with a given natural order is known, all that is left to know the number of regular vines on n nodes is how many natural orders are possible in order to produce all possible regular vines. Corollary 2.4.5 completes the problem of enumerating regular vines.
Corollary 2.4.5. There are $\binom{n}{2} \times(n-2)!\times 2^{\binom{n-2}{2}}$ labeled regular vines in total.
Proof. There are $\binom{n}{2}$ ways of choosing the pair $A_{n, n}, A_{n-1, n-1}$ in a natural order and $(n-2)$! ways of permuting elements $A_{n-2, n-2}, . ., A_{1,1}$. By corollary 2.4.4 the proof is completed.

The results of corollary 2.4.5 may be observed in tables A. 1 to A. 7 which were obtained by the methods explained in previous sections. For example, the number of regular vines on 9 nodes is $\binom{9}{2} \times 7!\times 2^{\binom{9}{2}}=181,440 \times 1+362,880 \times 69+362,880 \times$
$41+181,440 \times 13+181,440 \times 129+181,440 \times 181+181,440 \times 2,651+181,440 \times$ $5,390+90,720 \times 1,708+181,440 \times 1,646+362,880 \times 2,708+45,360 \times 168+$ $181,440 \times 528+181,440 \times 887+181,440 \times 887+90,720 \times 4,202+181,440 \times 2,567+$ $60,480 \times 528+181,440 \times 8,738+15,120 \times 18,504+90,720 \times 11,296+181,440 \times$ $34,417+45,360 \times 36,892+30,240 \times 72,546+90,720 \times 120,444+60,480 \times 20,904+$ $181,440 \times 99,028+60,480 \times 34,143+30,240 \times 6,756+90,720 \times 32,812+90,720 \times$ $54,004+15,120 \times 32,688+60,480 \times 149,901+30,240 \times 360,084+30,240 \times 428,388+$ $22,680 \times 680,576+5,040 \times 262,080+30,240 \times 1,232,820+7,560 \times 414,432+$ $30,240 \times 1,919,610+15,120 \times 1,232,340+3,024 \times 1,869,120+7560 \times 5,255,904+$ $2,520 \times 14,889,744+1,512 \times 23,334,480+504 \times 62,523,360+9 \times 660,602,880=$ $3.8050725888 \times 10^{11}$.

Remark. By lemma 2.3.2 and corollary 2.4 .5 it may be seen that a tree with a single node with maximum degree admits $\binom{n-1}{2} \times(n-3)!\times 2^{\binom{n-3}{2}}$ regular vines.

Finally, the results of remark 2.4 may be also observed in tables A. 1 to A. 7. For example there are 9 trees with maximal degree on 9 nodes each of which $\operatorname{admits}\binom{8}{2} \times(6)!\times 2^{\binom{6}{2}}=20,160 \times 1+20,160 \times 11+40,320 \times 29+20,160 \times$ $39+20,160 \times 71+10,080 \times 820+5,040 \times 120+20,160 \times 315+20,160 \times 815+$ $20,160 \times 423+5040 \times 4,520+6,720 \times 2181+10,080 \times 11,246+6,720 \times 315+$ $20,160 \times 1,046+3,360 \times 3,384+6,720 \times 8,667+560 \times 89,712+3,360 \times 27,222+$ $1,680 \times 11,160+840 \times 117,072+336 \times 279,000+8 \times 2,580,480=660,602,880$ regular vines which is exactly the total number of regular vines on 8 nodes. To finalize some conclusions are presented next.

2.5 Final Comments

This chapter investigates counting problems related to vines. Corollary 2.3.1 has been obtained from Cayley's theorem 2.2.1 to count the number of vines on n nodes. A way to efficiently code and store vines on n nodes based on the Prüfer code is proposed. This consists of an upper triangular matrix of size $(n-2) \times(n-2)$. An algorithm for building vines and two others for building regular vines on n nodes have been presented. Algorithm 2.2.1 is easy to implement and efficient if regular vines on less than 6 nodes are required. Algorithm 2.3.2 would produce only regular vines at the cost of greater programming effort and a larger number of arithmetic operations.

Table 2.1 shows the number of labeled trees, labeled vines, labeled regular vines and tree-equivalent regular vines, on up to 9 nodes. Tables A. 1 to A. 7 presents the number of labeled trees, regular vines per labeled tree and treeequivalent regular vines according to unlabeled trees on n nodes. The number of ways of extending an $n-1$ vine to an n vine has been found and the number of labeled regular vines as a function of n has been presented. Future research about efficient implementation and storing of codes for producing regular vines is desirable. Vines keep a close relationship with continuous-discrete non-parametric BBNs. This will be discussed in the next chapter.

CHAPTER 3

BBNs in Aviation Safety ${ }^{1}$

3.1 Discrete BBNs

Graphical methods for dependence modeling have become increasingly important over the past years. From the graphical methods discussed in the literature perhaps BBNs have drown more attention from the scientific community. An overview of the development of the use of graph theory in combination with probability theory was given in chapter 1. The CATS model which is the main application driving this thesis ${ }^{2}$ was briefly introduced in section 1.4. In this chapter BBNs will be presented more formally. An excellent overview of BBNs is presented in Hanea [2008]. A thorough treatment of the semantics of BBNs is presented in Pearl [1988]. The CATS model will also be explained in more detail in order to be able to show its use in risk and uncertainty analysis in later chapters.

For our purpose Bayesian Belief Nets (BBNs) are directed acyclic graphs whose nodes represent univariate random variables and whose arcs represent direct influences between adjacent nodes. These influences may be probabilistic or deterministic ${ }^{3}$. The graph of a BBN induces a non unique ordering of variables and stipulates that each variable is conditionally independent of its non-descendants given its parents. The parent set of variable X_{i} will be denoted as $P a(i)$. Hence, to specify a joint distribution through a BBN the graph must be specified together with conditional probability functions of each variable given its parents (equation (3.1)).

$$
\begin{equation*}
f\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} f_{X_{i} \mid X_{P a(i)}} \tag{3.1}
\end{equation*}
$$

[^15]

Figure 3.1: Simple example of $B B N$ on n nodes.

If $P a(i)=\emptyset$ then $f_{X_{i} \mid X_{P a(i)}}=f\left(X_{i}\right)$. A BBN is then a concise and complete representation of the joint distribution. In the case that all nodes in the BBN are discrete then the functions to be specified are conditional probability tables (CPT) of each node given its parents. When variables are continuous, one possibility is to discretize them into a large enough number of states and use discrete BBNs. This approach might however turn out to be infeasible even for a modest sized model mainly because of the number of parameters to be specified. This idea is illustrated in example 3.1.1.
Example 3.1.1. Consider the BBN in Figure 3.1 and suppose each variable X_{i} has k_{i} states. Then $(n-1)$ univariate marginal distributions need to be specified for each parent node of X_{2}. For each of these marginal distributions $k_{i}-1$ probabilities need to be assessed ${ }^{4}$. For X_{2} a table with $k_{2} \cdot k_{1} \cdot k_{3} \cdot \ldots \cdot k_{n}$ conditional probabilities needs to be specified of which $k_{1} \cdot k_{3} \cdot \ldots \cdot k_{n}$ are constrained by the choice of the other conditional probabilities.

In particular suppose that for the BBN in Figure $3.1 n=3, k_{1}=2, k_{2}=3$ and $k_{3}=3$. The states of each X_{i} will be $1, \ldots, k_{i} \forall i$ then a table such as 3.1 would be required for X_{2}. One cell in each row of table 3.1 is fixed by the requirement that the values in each row must sum to one. Additionally to the 12 probabilities to be assessed for X_{2}, one state of X_{1} and 2 of X_{3} would need to be specified.a

	$P\left(X_{2}=1 \mid X_{1}=x_{1}, X_{3}=x_{3}\right)$	$P\left(X_{2}=2 \mid X_{1}=x_{1}, X_{3}=x_{3}\right)$	$P\left(X_{2}=3 \mid X_{1}=x_{1}, X_{3}=x_{3}\right)$
$x_{1}=1, x_{3}=1$			
$x_{1}=1, x_{3}=2$			
$x_{1}=1, x_{3}=3$			
$x_{1}=2, x_{3}=1$			
$x_{1}=2, x_{3}=2$			
$x_{1}=2, x_{3}=3$			

Table 3.1: Conditional probability table for X_{2} in example 3.1.1.

In general, the number of probabilities to be assessed for a discrete BBN on n nodes with k_{i} states for each X_{i} for $i=1, \ldots, n$ is:

[^16]\[

$$
\begin{equation*}
K=\sum_{j \in S} k_{j}-|S|+\sum_{l \in C}\left(k_{l}-1\right) \prod_{m \in \operatorname{Pa}(l)} k_{m} \tag{3.2}
\end{equation*}
$$

\]

where $S=\left\{X_{j} \mid P a(j)=\emptyset\right\}$ and $C=\left\{X_{l} \mid P a(l) \neq \emptyset\right\}$ and $|S|+|C|=n$.
One of the main advantages of BBNs is that they posses a graphical representation which makes them appealing for applications. Another property of discrete BBNs that makes them attractive for practitioners is that once it has been quantified, it may be used to update the joint distribution when evidence becomes available. Exact algorithms and approximation algorithms are available for this purpose. See for example Lauritzen and Spiegelhalter [1988], Cowell et al. [1999, p.123] and Pearl [1993, p.55].

It is clear from equation (3.2) that K grows rather quickly as the number of states of each X_{i} grow. This is one of the main drawbacks of discrete BBNs. Some of the drawbacks of discrete BBNs were discussed in Hanea et al. [2006] and Cowell et al. [1999]. We list a summary of them next:

1. K imposes an assessment burden that might lead to informal and indefensible quantification or a drastic discretization or reduction of the model.
2. Marginal distributions are often available from data. Marginal distributions for children nodes are calculated from probability tables and this could impose severe restrictions in a quantification process.
3. Discrete BBNs are flexible with respect to recalculation and updating however they are not flexible with respect to modelling changes. If a parent node is added then the child nodes must be completely re-quantified.

Continuous-discrete non-parametric BBNs (Kurowicka and Cooke [2005], Hanea et al. [2006]) have been developed to cope with some of the drawbacks that discrete (and discrete-normal) a models impose. These will be discussed next.

3.2 Non-Parametric Continuous-Discrete BBNs.

Another way to deal with continuous nodes in a BBN is with the use of normal [Schachter and Kenley, 1989] or discrete-normal BBNs. For discrete-normal BBNs [Cowell et al., 1999], unconditional means and conditional variances must be assessed for each normal variable. For each arc partial regression coefficients must be assessed. In the absence of data the assessment of partial regression coefficients and conditional variances by experts is difficult if the normality assumption does not hold.More flexible models will be discussed in this section for dealing with continuous nodes.

Vines and BBNs represent a joint distribution specified by marginal distributions and conditional bivariate dependence statements. One advantage of BBNs versus vines is that the former preserve the intuitive representation of influence diagrams. This section describes the relationship between vines and non-parametric BBNs.

The graphical objects discussed in chapter 2 are used in dependence modelling. The nodes of the vine represent random variables with invertible distribution function and the edges may be used to specify conditional bivariate dependencies.

Each edge in the regular vine may be associated with a conditional rank correlation. In general these conditional rank correlations may depend on the values of the conditioning nodes, but in the present implementation, all conditional rank correlations are constant. All assignments of rank correlations to edges of a vine are consistent and each one of these correlations may be realized by a copula. A regular vine enables the construction of a joint distribution from bivariate and conditional bivariate distributions.

The reader may see in Kurowicka and Cooke [2006] how to sample a joint distribution represented by a D-vine in 4 nodes. At this point it may also be observed that a Markov-Dependence Tree is a special case of a vine where all conditional rank correlations are set to zero. In other words, in a Markov-Dependence tree the random variables that are not joined by an edge in the tree are conditionally independent given variables on the path between them. It may be observed that vines relax the assumptions about conditional independence for Markov-Dependence trees to allow for conditional dependence.

If one chooses the normal copula to realize the (conditional) rank correlations assigned to the edges of a regular vine and the marginal distributions are standard normal, then we call such vine the standard normal vine. The standard normal vine gives us a very convenient way of specifying a standard joint normal distribution by specifying $\binom{n}{2}$ algebraically independent numbers from $(-1,1)$. This is in contrast to the specification of a correlation matrix that must satisfy the constraint of positive definiteness [Bedford and Cooke, 2002].
Example 3.2.1. Let us consider a standard normal D-vine on three standard normal variables and assume that the following rank correlations were specified: $r_{2,1}, r_{3,2}$ and $r_{3,1 \mid 2}$. The correlation matrix of the joint normal distribution corresponding to this normal vine can be calculated as follows:

- Let $\rho_{2,1}, \rho_{3,2}$ and $\rho_{3,1 ; 2}$ be the product moment correlations obtained by applying equation (1.2) to $r_{2,1}, r_{3,2}$ and $r_{3,1 \mid 2}$ respectively.
- Since for the normal distribution partial correlation is equal to conditional correlation $\rho_{3,1 \mid 2}=\rho_{3,1 ; 2}$, then from equation (1.1) we can compute $\rho_{3,1}$ as:

$$
\rho_{3,1}=\rho_{3,1 \mid 2} \cdot\left(\left(1-\rho_{2,1}^{2}\right)\left(1-\rho_{3,2}^{2}\right)\right)^{1 / 2}+\rho_{2,1} \rho_{3,2} . \square
$$

Non-parametric BBNs and their relationship to vines were presented in Kurowicka and Cooke [2005] and extended in Hanea et al. [2006]. A non-parametric continuous-discrete $B B N$ ($N P C D B B N$) is a directed acyclic graph whose nodes represent continuous univariate random variables and whose arcs are associated with parent-child (un)conditional rank correlations. For each variable X_{i} with parents $X_{j}, \ldots, X_{P a(i)}$ associate the arc $X_{P a(i)-k} \rightarrow X_{i}$ with the conditional rank correlation:

$$
\begin{cases}r_{i, P a(i)}, & k=0 \tag{3.3}\\ r_{i, P a(i)-k \mid P a(i), \ldots, P a(i)-k+1}, & 1 \leq k \leq P a(i)-1\end{cases}
$$

The assignment is vacuous if $\left\{X_{j}, \ldots, X_{P a(i)}\right\}=\emptyset$. These assignments together with a copula family indexed by correlation and with conditional independence statements embedded in the graph structure of a BBN are sufficient to construct a unique joint distribution. Moreover, the conditional rank correlations in 3.3 are algebraically independent, hence any number in $(-1,1)$ can be attached to the arcs of a NPCDBBN. In Figure 3.2 it may be seen that variables X_{1}, \ldots, X_{5} are independent of each other and their dependence with variables X_{6} and X_{7} is described in terms of (conditional) rank correlations. Variables X_{6} and X_{7} are conditionally independent given X_{1}, \ldots, X_{5}.

Figure 3.2: $A B B N$ on 7 variables.

One can use the copula-vine approach [Kurowicka and Cooke, 2006] to represent the multidimensional joint distribution specified by a BBN (Kurowicka and Cooke [2005], Hanea et al. [2006]). D-Vines become an important instrument as the sampling procedure for a BBN is based on the sampling procedure for a D-vine. Some BBNs might not be represented as a single D-vine in their sampling order and it might be necessary to perform extra calculations [Hanea et al., 2006, p.716].

Any copula with an 'easy-to-compute' invertible conditional cumulative distribution function may be used as long as the chosen copula possesses the zero independence property ${ }^{5}$. Choosing the normal copula presents advantages with respect to other copulae for building the joint distribution. Observe that for the normal copula relation 1.2 holds and since conditional correlations are equal to partial correlations then a procedure similar to example 3.2.1 may be applied in the graph. Moreover since for the joint normal distribution, conditional distribu-

[^17]tions are also normal [Tong, 1990, p.33], then analytical updating is possible by this choice [Hanea et al., 2006, p.724].

The NPCDBBN representing the CATS model (section 1.4) was implemented in UniNet [Morales-Nápoles et al., 2007] [Cooke et al., 2007]. The next section explains in more detail the implementation.

3.3 Causal Model for Air transport Safety (CATS)

As mentioned in section 1.4, the CATS model integrates ESDs, FTs, and BBNs into one single CDNPBBN. This section is devoted to a summary description of the procedure to build up the CATS model. Some of the results presented in this section are taken from Morales-Nápoles et al. [2008]. The three human reliability models that will be introduced in subsection 3.3.2 are represented for 3 different flight phases; these are Take Off (TO) En-Route (ER) and Approach \& Landing (AL). In Spouge and Vernon [2008] these flight phases are considered for building up the FTs that are attached to the ESDs. The definitions of flight phases used here are equal to those in Spouge and Vernon [2008].

3.3.1 Event Sequence Diagrams \& Fault Trees

An event sequence diagram is a flow chart showing a sequence of events whose happening or not happening lead to different end states. ESDs for the CATS model have been quantified in Roelen et al. [2007.]. Since the sequence of intermediate events that must happen in order to observe the end state may be represented by logical statements, ESDs may be represented as Fault Trees. In the CATS model ESDs and FTs were modelled as a single unit. FT analysis is considered a technique which allows the analysis of a system in the context of its environment and operation to find the largest number of credible ways in which an undesired state of a system may happen [Vesely et al., 1981, p.IV-1].

Basic events in Fault Trees can be represented by a Boolean variable. In this sense, a FT may be thought of as a picture of a Boolean formula. In Boolean arithmetic, variables take only two values, usually 0 or 1 . Suppose A_{1} and A_{2} are Boolean variables, then $A_{1} \oplus A_{2}$ and $A_{1} \otimes A_{2}$ are also Boolean variables, and hence take values 0 or 1 . This is arranged by defining $A_{1} \oplus A_{2}=A_{1}+A_{2}-A_{1} \cdot A_{2}$ and $A_{1} \otimes A_{2}=A_{1} \cdot A_{2}$. The operators \oplus and \otimes correspond to the AND and OR operators in propositional logic. In other words, $A_{1} \oplus A_{2}$ means "either A_{1} or A_{2} or both are true" and $A_{1} \otimes A_{2}$ means "both A_{1} and A_{2} are true". In Boolean arithmetic $A_{1} \otimes A_{1}=A_{1}$; this corresponds to saying that the event A_{1} AND A_{1} is the same as the event $A_{1}{ }^{6}$. Two examples of FTs are presented in Figures 3.3 and 3.4. Their usual notation for AND and OR gates is also displayed.

In most cases, we don't know whether a given basic event occurs, we know only its probability of occurrence. Recall that $E\left(A_{1}\right)=P\left(A_{1}=1\right)$ where E denotes mathematical expectation. If A_{1} and A_{2} are independent, then $E\left(A_{1} \otimes A_{2}\right)=$ $E\left(A_{1}\right) E\left(A_{2}\right)$ and $E\left(A_{1} \oplus A_{2}\right)=E\left(A_{1}\right)+E\left(A_{2}\right)-E\left(A_{1} \cdot A_{2}\right)$.

[^18]The above reasoning might suggest that we can just replace the Boolean variables at the base of a fault tree with their probabilities (i.e. their expectations) and compute the probability of the top event with ordinary arithmetic. This is not true, in general, and it may depend on how the fault tree is displayed. This is illustrated in Figures 3.3 and 3.4. Suppose that A_{4} occurs when either $\left(A_{1}\right.$ AND A_{2}) OR (A_{1} AND A_{3}) occur. Observe that Figures 3.3 and 3.4 are logically equivalent fault trees.

Figure 3.3

Figure 3.4

If Boolean reduction is applied to both FTs we see that they yield the same formula for A_{4}. However, if we replace the variables by their expectations and apply ordinary arithmetic to the non-reduced formulae, we will get different answers. The correct calculation would be obtained from Figure 3.4 $P\left(A_{4}=1\right)=$ $P\left(A_{1}=1\right) P\left(A_{2}=1\right)+P\left(A_{1}=1\right) P\left(A_{3}=1\right)-P\left(A_{1}=1\right) P\left(A_{2}=1\right) P\left(A_{3}=1\right)$. The problem is that when (A_{1} AND A_{2}) OR (A_{1} AND A_{3}) is computed with expectations in Figure 3.3, the term $P\left(A_{1}=1\right)$ is included twice.

In general, computing probabilities of occurrence from a Fault Tree requires some careful manipulations, before substituting Boolean variables with their expected values. However, if our Fault Trees contain no "repeated events" then we can replace Boolean variables with expectations and replace Boolean arithmetic with ordinary arithmetic. This assumes that we have captured all common cause dependencies in the Fault Tree. This means that once probabilities are assigned to the basic events, the probability of joint occurrence is computed as the product of the probabilities. In the CATS model no repeated events exist and hence we can simply replace basic events with expectations and compute with ordinary arithmetic.

The quantification of ESDs presented in Roelen et al. [2007.] is used in Spouge and Vernon [2008] to quantify the FTs that later compute the accident probability. The FTs (and consequently ESDs) presented in the appendix DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008] are translated into functional nodes in UniNet using ordinary arithmetic.

Translating FTs into BBNs is not new. In Bobbio et al. [1999] and Bobbio et al. [2001] FTs are translated into discrete BBNs. Our approach is different in the
sense that uncertainty analysis is carried out by sampling the probability of each base event in the FTs from a distribution (see section 3.3.3.2). The expectation of each base event distribution is the probability estimated originally for the FTs in Spouge and Vernon [2008]. By sampling each base event probability from a given distribution and computing the arithmetic operations at each level of the FT a distribution is obtained for the accident probability. Samples for each base event can be generated with some dependence structure. Most of the base events of the FTs are a result of human errors. Factors influencing human performance might induce the dependence structure for base events of the FTs. For this reason human reliability models (HRM) will be introduced next. The issue of the quantification of dependence in each HRM will be dealt with in chapter 4 . In section 3.3 .3 the connection between base events of the FTs and HRM will be made explicit.

3.3.2 Human Reliability Models

To a large extent, events initiating accident scenarios in the CATS model are a result of incorrect performance of humans. Models for taking into account the probability of human errors have been developed for Flight Crew Performance (FCP), Air Traffic Controller Performance (ATCP) and Maintenance Crew Performance (MNTP). These are discussed next. The quantification of the models presented in this section include field data whenever available and structured expert judgment (SEJ). Structured expert judgment is a process intended to use expert opinion in a transparent way with the purpose of treating expert judgments as scientific data [Cooke, 1991]. SEJ will be dealt with in more detail in chapter 4 . In this section the models are introduced together with the data source for marginal distributions. Rank and conditional rank correlations were retrieved through SEJ in all models presented in this thesis. Techniques for eliciting such measures are also introduced in chapter 4.

3.3.2.1 FCP Model Description

The FCP model is shown in Figure 3.5. The model is described extensively in Morales-Nápoles et al. [2009b] and Roelen et al. [2007]. Variables taken into account for this model are briefly described in table 3.2 according to their labeling in Figure 3.5.

The basis for the quantification of each marginal distribution is presented in column 3. Four variables were elicited through structured expert judgment ${ }^{7}$ and the rest come from data. Node 14 would represent a base event in DNV's Fault Trees. Whenever the flight crew performance is of interest in the FTs an instance of node 14 will appear in the CATS model.

Each node of the BBN in Figure 3.5 shows the marginal distribution of the variables listed previously. The mean of the distribution (and the standard deviation after the \pm sign) of each variable are shown at the bottom of each node. An elicitation protocol was designed for obtaining the marginal distributions from Figure 3.5 shown in table 3.2 and the dependence information (rank and conditional

[^19]| Node \sharp | Definition | Marginal
 distribution. |
| :---: | :--- | :--- |
| 1 | Total number of hours flown (all types)
 for the First Officer | Data |
| 2 | Number of days since the last type recurrent
 training for the First Officer | Data |
| 3 | Stanford Sleepiness Scale | Data |
| 4 | Number of days since the last type recurrent
 training for the Captain | Data |
| 5 | Total number of hours flown (all types) for the Captain | Data |
| 6 | Likelihood that the Captain fails a proficiency check | SEJ a |
| 7 | Likelihood that the First Officer fails a proficiency check | SEJ |
| 8 | Rainfall rate in mm/hr | Data |
| 9 | Difference in mother tongue between Captain and
 First Officer per 10000 flights | SEJ |
| 10 | Likelihood that the Captain or the First Officer
 fail a proficiency check | SEJ |
| 11 | Aircraft generation: $1,2,3$, or 4
 Likelihood that the flight crew needs to follow
 a procedure of the abnormal/emergency procedures
 section of the AOM | |
| 12 | Total duration (in seconds) of the air/ground
 communications, per aircraft, for the
 approach and landing flight phase. | Data |
| 13 | Likelihood that the flight crew makes an
 unrecovered error that is potentially
 hazardous for the safety of the flight. | Data |
| | FT ${ }^{c}$ | |

Table 3.2: Description of variables from the model in Figure 3.5.

[^20]

Figure 3.5: Flight Crew Performance Model
rank correlations) required by the model. The elicitation of rank and conditional rank correlations will be discussed in section 4.2.2 and results for the FCP model elicitation will be presented in section 5.2.

3.3.2.2 ATCP Model Description.

The Air Traffic Control Performance model (ATCP) is the second one of the generic models that has been developed to represent dependence between base events in the FTs of the CATS model. The model is discussed in details in Morales-Nápoles et al. [2009b] and Roelen et al. [2008a]. Figure 3.6 shows the BBN representing the model. Variables 1-6 are considered to be correlated to ATC error probability (variable 7) and independent of each other. Each variable considered in the model is briefly described in table 3.3 according to its labeling in Figure 3.6.

The basis for the quantification of each marginal distribution is presented in column 3. Five variables come from data and the error distribution from the quantification of FTs. Node 7 would represent base events in the Fault Trees. As with node 13 in the FCP model, whenever the air traffic error is of interest an instance of node 7 will appear in the CATS model. Results for the ATCP model elicitation will be presented in section 5.3.

Figure 3.6: Air Traffic Controller Performance Model

Node \sharp	Definition	Marginal distribution.
1	Number of aircraft (any type) simultaneously under control.	Data
2	Four states variable. From 1- using radio only to 4-using radio, primary and secondary radar and additional tools.	Data
3	Two states. 1 - The communication with other ATC takes place in the same room, 2 - The communication with other ATC does not take place in the same room	Data
4	Number of years working as an ATC in the same position.	Data
5	Five states variable. From 1 - normal operations to 5-operations below 200 meters visibility.	Data
6	Total duration (in seconds) of the air/ground communications, per aircraft, for the approach and landing flight phase.	Data
7	Likelihood that the air traffic control makes an unrecovered error that is potentially hazardous for the safety of the flight.	FT a

Table 3.3: Description of variables from the model in Figure 3.6.

[^21]

Figure 3.7: Maintenance Crew Performance Model

Node \sharp	Definition	Marginal distribution.
1	Whether the work is performed at the ramp (outside - 1) or in the hangar (inside - 2)	SEJ a
2	Stanford Sleepiness Scale	SEJ
3	\# of years in current position	Data
4	Time available to transfer a job (min)	SEJ
5	Aircraft generation: 1, 2, 3, or 4	Data
5	Five states variable. From 1 - normal operations to 5 - operations below 200 meters visibility.	Data
6	Estimated delay in release of the aircraft (hrs)	SEJ
7	Likelihood that the maintenance crew makes an unrecovered error that is potentially hazardous for the safety of the flight.	FT b

Table 3.4: Description of variables from the model in Figure 3.7.

[^22]
3.3.2.3 MNTP Model Description.

The maintenance crew performance model is the third and last of the generic models that have been developed to represent dependence between base events in the FTs of the CATS model. A preliminary version of the model presented here may be found in Jagielska [2007]. The MNTP model is discussed in the context of CATS in Krugła [2008] and Roelen et al. [2008b]. The model is shown in Figure 3.7 and the variables taken into account are briefly described in table 3.4 according to their labeling in Figure 3.7. Equivalently with node 13 in the FCP model and 7 in the ATCP model if a maintenance technician error is of interest an instance of node 7 will appear in the CATS model.

The three HRM briefly introduced here and the FTs in Spouge and Vernon [2008] are introduced in UniNet to build the CATS model. That process is described next.

3.3.3 The CATS Model in UniNet

3.3.3.1 ESDs \& FTs for the CATS model in UniNeT

In Figure 3.8 one may see ESD1 aircraft system failure for the TO flight phase as presented in appendix DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008]. In total four AND gates and four OR gates represent the FT and ESD. Fifteen base events are influenced by the MNTP model presented in section 3.3.2.3 and 3 base events by the FCP model from section 3.3.2.1. No influence of the ATCP model is observed in this particular FT. To translate this information into a BBN the process is:

1. Find a distribution of the probability of base events per demand according to their variability. The variability of each base event in this case corresponds to the different percentiles and expectation from DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008]. These correspond to the expectation, minimum, $5^{\text {th }}, 10^{\text {th }}, 25^{\text {th }}, 50^{t h}, 75^{t h}, 90^{\text {th }}, 95^{t h}, 99^{t h}$ and maximum percentiles of each base event distribution. This information is treated as data (see Figure 3.9).
2. Connect with incoming arcs each base event to the corresponding dependence model from subsections 3.3.2.1 to 3.3.2.3 using the corresponding rank and conditional rank correlations. These nodes will be ancestors of base events in the Fault Trees.
3. Write in descendent nodes of each base event the arithmetic formulae that translate a FT into a BBN (subsection 3.3.1). These will be functional nodes in the BBN.

These steps are repeated for all ESDs presented in table 3.5.

3.3.3.2 The error distributions in UniNet

Base events in the FTs are influenced by the human performance models introduced in section 3.3.2. In fact, the probabilities presented in the FTs [Spouge and

Figure 3.8: ESD1 aircraft system failure for the TO flight phase

Figure 3.9: Distribution of base event probability

ESD	Initiating event	Flight Phase
1	Aircraft system failure	TO
2	ATC event	TO
3	Aircraft handling by flight crew inappropriate	TO
4	Aircraft directional control related systems failure	TO
5	Operation of aircraft systems by flight crew inappropriate	TO
6	Aircraft takes off with contaminated wing	TO
7	Aircraft weight and balance outside limits	TO
8	Aircraft encounters performance decreasing windshear after rotation	TO
9	Single engine failure	TO
10	Pitch control problem	TO
11	Fire on board aircraft	ER
12	Flight crew member spatially disorientated	ER
13	Flight control system failure	ER
14	Flight crew incapacitation	ER
15	Anti-ice system not operating	ER
16	Flight instrument failure	ER
17	Aircraft encounters adverse weather	ER
18	Single engine failure	ER
19	Unstable approach	AL
21	Aircraft weight and balance outside limits	AL
23	Aircraft encounters windshear during approach/landing	AL
25	Aircraft handling by flight crew during flare inappropriate	AL
26	Aircraft handling by flight crew during roll inappropriate	AL
27	Aircraft direction control related systems failure	AL
28	Single engine failure	AL
29	Thrust reverser failure	AL
30	Aircraft encounters unexpected wind	AL
31	Aircraft are positioned on collision course	ER
32	Incorrect presence of aircraft/vehicle on runway in use	TO/AL
33	Cracks in aircraft pressure cabin	ER
35	Flight crew decision error/operation of equipment error	AL
36	Ground collision imminent	TO/AL
37	Wake vortex encounter	ER

Table 3.5: ESDs used in the CATS model.

Vernon, 2008] represent the expected probability of a given human error. Other percentiles over the distribution of error probability are also presented in appendix DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008]. An example of the data is presented in Figure 3.9.

Figure 3.9 shows that the minimum value that the base event probability TO01B11 can take is 0 . In the same way the maximum value of TO01B11 should be equal to 6.11×10^{-5}. Other quantiles may be read in the same way. This information is used to fit a parametric distribution to represent the distribution over the base event probability. In total there are 856 basic events over all thirty five ESDs from table 3.5 in the model as presented in Figure 1.13.

With these percentiles a minimally informative distribution with respect to the log uniform measure may be found. This distribution will always comply with the percentiles provided by DNV, however, it was decided that a parametric distribution would be fit to the data provided by DNV. A parametric distribution is desired for the following reasons:

- The model is easier to maintain. The minimally informative distribution requires storing the whole distribution while a parametric distribution would require storing only a number of parameters to completely describe the distribution.
- The minimally informative solution fitted to the quantiles exemplified in Figure 3.9 will not in general preserve the expectation provided by DNV.
- The model was required to have the functionality that by specifying a mean different than the one computed by DNV and keeping the variance constant, a new distribution within a given parametric family could be obtained.

The fitting procedure to obtain the parametric distribution for each base event is described briefly next. Denote by $X_{i}, i=1, . ., 856$ the random variable described by the parametric distribution required by each base event in the FTs of the CATS model. The $m=1, \ldots, 10$ observations obtained in DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008] (Figure 3.9) will be denoted as $\widetilde{x}_{i, q_{k, m}}$ for the $k^{t h}$ percentile of base event i.
Algorithm 3.3.1. Finding parametric distribution for base events in the FTs.

1. For $i=1, . ., 856$ find the parameters of $F_{j}\left(X_{i}\right)$ where each $j=a, \ldots, g$ corresponds to one of the 7 subitems given below.
(a) Weibull with shift parameter equal zero,
(b) Weibull with shift parameter non zero,
(c) Gamma with shift parameter equal zero,
(d) Gamma with shift parameter non zero,
(e) Beta with parameters $(0,1)$,
(f) Beta with parameters $\left(\widetilde{x}_{i, q_{\text {min }}}, \widetilde{x}_{i, q_{\text {max }}}\right)$,
(g) Log-normal
such that:
(i) $\sum_{m}\left(F_{j}^{-1}\left(q_{k, m}\right)-\widetilde{x}_{i, q_{k, m}}\right)^{2}$ is minimal
(ii) $\left|\left(E_{j}\left(X_{i}\right)-E\left(\tilde{X}_{i}\right)\right) / E\left(\tilde{X}_{i}\right)\right|<1$ and,
(iii) $F_{j}^{-1}(0.9999999999999999) \leq \widetilde{x}_{i, q_{\max }}$.
2. Select j such that $\sum_{m}\left(F_{j}^{-1}\left(q_{k, m}\right)-\widetilde{x}_{i, q_{k, m}}\right)^{2}$ is minimal.

After applying algorithm 3.3.1 to the data no distribution of the class (a) was selected, 2 of class (b), 1 of (c) and 2 of (d) were selected. More than 99% of the base events are within classes (e) to (g). In particular a Beta with parameters $(0,1)$ was used for 58 base events, a Beta with parameters ($\widetilde{x}_{i, q_{\min }}, \widetilde{x}_{i, q_{\max }}$) for 729 events and finally a log-normal distribution was selected for 2 base events. Whenever algorithm 3.3 .1 would not find a solution, a constant equal to $E\left(\widetilde{X}_{i}\right)$ was used. This was the case in 62 base events.

Finally, to illustrate differences in the outcomes of the fitting procedure described in algorithm 3.3.1, Figures 3.10 and 3.11 are presented. Figure 3.10 corresponds to the $5^{\text {th }}$ percentile of the distribution of minimal sum of squared differences. The solution corresponds to a uniform distribution in $\left[1.2 \times 10^{-5}, 3.2 \times 10^{-5}\right]$. Figure 3.11 corresponds to the $99^{\text {th }}$ percentile of the same distribution of minimal sum of squared differences. In this case algorithm 3.3.1 finds a distribution that complies with the mean specified in DNV Collected Fault Trees (3Feb09) v7,1.xls of Spouge and Vernon [2008]. However other percentiles are not well captured by the solution. This is due to the fact that according to DNV's data 50% of the mass is concentrated in zero and 10% in one. Though the sum of squared difference is not directly comparable across base events, Figures 3.10 and 3.11 are presented for illustration purposes.

3.3.3.3 The complete model

Once a distribution for each of the 856 base events of interest has been found, the next step is to attach the adequate dependence information between base events. From Figure 3.8 it may be observed that 18 base events represent an instance of either the FCP or the MNTP models from section 3.3.2.

Figure 3.12 shows ESD1 represented as a BBN in UniNet with a single instance of the FCP model. However, according to Figure 3.3.2 there are in total three base events in ESD1 influenced by the flight crew performance. Also from Figure 3.3.2 it may be observed that the FCP model is not the only one influencing basic events in ESD1. The fifteen base events influenced by the MNTP model should also be included in the BBN representation of ESD1. The complete representation of ESD1 is shown in Figure 3.13.

If the same process is repeated for ESD2 the model should look as in Figure 3.14. This process has to be repeated for the 35 ESDs from table 3.5. The reader should observe that some nodes change through flight phases and some do not. For example, experience in the ATCP and FCP models is consider not to change

Figure 3.10: Fit of event 'AL30B31': No input to controls will allow the flight crew to maintain control of the aircraft per encounter with unexpected wind. $\operatorname{Beta}\left(1,1,1.2 \times 10^{-5}, 3.2 \times 10^{-5}\right)$, sum of squared difference $=1.1951$.

Figure 3.11: Fit of event 'AL32B112': ATC fails to detect a conflict and give warning due to darkness per ineffective conflict warning. Beta(0.97,0.36,0,1), sum of squared difference $=1.1951$).

Figure 3.12: ESD1 with a single instance of the FCP model attached to it.

Figure 3.13: ESD1 with 3 instances of the FCP model and 15 of the MNTP model attached to it.

Figure 3.14: ESD1 \& ESD2 with HRMs attached.

Figure 3.15: Common nodes in the HRMs.

Figure 3.16: Human performance models in CATS.
across flight phases. On the other hand the FCP model would have one instance of weather per flight phase.

In the CATS model the FCP model and the ATCP model share in common the total transmission time in the AL flight phase. The MNTP model and the FCP model share the aircraft generation node in all flight phases. This situation is summarized in Figure 3.15.

The complete CATS model is presented in Figure 3.16. Figure 3.16 is identical to Figure 1.13 except that the human performance models used at each flight phase are indicated. The model has been integrated with the methods described in this chapter. At the date of publication of this document, the model consists of 918 probabilistic nodes, 586 functional and 4,979 arcs. Obtaining the dependence information for the models presented in sections 3.3.2.1 to 3.3.2.3 was one of the most challenging tasks in the model. Next chapter explains the methodology followed for that purpose. In next section, examples of the use of the model will be given.

3.4 Model Use

At this writing, the model presented in section 3.3.3 is still under development. However, a smaller version of the model with 834 probabilistic nodes, 532 functional and 4,756 arcs has been used [Morales-Nápoles et al., 2008]. The model in Morales-Nápoles et al. [2008] keeps the same structure as Figures 1.13 and 3.16 except that it does not include ESDs 36 and 37 . In this section the version of the model from Morales-Nápoles et al. [2008] will be used. According to the model the accident probability is obtained as the expectation of the accident rate. The expectation of the baseline case is 3.18×10^{-6}. This is in line with the worldwide data tendency (see Figure 1.10). The $5^{t h}$ and $95^{\text {th }}$ percentiles of the baseline accident distribution are 8.58×10^{-8} and 8.97×10^{-6} respectively.

The model was sampled in UniNet. The sample rank correlation was computed between the accident rate and each of the 45 nodes representing the HRMs from section 3.3.2 used in the CATS model as explained in section 3.3.3. The rank correlations were obtained using UniSEns [Next-Page-Software, 2009]. Results are presented in table 3.6. Other sensitivity measures may also be obtained with UniSens [Lewandowski et al., 2007].

From table 3.6 it may be seen that variables from the FCP and the MNTP model are most highly correlated to accident probability. Crew unsuitability is influenced by captain's and first officer's unsuitability. These are influenced in turn by experience, training and fatigue (Figure 3.5). Experience and Training are considered not to change across flight phases however fatigue does and hence 3 instances of crew unsuitability are used in the model (Figure 3.16). Crew unsuitability for each flight phase appears to be most highly correlated with accident probability ($\cong 0.3$).

Aircraft generation does not change across flight phases and is a common node for both the FCP and the MNTP models. This variable has the second largest rank correlation in absolute value with accident probability (-0.245). After aircraft generation and excluding all variables related to unsuitability; experience for captains, first officers and maintenance personnel seem to be most influential in the accident probability. Fatigue and weather complete the top 15 most correlated variables with accident probability.

Table 3.7 presents the expectation, $5^{t h}$ and $95^{t h}$ percentiles of the accident rate distribution for the baseline case and two conditional distributions. The ratio of the $95^{\text {th }}$ to the $5^{\text {th }}$ percentiles in the baseline case is 104.5 . The third row of table 3.7 presents data for the accident rate given the oldest type of aircraft. The expectation of the conditional distribution of accident is 16.2 times larger than the base line case. The ratio of the $95^{\text {th }}$ to the $5^{t h}$ percentiles in the conditional distribution A is 484.3 .

According to table 3.6 the next variables most highly correlated with accident probability other than unsuitability are first officers and captains experience. The model is further conditionalized on low values of experience for crew ($5^{\text {th }}$ percentile of each experience distribution). The results are presented in the last row of table 3.7. In the conditional distribution B the ratio of the $95^{t h}$ to the $5^{\text {th }}$ percentiles is 171.9, however the accident probability is 92 times larger than the base line case.

Rank	Variable	Model \& Node \sharp		Flight phase	Rank correlation (with accident)
1	Crew Unsuitability	FCP	10	TO	0.301
2	Crew Unsuitability	FCP	10	AL	0.300
3	Crew Unsuitability	FCP	10	ER	0.295
4	Aircraft generation	FCP \backslash MNTP	$11 \backslash 5$	TO\ER\AL	-0.245
5	Unsuitability (Captain)	FCP	6	AL	0.221
6	Unsuitability (FO)	FCP	7	AL	0.219
7	Unsuitability (Captain)	FCP	6	TO	0.218
8	Unsuitability (Captain)	FCP	6	ER	0.218
9	Experience (Captain)	FCP	5	TO\ER \backslash AL	-0.217
10	Experience (FO)	FCP	1	TO\ER\AL	-0.216
11	Unsuitability (FO)	FCP	7	TO	0.216
12	Unsuitability (FO)	FCP	7	ER	0.215
13	Experience (Maintenance)	MNTP	3	TO\ER\AL	-0.208
14	Fatigue (Maintenance)	MNTP	2	TO\ER\AL	0.195
15	Weather	FCP	8	AL	0.177
16	Language difference	FCP	11	TO\ER\AL	0.160
17	Weather	FCP	8	TO	0.127
18	Weather	FCP	8	ER	0.121
19	Total transmission time	FCP \backslash ATCP	$13 \backslash 6$	AL	0.115
20	Workload (Maintenance)	MNTP	6	TO\ER \backslash AL	0.108
21	Workload (Flight crew)	FCP	9	AL	0.063
22	Shift overlap time	MNTP	4	TO\ER\AL	-0.056
23	Workload (Flight crew)	FCP	9	ER	0.052
24	Workload (Flight crew)	FCP	9	TO	0.050
25	Fatigue (Flight crew)	FCP	9	AL	0.045
26	Fatigue (Flight crew)	FCP	9	ER	0.037
27	Fatigue (Flight crew)	FCP	9	TO	0.034
28	Traffic	ATCP	1	AL	-0.011
29	Training (FO)	FCP	2	TO\ER \backslash AL	0.009
30	Interface	ATCP	2	ER	0.009
31	Working Condition	MNTP	1	TO\ER\AL	0.009
32	Traffic	ATCP	1	TO	-0.008
33	Experience (Controller)	ATCP	4	ER	0.008
34	Coordination	ATCP	3	AL	0.007
35	Visibility procedure	ATCP	5	AL	-0.006
36	Interface	ATCP	2	AL	-0.005
37	Coordination	ATCP	3	TO	0.005
38	Visibility procedure	ATCP	5	ER	0.003
39	Visibility procedure	ATCP	5	TO	0.003
40	Experience (Controller)	ATCP	4	TO	0.002
41	Interface	ATCP	2	TO	-0.002
42	Traffic	ATCP	1	ER	-0.001
43	Experience (Controller)	ATCP	4	AL	-8×10^{-4}
44	Coordination	ATCP	3	ER	-3×10^{-4}
45	Training (Captain)	FCP	4	TO\ER $\backslash \mathrm{AL}$	-2×10^{-5}

Table 3.6: Variables from the human reliability models from section 3.3.2 with highes absolute rank correlation with accident probability (32,500 samples per variable).

	Accident rate		
Model	Mean	$5^{\text {th }}$ percentile	$95^{\text {th }}$ percentile
Base line	3.18×10^{-6}	8.58×10^{-8}	8.97×10^{-6}
Conditional A	5.14×10^{-5}	4.53×10^{-7}	2.19×10^{-4}
Conditional B	2.92×10^{-4}	6.91×10^{-6}	1.20×10^{-3}

Table 3.7: Expectation, $5^{\text {th }}$ and $95^{\text {th }}$ percentiles for base line accident probability and conditional distributions

[^23]The three distributions from table 3.7 may be observed in Figure 3.17. From the picture it is immediately evident the negative effects that older aircrafts and very low experienced crews have on aviation safety.

Similar analysis to the one presented in this section is possible with the CATS model and UniNet. A single run of the CATS model in UniNet takes about 2.5 minutes on a PC with a Core ${ }^{T M} 2$ Duo processor at 3 GHz and 3.25 GB of RAM memory. A BBN model with about 1.5 thousand nodes and a dependence structure imposed by more than 4,000 arcs may be an important source of information for the aviation system. Once the model is complete, it is the task of the users and analysts to place a major focus on the answers that should be retrieved from the model. Next chapter will focus on the methods employed to retrieve the rank and conditional rank correlations required by the models presented in section 3.3.2 from experts.

Figure 3.17: Fatal and non-fatal accident distribution from the CATS model. 1. Baseline; 2. Given aircraft generation $=1$; 3. Given aircraft generation $=1$, captain experience $=9,467 \mathrm{hr}$. and first officer experience $=7,844 \mathrm{hr}$.

CHAPTER 4

Elicitation and Combination of Dependence ${ }^{1}$.

4.1 Introduction

The elicitation of expert judgments for use in scientific research and decision making is a common practice nowadays. Most of the times these judgments gather information about univariate distributions of continuous uncertain quantities. The use of dependence measures between given uncertain quantities is becoming more and more important in risk and uncertainty analysis. This is true at least for the aviation industry where a large model for quantifying and analyzing risks is under development in the Netherlands (see section 1.4 and chapter 3). The use of structured expert judgment for eliciting and combining dependence measure is far less developed than the use of expert judgment for the elicitation of marginal distributions.

This chapter discusses the elicitation and combination of expert judgments in the form of rank and conditional rank correlations. These methods may be used in graphical models such as vines (chapter 2) or BBNs (chapter 3) and have been used with groups of experts for the quantification of models for the aviation industry (chapter 5) and dams safety 6 . Choices of copulae for the elicitation are compared.

Whenever data are available about the joint distribution, it may be used for the quantification of a BBN. Often times, data is not available for the complete quantification of a NPCDBBN. In this case structured expert judgment provides another kind of data for model quantification. Methods for eliciting rank and conditional rank correlations have been presented before, for example in Cooke and Goossens [1999], Clemen and et al. [2000], Clemen and et al. [1999], Kraan [2002] and Morales et al. [2008].

[^24]The purpose of this chapter is to present examples where groups of experts have been gathered for the quantification of (un)conditional rank correlations for use in risk analysis. These measures are input for continuous-discrete nonparametric BBNs. In a project commissioned by the Dutch Ministry of Transport, Public Works and Water Management for aviation safety, a model for "Missed Approach" was developed and quantified with the probabilistic method described here. This application model will be presented in chapter 5 . The probabilistic method is also used in the quantification of the FCP model. A direct method for the elicitation of rank correlations is also presented in the quantification of the ATCP model. The FCP and ATCP models will be further discussed in chapter 5. The combination of expert dependence measures in the form of conditional rank correlations will also be discussed and follows the ideas presented previously in Cooke and Goossens [1999] and Kraan [2002]. It is a goal of this chapter to serve as a guideline for the quantification of models similar to CATS.

4.2 Structured Expert Judgment

As stated previously in the NPCDBBN approach, nodes represent univariate random variables with invertible distribution function. Arcs represent parent-child (un)conditional rank correlations. The choice of (un)conditional rank correlations to represent influence responds to the fact that the conditional rank correlations are algebraically independent and every number in $(-1,1)$ may be attached to the arcs of a BBN. The univariate marginal distributions represented by nodes in the BBN, together with the conditional independence statements embedded in the graph, and a copula realizing the correlations, uniquely determine the joint distribution Hanea et al. [2006]. It is important that for the chosen copula, zero correlation corresponds to the independent copula as this assures that the conditional probability statements implied by the graph are satisfied ${ }^{2}$. The normal copula is the preferred choice since in addition to the zero independence property, computationally expensive numerical evaluations of multiple integrals are avoided. Additionally, the relationship between partial correlations and conditional rank correlations for the normal copula might be of advantage during an elicitation with experts.

The quantification of a full BBN requires marginal distributions for each node and dependence information in the form of (un)conditional rank correlations. Whenever data is not available for any of these inputs expert judgment is yet another kind of data available. The use of expert judgments in science is not new. Structured expert judgment has been proposed as a methodology to use expert opinion in a transparent way with the purpose of treating expert judgments as scientific data. Structured expert judgment has been widely used for the quantification of uncertain quantities in the form of subjective probability distributions [Cooke and Goossens, 2008]. The use of structured expert judgment for multivariate elicitation is less explored in the literature [O'Hagan, 2005] though some progress has been made over the past years. The use of structured expert

[^25]judgment will be dealt with in more detail next.

4.2.1 The Classical Model for Structured Expert Judgment

The name classical model derives from its resemblance to classical statistical hypothesis testing. In 17 years, about 67,000 experts' subjective probability distributions have been elicited from 521 domain experts with the classical model ([Cooke and Goossens, 2008]). Fields of application include nuclear applications, chemical and gas industry, water management, aviation, health, banking, vulcanology and others.

The classical model for structured expert judgment [Cooke, 1991] is a performance based linear pooling (weighted average) model. In addition to variables of interest, experts are queried about seed or calibration variables. The latter are variables whose value is known to the analyst but not to the expert at the moment of the elicitation. Experts' performance as uncertainty assessors is measured by the calibration and information scores from seed variables. These are used to derive the weights entered in the linear pooling (Equation 4.1).

Roughly speaking, the calibration score is the probability that the divergence between the expert's assessments and the observed values on seed variables might have arisen by chance. A high score near 1 but higher than a significance level α (for instance 0.05) means that the expert's assessments are statistically supported by the set of seed variables. The second performance measure is the information score. Loosely, the information score measures the degree to which a distribution is concentrated relative to a background measure. The uniform and log uniform are most common choices for the background measures. The overall information score is the mean of information scores for each variable. The weights in the classical model are proportional to the product of statistical likelihood and information and satisfy a strictly proper scoring rule constraint [Cooke, 1991].

The linear pooling of experts' assessments is called a Decision Maker (DM). If $f_{e, i}$ is expert $e^{\prime} s$ density for item i then the decision maker is:

$$
\begin{equation*}
D M_{\alpha, i}=\sum_{e} w_{e, \alpha} f_{e, i} \tag{4.1}
\end{equation*}
$$

The weights ($w_{e, \alpha} \geq 0$ and $\sum_{e} w_{e, \alpha}=1$) are determined for each expert according to calibration and information. The value of α is chosen such that the product of the calibration and information scores of the decision maker is maximized. Any expert whose calibration score is less than α would be unweighted in equation (4.1). Three types of DM are contained in the classical model. The equal weights decision maker (EWDM), the global weights decision maker (GWDM) and the item weights decision maker (IWDM).

The EWGD assigns equal weight to each expert and hence reduces equation (4.1) to the arithmetic mean of experts' opinions. This decision maker is not in the class of performance based DMs and hence does not implement the procedure described above to un-weight experts. The GWDM and IWDM are performance based decision makers. The GWDM determines weights per expert by each expert's calibration score and the overall information score. The IWDM determines
the weights per expert and per variable using the information score on each variable rather than the averaged information score across variables.

The classical model has been mostly used to determine information about univariate distributions. The elicitation of multivariate distributions has been a topic for more recent research. This subject will be discussed next.

4.2.2 Dependence Elicitation

The literature available to guide researchers in the elicitation of a joint distribution is much less than that available for the elicitation of univariate distributions [O'Hagan, 2005]. Previous studies have shown that eliciting dependence measures for the construction of multivariate distributions though not an easy task is still possible (Cooke and Goossens [1999], Clemen and et al. [1999], Clemen and et al. [2000]). In Kraan [2002] elicitation techniques are summarized and exemplified using the probabilistic approach. Combination schemes for experts' opinions are also proposed in Cooke and Goossens [1999] and Kraan [2002] for bivariate distributions. An extension of previous methodologies for the elicitation of conditional rank correlations is discussed in Morales et al. [2008] as input for continuous-discrete non-parametric BBNs and vines, however no discussion regarding the combination of experts' individual assessments for distributions of order higher than two was performed. In this section guidelines for the elicitation and combination of experts' estimates of rank and conditional rank correlations as input for BBNs will be discussed.

Two types of methods for the elicitation of dependence measures will be discussed. Examples of the two methods will be discussed with the BBN in Figure 4.1. This BBN corresponds to Figure 3.2 after removing node 7. The six marginal distributions (one for each node) may be computed from data from separate sources or with the classical model for expert judgment outlined in previous subsection. Variables $\left\{X_{1} \ldots X_{5}\right\}$ are independent of each other. Four conditional rank correlations and one unconditional rank correlation are required. The rank and conditional rank correlations are associated with edges according to the protocol discussed in section 3.2 [Hanea et al., 2006].

4.2.2.1 Probabilistic Approaches

Experts give probability statements such as a joint probability, a conditional probability or a probability of concordance. By making assumptions about the joint distribution, the assessments can later be translated to rank correlations. Denote $r_{6,1}^{e_{i}}$ the rank correlation between X_{6} and X_{1} for expert $i=1, \ldots, N$. Similarly the conditional rank correlation between X_{6} and X_{2} given X_{1} will be denoted as $r_{6,2 \mid 1}^{e_{i}}$ for expert e_{i}. All other (un)conditional rank correlations in the BBN will be denoted similarly. The median value of variable X_{j} for expert e_{i} is denoted as $x_{j, q_{50}}^{e_{i}}$. Similarly the $k^{t h}$ percentile of variable X_{j} is denoted as $x_{j, q_{k}}^{e_{i}}$. The cumulative distribution function for variable X_{j} from expert e_{i} will be denoted as $F_{X_{j}}^{e_{i}}$. The probabilistic approach recommends eliciting the 5 probabilities $P_{1}^{e_{i}}, \ldots, P_{5}^{e_{i}}$ to each expert to quantify the BBN in Figure 4.1 for e_{i} :

Figure 4.1: A simple example of BBN on 4 Variables.

1. $\quad P_{1}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}\right)$
$=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5\right)$
2. $\quad P_{2}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}, X_{2} \geq x_{2, q_{50}}^{e_{i}}\right)$
$=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5, F_{X_{2}}^{e_{i}}\left(X_{2}\right) \geq 0.5\right)$
3. $P_{3}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}, X_{2} \geq x_{2, q_{50}}^{e_{i}}, X_{3} \geq x_{3, q_{50}}^{e_{i}}\right)$
$=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5, \ldots, F_{X_{3}}^{e_{i}}\left(X_{3}\right) \geq 0.5\right)$
4. $P_{4}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}, X_{2} \geq x_{2, q_{50}}^{e_{i}}, X_{3} \geq x_{3, q_{50}}^{e_{i}}, X_{4} \geq x_{4, q_{50}}^{e_{i}}\right)$
$=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5, \ldots, F_{X_{4}}^{e_{i}}\left(X_{4}\right) \geq 0.5\right)$
5. $\quad P_{5}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}, X_{2} \geq x_{2, q_{50}}^{e_{i}}, X_{3} \geq x_{3, q_{50}}^{e_{i}}, X_{4} \geq x_{4, q_{50}}^{e_{i}}, X_{5} \geq x_{5, q_{50}}^{e_{i}}\right)$
$=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5, \ldots, F_{X_{5}}^{e_{i}}\left(X_{5}\right) \geq 0.5\right)$

The first question of the elicitation is read as: Suppose that variable X_{1} was observed above its $q_{k}^{t h}$ quantile. What is the probability that also X_{6} will be observed above its $q_{k}^{\text {th }}$ quantile? Notice that the recommended choice for the percentile used in the probabilities stated in relation 4.2 is the median; however any other percentile $x_{j, q_{k}}^{e_{i}}$ may be used. In particular other percentiles are necessary for discrete variables. Notice also that as stated before, conditional on the BBN to be quantified, other probabilistic statements could be elicited in relation 4.2 according to the analysts preference. For example shorter conditioning sets might be considered: $P_{1}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}\right), \ldots, P_{5}^{e_{i}}=P\left(X_{6} \geq\right.$ $\left.x_{6, q_{50}}^{e_{i}} \mid X_{5} \geq x_{5, q_{50}}^{e_{i}}\right)$. Another option would be to elicit joint distributions, probabilities of concordance or discordance or other probabilistic statements about the
joint distribution, instead of conditional probabilities of exceedence.
Once estimates as in relation 4.2 are available to the analyst, the corresponding (un)conditional rank correlations may be computed for each expert (relation 4.3).

$$
\begin{align*}
& P_{1}^{e_{i}} \rightarrow r_{6,1}^{e_{i}} \\
& P_{2}^{e_{i}} \rightarrow r_{6,2 \mid 1}^{e_{i}} \\
& P_{3}^{e_{i}} \rightarrow r_{6}^{e_{i}}{ }_{6}^{2}, 31,2 \tag{4.3}\\
& P_{4}^{e_{i}} \rightarrow r_{6,4 \mid 2}^{e_{i}} \\
& P_{5}^{e_{i}} \rightarrow r_{6,5 \mid 1,2,3,4}^{e_{i}}
\end{align*}
$$

Figure 4.2: $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)$ for the normal \& Frank's copulae
The rank correlation $r_{6,1}^{e_{i}}$ may be obtained for each expert from their answer to $P_{1}^{e_{i}}$ in relation 4.2. The relation for each possible value of $P_{1}^{e_{i}}$ and $r_{6,1}^{e_{i}}$ is shown in Figure 4.2 for Frank's and the normal copulae.

For the normal copula to calculate the exceedance probability one can integrate numerically the bivariate normal density $\phi\left(\widetilde{x}_{6}, \widetilde{x}_{1}, \rho_{6,1}^{e_{i}}\right)$ over the region corresponding to the quantile's exceedence region $\left[\Phi^{-1}\left(q_{50}\right), \infty\right) \times\left[\Phi^{-1}\left(q_{50}\right), \infty\right)$, where Φ^{-1} is the inverse standard normal cumulative distribution function. The analyst may use formula (4.4) where $\widetilde{x}_{i, q_{k}}$ is the standard normal variate transform of $x_{i, q_{k}}$. In other words $\widetilde{x}_{i, q_{k}}$ will be the $k^{t h}$ quantile of the corresponding standard normal distribution. The analyst then finds the ρ which satisfies the expert's conditional probability assessment and transforms this to the corresponding rank correlation using the inverse function of equation (1.2). A similar procedure can be followed using Frank's copula (equation (1.3)).

$$
\begin{equation*}
\frac{1}{1-p_{k}} \int_{\Phi^{-1}\left(q_{k}\right)}^{\infty} \int_{\Phi^{-1}\left(q_{k}\right)}^{\infty} \phi\left(\widetilde{x}_{6}, \widetilde{x}_{1}, \rho_{6,1}^{e_{i}}\right) d \widetilde{x}_{6} d \widetilde{x}_{1} \tag{4.4}
\end{equation*}
$$

For both copulae because of the zero independence property, zero correlation entails that for any $k, P_{1}^{e_{i}}=1-q_{k}$. A conditional probability value in the interval $\left[0,1-q_{k}\right)$ corresponds to negative correlation and positive correlation is attained when $P_{1}^{e_{i}}>1-q_{k}$. Choosing a value for q_{k} different than 0.5 makes the resulting rank correlation more dependent on the chosen of copula.

With the answer to $P_{i}^{e_{i}}$ a relationship between $P_{2}^{e_{i}}$ and $r_{6,2 \mid 1}^{e_{i}}$ may be computed. According to relation 4.2 experts would be queried: Suppose that not only variable X_{1} but also X_{2} were observed above their medians. What is now your probability that also X_{6} will be observed above its median value?

The probability that each expert i can provide in this situation will depend on the estimate given for $P_{1}^{e_{i}}$. The reader may see this by observing that if each expert regards variables X_{2} and X_{6} as independent given X_{1}, then their answer to $P_{2}^{e_{i}}$ is identical to the answer to question $P_{1}^{e_{i}}$ for each i. If the expert regards variables X_{1} and X_{6} as completely positively (negatively) correlated then he/she would have answered $P_{1}^{e_{i}}=1\left(P_{1}^{e_{i}}=0\right)$ and question 2 would not have been necessary at all, as X_{6} would be completely explained by X_{1}. Any answer for $P_{1}^{e_{i}}$ different than $0,0.5$ or 1 means that the expert believes that X_{2} explains at least in part X_{6} and hence X_{2} can only explain part of the dependence that was not explained already by X_{1}.

Suppose expert's 1 answer for question 1 in relation 4.2 was $P_{1}^{e_{1}}=0.33$. In this case according to Figure $4.2 r_{6,1}^{e_{1}}$ would be equal to -0.49 for the normal copula and -0.44 for the Frank's copula ${ }^{3}$. This situation is shown in Figure 4.3. For the normal copula $P_{2}^{e_{1}} \in(0,0.65)$ and for the Frank's copula $P_{2}^{e_{1}} \in(0.16,0.56)$. Observe that $P_{2}^{e_{1}}$ as a function of $r_{6,2 \mid 1}^{e_{1}}$ is highly dependent on the choice of the copula.

In the case of the normal copula, to determine the possible values for $P_{2}^{e_{1}}$ and its relationship with the conditional correlation $r_{6,2 \mid 1}^{e_{1}}$ we consider a normal D-vine on variables X_{6}, X_{1} and X_{2}. As mentioned earlier, the rank correlation $r_{6,1}^{e_{1}}$ has been already calculated using expert's assessment in question 1. In the particular case of the BBN in Figure 3.2, variables X_{1} and X_{2} are independent, hence $r_{1,2}^{e_{i}}$ is equal to zero. Since all rank correlations specified on the BBN are algebraically independent, $r_{6,2 \mid 1}^{e_{i}}$ can take any value in $(-1,1)$. The correlation matrix of the joint normal distribution corresponding to this normal vine can be found as in example 3.2.1 in chapter 3 and should have the form of equation (4.5).

$$
\Sigma_{6,1,2}^{e_{i}}=\left(\begin{array}{ccc}
\rho_{2,2}^{e_{i}} & \rho_{1,2}^{e_{i}} & \rho_{2,6}^{e_{i}} \tag{4.5}\\
\rho_{2, i}^{e_{2}} & \rho_{1,2}^{e_{i}} & \rho_{2,6}^{e_{i}} \\
\rho_{6,2}^{e_{i}} & \rho_{6,1}^{e_{i}} & \rho_{6,6}^{e_{i}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \rho_{2,6}^{e_{i}} \\
0 & 1 & \rho_{1,6}^{e_{i}} \\
\rho_{2,6}^{e_{i}} & e_{1,6}^{e_{i}} & 1
\end{array}\right)
$$

We denote the density function of the normal distribution with the correlation matrix $\Sigma_{6,1,2}^{e_{i}}$ calculated from the normal vine specification as $\phi\left(\widetilde{x}_{6}, \widetilde{x}_{1}, \widetilde{x}_{2}, \rho_{6,1}^{e_{i}}, \rho_{6,2 \mid 1}^{e_{i}}\right)$. Hence, given the value for $r_{1,6}^{e_{1}}$ a relationship between $P_{2}^{e_{1}}$ and $r_{6,2 \mid 1}^{e_{1}}$ can be determined by transforming to $\rho_{6,2 \mid 1}^{e_{1}}$ using formula 1.2 and computing the triple integral (4.6):

[^26]

Figure 4.3: $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}, X_{2} \geq x_{2, q_{50}}\right)$ for the normal ξ^{F} Frank's copulae $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33$

$$
\begin{equation*}
\frac{1}{0.5 \cdot 0.5} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \phi\left(\widetilde{x}_{6}, \widetilde{x}_{1}, \widetilde{x}_{2}, \rho_{6,1}^{e_{1}}, \rho_{6,2 \mid 1}^{e_{1}}\right) d \widetilde{x}_{6} d \widetilde{x}_{1} d \widetilde{x}_{2} \tag{4.6}
\end{equation*}
$$

For other copulae (such as the Frank's copula used in this example) the relationship may be computed through simulation. Simulations were done in matlab R2007b following the copula-vine method [Kurowicka and Cooke, 2006, ch.6]. In both cases, if $P_{2}^{e_{1}}=P_{1}^{e_{1}}$ then the expert regards variables X_{2} and X_{6} as independent given X_{1} and in this case $r_{6,2 \mid 1}^{e_{1}}=0$.

An expert's answer for $P_{2}^{e_{1}}>P_{1}^{e_{1}}$ would correspond to $r_{6,2 \mid 1}^{e_{1}}>0$ and accordingly if $P_{2}^{e_{1}}<P_{1}^{e_{1}}$ then $r_{6,2 \mid 1}^{e_{1}}<0$. Notice that the fact that $r_{6,2 \mid 1}^{e_{1}}<0(>0)$ does not imply that $r_{6,2}^{e_{1}}<0(>0)$. The sign of $r_{6,2}^{e_{1}}$ would depend in general on the graphical structure of the BBN and the experts' previous answers. For example, suppose that $r_{1,2}^{e_{1}}=-0.9$ and as before $P_{1}^{e_{1}}=0.33$. In this case for $r_{6,2 \mid 1}^{e_{1}} \in(-1,1), r_{6,2}^{e_{1}}>0$ for both the normal and Frank's copulae. The situation may be observed in Figure 4.4.

For simplicity we go back to our example where $r_{1,2}^{e_{i}}=0$. Suppose further that expert one answered $P_{2}^{e_{1}}=0.25$ then $r_{6,2 \mid 1}^{e_{1}}$ equals -0.28 for the normal copula and -0.32 for Frank's copula. Next $P_{3}^{e_{1}}$ as a function of $r_{6,3 \mid 1,2}^{e_{1}}$ may be computed based on the expert's previous answers and the structure of the BBN. The expert would be asked: Suppose that not only variables X_{2} and X_{1} but also X_{3} were observed above their medians. What is now your probability that also X_{4} will be observed above its median value?

Figure 4.4: $r_{6,2}^{e_{1}}$ as a function of $r_{6,2 \mid 1}^{e_{1}}$ for the normal \mathcal{B} Frank's copulae $P\left(X_{6} \geq\right.$ $\left.x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33, r_{1,2}^{e_{1}}=-0.9$

As before, the rank correlations $r_{1,6}^{e_{1}}$ and $r_{2,6}^{e_{1}}$ have been specified in questions 1 and 2 respectively. Again from Figure 3.2 it is observed that $r_{3,1}^{e_{i}}$ and $r_{2,3}^{e_{i}}$ are both zero. For the normal copula approach it may be observed that the correlation matrix of the joint normal distribution corresponding to the D-vine on X_{1}, X_{2}, X_{3} and X_{6} should look as in equation (4.7). The density of this four variate standard normal distribution will be denoted as $\phi\left(\widetilde{x}_{4}, \widetilde{x}_{3}, \widetilde{x}_{2}, \widetilde{x}_{1}, \rho_{1,6}^{e_{1}}, \rho_{2,6}^{e_{1}}, \rho_{6,3 \mid 1,2}^{e_{1}}\right)$.

The relationship between $P_{3}^{e_{i}}$ and $r_{6,3 \mid 1,2}^{e_{i}}$ will be determined by transforming to the corresponding $\rho_{6,3 \mid 1,2}^{e_{i}}$ with formula 1.2 and computing the four dimensional integral 4.8. In the case of Frank's copula it is determined by simulation from the vine-copula method [Kurowicka and Cooke, 2006].

$$
\begin{equation*}
\frac{1}{0.5 \cdot 0.5 \cdot 0.5} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \phi\left(\widetilde{x}_{6}, \widetilde{x}_{3}, \widetilde{x}_{2}, \widetilde{x}_{1}, \rho_{6,1}^{e_{i}}, \rho_{6,2 \mid 1}^{e_{i}}, \rho_{6,3 \mid 1,2}^{e_{i}}\right) d \widetilde{x}_{4} d \widetilde{x}_{3} d \widetilde{x}_{2} d \widetilde{x}_{1} \tag{4.8}
\end{equation*}
$$

This situation for expert e_{1} is pictured in Figure 4.5. For both copulae if $P_{3}^{e_{1}}=P_{2}^{e_{1}}$ then the expert regards variables X_{3} and X_{6} as independent given

Figure 4.5: $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}, X_{2} \geq x_{2, q_{50}}, X_{3} \geq x_{3, q_{50}}\right)$ for the normal \mathcal{G} Frank's copulae $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33, P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}, X_{2} \geq\right.$ $\left.x_{2, q_{50}}\right)=0.25$
X_{1} and X_{2} and in this case $r_{6,3 \mid 2,1}^{e_{1}}=0$. An expert's answer for $P_{3}^{e_{1}}>P_{2}^{e_{1}}$ would correspond to $r_{6,3 \mid 1,2}^{e_{1}}>0$ and accordingly if $P_{3}^{e_{1}}<P_{2}^{e_{1}}$ then $r_{6,3 \mid 1,2}^{e_{1}}<0$. Again the sign of $r_{6,3}^{e_{1}}$ would depend on the structure of the BBN and the expert's previous answers. In this case as before, the relationship between $P_{3}^{e_{i}}$ and $r_{6,3 \mid 1,2}^{e_{i}}$ is dependent on the choice of the copula.

Other relationships in 4.3 may be computed following the ideas discussed thus far. Extensions to other BBNs or similar graphical models follow straight away from this approach. In a real elicitation the bounds for each exceedence probability (or any other probabilistic statement chosen for the elicitation) must be computed in real time. If the expert's estimates are not consistent with the allowable bounds for each $P_{j}^{e_{i}}$ for $j=2, \ldots, P a(n)$ for a given node n, then the estimate must be discussed with the expert and revised if necessary.

4.2.2.2 Direct Approach

Another option is to let experts directly assess a rank correlation. In particular, for each child node (X_{6} in the example), we could let experts rank the parent nodes (X_{1}, \ldots, X_{5} in this case) according to rank correlation with X_{6} (in absolute value). This ranking will in general be different for each expert. Experts could then be queried the following five numbers:

1. $P_{1}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{e_{i}}\right)$
2. $\quad R_{2}^{e_{i}}=\frac{r_{6,2}^{e_{i}}}{r_{6,1}^{e}}$
3. $R_{3}^{e_{i}}=\frac{r_{6,3}^{e_{i}}}{r_{6,1}^{e_{i}}}$
4. $\quad R_{4}^{e_{i}}=\frac{r_{6,4}^{e_{6} e_{i}}}{r_{6,1}^{e_{i}}}$
5. $\quad R_{5}^{e_{i}}=\frac{r_{6,5}^{e_{i}}}{r_{6,1}^{e_{i}}}$

The first rank correlation is still elicited through a probabilistic statement and may be computed as described before (Figure 4.2). $R_{2}^{e_{i}}$ in relation 4.9 denotes the ratio of the second rank correlation to the largest rank correlation (in absolute value) for expert e_{i}. Similar notation is applied for other ratios. As before, the recommended choice for the percentile used in $P_{1}^{e_{i}}$ in relation 4.9 is the median, however any other percentile $x_{j, q_{k}}^{e_{i}}$ may be used. As stated before, other probabilistic statements could be elicited for $P_{1}^{e_{i}}$ in relation 4.9 according to the analyst's preference.

$$
\begin{align*}
P_{1}^{e_{i}} & \rightarrow r_{6,1}^{e_{i}} \\
R_{2}^{e_{i}} & \rightarrow r_{6,2 \mid 1}^{e_{i}} \\
R_{2}^{e_{i}} & \rightarrow r_{6}^{e_{i}, 3 \mid 1,2} \tag{4.10}\\
R_{2}^{e_{i}} & \rightarrow r_{6,4 \mid 2}^{e_{i}} \\
R_{2}^{e_{i}} & \rightarrow r_{6,5 \mid 1,2,3,4}^{e_{i}}
\end{align*}
$$

Once the expert has given an estimate for $P_{1}^{e_{i}}$ the relationship between $R_{2}^{e_{i}}$ and $r_{6,2 \mid 1}^{e_{i}}$ may be computed. The computation of the required conditional rank correlations in relation 4.10 follows the same arguments as in section 4.2.2.1. For the normal copula the fact that conditional correlation is equal to partial correlation, the recursive formula for partial correlation and the known relationship between rank correlation and product moment correlation is sufficient to determine $R_{2}^{e_{i}}$ as a function of $r_{6,2 \mid 1}^{e_{i}}$ given the graph structure and the experts' assessment for $P_{1}^{e_{i}}$. For Frank's copula, as before this relation may be obtained by simulation [Kurowicka and Cooke, 2006].

In the case described thus far, the sign of $R_{2}^{e_{1}}$ depends on the experts' answer to $P_{1}^{e_{1}}$. In our example $r_{6,1}^{e_{1}}$ is negative. If the expert believes there is a negative correlation between X_{2} and X_{6} then $R_{2}^{e_{1}}$ must be positive and its value depends on the expert's belief of the distance between $r_{6,1}^{e_{1}}$ and $r_{6,2}^{e_{1}}$. Obviously if expert 1 believes that $r_{6,1}^{e_{1}}>r_{6,2}^{e_{1}}\left(r_{6,1}^{e_{1}}<r_{6,2}^{e_{1}}\right)$ then $R_{2}^{e_{1}}<1\left(R_{2}^{e_{1}}>1\right)$.

Assume that for a given expert $r_{6,1}^{e_{1}}=-0.49$. According to Figure 4.2 this would correspond to a value for $P_{1}^{e_{1}}$ equal to 0.33 for the normal copula and 0.31 for Frank's copula. The relationship between $R_{2}^{e_{1}}$ and $r_{6,2 \mid 1}^{e_{1}}$ is shown in Figure 4.6. In our example $R_{2}^{e_{1}} \in(-1.71,1.71)$. In general the interval containing $R_{j}^{e_{i}}$ does not need to be symmetric about zero. This would depend on the graph structure and the expert's previous estimates (see Figure 4.4). Observe that in this case $R_{2}^{e_{1}}$ holds practically the same relationship with $r_{6,2 \mid 1}^{e_{1}}$ for both copulae. Suppose the expert's assessment is $R_{2}^{e_{1}}=1.3$. This corresponds according to Figure 4.6
to a value of $r_{6,2}^{e_{1}}=-0.6358$ and $r_{6,2 \mid 1}^{e_{1}}=-0.749$ for both Frank's and normal copulae.

Figure 4.6: $\quad \frac{r_{6,2}}{r_{6,1}}$ for the normal $\left(P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33\right)$ \& Frank's $\left(P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.31\right)$ copulae.

Once estimates for $P_{1}^{e_{1}}$ and $R_{2}^{e_{1}}$ are available, the relationship between $r_{6,3 \mid 1,2}^{e_{1}}$ and $R_{3}^{e_{1}}$ may be computed. For the example described here this relationship is shown Figure 4.7. In the example $R_{3}^{e_{1}} \in(-1.08,1.10)$ for both the normal and Frank's copulae. Suppose that the expert would state $R_{3}^{e_{1}}=-0.8$; in this case $r_{6,3 \mid 1,2}^{e_{1}} \approx 0.73$ for both copulae and both unconditional correlations would be equal.

As before, in a real elicitation the bounds for each ratio of rank correlations must be computed in real time. If the experts' estimates are not consistent with the allowable bounds for each $R_{j}^{e_{i}}$ for $j=2, \ldots, P a(n)$ for a given node n, then the estimate must be discussed with the expert and revised if necessary.

The normal copula is the preferred choice because it possess the zero independence property, it realizes a specified rank correlation without adding too much information to the independent copula [Lewandowski, 2005], its density covers the entire unit square and it offers important advantages for the computation of joint distributions specified by graphical structures such as BBNs. The use of other copulae is possible as long as they possess the zero independence property as exemplified by the Frank's copula. However the cost is a much higher computational effort ${ }^{4}$.

[^27]

Figure 4.7: $\frac{r_{6,3}}{r_{6,1}}$ for the normal $\left(P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33\right)$ \& Frank's $\left(P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.31\right)$ copulae. $\frac{r_{6,2}}{r_{6,1}}=1.3$

In chapters 5 and 6 , results of the use of the techniques discussed in this section will be presented. The probabilistic method was used in eliciting the rank and conditional rank correlations required by the FCP model introduced in section 3.3.2.1. The direct method was used in the ATCP model introduced in section 3.3.2.2 and the model that will be discussed in chapter 6. One argument in favor of the elicitation of probabilistic statements is that their elicitation has proven to be feasible in previous studies [Kraan, 2002],[Morales et al., 2008] in real applications. Experts seem to be familiar with the elicitation of conditional probabilities. However, when the number of conditioning variables is large (as in relation 4.2) experts tend to object the elicitation of these exceedence probabilities. As mentioned previously this could be avoided by eliciting conditional probabilities with smaller number of conditioning variables.

The direct method combines the elicitation of one probabilistic statement with ratios of unconditional rank correlations. Based on our own experience we may say that one advantage of this method is that experts may express somewhat easier the 'relative strength' of each unconditional rank correlation (in the correlation matrix) as expressed by its absolute value. Once the correlation matrix is available for each expert any probabilistic statement may be computed (given the normal copula assumption) for each expert's estimates. The issue of combining their opinions arises once estimates from each expert are available. The combination of experts' dependence estimates is discussed next.

4.2.3 Combination of Experts' Dependence Estimates

The combination of expert's distributions for BBN's poses specific challenges. If every expert's distribution satisfies the conditional independence statements implied by the graph, then the linear pool individual densities in general will not. The reason is that conditional independence is not preserved under convex combinations of distributions. To combine the dependence information elicited from experts via conditional probabilities, it would be tempting to pool the conditional probabilities linearly to determine the conditional probability of the decision maker. This strategy would work well if the medians of all experts were the same which is not typically the case, for example if the marginal distributions come from expert judgment. In order to combine the experts' dependence information a different strategy must be taken. An example is presented with the BBN in Figure 3.2.

A strategy for combining experts' dependence estimates has been proposed in previous studies for bivariate distributions [Cooke and Goossens, 1999]. The procedure extended for multivariate distributions is presented in this section. First the individual expert judgments for marginal distributions are combined according to one of the linear pool weighting schemes [Cooke, 1991]. Later, the idea is to compute the probabilities that each expert "would have stated" if he/she had been asked probabilistic statements regarding the chosen quantile of the Decision Maker such that his/her estimates for the rank correlations remain unchanged (relation 4.11).

$$
\begin{array}{cll}
r_{6,1}^{e_{i}} & \rightarrow P_{1 \star}^{e_{i}} \\
r_{6,2 \mid 1}^{e_{i}} & \rightarrow & P_{2 \star}^{e_{i}} \\
r_{6,2 \mid 1}^{e_{i}} & \rightarrow & P_{3 i}^{e_{i}} \tag{4.11}\\
e_{6,3 \mid 1,2} & \rightarrow & P_{4 \star}^{e_{i}} \\
r_{6,4 \mid 1,2,3}^{e_{i}} & \rightarrow & P_{5 e_{i}}^{e_{i}} \\
r_{6,5 \mid 1,2,3,4}^{e_{i}} &
\end{array}
$$

First the joint distribution for each expert e_{i} is obtained by a procedure such as the one described in subsection 4.2.2. For each expert the joint distribution uses the estimated rank and conditional rank correlations obtained from relation 4.3 or relation 4.10 and the marginal distributions. Observe that in relation 4.10 the rank and conditional rank correlations computed for each expert could be indexed differently according to each expert.

Once the joint distribution is available for each expert, relation 4.11 says that some probabilistic statements are computed from the joint distribution of each expert. For example the exceedence probabilities in relation 4.12 below could be computed.

$$
\begin{align*}
& P_{1 *}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{D M} \mid X_{1} \geq x_{1, q_{50}}^{D M}\right) \\
& =P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq F_{X_{6}}^{e_{i}}\left(x_{6, q_{50}}^{D M}\right) \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq F_{X_{1}}^{e_{i}}\left(x_{1, q_{50}}^{D M}\right)\right) \\
& P_{2 \star}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{D M} \mid X_{1} \geq x_{1, q 50}^{D M}, X_{2} \geq x_{2, q_{50}}^{D M}\right) \\
& =P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq F_{X_{6}}^{e_{i}}\left(x_{6, q_{50}}^{D M}\right) \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq F_{X_{1}}^{e_{i}}\left(x_{1, q_{50}}^{D M}\right), F_{X_{2}}^{e_{i}}\left(X_{2}\right) \geq F_{X_{2}}^{e_{i}}\left(x_{2, q_{50}}^{D M}\right)\right) \\
& P_{3 \star}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{D M} \mid X_{1} \geq x_{1, q_{50}}^{D M}, X_{2} \geq x_{2, q_{50}}^{D M}, X_{3} \geq x_{3, q_{50}}^{D M}\right) \\
& =P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq F_{X_{6}}^{e_{i}}\left(x_{6, q_{50}}^{D M}\right) \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq F_{X_{1}}^{e_{i}}\left(x_{1, q_{50}}^{D M}\right), \ldots, F_{X_{3}}^{e_{i}}\left(X_{3}\right) \geq F_{X_{3}}^{e_{i}}\left(x_{3, q 50}^{D M}\right)\right) \\
& P_{4 *}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{D M} \mid X_{1} \geq x_{1, q_{50}}^{D M}, X_{2} \geq x_{2, q_{50}}^{D M}, X_{3} \geq x_{3, q_{50}}^{D M}, X_{4} \geq x_{4, q_{50}}^{e_{i}}\right) \\
& =P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq F_{X_{6}}^{e_{i}}\left(x_{6, q_{50}}^{D M}\right) \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq F_{X_{1}}^{e_{i}}\left(x_{1, q_{50}}^{D M}\right), \ldots, F_{X_{4}}^{e_{i}}\left(X_{4}\right) \geq F_{X_{4}}^{e_{i}}\left(x_{4, q_{50}}^{D M}\right)\right) \\
& P_{5^{*}}^{e_{i}}=P\left(X_{6} \geq x_{6, q_{50}}^{e_{i}} \mid X_{1} \geq x_{1, q_{50}}^{D M}, X_{2} \geq x_{2, q_{50}}^{D M}, X_{3} \geq x_{3, q_{50}}^{D M}, X_{4} \geq x_{4, q_{50}}^{D M}, X_{5} \geq x_{5, q_{50}}^{D M}\right) \\
& =P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq F_{X_{6}}^{e_{i}}\left(x_{6, q_{50}}^{D M}\right) \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq F_{X_{1}}^{e_{i}}\left(x_{1, q_{50}}^{D M}\right), \ldots, F_{X_{5}}^{e_{i}}\left(X_{5}\right) \geq F_{X_{5}}^{e_{i}}\left(x_{5, q_{50}}^{D M}\right)\right) \tag{4.12}
\end{align*}
$$

As before the choice of the quantile of preference is the median, but any other quantile might be used as well. Other probabilistic statements might be computed in 4.12. For example conditional probabilities with smaller number of conditioning variables might be one option. In fact any probabilistic statement might be used as long as it is the same amongst experts. The reason is that these probabilistic statements will be combined later to form the DM's joint distribution ${ }^{5}$.

Consider the hypothetical example presented in Figure 4.8. Observe that the medians of experts 1,2 and the $D M$ disagree for variable X_{1}. The medians are 50,150 and 100 respectively for experts 1,2 and the $D M$. It may also be observed that $F_{X_{1}}^{e_{1}}(100)=0.66$ and $F_{X_{1}}^{e_{2}}(100)=0.43$. For simplicity assume that all 3 experts agree on the median value of X_{6}. This is the case if the marginal distribution for X_{6} is obtained from data. Suppose that for the first probabilistic statement elicited experts answered as in 4.13 below.

$$
\begin{align*}
& P_{1}^{e_{1}}=P\left(X_{6} \geq x_{6, q_{55}} \mid X_{1} \geq 50\right)=0.75 \rightarrow r_{6,1}^{e_{1}}=0.7 \tag{4.13}\\
& P_{1}^{e_{2}}=P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq 150\right)=0.67 \rightarrow r_{6,1}^{e, 1}=0.5
\end{align*}
$$

The probabilities obtained from each expert in 4.13 cannot be combined directly. This is because, as stated previously, the median value for X_{1} for each expert and the decision maker differ. In other words, the probabilities in 4.13 are taken over different events. According to 4.11 the analyst must compute a probabilistic statement for each expert taken over the same event before combining each expert's individual assessment. With the rank correlations of each expert, the analyst may compute an answer as in 4.14 below.

[^28]

Figure 4.8: Difference in median between e_{1}, e_{2} and the $D M$ for Variable X_{1}

$$
\begin{align*}
& r_{6,1}^{e_{1}}=0.7 \rightarrow P_{1 *}^{e_{1}}=P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{1}}\left(X_{1}\right) \geq 0.66\right) \\
& r_{6,1}^{e_{1}}=0.4 \rightarrow P_{1 *}^{e_{2}}=P\left(F_{X_{6}}^{e_{6}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{1}}\left(X_{1}\right) \geq 0.43\right)=0.84 \tag{4.14}\\
&
\end{align*}
$$

In Figure 4.9 the graphical representation of relation 4.14 is presented. Three probabilities are computed as a function of $r_{6,1} . P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5\right)$ is represented by a solid line and it is the function from which the original estimates $r_{6,1}^{e_{1}}$ and $r_{6,1}^{e_{2}}$ in 4.13 are computed. $P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{1}}\left(X_{1}\right) \geq 0.66\right)$ and $P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{2}}\left(X_{1}\right) \geq 0.43\right)$ differ from the solid line because $F_{X_{1}}^{e_{1}}(100)=$ 0.66 and $F_{X_{1}}^{e_{2}}(100)=0.43$. The estimates in relation 4.14 are computed from the functions shown in Figure 4.9. Observe that $P_{1^{\star}}^{e_{1}}$ increases with respect to $P_{1}^{e_{1}}$ and $P_{1 \star}^{e_{2}}$ decreases with respect to $P_{1}^{e_{2}}$. Observe also that the rank correlation estimates remain equal.

When the probabilistic statements such as those suggested in relation 4.12 have been computed by the analyst, combining them is the next step. In analogy to equation (4.1) the probabilistic statement for the decision maker is computed as in 4.15.

$$
\begin{equation*}
P_{j}^{D M}=\sum_{i} w_{e_{i}} P_{j^{\star}}^{e_{i}} \tag{4.15}
\end{equation*}
$$

The weights for each expert ($w_{e_{i}}$) may be computed from the classical model as described in subsection 4.2.1. Finally, as in subsection 4.2 .2 the probabilistic statements obtained for the $D M$ may be translated to the (conditional) rank correlations required by the model. In our example:

Figure 4.9: $P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{i}}\left(X_{1}\right) \geq 0.5\right), P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{1}}\left(X_{1}\right) \geq 0.66\right)$ and $P\left(F_{X_{6}}^{e_{i}}\left(X_{6}\right) \geq 0.5 \mid F_{X_{1}}^{e_{2}}\left(X_{1}\right) \geq 0.43\right)$ for $r_{6,1} \in(0,1)$

$$
\begin{array}{ll}
P_{1}^{D M} & \rightarrow r_{6,1}^{D M} \\
P_{2}^{D M} & \rightarrow r_{6,2 \mid 1}^{D M} \\
P_{3}^{D M} & \rightarrow r_{6,31}^{D M} \tag{4.16}\\
P_{4}^{D M} & \rightarrow r_{6,4 \mid 1,2,3}^{D M} \\
P_{5}^{D M} & \rightarrow r_{6,5 \mid 1,2,3,}^{D M}
\end{array}
$$

4.3 Final Comments

In summary, this chapter describes briefly the classical model for structured expert judgment. It is shown that optimal combination of experts' dependence estimates may be achieved by exploiting the classical model of expert judgments in probabilistic statements of the $D M$. For this last step adjusting each experts individual assessments to account for the same events is required.

The elicitation of rank and conditional rank correlations has been presented using probabilistic or statistical measures. The sensitivity of experts' dependence assessments to the choice of the copulae realizing the joint distribution is shown with a comparison between Frank's and the normal copulae.

One of the advantages of NPCDBBN vs. discrete BBNs is that they are more flexible with respect to modelling changes. For example when nodes are added or removed (see section 3.1, Hanea et al. [2006] and [Cowell et al., 1999]). One needs to be cautions in this respect.

Consider for example the BBN from Figure 3.1. Suppose an expert has given
estimates for the 5 rank correlations required through the direct method. She has stated that $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq x_{1, q_{50}}\right)=0.33$ which corresponds to $r_{6,1}=$ -0.49 . For the second step she has answered $\frac{r_{6,2}}{r_{6,1}}=-1.68$ which corresponds to $r_{6,2 \mid 1}=0.9297$.

Suppose further that after the elicitation, the analysts have found from data a positive rank correlation between X_{1} and $X_{2}\left(r_{1,2}=0.1\right)$. Of course since the rank and conditional rank correlations attached to the arcs of a NPCDBBN are algebraically independent, $r_{6,1}=-0.49$ and $r_{6,2 \mid 1}=0.9297$ are valid choices in this new model where X_{1} and X_{2} are not independent. $P\left(X_{6} \geq x_{6, q_{50}} \mid X_{1} \geq\right.$ $\left.x_{1, q_{50}}\right)=0.33$ is also a valid choice since this estimate is not constraint by previous answers. However, since $r_{1,2}=0.1$ then $\frac{r_{6,2}}{r_{6,1}} \in(-1.59,1.83)$ and hence the estimate previously elicited from expert knowledge is not valid anymore. New estimates would be required from experts. Same kind of situations could happen regardless of the choice of the copula or the elicitation of probabilistic estimates as opposed to rank correlation ratios.

The elicitation of joint distributions by experts, as stated before, is still an issue where not much literature is available. Exploring other methods or building up in those hereby proposed and investigating the effect of assumptions made by the analysts about the models are challenges that remain for future research. The next part of this thesis deals with real applications that use the ideas expressed in the current chapter.

CHAPTER 5

Structured Expert Judgment in Aviation Safety ${ }^{1}$

In this chapter three models related to aviation safety developed in the context of the CATS projet will be discussed. First the missed approach model is presented. This model was developed by the CATS consortium with two purposes. First to aid in exploring the techniques for elicitation of rank and conditional rank correlations to be used throughout the rest of the project. Second, to be incorporated in the CATS model if required. In the final CATS model presented in Figures 1.13 and 3.16, the controlled flight into terrain or missed approach was included in ESD 35 (see table 3.5) and hence the model presented in section 5.1 was not included in the final BBN. The model is however operational and because of its relevance to the techniques discussed in previous chapters it is included here. After the missed approach model, results from the elicitation in the FCP and the ATCP models will be presented.

5.1 The Missed Approach Model

5.1.1 Introduction to the MA model.

In recent years, the Federal Aviation Authority and the Dutch Ministry of Transport have used causal modelling techniques to investigate integrated safety in air traffic. For this purpose in Roelen et al. [2002] discrete Bayesian Belief Networks (BBN) were fully quantified for the cases of Missed approach (MA) and Flight crew alertness. However, two disadvantages with discrete BBNs were encountered (see also chapter 3 sections 3.1 and 3.2):

- When variables were discretized into a number of values considered repre-

[^29]sentive, the size of the conditional probability tables exploded. As a result a drastic two-valued discretization (usually OK / Not OK) was forced;

- For many variables there was extensive data from the field. When using discrete BBN's, only the nodes without parents could be quantified with field data; other nodes have their marginal distributions determined by the conditional probability tables. Finding conditional probability tables that were compatible with the existing marginal information was a daunting, sometimes hopeless task.

Because of these problems, there was interest in finding a suitable alternative to discrete BBN's. In this section we will concentrate on the model for missed approach.

5.1.2 Description of the MA model.

A missed approach should be initiated when a situation arises that would make the continuation of the approach and landing unsafe. The purpose of a missed approach is to abort a landing in unsafe circumstances to allow the crew to carry out a new approach and landing under safer circumstances. According to [Roelen et al., 2002] "the most common primal causal factor [of approach and landing accidents] was judged to be the omission of action/inapropriate action". Hence, the missed approach model tries to capture the idea of a Failure to execute a missed approach when conditions are present.

Figure 5.1: Original BBN of the Missed Approach Model.

Figure 5.1 presents the original discrete model for missed approach. All nodes in this model have two states. The top events are:

- Condition for missed approach that measures whether there is a condition during the approach or landing phase that requires a missed approach according to the operator's Aircraft Operating Manual, Basic Operating Manual, and/or (inter)national regulations. The states for this node are 'yes' or 'no'. This node is a deterministic node: an unfavorable condition of either one of its parents, alone or in combination will result in a condition for missed approach.
- Missed approach execution that describes whether the crew executes or does not execute a missed approach under certain circumstances (states 'yes' and 'no'). Compared to the Condition for missed approach, this node has an extra parent. The In-flight crew alertness node reflects the fact that the final decision to execute a missed approach is taken by the flight crew.

These two nodes are parents to the node Failure to execute a missed approach when conditions are present in further modelling which takes into account a possible accident situation. As stated before, some of the variables in Figure 5.1 are more naturally modelled as continuous quantities for example: visibility, wind speed, fuel state, separation in air, etc. The variables are listed below according to their labeling in Figure 5.2. The variables were quantified using field data.

Figure 5.2: Continuous Version of the BBN for the Missed Approach Model.

1. Fuel Weight: Measured in kilograms and is the remaining fuel at arrival based on data for 172 flights of a Boeing 737 at Schiphol airport.
2. Visibility: Measured in meters and is based on a sample of 27 million observations over Europe.
3. Crew Alertness: Measured by the Stanford Sleepiness Scale in an increasing scale from 1 to 7 , where 1 signifies "feeling active and vital; wide awake" and 7 stands for "almost in reverie; sleep onset soon; struggle to remain awake" the distribution used for this study comes from field studies by the Aviation Medicine Group of TNO Human Factors in 1,295 flights.
4. Speed Deviation at 500 ft: Deviation from bug speed ${ }^{2}$ at 500 ft . The data comes from 13,753 approaches of a major European airline.
5. Mean Cross Wind: Usually expressed as a combination of speed (in knots) and direction (compass course) of the wind at any direction not favorable for the aircraft, the cross wind distribution comes from 380,000 takeoffs and landings conducted on three large European airports.
6. Separation in Air: Longitudinal distance (in nautical miles) between the landing aircraft and the preceding aircraft in the approach path. The distribution was retrieved from a sample size of 2,382 landings at Schiphol airport.
7. Missed Approach Execution: Number of missed Approach Executions per 100,000 flights at Schiphol airport. The expectation of this variable would be an estimate of the unconditional probability of executing a missed approach maneuver.

5.1.3 Expert Elicitation Results of the MA Model

Information about the marginal distributions was available from different sources and the unconditional and conditional rank correlations where elicited with the procedure from section 4.2.2.1 from a single expert at the Dutch National Aerospace Laboratory (NLR) on December $20^{t h}, 2005$ in a 2.5 hours elicitation. The expert is a pilot for a major European airline and researcher at NLR, in total the expert answered 7 questions.

One marginal distribution for Missed Approach Execution per 100,000 Flights, one unconditional rank correlation $r_{7,6}$ and the 5 conditional rank correlations from Figure 5.2 were elicited. For the marginal distribution the expert was asked:

1. Consider 100,000 thousand randomly chosen flights at Schiphol airport under the current conditions. On how many of these flights will a missed APPROACH be executed? (To capture your uncertainty please provide the $5^{t h}, 25^{t h}, 50^{\text {eth }}, 75^{\text {th }}$ and $95^{\text {th }}$ percentiles of your uncertainty distribution.)

A minimal informative distribution with respect to a log uniform background measure was fit with the data provided by the expert. Next, the dependence information was queried starting with the rank correlation $r_{7,6}$ as follows ${ }^{3}$:
2. If 50,000 of the fights from the previous question were selected at random, then the number of fights that execute a missed approach should be approximately $\frac{1}{2}$ of your median estimate from previous question. Suppose that instead of selecting those 50,000 fights at random, you select those where

[^30]Separation in air is above its median value. What is your probability that, in this situation, the number of MISSED APPROACH executions will be larger than $\frac{1}{2}$ of your $50^{e t h}$ percentile estimate provided in the previous question?

The assessment from question 2 is equivalent to an estimate of $P_{1}=P\left(F_{X_{7}}\left(X_{7}\right) \geq 0.5 \mid F_{X_{6}}\left(X_{6}\right) \geq 0.5\right)$. The expert's assessment for this question was $P_{1}=0.15$ that from Figure 4.2 corresponds to $r_{7,6}=-0.88$. The conditional rank correlation $r_{7,5 \mid 6}$ was elicited as follows:
3. If 50,000 of the flights from question 1 were selected at random, then the number of flights that execute a missed approach should be approximately $\frac{1}{2}$ of your median estimate from question 1. Suppose that instead of selecting those 50,000 flights at random you select those where both SEparation in AIr and Mean cross wind are both above their median values. What is your probability that, in this situation, the number of MISSED APPROACH executions will be larger than $\frac{1}{2}$ of your $50^{\text {eth }}$ percentile estimate provided in question 1? (bearing in mind that your new assessment should be $\in(0,0.3)$)

The expert's assessment for question 3 is equivalent to an estimate of $P_{2}=$ $P\left(F_{X_{7}}\left(X_{7}\right)>0.5 \mid F_{X_{6}}\left(X_{6}\right)>0.5, F_{X_{5}}\left(X_{5}\right)>0.5\right)$. The expert's answer to question 3 was $P_{2}=0.18$, and, with the methods described in 4.2.2.1 the corresponding value for $r_{7,5 \mid 6}=0.20$ was found. The upper and lower bounds provided in question 3 , i.e the interval $(0,0.3)$ where also computed on-line with the methods described in section 4.2.2.1.

Conditional Probability		Bounds for $P_{i}{ }_{a}$	Correlation	
P_{1}	0.15	$(0,1)$	$r_{7,6}$	-0.88
P_{2}	0.18	$(0,0.3)$	$r_{7,5 \mid 6}$	0.20
P_{3}	0.20	$(0.01,0.35)$	$r_{7,4 \mid 6,5}$	0.12
P_{4}	0.24	$(0.02,0.38)$	$r_{7,3 \mid 6,5,4}$	0.23
P_{5}	0.22	$(0.04,0.45)$	$r_{7,2 \mid 6,5,4,3}$	-0.11
P_{6}	0.24	$(0.03,0.40)$	$r_{7,1 \mid 6,5,4,3,2}$	0.11

$\quad{ }^{a}$ Each $P_{i}, i=\{1, \ldots, 6\}$ sequentially adds variables
to the model, for instance $P_{1}=P\left(F_{X_{7}}\left(X_{7}\right)>\right.$
$\left.0.5 \mid F_{X_{6}}\left(X_{6}\right)>0.5\right), P_{2}=P\left(F_{X_{7}}\left(X_{7}\right)>0.5 \mid F_{X_{6}}\left(X_{6}\right)>\right.$
$\left.0.5, F_{X_{5}}\left(X_{5}\right)>0.5\right), P_{3}=P\left(F_{X_{7}}\left(X_{7}\right)>0.5 \mid F_{X_{6}}\left(X_{6}\right)>\right.$
$\left.0.5, F_{X_{5}}\left(X_{5}\right)>0.5, F_{X_{4}}\left(X_{4}\right)>0.5\right)$, and so on.

Table 5.1: Results from Expert's Elicitation of Conditional Rank Correlations
The rest of the conditional rank correlations where elicited in a similar way by sequentially adding information about the variables entering the conditioning set. The expert was provided with the upper and lower bounds for $P_{i}(i=1, \ldots, 6)$ at each step in the elicitation only after he had provided his estimates to check for consistency. This way of assessing conditional rank correlations helped the expert understand the meaning of dependence and increased his "buy in" in the method. The results of the elicitation for the 6 arcs in the BBN for missed approach are summarized in table 5.1.

Figure 5.3: Discretized $B B N$ of the Missed Approach Model with continuous quantities in Netica.

Figure 5.4: Continuous BBN of the Missed Approach Model with continuous quantities in UniNet.

5.1.4 Updating beliefs in the MA Model

In Hanea et al. [2006] techniques to efficiently deal with the joint distribution when evidence becomes available (updating the BBN) are discussed. The two possibilities are:

- The Hybrid Method. To work with this method the information from table 5.1 together with the marginal distributions for each variable were used to create a large sample file by means of the normal copula. A discrete version of the model can be built in order to take advantage of commercial software to perform fast updating each time a new policy is evaluated.
- The Normal Copula Vine Approach. Since according to the methods described in sections 3.2 and 4.2.2 all calculations are performed on a joint normal vine, the conditional distribution can be computed analytically.

To illustrate the Hybrid Method the professional software Netica ${ }^{\circledR}$ will be used. For the normal copula vine approach the recently developed software application UniNet ${ }^{4}$ will be used. Figures 5.3 and 5.4 show the representation of the BBN for missed approach execution in Netica and UniNet respectively. The rank correlations are included to stress the fact that both versions of the model introduced in Figure 5.2 preserve the dependence structure elicited from the expert.

If instead of eliciting the 6 quantities in table 5.1, the expert would have been asked to fill in the conditional probability table for X_{7} missed approach execution per 100,000 flights with the discretization of its parent variables as in Figure 5.3, then the expert would have had to provide over 1.2 million conditional probabilities (equation (3.2)) that need to be consistent with the marginal distribution from Figure 5.3 and still reflect the correct dependence information.

Figure 5.5 presents the distribution of missed approach executions per 100,000 flights given separation in air $\in(0,2) \mathrm{Nm}$ and the mean cross wind $\in(17.5,20)$ Kt from Netica. The reader may compare this distribution with the unconditional distribution in Figure 5.3. The unconditional mean is 200 Missed Approach executions per 100,000 flights (standard deviation of 170), while the mean of $\left(X_{7} \mid X_{6} \in(0,2), X_{5} \in(17.5,20)\right)$ is 470 Missed Approach executions per 100,000 flights (standard deviation 290).

Figure 5.6 presents the same conditional distribution as Figure 5.5 computed analytically in UniNet. The unconditional distribution of X_{7} is shown in grey behind the black histogram representing the conditional distribution of $X_{7} \mid X_{6}=$ $2, X_{5}=20$. In this case the conditional mean is 379 with standard deviation 47.7 missed approaches per 100,000 flights. While in Netica (Figure 5.5) one can only condition in discretized states of each variable, UniNet allows for conditioning in point values. This is the usual way in which evidence becomes available in real situations.

[^31]

Figure 5.5: Conditional Distribution of Missed Approach Executions per 100,000 flights given $X_{6} \in(0,2)$ Nm and $X_{5} \in(17.5,20) \mathrm{Kt}$.

Figure 5.6: Conditional Distribution of Missed Approach Executions per 100,000 flights given $X_{6}=2 \mathrm{Nm}$ and $X_{5}=20 \mathrm{Kt}$.

500,000 samples from the joint distribution represented by figures 5.4 and 5.6 were obtained with UniNet. The cumulative distribution function of X_{7} and $X_{7} \mid X_{6}=2, X_{5}=20$ were obtained and shown in Figure 5.7. Observe that both Netica and UniNet show that $P\left(X_{7}>350\right) \approx 8 \%$. In the conditional distribution computed with Netica this probability increases to $\approx 57 \%$ while the analytical approach from UniNet shows that this value is as big as $\approx 75 \%$.

The application to Missed Approach demonstrated that it is possible to elicit unconditional and conditional rank correlations with intuitively meaningful conditional probabilities of exceedence. The results motivate the choice of the analytical updating (UniNet) vs. the hybrid method with Netica. The next two sections present results regarding the elicitation for the human performance models used in CATS. For the two models presented next more than one expert participated in the elicitation. This is in contrast with the elicitation in the MA

Figure 5.7: Cumulative Distribution function of X_{7} and $X_{7} \mid X_{6}=2$ Nm and $X_{5}=20$ $K t$.
model where as stated earlier only one expert participated.

5.2 The Flight Crew Performance Model

5.2.1 Expert Elicitation Results of the FCP Model

An elicitation protocol was designed for obtaining the marginal distributions shown in table 3.2 and the dependence information required by the model (Figure 3.5). A total of 4 marginal distributions, 11 questions for retrieving the dependence information and 8 calibration variables were asked to each expert ${ }^{5}$. Summary results from the classical method are presented in table 5.2. Calculations are performed with the EXCALBIUR software developed at the TU Delft.

Table 5.2 shows the resulting scores for the five experts in this study plus two $D M s^{6}$. The first column gives the expert's id; the second column gives the calibration score. The ratio of highest to lowest score is about 13,000 . It will be noted that experts B and D had a score corresponding to a p-value above 5%. Scores of experts E and C are marginal and for expert A rather low. Calibration scores in the order 0.001 would fail to confer the requisite level of confidence in the results.

The information scores for all items and for calibrations items are shown in

[^32]| Experts'
 Id. | Calibration
 score | Information
 score
 (all var.) | Information
 score
 (cal. var.) | Un-Normalized
 weights | Normalized
 weights
 (without DM) | Normalized
 weights
 (with DM) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| A | 0.02651 | 0.7119 | 0.4991 | 0 | 0 | 0 |
| B | 0.6638 | 0.95 | 0.574 | 0.381 | 1 | 0.5 |
| C | 0.001547 | 1.016 | 0.9689 | 0 | 0 | 0 |
| D | 0.185 | 1.317 | 1.029 | 0 | 0 | 0 |
| E | 5.115×10^{-05} | 1.049 | 1.06 | 0 | 0 | 0 |
| GWDM | 0.6638 | 0.95 | 0.574 | 0.381 | - | 0.5 |
| EWDM | 0.2224 | 0.1046 | 0.09945 | 0.02212 | - | |

Table 5.2: FCPM Experts' Performance. Significance level: 0.6638 (Global Weights $D M)$.
columns 3 and 4 respectively. It will be noted that the overall information scores are quite similar, within a factor 2 . In this case the expert with the best calibration score (B) also has one of the lowest information scores for the calibration variables which is a recurrent pattern. Weights are constructed by the product of columns 2 and 4. If these weights were normalized and used to form weighted combinations, experts A, D and B would be influential with (2.25, 32.49 and 64.98 per cent respectively).

As it may be seen in table 5.2 the EWDM is better calibrated than each expert individually except expert B. However information scores derived from the EWDM are poor. They are the lowest amongst the 5 experts in both all variables and calibration questions alone.

Table 5.2 also shows that the optimized decision maker gives all weight to expert B. The calibration score of the GWDM is about 3 times higher than the EWDM and the information score is about 9 times higher over all variables and 5.7 times higher in calibration questions alone. If no optimization was performed in the GWDM then, after normalization of the weights, experts A, D, B and the GWDM (not optimized) would be influential with $2.06,29.66,59.32$ and 8.71 per cent respectively. Though more experts enter the pool, the calibration score of the (not optimized) GWDM is 4.58 times smaller than that of the optimized GWDM. Similarly the information scores in all variables and calibration variables are 2.57 and 1.48 times higher in the optimized GWDM. The recommended choice for the DM is the GWDM as it achieves better performance than the EWDM and the GWDM without optimization combinations. Next, results of the dependence information for the FCP model will be discussed.

(Un)Conditional Rank Correlation	Value	(Un)Conditional Rank Correlation	Value
$r_{7,1}$	-0.95	$r_{10,7 \mid 6}$	1.00
$r_{7,3 \mid 1}$	0.86	$r_{14,10}$	0.30
$r_{7,2 \mid 1,3}$	0.24	$r_{14,11 \mid 10}$	-0.32
$r_{6,5}$	-0.95	$r_{14,8 \mid 10,11}$	0.46
$r_{6,3 \mid 5}$	0.86	$r_{14,12 \mid 10,11,8}$	0.18
$r_{6,4 \mid 5,3}$	0.24	$r_{14,9 \mid 10,11,8,12}$	0.19
$r_{10,6}$	0.71	$r_{14,13 \mid 10,11,8,12,9}$	0.16

Table 5.3: GWDM Dependence estimates for the FCP Model.

5.2.2 Dependence in the FCP Model

To elicit the rank correlations a total of 11 questions were asked to each expert. These were similar to those in relation 4.2 in subsection 4.2.2.1. From previous subsection (5.2.1) it was observed that the global weight decision maker gave weight 1 to expert B and hence no combination was necessary. The results of the dependence elicitation are presented in table 5.3.

As explained in Hanea [2008, ch.5], the determinant of a correlation matrix is a measure of the amount of 'linear dependence' in a joint distribution. If variables are uncorrelated it takes value 1 , and 0 when they are completely correlated. The determinants of the correlation matrix of each expert are presented in the second column of table 5.4. It may be observed that the GWDM dependence estimates shown in table 5.3 present the rank correlation matrix with the lowest value of the determinant among experts (expert B). One may see that there is a factor 70 between the highest and lowest determinant between experts.

Experts' Id	Expert's Determinant
A	4.936×10^{-6}
B	2.011×10^{-6}
C	7.173×10^{-4}
D	1.427×10^{-4}
E	7.562×10^{-5}

Table 5.4: Experts' Correlation Matrices Determinant

From this last subsection it may be seen that the elicitation of rank an conditional rank correlations through conditional probabilities of exceedence from domain experts is possible. Next a similar model for Air Traffic Control performance will be presented.

5.3 The Air Traffic Control Performance Model

5.3.1 Expert Elicitation Results of the ATCP Model

An elicitation protocol was designed for obtaining the dependence information required by the model shown in Figure 3.6. In total 1 marginal distribution ${ }^{7}, 5$ questions for retrieving the dependence information and 12 calibration variables were asked to 6 experts 8. Estimates of one expert could not be used because of inconsistent estimates (ratios outside the allowable range). Summary results from the classical method are presented in table 5.5. Calculations are performed with the EXCALIBUR software developed at the TU Delft.

Experts' Id.	Calibration score	Information score (all var.)	Information score (cal. var.)	Un-Normalized weights	Normalized weights	Normalized weights (with DM)
A	0.1012	0.5633	0.5034	0.05095	0.5208	0.2004
B	0.04706	1.03	0.9588	0.04512	0.4612	0.1803
C	0.00131	1.423	1.349	0.001767	0.01806	0.006987
D	2.795×10^{-9}	1.669	1.655	0.0	0.0	0.0
E	2.501×10^{-6}	1.017	0.9624	0.0	0.0	0.0
GWDM	0.6827	0.3094	0.2271	0.1551	-	0.6131
IWDM	0.2441	0.4441	0.3757	0.0917	-	-
EWDM	0.1242	0.2662	0.2472	0.0307	-	-

Table 5.5: ATC Experts' Performance. Significance level: 0.00131 (Global Weights DM).

Table 5.5 shows the resulting scores for the five experts in this study plus three Decision Makers. The first column gives the expert's id; the second column gives the calibration score. The ratio of highest to lowest score among the 5 experts is about $3.62 \times 10^{7}\left(1.30 \times 10^{4}\right.$ in the case of the FCP model experts $)$. Only expert A had a score corresponding to a p-value above 5%. Scores of experts D and E are marginal and for expert C is rather low.

The information scores for all items and for calibrations items are shown in columns 3 and 4 respectively. It will be noted that the overall information scores are quite similar, within a factor 3 . In this case (as in the FCP model) the expert with the best calibration score (A) also has the lowest information scores. The fifth column gives the "un-normalized weights"; this is the product of columns 2 and 4 . If this column were normalized (among the experts) and used to form weighted combinations, experts A, B and C would be influential with (52.07, 46.11 and 1.80 per cent respectively).

In Table 5.5 the $8^{\text {th }}$ expert is identified as "EWDM". It may be observed that the EWDM is better calibrated than each expert individually. However information scores derived from the EWDM are poor. They are the lowest amongst

[^33]all experts (that is including the EWDM as an expert) in both all variables and calibration questions alone.

For the GWDM all experts with a calibration score less than the significance level (0.00131) found by the optimization procedure are unweighed as reflected by the zeros in columns 5, 6 and 7 in table 5.5.

From table 5.5 one can see that after the optimization procedure is applied, 3 experts have non-zero weight. One can see that the calibration score of the GWDM is about 5.5 times higher than the EWDM. The information scores are comparable for both decision makers in both all variables and calibration variables alone. The calibration score of the GWDM is about 2.8 times larger than the IWDM. The IWDM is slightly more informative than the GWDM. However the gain in information is not a sufficient argument to justify a preference of the IWDM over the GWDM.

The recommended choice of the decision maker is the global weight decision maker as it achieves better performance than the equal weight and item weight combinations. Future analysis will be performed based on the GWDM.

5.3.2 Dependence in the ATCP Model

As stated before, to elicit the rank correlations in Figure 3.6 a total of 6 questions were asked to each expert. Experts were asked to rank each variable according to the largest unconditional rank correlation with ATC error in absolute value ${ }^{9}$. Then for the variable which they regarded as having the largest rank correlation in absolute value, experts would assess the usual probability of exceedence. Finally, ratios of each of the remaining rank correlations to the one assessed through a probability of exceedence were asked. This method is described in subsection 4.2.2.2 and relation 4.9.

From subsection 5.3.1 it could be observed that the GWDM was the recommended choice for combining experts' opinions in the ATC performance model. The combination of the three expert's individual assesments was done as described in section 4.2.3. The results of the combination scheme are presented in table 5.6.

(Un)Conditional Rank Correlation	Value	(Un)Conditional Rank Correlation	Value
$r_{7,1}$	-0.180	$r_{7,4 \mid 1,2,3}$	-0.060
$r_{7,2 \mid 1}$	-0.206	$r_{7,5 \mid 1,2,3,4}$	0.020
$r_{7,3 \mid 1,2}$	0.134	$r_{7,6 \mid 1,2,3,4,5}$	0.180

Table 5.6: GWDM Dependence estimates for the ATC Model.

The GWDM's determinant is the second largest among the 6 experts (including the DM itself) in table 5.7. This may be explained because the GWDM is dominated by experts A and B. Expert's A opinion, which has the largest deter-

[^34]minant across experts, contributes to the GWDM's dependence estimates with 52.08% (table 5.5 column 6). Expert B, whose determinant is also large, contributes 46.12%. On the other hand expert C has the lowest determinant across experts, however his opinion contributes 1.8%. The ratio of highest to lowest determinant (column 2 in table 5.7) is about 4.5. This is comparable to the ratio of the GWDM's determinant to expert's C determinant which is 4.3 . These two ratios are small compared to those observed in the FCP model where differences of the order of 70 were observed.

Experts'	
Id	Expert's Determinant
A	0.932304
B	0.751821
C	0.206152
D	0.344658
E	0.849824
GWDM	0.894683

Table 5.7: Experts' Correlation Matrices Determinant \mathcal{E} Comparison Vs. Optimized determinants.

In summary, from this section it may be seen that the elicitation of rank an conditional rank correlations with the direct method described in section 4.2.2.2 is possible. Experts' belief that the relationship of the variables in table 3.3 to the ATC error is highly non monotonic is expressed by the high values of the determinant of the correlation matrices of each expert presented in table 5.7. It is worth noting that from comparing tables 5.7 and 5.5 one may suppose that expert's tend to have a negative correlation between the determinant of the rank correlation matrix in their individual BBN and their information score. However, tables 5.4 and 5.3 show the opposite pattern.

NPCDBBNs have found application in this thesis outside the aviation sector. In the next chapter an application in earth dams safety in central Mexico will be presented. Next chapter shows the flexibility of Bayesian networks as tools for modelling risks in different sectors.

CHAPTER 6

Dams Safety in the State of Mexico ${ }^{1}$

This chapter describes a demonstration model for earth dams safety. The aim of the project was to develop a model to investigate environmental factors that could contribute to different failure modes in earth dams in the highlands of central Mexico. This model would serve as a demonstration model for a larger model that would include larger structures and a countrywide coverage. NPCDBBNs were identified as an appropriate tool for this research. The classical method for structured expert judgment was used for model quantification in the absence of field data. The project was financed by COMECYT (State of Mexico Council for Science and Technology) for the Civil Engineering Faculty of the Autonomous University of the State of Mexico. Our role in the project was to provide technical support in the use of continuous BBNs and structured expert judgment for the development and later use of the model.

6.1 Introduction

A dam is an artificial obstruction to natural water flows constructed for one or more specific purposes such as accumulating water for farm irrigation, generating electricity, creating artificial lakes for navigation and leisure activities, supplying water to cities or industry, preventing floods, diverting river flows into canals and keeping a reserve of fresh water.

Small dams are structures of less than 15 meters height. Large dams, in contrast, are those with 15 meters or more from the foundation to the crest or, between 5 to 15 meters with a capacity of more than 3 million m^{3}. Based on their structure, they can be categorized as: embankment (earth dams), gravity, arch and buttress dams [Emiroglu et al., 2002].

Regardless of their construction materials, these buildings may fail. Figure

[^35]6.1 shows the number of dams failures per 10 years period from 1891-1990 and the proportion of total number of failures corresponding to embankment dams [ICOLD, 1995, pp.38-45]. For every ten year period, between 50% (1891-1990) and 91.67% (1971-1980) of the failures correspond to embankment dams. However, Donnelly [2006] stated that embankment dams are the most common type of water retaining structures. In this sense, for the same data set, he noted that 2.6% of the concrete buttresses failed compared to 1.2% of embankments, 0.7% of concrete arch and 0.3% of concrete gravity dams.

Figure 6.1: Number of dams failures per 10 years period from 1891-1990. With data from [ICOLD, 1995, pp.38-45]

The impacts of a dam collapse can be enormous, encompassing the destruction of private housing, transport and public infrastructure, industrial facilities and agricultural land. The losses may also include human harm and serious disruptions in infrastructure operation, leading to significant total economic damages.

From the end of October and up to the end of November 2007 flooding was produced in about 70% of the Tabasco flatlands affecting more than 1 million people. The main cause of the flooding in Tabasco was the severity of the runoff resulting from the uncontrolled De La Sierra basin and the coincidence and duration of intense precipitation. Because of the exceptional rainfall, the release of water through the spillway at Peñitas Dam additional to electricity generation at full had to be performed. Though, this operation was considered to be appropriate, damages were enormous. The consequences were great in part due to the vulnerability of the region and the lack of adequate and sufficient infrastructure. As part of the recommendations the use of an integrated modelling
system including hydrometeorlogical forecasting, rainfall-runoff relationships and dam operation was proposed. For more details see Aparicio et al. [2009].

Literature reports studies within the dam industry. Most are centered on the analysis of specific failure modes, and a few on mathematical models for dam risk assessment, that make use of continuous BBNs (see for example [FEMA, 2007] and [FEMA, 2008]). The central motivation for carrying out this investigation was the lack of systematic research to date within the continuous BBN framework.

Overall the study aims to develop a model to assist dam engineers, in particular those in Mexico, on their risk assessment practices. Selecting embankment dams, and more specifically earth dams on the basis of their abundance, has provided a focus. In this sense, the model is only limited to the analysis of natural events (e.g. excessive rainfall or earthquakes) and disregards those intentionally produced (e.g. terrorism or bomb attacks). It should be noted that this work is the starting point for a bigger research project to develop a comprehensive model for assessing risk in various types of dams in Mexico. The model will be referred to as the Dams Safety demonstration model or simply DS model.

The next section presents the definitions of the concepts that have been used to develop the model. Then, the selection process of seven dams in central Mexico is described. The criteria that helped create the model will also be briefly described together with its constituent elements. The application of the model in the seven earth dams located in Mexico will be illustrated as well as some final remarks and recommendations.

6.2 Earth Dams in the State of Mexico

Before we continue, we briefly introduce the components of a dam. Figure 6.2 shows a simplified graphical representation of such a structure showing its main elements. They are: crest, reservoir, upstream slope (embankment), downstream slope (embankment), river, outlet pipe, and spillway. Formal definitions may be found in FEMA [2004].

In order to develop the model some dams located in the State of Mexico were chosen. The State of Mexico is a territory in central Mexico that surrounds Mexico City to the east, north and west. The criteria for such a selection were as follows:
(i) height: between 15 and 30 m
(ii) age: more than 30 years old and,
(iii) construction material: earth and rockfill dams.

These three conditions have significant influence in collapse events [Foster et al., 2000] and [ICOLD, 1995].

In the exercise, seven dams were identified: Embajomuy (E), San Joaquín (SJ), José Trinidad Fabela (JTF), Dolores (D), José Antonio Alzate or San Bernabé (JAA), Ignacio Ramírez or La Gavia (IR), and El Guarda (EG). Their heights range from 15 to 24 m , their ages from 36 to 66 years, and their capacities from

Figure 6.2: Simplified representation of a dam with main elements.

52,000 to $225,000 \mathrm{~m}^{3}$. Irrigation, flooding prevention and hydroelectric power generation, can be listed among their main purposes [SRH, 1976].

After visiting each structure, it became evident that maintenance activities are not frequent. Because of its relative location with respect to inhabited communities downstream, the JAA dam is perhaps the most important structure of the ones under study. All seven dams under study share the same basic design characteristics being the main difference amongst them the amount of people living downstream. With regard to infrastructure it is common for them to have highways, electrical transmission towers and some urban settlements downstream. In addition land used for agricultural purposes is also observed in the region of interest.

6.3 Description of the DS model.

6.3.1 Model variables \& graph

Ten variables were identified as most relevant for this study. Their description, units and source of the marginal distributions is detailed next.

1. Seismic frequency. It refers to the distribution of earthquakes >5.5 per year, in Richter magnitude scale, between 2000 and 2008 for the locations of interest. Data is available from the Mexican National Seismographic System.
2. Rainfall rate. It refers to the average value of the seven-basin (i.e. the area of influence of the 7 dams of interest) five-days moving averages in $\mathrm{mm} /$ day. Data is available from "ERIC" Mexican database from 1961 to 1998. A short overview of ERIC may be found in Carrera-Hernández and Gaskin [2008].
3. Maintenance. Is the number of years between maintenance activities which would lead the dam to an "as good as new" condition. The marginal distribution comes from structured expert judgment.
4. Overtopping. Water level from the crest during an event in which such a level may increase beyond the total embankment height (mm). Marginal distribution obtained from expert judgment.
5. LandsLide. Distribution of the security factors (resisting moment/causing moment), for each of the seven dams based on their design geometrical features. The so called "Swedish method" is used for calculating such factors [SRH, 1976].
6. Piping. Distribution of water flowing through the embankment that causes its internal erosion apart from the spillway and outlet pipe torrents ($l t / s e c$). Data comes from expert judgment.
7. Breaching. Refers to the average breach width i.e. the mean of both superior and inferior breach widths, due to embankment's crest erosion (m). Calculated with the methods reported in Wahl [1998] with data from SRH [1976].
8. Flooding. Average water level per day in the downstream flooded area during a dam failure event. Its marginal distribution is built by means of expert judgement ($\mathrm{mm} /$ day).
9. Human costs. Both public and private total costs over a time period equivalent to the maximum human remaining life span, due to all possible damages, health and life losses, caused by a flooding, consequence of a dam failure. It is measured in current USD and obtained through expert judgment.
10. Economic cost. Both public and private total costs, due to all possible damages in infrastructures (e.g. schools, hospitals, bridges, roads, transport systems), fields (e.g. farms, crops), housing, supply, commercial and entertainment centers, caused by a flooding, consequence of a dam failure. It is measured in current USD and obtained through expert judgment.

Variables are broadly grouped into three categories: contributing factors (seismic frequency, rainfall rate and maintenance), failure modes (landslide, piping, overtopping and breaching), and consequences (flooding, human and economic cost). The model was built based on such configuration.

Figure 6.3 shows a scheme of the model, which includes both the requirements previously established and the variables recognized. The Figure was taken from UniNet. Arcs representing rank and conditional rank correlations between variables are shown.

Arcs between both human costs and total costs, and economic costs and total costs lack a rank correlation because the total costs are simply the sum of human

Figure 6.3: Model for Earth Dam's Risk Assessment.
and economic costs and hence the relationship is functional. To distinguish probabilistic from functional nodes in the graph, two vertical lines in the extremes of the node are drown. It should be recognized that there might be more interactions among the nodes in Figure 6.3. However, they have not been expressed in the model for the sake of simplicity and because it is thought that their exclusion does not affect the patterns of relationship between the main variables.

6.3.2 Expert Elicitation Results of the DS Model

In total four experts participated in the elicitation. Three of the experts hold positions at the National Water Commission (CONAGUA) in the State of Mexico. The other expert holds a position in the Municipality of Zinacantepec as water manager. Two of the experts are lecturers in civil engineering at the Autonomous University of the State of Mexico (UAEM). A workshop was held on July 182008 in the faculty of engineering of UAEM. Individual interviews were held with each expert during the months of July and August according to experts' availability. The questionnaire included 6 questions to elicit marginal distributions (see section 6.3.1), 20 to elicit the rank and conditional rank correlations from Figure 6.3 and 20 calibration variables.

As mentioned in chapter 4 calibration variables are those known to the analyst but not to the experts at the moment of the elicitation. These are used to measure experts' performance as uncertainty assessors. One example of a calibration
variable for this elicitation is: Consider the 7 day moving average of the daily average precipitation (mm) from the two stations related to Embajomuy Dam from January 1961 to August 1999 in ERIC II of CONAGUA [Carrera-Hernández and Gaskin, 2008]. What is the maximum moving average for the time period of reference?. In total three questions about seismicity, four over general characteristics of the 7 selected dams, nine over precipitation and two about water discharge were used as calibration variables. The results of the expert elicitation are summarized in table 6.1. Calculations are performed with the EXCALIBUR software developed at the TU Delft.

Experts' Id.	Calibration score	Information score (all var.)	Information score (cal. var.)	Un-Normalized weights	Normalized weights	Normalized weights (without DM)						
(with DM)							$	$		0.00014	0.9154	0.8259
---:	:---	---:	---:									
A	2.588×10^{-14}	2.245	2.196									

Table 6.1: DS Experts' Performance. Significance level: 3.57×10^{-7} (Global Weights DM).

Table 6.1 shows the resulting scores for the four experts in this study plus two DMs. The first column gives the expert's id; the second column gives the calibration score. The ratio of highest to lowest score among the 4 experts is about 3.85×10^{9}. For the air traffic control performance model this ratio is 3.62×10^{7} and 1.30×10^{4} in the case of the flight crew performance model (tables 5.3.1 and 5.2.1). In this case no individual expert had a score corresponding to a p-value above 5%.

The information scores for all items and for calibrations items are shown in columns 3 and 4 respectively. Information scores in columns 3 and 4 are within a factor 2.5 for the four experts. Expert B had the lowest calibration score, however was also the most informative. In contrast, expert A had the largest calibration score and is the least informative. This is a recurrent pattern, however low informativeness does not translate automatically into better calibration [Cooke and Goossens, 2008, p.669]. The fifth column gives the "un-normalized weights" with the GWDM ${ }^{2}$ This is the product of columns 2 and 4 . Experts with a calibration score less than the significance level are weighted with zero. If this column were normalized (among the experts) and used to form weighted combinations, experts A and D would be influential with 99.73% and 0.27% respectively.

The GWDM is better calibrated than each expert individually, however its information scores are lower than the information scores of each expert individually. The calibration score of the GWDM is still lower than 5% which fails to confer the requisite level of confidence for the study. Last row of table 6.1 shows

[^36]the EWDM. This is the only expert with a p-value above 5%. For this reason the EWDM is the recommended choice and further analysis will be conducted with this combination. The cost of this choice is in the information scores (about 3 times smaller than the GWDM). Next results about the dependence elicitation are presented.

6.3.3 Dependence in the DS Model

To elicit the rank correlations in Figure 6.3 a total of 20 questions were asked to each expert. For each child node experts were asked to rank parent variable according to the largest unconditional rank correlation with the child in absolute value. Observe that the ranking for each expert could be different however once the full correlation matrix of each expert is determined any probabilistic statement may be computed. Then for the variable which they regarded as having the largest rank correlation in absolute value, experts would assess the usual probability of exceedence [Morales et al., 2008]. Next, ratios of each of the remaining rank correlations to the one assessed through a probability of exceedence were asked. This method is described in subsection 4.2.2.2 and relation 4.9.

A convex combination of the densities realized by the BBN quantified with the individual estimates provided by each expert does not preserve the conditional independence statements embedded in the graph. Another strategy has to be considered in order to combine experts' opinions. If all experts assessed conditional probabilities of exceedence based on the same events then these probabilities may be linearly pooled to use as the DMs estimate. When the marginal distributions do not come from data then each expert provides estimates over different events. The strategy to follow is then to compute the probabilities that each expert "would have stated" if he/she had been asked probabilistic statements regarding a given quantile of the Decision Maker such that his/her estimates for the rank correlations remain unchanged (see relation 4.11). For a detailed explanation of the procedure for combination of dependence estimates the reader may see section 4.2.3.

From subsection 6.3.2 it could be observed that the EWDM was the recommended choice for combining experts' opinions in the DS model. The combination of the four expert's individual assesments was done as described in section 4.2.3. The quantities combined were the conditional probability of each child node given the corresponding parent. These numbers were later translated into the corresponding rank and conditional rank correlations. The results of the combination scheme are presented in table 6.2. For instance, $r_{3,6}$ stands for the rank correlation between variables $X_{3}=$ maintenance and $X_{6}=$ piping according to the numbering shown in Figure 6.3.

In table 6.3 the determinants of the rank correlation matrices for each expert and the $D M$ are shown. The ratio of largest to smallest determinant is 3.95×10^{5}. The EWDM's determinant is the largest among the 5 experts (including the $D M$ itself). The reason is that marginal distributions assessed by experts differ considerably and the EWDM's combination tends to "fade away" the dependence. Example 6.3.1 gives an intuitive explanation of this remark for the case of the rank

(Un)Conditional Rank Correlation	Value	(Un)Conditional Rank Correlation	Value
$r_{3,6}$	0.1799	$r_{7,6}$	0.5025
$r_{2,6 \mid 3}$	0.1067	$r_{7,5 \mid 6}$	0.5793
$r_{4,3}$	-0.3996	$r_{7,4 \mid 5,6}$	-0.4647
$r_{4,2 \mid 3}$	-0.3164	$r_{7,3 \mid 4,5,6}$	0.2212
$r_{4,1 \mid 2,3}$	-0.4307	$r_{8,7}$	0.1135
$r_{5,4}$	-0.1278	$r_{8,5 \mid 7}$	0.0669
$r_{5,2 \mid 4}$	0.1711	$r_{10,8}$	0.1384
$r_{5,1 \mid 2,4}$	0.3025	$r_{9,8}$	0.2281

Table 6.2: $E W D M$ Dependence estimates for the DS Model.
correlation between Flooding and Economic costs.

Experts'	Expert's
Id	Determinant
A	4.5703×10^{-7}
B	0.0224
C	6.2629×10^{-4}
D	0.0160
EWDM	0.1806

Table 6.3: Experts' Correlation Matrices Determinant.

Example 6.3.1. Table 6.4 presents a summary of estimates required by experts to compute $r_{9,8}^{e_{i}}$ in Figure 6.3. Column 1 gives the expert's id. Estimates given by each expert to the question: Suppose that variable flooding was observed above its median value, what is the probability that also economic costs were observed above their median? are presented in column 2 of table 6.4. The rank correlation realized by each expert's estimate is shown in column 3 .

For both variables Flooding and Economic costs the EWDM's median realizes a given percentile in each experts' marginal distribution. Similarly to chapter 4, the cumulative distribution function for variable X_{j} from expert e_{i} will be denoted as $F_{X_{j}}^{e_{i}}$. The median value of variable X_{j} for expert e_{i} is denoted as $x_{j, 0.5}^{e_{i}}$. Also, the $k^{t h}$ percentile of variable X_{j} is denoted as $x_{j, 0 . k}^{e_{i}}$.

For example the EWDM's median for Economic costs is 20.03 million usd. According to the indexing shown in Figure 6.3, Economic costs $=X_{10}$ and $F_{X_{10}}^{A}(20.03)=0.82$. In other words the DM's median realizes the $82^{\text {th }}$ percentile in expert's A marginal distribution. In the same way the EWDM's median for Flooding realizes the $4^{\text {th }}$ percentile in expert A's marginal distribution. Hence column 4 of table 6.4 shows the assessment that each expert "would have stated" if he/she had been asked probabilistic statements regarding the median of the Decision Maker such that his/her estimates for the rank correlations remain unchanged. For other experts the percentile realized by the EWDM's median in
each experts distribution may be read similarly. The relationship between $r_{9,8}$ and $P_{1^{\star}}^{e_{i}}$ may be seen in Figure 6.4 for all four experts.

Expert	$P_{1}^{e_{i}}$	$r_{9,8}^{e_{i}}$	$P_{1^{\star}}^{e_{i}}$
A	0.8	0.81	$P\left(X_{9}>x_{9,0.82} \mid X_{8}>x_{8,0.04}\right)=0.19$
B	0.8	0.81	$P\left(X_{9}>x_{9,0.05} \mid X_{8}>x_{8,0.95}\right)=0.99$
C	0.6	0.31	$P\left(X_{9}>x_{9,0.16} \mid X_{8}>x_{8,0.95}\right)=0.95$
D	0.7	0.59	$P\left(X_{9}>x_{9,0.96} \mid X_{8}>x_{8,0.03}\right)=0.04$
EWDM	-	0.1384	$P\left(X_{9}>x_{9,0.50} \mid X_{8}>x_{8,0.50}\right)=0.55$

Table 6.4: Combination of rank correlation $r_{9,8}$ in Figure 6.3.

Figure 6.4: Relationship between $r_{9,8}$ and $P_{1 *}^{e_{i}}$ in table 6.4

The EWDM answer to $P\left(X_{9}>x_{9,0.50} \mid X_{8}>x_{8,0.50}\right)=\frac{1}{4} \sum_{i=1}^{4} P_{1^{\star}}^{e_{i}}$. It may be observed that $r_{9,8}^{e_{i}}>0.31$ for all e_{i}, however because of the large differences in $P_{1 \star}^{e_{i}}$ the $r_{9,8}^{E W D M} \approx 0.14 . \square$

Other estimates in table 6.2 behave similarly to example 6.3 .1 and hence the high value of the EWDM's correlation matrix determinant.

6.4 Discussion of the DS Model

One of the objectives of the model is to predict or diagnose the performance of any of the seven Mexican structures under consideration. To limit the explanation the use of the model will only be illustrated here with data from JAA.

Because of its geometry and year of construction there are two variables that can immediately be fixed for the dam under study. Variable landslide is a distribution over the security factor of the dams under study (see subsection 6.3.1). The security factor of JJA was calculated base on its geometry according to the so called Swedish method [SRH, 1976]. Hence landslide $=1.95$. Secondly, the age of the dam is 46 years which can be associated with the number of years between maintenance activities assuming that there has not been any conservation actions since its final construction year.

Figure 6.5: Unconditional $D S$ model.

Figure 6.5 shows the model from Figure 6.3 with the marginal distributions from section 6.3.1. Means and standard deviations (after the \pm sign) are shown. Figure 6.6 presents the model adapted to the dam of interest (JAA). The original marginal distributions are shown in Figure 6.6 in grey while the updated belief is shown in black. According to the model, the effect of introducing evidence of landslide $=1.95$ and maintenance $=46$ yrs is larger in overtopping and rainfall rate than in other variables.

Suppose that additionally to the evidence previously entered, an extraordinary rainfall rate of $15 \frac{m m}{d a y}$ in a 7 day average is observed. Also it is known that

Figure 6.6: $D S$ model given landslide $=1.95$ and maintenance $=46$.
the seismic frequency in this region corresponds to 8 earthquakes with intensity higher than 5.5 in Richter scale per year. Figure 6.7 shows the results of the entering additional evidence in the model. As can be seen, the anticipated flooding value has increased from $1.71 \times 10^{3} \frac{m m}{d a y}$ (Figure 6.6) to $2.22 \times 10^{3} \frac{m m}{d a y}$ (Figure 6.7). Similarly, the predicted human cost moved from 13.9 to 14.7 million USD, and the economic loss in turn from 29.4 to 30.1 million USD. This means that the intensification of rain and the presence of earthquakes at the same time are expected to produce higher levels of water in the potential flood area and consequently larger amounts of both human and economic losses.

Similar analysis to the one described previously was conducted for all 7 dams under study. The impact of an overtopping incident of 100 mm was employed to analyze its effects not only in the flood water level downstream, but also in human and economic costs. So for each of the seven structures three values were fixed: landslide (security factor), maintenance (dam age using the assumption above mentioned) and overtopping (100 mm).

Results show that given the landslide (security factor) for each dam and no maintenance performed since its construction, an overtopping of 100 mm increases the expectation of a flooding by a factor 1.79 (EG) up to a factor 2.11 (SJ) Delgado-Hernández et al. [2009]. However the total costs of such an increase are not as sensitive as a flooding is ($4-6 \%$ increase in expected costs). It may be observed that the expert combination indicate that human costs increase more than economic costs ($7-9 \%$ compared to 3 or 4%); however the larger contribution of economic costs drives the total cost increase.

Figure 6.7: $D S$ model given landslide $=1.95$, maintenance $=46$, seismic frequency $=$ 8 and rainfall rate $=15$.

Observe that differences in expected total costs are small, which can be explained by the values in the rank correlation matrix (table 6.5). Human and economic costs are obviously highly correlated with total cost $\left(r_{9,11}=0.82\right.$ and $\left.r_{9,11}=0.48\right)$. Flooding is mainly correlated to human costs $\left(r_{8,10}=0.23\right)$, and total and economic costs lag behind them. However the rank correlation between flooding and total costs is still low $\left(r_{8,11}=0.22\right)$. All other variables are only weakly correlated with the total consequences. Nevertheless, in Table 6.5, flooding showed bigger variations than total costs. This means that, according to the equal weight combination of the experts' opinions used to build the model, once a dam has failed flooding variations will be more important than those related with total costs.

6.5 Final comments of the DS Model

The DS model could be used in a similar fashion as in section 6.4 to perform analysis. In fact, a wide variety of scenarios could be constructed to determine the level of impact of other particular incidents (such as piping or breaching), or a combination of them in the expected consequences.

This chapter dealt with earth dams and their failure modes, emphasizing risk assessment in a group of seven dams within the State of Mexico. The combination of BBNs and expert judgment stemmed from the recognition that Mexican dam

	$X_{1}{ }^{a}$	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}
X_{1}	1	0.00	0.00	-0.36	0.30	0.00	0.24	0.05	0.01	0.02	0.02
X_{2}		1	-0.01	-0.28	0.19	0.10	0.22	0.04	0.00	0.01	0.01
X_{3}			1	-0.41	-0.03	0.18	0.33	0.02	0.00	0.01	0.01
X_{4}				1	-0.12	-0.11	-0.43	-0.05	0.00	-0.02	-0.01
X_{5}					1	0.01	0.49	0.11	0.02	0.03	0.03
X_{6}						1	0.51	0.04	0.01	0.01	0.02
X_{7}							1	0.12	0.02	0.03	0.03
X_{8}								1	0.14	0.23	0.22
X_{9}									1	0.03	0.82
X_{10}										1	0.48
X_{11}											1

Table 6.5: Correlation matrix for the DS model.

[^37]managers need simple, useful and practical tools for carrying out quantitative risk assessment, based on a solid theoretical foundation. The tools should also be applicable to the context of their structures. In an effort to fulfill such requirements, a model that considers some of the variables that have influenced dam failures globally in the past has been proposed.

While the key objectives of the study have been achieved, there were a number of limitations associated with the work. First of all, the number of experts was somewhat low mainly because there is a lack of people with the required profile to be considered as such. To find specialists aware of the current situation of the dams under study proved to be a difficult task. In the event six people were identified but only four could take part in the research.

The inclusion of more variables in the model should be considered. This is particularly relevant if some local cases have shown that other variables are important in the risk evaluation apart from those reported in international statistics.

The equal weight combination was proposed as the preferred choice for the decision maker. The choice was motivated mainly because of suboptimal performance of each individual expert. This in turn led to a suboptimal performance of the optimized decision makers. The training of experts in probabilistic assessments is fundamental for the classical method for structure expert judgment. Results from this study suggest that better training or a selection of seed variables that characterizes better the expertise in the expert panel is desired for the follow up of the project.

In spite of these observations, it is strongly believed that the methodology utilized to build the model can be applied to carry out similar exercises in different locations. Overall this research has demonstrated that the use of NPCDBBN in Mexican dams' risk assessment is not only feasible but also beneficial. Finally, it should be emphasized that this research is hoped to be the starting point of a bigger project aimed at developing a more comprehensive model applicable to different types of dams in the country.

CHAPTER 7

Conclusions

7.1 About Vines

This thesis has dealt with applications of graphical models in risk and uncertainty analysis. In particular, non-parametric continuous discrete Bayesian belief nets are used to investigate risks in the aviation system and in earth dams. The theory behind non-parametric continuous discrete Bayesian belief nets was built around vines and for that reason the study of vines is the beginning of this thesis. For the same reason some conclusions about the research presented in this thesis related to vines will be presented first.

Vines have been investigated at least since the mid 1990's. Graphical aspects of vines have been less explored than their applications in simulation, statistics and uncertainty analysis. In this thesis we have provided explicitly for the first time results concerning the number of labeled vines on n nodes and the number of labeled regular vines on n nodes. Algorithms for building both labeled vines and labeled regular vines have been proposed. Though to our knowledge, no applications have been published to this time for non regular vines, it is not immediately clear that these objects will not find application in the future.

The value of obtaining $\binom{n}{2} \times(n-2)!\times 2^{\binom{n-2}{2}}$ as the number of labeled regular vines on n nodes is more clearly recognized in recent applications. Obviously this number grows extremely fast with n. Implementing the statistical techniques proposed in the literature might be restrictive even for a modest value of n. Take for example a data set with $n=7$. According to table 2.1 there are 2,580,480 labeled regular vines of which one in principle could be the best fit to the data. This number might be too large for a personal computer to perform the job. We could think of restricting our choices to some class of tree-equivalent regular vine in order to alleviate computational burden.

According to tables A. 10 and A. 11 in appendix A, there are 136 tree-equivalent regular vines on 7 nodes. These are V33 (D-vine on 7 nodes) to V168 (C-vine on 7
nodes). From tables A. 10 and A. 11 we see that if we would wish to fit only C-vines or D-vines to our data set of 7 variables, the choices reduce to 2,520 possibilities for either one. From the same tables we can see that besides D-vines and C-vines 9 other tree-equivalent regular vines admit also 2,520 labeled regular vines. In other words, there are 11 tree equivalent regular vines that can be labeled in 2,520 different ways. These are V33 (D-vine on 7 nodes), V45, V48, V52, V86, V147, V151, V154, V164, V167 and V168 (C-vine on 7 nodes) in tables A. 10 and A.11.

Similarly, from tables A. 10 and A.11, we may see that there are 24 treeequivalent regular vines that can be labeled in 5,040 different ways each. These are V34, V35, V36, V38, V42, V49, V50, V53, V57, V61, V74, V75, V76, V78, V81, V103, V107, V110, V125, V148, V149, V155, V159 and V165. If we continue in this way a distribution of tree-equivalent regular vines on 7 nodes according to the number of admissible labellings may be obtained. The resulting distribution is presented in Figure 7.1.

Figure 7.1: Distribution of tree-equivalent regular vines on 7 nodes according to the number of labeled regular vines admissible.

Of course the summation of the values observed in the vertical axis in Figure 7.1 is 136 which is the total number of tree-equivalent regular vines. As stated before, C -vines and D -vines are included in the 11 tree-equivalent regular vines that admit 2,520 labeled versions. There are however 134 other tree-equivalent regular vines of which 9 admit also 2,520 labeled regular vines. Observe that if we would choose any of V117 or V139 in in table A.11, there are 90,720 possible
labeled regular vines for each, out of which one could be selected as the best fit to the data. The choice of a subset of the 136 tree-equivalent regular vines to fit data to it is not immediately evident.

In this thesis tree-equivalent vines were studied. For $n \geq 5$ there are more equivalence classes than tree-equivalent regular vines (see Joe [2010], MoralesNápoles [2010] and chapter 2). Equivalence classes of regular vines have recently been characterized and a formula for dimension $n \geq 5$ is presented in Joe et al. [2010]. Whether using tree-equivalent or equivalence classes of regular vines for statistical manipulation is also not entirely clear. In any case, this example shows the need to think of using tree-equivalent regular vines or equivalence classes of regular vines with criteria different than just their popularity.

In this thesis we have made a first step towards organizing vines and regular vines in a more systematic way. We believe that this task is necessary in order to progress more rapidly the space of applications for vines and make them more accessible for people interested in the subject. Hence our recommendation is to enhance efforts for a more systematic organization of vines including algorithms for generating and storing them.

7.2 About Bayesian Networks and their Applications

7.2.1 Aviation Safety

The largest part of this thesis is concerned with the application of non-parametric continuous-discrete Bayesian belief nets in aviation safety. A smaller application is also presented for earth dams safety in the State of Mexico. We begin first by discussing some conclusions about the applications presented. Then we turn our attention to conclusions relative to Bayesian networks and elicitation of dependence measures.

The Dutch ministry of transport, through the commission of a project of the magnitude of CATS, has shown the importance that safety in the aviation sector has for policy makers in the Netherlands. The CATS model can be a powerful tool for risk and uncertainty analysts in their recommendations for policy makers. One of the fundamental parts of the CATS model is the use of human reliability models. The flight crew performance, air traffic control performance and maintenance technician performance models are presented in chapter 3 . Techniques for the elicitation of rank and conditional rank correlations required for these models are presented in chapter 4 and results from the actual elicitation which constitute the basis of the models' quantification are presented in chapter 5 .

The techniques described in these chapters result in a large scale BBN with 1,504 nodes and 4,979 arcs. This can be readily used for risk and uncertainty analyzes. Out of the 1,504 nodes included in the model, 45 represent the 3 human reliability models introduced in this thesis. These take account of all the dependence in the model. The current version of CATS used in section 3.4 shows that the variables in the flight crew and the maintenance technician models are more highly correlated with accident probability than the variables in the air traffic controllers model. From the 20 most highly correlated variables of the three
human reliability models 16 correspond to flight crew performance, 3 to maintenance technician performance and 1 (aircraft generation) is shared by the two models. These top 20 rank correlations range from roughly 0.1 to 0.3 in absolute value. At first sight they might appear to be low values for rank correlations, however their effect on accident probability can be very large.

Take for example Figure 7.2 where the $5^{t h}, 95^{t h}$ and mean value of the accident distributions shown in Figure 3.17 are presented. Observe that the difference between the $5^{\text {th }}$ and $95^{t h}$ percentiles in the 3 cases span roughly 2 orders of magnitude, hence the uncertainty over the 3 central estimates shown in Figure 7.2 is comparable. The first conditional distribution shows that the expectation of accident probability given the oldest kind of aircrafts is larger than the $95^{t h}$ percentile of the base line case. The expectation of the accident probability in this case would be of 5 in a 100,000 flights. For the third conditional distribution (with the additional condition of an unexperienced crew) the expectation is again larger than the $95^{\text {th }}$ percentile of the accident probability distribution given old aircrafts. In this case we could expect about 3 accidents in 10,000 flights.

Figure 7.2: 5\%-tile, mean and 95\%-tile of the accident (fatal and non-fatal) distribution from the CATS model. 1. Baseline; 2. Given aircraft generation $=1$; 3. Given aircraft generation $=1$, captain experience $=9,467 \mathrm{hr}$. and first officer experience $=7,844 \mathrm{hr}$.

The CATS model, which represents our pool of experts opinion, says that for policy makers it would be of utmost importance to revise the number of flights currently operating where unexperienced crew is flying the oldest kind of aircrafts. Experienced pilots or new technology do not come in cheap. We can speculate that these two risky conditions meet more often in world regions where the availability of experienced pilots and new technology is scarce. Perhaps, if the aviation system ought to be more safe, investments trying to correct this difference across regions in the world should be considered.

7.2.2 Earth Dams Safety

Conclusions regarding the model for measuring earth dams risks have already been discussed in chapter 6 . The most important ones are briefly repeated next: given the geometry of each of the dams under study and the assumption that no maintenance is performed since its construction, an overtopping of 10 cm increases the expectation of a flooding by a factor 1.79 in El Guarda up to a factor 2.11 in San Joaqín. However, the total costs of such an overtopping are not as sensitive as a flooding is ($4-6 \%$ increase in expected costs). According to the equal weight combination of the experts' opinions used to build the model, once a dam has failed, variations in the total costs will be minimal. In other words, according to this combination of expert opinions if one or another dam under study fails with an overtopping of 10 cm the consequences would end up in approximately the same total costs.

This result is not strange given the fact that the 7 dams selected for the demonstration model share similar characteristics. One of the objectives of this model is to make it the basis for a larger model for investigating risks in larger dams all over the country and not only in the State of Mexico. Such a model may built significantly in the one presented in chapter 6 .

7.2.3 About BBNs.

Bayesian networks have proved in this thesis to be a powerful tool for risk and uncertainty analysis. In particular the vine-copula approach in which non-parametric continuous-discrete BBNs relies require the use of rank and conditional rank correlations. In this thesis methods for the quantification of these dependence measures from experts have been proposed. Moreover, these methods have been used for the quantification of rank correlations for inducing dependence in a large scale model for air transport safety. The same kind of techniques have been used for a smaller model for earth dams risks. The techniques proposed in chapter 4 are flexible enough as to allow for some differences in the elicitation of such dependence measures.

We have shown that one of the advantages of the vine-copula approach to BBNs vs. discrete BBNs is that it makes them more flexible with respect to modelling changes. For example when nodes are added or removed less parameters might need to be re-elicited from experts. This however does not mean that in general a re-elicitation would not be necessary.

One observation that calls the attention is the fact that when marginal distributions are very different across experts, the joint distribution obtained with the method for combination described in chapter 4 of this thesis with equal weights tends to 'fade away' the magnitude of the dependence even if individual experts think bivariate rank correlations are of the same sign and magnitude. A similar situation could be observed in a combination within the class of performance weight combinations. More research in this direction is advised.

References

K. Aas and D. Berg. Models for construction of multivariate dependence. Accepted for publication in European Journal of Finance, 2009.
K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2):182-198, 2009.
B. Ale, L. Bellamy, R. Cooke, L. Goossens, A. Hale, A. Roelen, and E. Smith. Towards a causal model for air transport safety an ongoing research project. Safety Science, 44(8):657-673, 2006.
B. Ale, L. Bellamy, R. d. Boom, J. Cooper, R. Cooke, L. Goossens, A. Hale, D. Kurowicka, O. Morales, A. Roelen, and J. Spouge. Further developments of a causal model for air transport safety (cats); building the mathematical heart. In ESREL., pages 1431-1439, 2007.
A. Aparicio, P. Martnez-Austria, A. Gitrn, and A. Ramrez. Floods in tabasco, mexico: a diagnosis and proposal for courses of action. Journal of Flood Risk Management, 2009.
G. A. Barnard and T. Bayes. Studies in the history of probability and statistics: Ix. thomas bayes's essay towards solving a problem in the doctrine of chances. Biometrika, 45(3/4):293-315, 1958. ISSN 00063444. URL http://www.jstor.org/stable/2333180.
M. Bartlett. Contingency table interactions. Journal of the Royal Statistical Society Supplement, (2):248-252, 1935.
T. Bedford and R. Cooke. Vines - a new graphical model for dependent random variables. Ann. of Stat., 30(4):1031-1068, 2002.
L. Beineke. Derived graphs with derived complements. In Recent Trends in Graph Theory: Proceedings of the First New York City Graph Theory Conference held on June 11, 12, and 13, 1970. Springer, 2006.
D. Bellhouse. The reverend thomas bayes, frs: A biography to celebrate the tercenary of his birth. Statistical Science, 19(1):3-43, 2004.
N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory: 1736-1936. Clarendon Press, New York, NY, USA, 1986. ISBN 0-198-53916-9.
A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Comparing fault trees and bayesian networks for dependability anlisis. In M. Felici, K. Kanoun, and A. Pasquini, editors, SAFECOMP'99, LNCS 1698, pages 310-322, 1999.
A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Improving the analysis of dependable systems by mapping fault trees into bayesian networks. Reliability Engineering 83 System Safety, 71:249-260, 2001.
C. Boutlier. The influence of influence diagrams on artificial intelligence. Decision Analysis, 2(4):229-232, 2005.

CAANL. Veiligheidsstatistieken burgerluchtvaart (civil aviation safety data) 19932007. Brochure, P.O. Box 90653, 2509 LR The Hague Netherlands, 2008.
J. Carrera-Hernández and S. Gaskin. The basin of mexico hydrogeological database (bmhdb): Implementation, queries and interaction with open source software. Environmental Modelling \& Software, 23(11-10):1271-1279, 2008.
A. Cayley. A theorem on trees. The Quarterly Journal of Pure and Applied Mathematics, 23:376-378, 1889.
L. Chollete, A. Heinen, and A. Valdesogo. Modeling international financial returns with a multivariate regimeswitching copula. Technical Report 4, Fall 2009. URL http://ideas.repec.org/a/oup/jfinec/v7y2009i4p437-480.html.
C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. Information Theory, IEEE Transactions on, 14(3):462-467, 1968.
G. Clemen and et al. Correlations and copulas for decision and risk analysis. Management Science, 45:208-224, 1999.
G. Clemen and et al. Assesing dependencies: Some experimental results. Management Science 2000 Informs, 46(8):1100-1115, August 2000.
R. Cooke. Experts in uncertainty. Oxford University Press, 1991.
R. Cooke. Markov and entropy properties of tree and vine-dependent variables. In Proceedings of the ASA Section on Bayesian Statistical Science,, 1997.
R. Cooke and L. Goossens. Procedures guide for structured expert judgment. Technical Report EUR18820, European Comission: Nuclear Science and Technology, Brussels-Luxemburg, July 1999.
R. Cooke and L. Goossens. Tu delft expert judgment data base. Reliability Engineering E System Safety, 93:657-674, 2008.
R. Cooke, D. Kurowicka, A. Hanea, O. Morales, B. Ababei, D.A. Ale, and A. Roelen. Continuous/discrete non parametric bayesian belief nets with unicorn and uninet. In T. Bedford, J. Quigley, L. Walls, and A. Babakalli, editors, Proceedings of the Mathematical Methods for Reliability conference, 2007.
R. Cowell, A. Dawid, S. Lauritzen, and S. D.J. Probabilistic Netwotks and Expert Systems. Statistics for Engineering and Information Science. Springer, 1999.
A. I. Dale. A history of inverse probability : from Thomas Bayes to Karl Pearson. Sources and studies in the history of mathematics and physical sciences. Springer, 2nd ed. edition, 1999.
J. N. Darroch, S. L. Lauritzen, and T. P. Speed. Markov fields and log-linear interaction models for contingency tables. The Annals of Statistics, 8(3):522-539, 1980. ISSN 00905364. URL http://www.jstor.org/stable/2240590.
F. N. David. Studies in the history of probability and statistics i. dicing and gaming (a note on the history of probability). Biometrika, 42(1/2):1-15, 1955. ISSN 00063444. URL http://www.jstor.org/stable/2333419.
D. Delgado-Hernández, O. Morales-Nápoles, D. De-León-Escobedo, J. RiveroSantana, D. Prez-Flores, and B. Pérez-Pliego. A model for earth dams' risk assessment. submitted to Journal of Geotechnical and Geoenvironmental Engineering, 2009.
R. Donnelly. Safe and secure: risk-based techniques for dam safety. International Water Power and Dam Construction, May 2006. ¡http://www.waterpowermagazine.com/story.asp?storyCode $=2040340$ ¿.
M. Emiroglu, A. Tuna, and A. Aislan. Development of an expert system for selection of dam type on alluvium foundations. Engineering with Computers, 18(1):24-37, 2002.

FAA. Faa aerospace forecasts fy 2009-2025. Brochure, 800 Independence Avenue, SW Washington, DC 20591, 2009.
J. Fauvel and P. Gerdes. African slave and calculating prodigy: Bicentenary of the death of thomas fuller. Historia Mathematica, (17):141-151, 1990.
FEMA. Federal guidelines for dam safety: Glossary of terms. Glossary of Terms FEMA 148, Federal Emergency Management Agency (FEMA), April 2004.

FEMA. The national dam safety program final report on coordination and cooperation with the european union on embankment failure analysis. REPORT FEMA 602, Federal Emergency Management Agency (FEMA), August 2007.

FEMA. Risk prioritization tool for dams users manual. Manual FEMA P-713CD, Federal Emergency Management Agency (FEMA), March 2008.
M. Foster, R. Fell, and M. . Spannagle. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5):1000-1024, 2000.
M. Frank. On the simultaneous associativity of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\mathrm{x}+\mathrm{y}-\mathrm{f}(\mathrm{x}, \mathrm{y})$. Aequationes Mathematicae, 19:194-226, 1979.
A. Hanea. Algorithms for Non-parametric Bayesian belief nets. PhD thesis, TU Delft, Delft, the Netherlands, 2008.
A. Hanea, D. Kurowicka, and R. Cooke. Hybrid method for quantifying and analyzing bayesian belief nets. Quality and reliability Engineering International, 22:709-729, 2006.
F. Harary. Some theorems and concepts of graph theory. In F. Harary, editor, A Seminar on Graph Theory, pages 1-12, 1967.
F. Harary. Graph Theory. Addison-Wesley, 1969.
F. Harary and E. Palmer. Graphical Enumeration. Academic Press, 1973.
R. Howard and J. Matheson. Influence diagrams (reprinted). Decision Analysis, 2(3):229-232, 1984/2005.

ICOLD. Dam failure statistical analysis. Bulletin 99, 1995.
I. Jagielska. Quantification of non-parametric continuous bbns with expert judgment. Master's thesis, Delft University of Technology, The Netherlands, July 2007.
H. Joe. Families of m-variate distributions with given margins and $m(m-1) / 2$ bivariate dependence parameters. Lecture Notes-Monograph Series, 28:120-141, 1996. ISSN 07492170. URL http://www.jstor.org/stable/4355888.
H. Joe. Dependence comparisons of vine copulae in four or more variables. In D. Kurowicka and H. Joe, editors, Dependence Modeling-Handbook on Vine Copulae, Dependence Modeling, Scheduled Fall 2010.
H. Joe, R. M. Cooke, and D. Kurowicka. Regular vines: Generation algorithm and number of equivalent classes. In D. Kurowicka and H. Joe, editors, Dependence Modeling-Handbook on Vine Copulae, Dependence Modeling, Scheduled Fall 2010.
V. Kasyanov and V. Evstigneev. Graph Theory for Programmers-Algorithms for Processing Trees. Kluwer Academic Publishers, 2000.
M. G. Kendall. Studies in the history of probability and statistics: Ii. the beginnings of a probability calculus. Biometrika, 43(1/2):1-14, 1956. ISSN 00063444. URL http://www.jstor.org/stable/2333573.
J. H. Kim and J. Pearl. A computational model for causal and diagnostic reasoning in inference systems. 1983.
O. Kolbjornsen and M. Stien. The d-vine creation of non-gaussian random fields. In GEOSTATS, 2008.
B. Kraan. Probabilistic Inversion in Uncertainty Analysis and Related Topics. PhD thesis, Delft University of Technology, 2002.
K. Krugła. Aviation risks with continuous/discrete non parametric bbn. Master’s thesis, Delft University of Technology, The Netherlands, July 2008.
D. Kurowicka and R. Cooke. Distribution-free continuous bayesian belief nets. In K.-M. S. Wilson A., Limnios N. and A. Y., editors, Modern Statistical and mathematical Methods in Reliability, pages 309-323, 2005.
D. Kurowicka and R. Cooke. Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, 2006.
S. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.
S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), 50(2):157-224, 1988. ISSN 00359246. URL http://www.jstor.org/stable/2345762.
D. Lewandowski. Generalized diagonal band copulas. Insurance: Mathematics and Economics, 37(1):49 - 67, 2005. ISSN 0167-6687. doi: DOI: 10.1016/j.insmatheco.2004.12.006. Papers presented at the DeMoSTAFI Conference, Qubec, 20-22 May 2004.
D. Lewandowski, R. M. Cooke, and R. J. D. Tebbens. Sample-based estimation of correlation ratio with polynomial approximation. ACM Trans. Model. Comput. Simul., 18(1):1-17, 2007. ISSN 1049-3301. doi: http://doi.acm.org/10.1145/1315575.1315578.
W. Mayeda and S. Seshu. Generation of trees without duplication. IEEE Transactions on Circuit Theory, 12:181-185, 1967.
A. Meeuwissen. Dependent Random Variables in Uncertainty Analysis. PhD thesis, Delft University of Technology, 1993.
A. Meeuwissen and R. Cooke. Tree dependent random variables. Technical Report 94-28, Delft University of Technology, Dept. Mathematics, 1994.
A. Min and C. Czado. Bayesian inference for multivariate copulas using pair copula constructions. Submitted for publication, 2008.
G. Minty. A simple algorithm for listing all the trees of a graph. IEEE Transactions on Circuit Theory, 12:120-120, 1965.
J. Moon. Various proofs of cayley's formula for counting trees. In F. Harary, editor, A Seminar on Graph Theory, pages 70-78, 1967.
O. Morales, D. Kurowicka, and A. Roelen. Eliciting conditional and unconditional rank correlations from conditional probabilities. Reliability Engineering 83 System Safety, 93(5):699 - 710, 2008. ISSN 0951-8320. doi: DOI: 10.1016/j.ress.2007.03.020. Expert Judgement.
O. Morales-Nápoles. Counting vines. In D. Kurowicka and H. Joe, editors, Dependence Modeling-Handbook on Vine Copulae, Dependence Modeling, Scheduled Fall 2010.
O. Morales-Nápoles and D. Delgado-Hernández. Quantification of a model for earth dams' risk assessment in the state of mexico. Article, TU DelftUniversidad Autónoma del Estado de México, 2009. (in preparation).
O. Morales-Nápoles, D. Kurowicka, R. Cooke, and D. Ababei. Continuous-discrete distribution free bayesian belief nets in aviation safety with UniNet. Technical report, TU Delft, 2007.
O. Morales-Nápoles, R. Cooke, and D. Kurowicka. Eemcs final report for the causal modelling for air transport safety (cats) project. Report, EEMCS-TU Delft, Delft Institute of Applied Mathematics, July 2008.
O. Morales-Nápoles, R. Cooke, and D. Kurowicka. About the number of vines and regular vines on n nodes. Submitted to Applied Discrete Mathematics, 2009a.
O. Morales-Nápoles, D. Kurowicka, R. Cooke, and G. van Baren. Expert elicitation methods of rank and conditional rank correlations: An example with human reliability models in the aviation industry. Submitted to RE $3 S S, 2009 \mathrm{~b}$.
H. Neils. Correlation, causation and wrigth's theory of "path coefficients". Genetics, 7:258273, 1922.
R. B. Nelsen. An Introduction to Copulas (Lecture Notes in Statistics). Springer, October 1998. ISBN 0387986235.

Next-Page-Software. UniSens sensitivity analysis documentation., 2009. doi: www.nextpagesoft.net.
A. O'Hagan. Research in elicitation. In U. Singh and D. Dey, editors, Bayesian Statistics and its applications, pages 375-382, Anamaya, New Delhi, 2005.
J. Pearl. Reverend bayes on inference engines: a distributed hierarchical approach. 1982.
J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. 1985.
J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29:241-288, 1986.
J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference. Morgan Kaufmann, September 1988.
J. Pearl. Belief networks revisited. Artificial Intelligence, 59:49-56, 1993.
J. Pearl. Influence diagrams- historical and personal perspectives. Decision Analysis, 2(4):232-234, 2005.
G. Prins. On the automorphism group of a tree. PhD thesis, University of Michigan, 1957.
V. H. Prüfer. Neuer beweis eines satzes über permutationen. Arch. Math. Phys., (27):742-744, 1918.
R. Read and R. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks, 5:678-692, 1975.
R. C. Read and R. J. Wilson. An Atlas of Graphs (Mathematics). Oxford University Press, 2005. ISBN 0198526504.
R. Robinson. Counting Unlabeled Acyclic Digraphs. In Combinatorial Mathematics V. Lecture Notes in Mathematics (Mathematics and Statistics). Springer Berlin / Heidelberg, November 1977. ISBN 978-3-540-08524-9. DOI 10.1007/BFb0069178.
A. Roelen, R. Wever, R. Cooke, R. Lopuhaä, A. Hale, and L. Goossens. Causal modelling of air safety. demonstration model. Technical Report NLR-CR-2002662, National Aerospace Laboratory, December 2002.
A. Roelen, G. van Baren, J. Smeltink, P. Lin, and O. Morales. A generic flight crew performance model for application in a causal model of air transport. Technical Report NLR-CR-2007-562, Nationaal Lucht- en Ruimtevaartlaboratorium (National Aerospace Laboratory NLR), 2007.
A. Roelen, B. van Doorn, J. Smeltink, M. Verbeek, and R. Wever. Quantification of event sequence diagrams for a causal risk model of commercial air transport. Report NLR-CR-2006-520, Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR., 2007.
A. Roelen, G. van Baren, P. Lin, O. Morales, R. Cooke, and D. Kurowicka. A generic air traffic controller performance model for application in a causal model of air transport. Technical Report NLR-CR-2007-593, Nationaal Luchten Ruimtevaartlaboratorium (National Aerospace Laboratory NLR), 2008a.
A. Roelen, G. van Baren, O. Morales, and K. Krugla. A generic maintenance technician performance model for application in causal model of air transport. Technical Report NLR-CR-2008-445, Nationaal Lucht- en Ruimtevaartlaboratorium (National Aerospace Laboratory NLR), 2008b.
R. Schachter and C. Kenley. Gaussian influence diagrams. Managment Science, 35(5):527-550, 1989.
E. Sheinerman. Matgraph: A toolbox for graph theory. Johns Hopkins University, 2009.
O. B. Sheynin. Studies in the history of probability and statistics. xxi.: On the early history of the law of large numbers. Biometrika, 55(3):459-467, 1968. ISSN 00063444. URL http://www.jstor.org/stable/2334251.
A. Shioura, A. Tamura, and T. Uno. An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM Journal on Computing, 26:678692, 1994.
G. Singuran. System level risk analysis of new merging and spacing protocols. Master's thesis, Delft University of Technology, The Netherlands, July 2008.
M. Smith. Generating spanning trees. Master's thesis, University of Victoria, 1997.
S. B. Smith. The Great Mental Calculators. The Psycology, Methods, and Lives of Calculating Prodigies, Past and Present. Columbia University Press, 1983.
T. P. Speed and H. T. Kiiveri. Gaussian markov distributions over finite graphs. The Annals of Statistics, 14(1):138-150, 1986. ISSN 00905364. URL http://www.jstor.org/stable/2241271.
J. Spouge and G. Vernon. Fault tree modelling for the causal model of air ttransport safety- final report. Report DNV PROJECT NO. C21004587/3, DET NORSKE VERITAS., REVISION 1-28 JULY 2008.

SRH. Dams built in Mexico (In Spanish: Presas Construidas en Mxico). Mxico, 1976.
S. M. Stigler. Who discovered bayes's theorem? The American Statistician, 37(4):290-296, 1983. ISSN 00031305. URL http://www.jstor.org/stable/2682766.
Y. Tong. The multivariate Normal Distribution. Series in Statistics. Springer, 1990.
W. Vesely, F. Goldberg, N. Roberts, and D. Haasl. Fault tree handbook. Technical Report NUREG-0492, U.S. Nuclear regulatory Commission, 1981.
T. Wahl. Prediction of embankment dam breach parameters. Report DSO-98-004, Dam Safety Office, US, 1998.
J. Whittaker. Graphical Models in Applied Multivariate Statistics (Wiley Series in Probability ES Statistics). John Wiley \& Sons, March 1990. ISBN 0471917508.
S. Wright. Correlation and causation. Journal of Agricultural Research, XX(7): 557-585, 1921.
G. Yule and M. Kendall. An introduction to the theory of statistics. Charles Griffin \& Co., Belmont, California., $14^{\text {th }}$ edition, 1965.

APPENDIX A

Regular Vines Catalogue.

Lets go now from the zoo of reality to the zoo of mythologies, the garden whose fauna is not of lions but of sphinxes, griffins and centaurs. The population of the second garden should exceed that of the first; since a monster is no other thing than a combination of elements of real beings and the possibilities of the combinatorial art border with the infinite.

Manual de zoología fantástica
J.L. Borges

Catalogues of trees on at most twelve nodes have been presented before. In Moon [1967] pictures for trees with at most five nodes are presented. In Kasyanov and Evstigneev [2000] a catalogue of tress with at most 8 nodes may be found ${ }^{1}$. Harary [1969] presents trees on at most 10 nodes 2. The 987 trees on at most 12 vertices (together with about 10,000 other graphs and many tables of interest for graph theorists) may be found in Read and Wilson [2005].

Tables A. 1 to A. 4 presents the 48 trees on 8 nodes or less. These trees will be used to present the tree sequences of tree-equivalent regular vines on at most 8 nodes. The purpose of this catalogue is to classify regular vines according to their graphical structure. we hope that this catalogue will help researchers interested in regular vines with their investigations. Like the authors of [Read and Wilson, 2005] this author has "tried that the data is free of errors, but accept[s] no responsibility for any loss of time, money, patience or temper occurring as a result of any mistakes that may have crept into the pages of this [catalogue].

[^38]Furthermore, [the author] wishes it to be understood that any mistakes are entirely the fault of the other author."

Vines will be presented by pictures in next section and the names of the trees from table A. 1 and A. 2 used in each level of each regular vine in tables A. 8 to A. 11 will be displayed in order after the + sign. There is one tree-equivalent regular vine on 3 nodes $\mathrm{V} 3=\mathrm{T} 3+\mathrm{T} 2+\mathrm{T} 1$. Every regular vine on n nodes for $n>3$ must necessarily use V3 in its construction. For this reason T3 3 T2 +T 1 will be omitted when indicating the sequence of trees used in the construction of different tree-equivalent regular vines. For example the D-vine on 4 nodes will be $\mathrm{V} 4=\mathrm{T} 4+\mathrm{V} 3=\mathrm{T} 4$. Next the catalogue is presented.

Prüfer code example	T1	$\mathrm{T} 2$	$\stackrel{\stackrel{~}{~}}{\mathrm{~T} 3}$	$\begin{gathered} 12 \\ \mathrm{~T} 4 \end{gathered}$	11 T5	$\begin{gathered} 123 \\ \vdots \\ \text { T6 } \end{gathered}$
\# Labeled Trees	1	1	3	12	4	60
\# Regular Vines per labeled tree	1	1	1	1	3	1
\# Tree-Equivalent Reg. Vines / tree	1	1	1	1	1	1
Prüfer code example	112	111	1234	1123	1213	2244
			$\$$			
		0			6	
	T7	T8	T9	T10	T11	T12
\# Labeled Trees	60	5	360	360	360	90
\# Regular Vines per labeled tree	5	24	1	7	11	48
\# Tree-Equivalent Reg. Vines / tree	2	2	1	3	3	5
Prüfer code example	1112	1111	12345	12344	12234	12324
				!	i	
	-		\bullet	!	8	\emptyset
	d.	.8.		d	ϕ	δ
	T13	T14	T15	T16	T17	T18
\# Labeled Trees	120	6	2,520	2,520	5,040	840
\# Regular Vines per labeled tree	75	480	1	9	19	33
\# Tree-Equivalent Reg. Vines / tree	5	5	1	4	7	3

Table A.1: Trees with at most 7 nodes.

| Prüfer code |
| :--- | :---: | :---: | :---: | :---: |
| example |

Table A.2: Trees with at most 7 nodes (Continuation).

Prüfer code example	123456	123455	122345	123345	123435	112324
	\#					

Table A.3: Trees with at most 8 nodes.

| Prüfer code |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| example |

Table A.4: Trees with at most 8 nodes (Continuation).

| Prüfer code |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| example | | 2345678 |
| :---: |
| |
| |

Table A.5: Trees with 9 nodes.

| Prüfer code |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| example | 2345448 | 2343638 |
| :---: |
| |

Table A.6: Trees with 9 nodes (Continuation).

Prüfer code				
example	2225666	2333666	2245555	2333377
	\# Labeled Trees	5,040	30,240	7,560

Table A.7: Trees with 9 nodes (Continuation).

Table A.8: Tree-equivalent regular vines with at most 6 nodes.

Table A.9: Tree-equivalent regular vines with at most 6 nodes (Continuation).

Tree sequence \& valent Labeled Regular Vines		Tree sequence \&	
$\mathrm{V} 33=\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	2,520	$\mathrm{V} 68=\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	30,240
$\mathrm{V} 34=\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 69=\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	15,120
$\mathrm{V} 35=\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 70=\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	45,360
$\mathrm{V} 36=\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	5,040	$\mathrm{V} 71=\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	68,040
$\mathrm{V} 37=\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	7,560	$\mathrm{V} 72=\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	30,240
$\mathrm{V} 38=\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 73=\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	30,240
$\mathrm{V} 39=\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	10,080	$\mathrm{V} 74=\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 40=\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	10,080	$\mathrm{V} 75=\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 41=\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	15,120	$\mathrm{V} 76=\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	5,040
$\mathrm{V} 42=\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 77=\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	7,560
$\mathrm{V} 43=\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	20,160	$\mathrm{V} 78=\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 44=\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	30,240	$\mathrm{V} 79=\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	20,160
$\mathrm{V} 45=\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	2,520	$\mathrm{V} 80=\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	30,240
$\mathrm{V} 46=\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	10,080	$\mathrm{V} 81=\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 47=\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	15,120	$\mathrm{V} 82=\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	15,120
$\mathrm{V} 48=\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	2,520	$\mathrm{V} 83=\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	22,680
$\mathrm{V} 49=\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 84=\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	10,080
$\mathrm{V} 50=\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	5,040	$\mathrm{V} 85=\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	10,080
$\mathrm{V} 51=\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	7,560	$\mathrm{V} 86=\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	2,520
$\mathrm{V} 52=\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	2,520	$\mathrm{V} 87=\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	10,080
$\mathrm{V} 53=\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	5,040	$\mathrm{V} 88=\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	10,080
$\mathrm{V} 54=\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	7,560	$\mathrm{V} 89=\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	15,120
$\mathrm{V} 55=\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	7,560	$\mathrm{V} 90=\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	7,560
$\mathrm{V} 56=\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	7,560	$\mathrm{V} 91=\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	30,240
$\mathrm{V} 57=\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 92=\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	45,360
$\mathrm{V} 58=\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	15,120	$\mathrm{V} 93=\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	10,080
$\mathrm{V} 59=\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	15,120	$\mathrm{V} 94=\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	20,160
$\mathrm{V} 60=\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	22,680	$\mathrm{V} 95=\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	30,240
$\mathrm{V} 61=\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 96=\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	30,240
$\mathrm{V} 62=\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	20,160	$\mathrm{V} 97=\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	30,240
$\mathrm{V} 63=\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	30,240	$\mathrm{V} 98=\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	15,120
$\mathrm{V} 64=\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	10,080	$\mathrm{V} 99=\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	45,360
$\mathrm{V} 65=\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	20,160	$\mathrm{V} 100=\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	68,040
$\mathrm{V} 66=\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	30,240	$\mathrm{V} 101=\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	30,240
$\mathrm{V} 67=\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	30,240	$\mathrm{V} 102=\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	30,240

Table A.10: Tree-equivalent regular vines with 7 nodes.

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
V103 = T23+T9+T6+T4	5,040	$\mathrm{V} 136=\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	30,240
$\mathrm{V} 104=\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	10,080	$\mathrm{V} 137=\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 105=\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	10,080	$\mathrm{V} 138=\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	60,480
$\mathrm{V} 106=\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	15,120	$\mathrm{V} 139=\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	90,720
$\mathrm{V} 107=\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 140=\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	40,320
$\mathrm{V} 108=\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	20,160	$\mathrm{V} 141=\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	40,320
$\mathrm{V} 109=\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	30,240	$\mathrm{V} 142=\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	12,600
$\mathrm{V} 110=\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 143=\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	25,200
$\mathrm{V} 111=\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	10,080	$\mathrm{V} 144=\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	37,800
$\mathrm{V} 112=\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	15,120	$\mathrm{V} 145=\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	12,600
$\mathrm{V} 113=\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	15,120	$\mathrm{V} 146=\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	12,600
$\mathrm{V} 114=\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	15,120	$\mathrm{V} 147=\mathrm{T} 25+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	2,520
$\mathrm{V} 115=\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 148=\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 116=\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	60,480	$\mathrm{V} 149=\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	5,040
$\mathrm{V} 117=\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	90,720	$\mathrm{V} 150=\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	7,560
$\mathrm{V} 118=\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	40,320	$\mathrm{V} 151=\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	2,520
$\mathrm{V} 119=\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	40,320	$\mathrm{V} 152=\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	10,080
$\mathrm{V} 120=\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	25,200	$\mathrm{V} 153=\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	15,120
$\mathrm{V} 121=\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	50,400	$\mathrm{V} 154=\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	2,520
$\mathrm{V} 122=\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	75,600	$\mathrm{V} 155=\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	5,040
$\mathrm{V} 123=\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	25,200	$\mathrm{V} 156=\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	7,560
$\mathrm{V} 124=\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	25,200	$\mathrm{V} 157=\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	7,560
$\mathrm{V} 125=\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	5,040	$\mathrm{V} 158=\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	7,560
$\mathrm{V} 126=\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	15,120	$\mathrm{V} 159=\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	5,040
$\mathrm{V} 127=\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	15,120	$\mathrm{V} 160=\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	15,120
$\mathrm{V} 128=\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	22,680	$\mathrm{V} 161=\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	22,680
$\mathrm{V} 129=\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	7,560	$\mathrm{V} 162=\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	10,080
$\mathrm{V} 130=\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	30,240	$\mathrm{V} 163=\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	10,080
$\mathrm{V} 131=\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	45,360	$\mathrm{V} 164=\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	2,520
$\mathrm{V} 132=\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	10,080	$\mathrm{V} 165=\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	5,040
$\mathrm{V} 133=\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	20,160	$\mathrm{V} 166=\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	7,560
$\mathrm{V} 134=\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	30,240	$\mathrm{V} 167=\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	2,520
$\mathrm{V} 135=\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	30,240	$\mathrm{V} 168=\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	2,520

Table A.11: Tree-equivalent regular vines with 7 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 169=\mathrm{T} 26+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 204=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 170=\mathrm{T} 27+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 205=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480
$\mathrm{V} 171=\mathrm{T} 27+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 206=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 172=\mathrm{T} 27+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6$	40,320	$\mathrm{V} 207=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 173=\mathrm{T} 27+$	40,320	$\mathrm{V} 208=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 174=\mathrm{T} 27+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 209=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T}$	120,960
$\mathrm{V} 175=\mathrm{T} 28+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 210=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 176=\mathrm{T} 28+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 211=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 177=\mathrm{T} 28+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 212=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 178=\mathrm{T} 28+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 213=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 179=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 214=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 180=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 215=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 181=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 216=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 182=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 217=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 183=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 218=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 184=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 219=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 185=\mathrm{T} 28+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 220=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 186=\mathrm{T} 28+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 221=\mathrm{T} 31+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 187=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 222=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 188=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 223=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 189=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 224=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 190=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 225=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 191=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 226=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 192=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 227=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 193=\mathrm{T} 29+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 228=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 194=\mathrm{T} 29+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 229=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 195=\mathrm{T} 30+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 230=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 196=\mathrm{T} 30+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 231=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 197=\mathrm{T} 30+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 232=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 198=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 233=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 199=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 234=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 200=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 235=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 201=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 236=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 202=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 237=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 203=\mathrm{T} 30+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 238=\mathrm{T} 31+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920

Table A.12: Tree-equivalent regular vines with 8 nodes.

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 239=\mathrm{T} 31+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 274=\mathrm{T} 33+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 240=\mathrm{T} 31+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 275=\mathrm{T} 33+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 241=\mathrm{T} 31+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 276=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 242=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 277=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 243=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 11+$	241,920	$\mathrm{V} 278=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 244=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 279=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 245=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 280=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 246=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 281=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 247=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 282=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 248=\mathrm{T} 31+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 283=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 249=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 284=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 250=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 285=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 251=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 286=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 252=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 287=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 253=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 288=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 254=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 289=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 255=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 290=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 256=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	60,480	$\mathrm{V} 291=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 257=\mathrm{T} 32+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	60,480	$\mathrm{V} 292=\mathrm{T} 33+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 258=\mathrm{T} 32+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 293=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 259=\mathrm{T} 32+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 294=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 260=\mathrm{T} 32+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 295=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 261=\mathrm{T} 32+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 296=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 262=\mathrm{T} 32+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 297=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 263=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 298=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 264=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 299=\mathrm{T} 33+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 265=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 300=\mathrm{T} 33+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 266=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 301=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 267=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 302=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 268=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 303=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 269=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 304=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 270=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 305=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 271=\mathrm{T} 33+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 306=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 272=\mathrm{T} 33+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 307=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 273=\mathrm{T} 33+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 308=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760

Table A.13: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 309=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 344=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 310=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 345=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 311=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 346=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 312=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 347=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 313=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 348=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 314=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 349=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 315=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 350=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 316=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 351=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 317=\mathrm{T} 34+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 352=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 318=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 353=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 319=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 354=\mathrm{T} 34+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 320=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 355=\mathrm{T} 34+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 321=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 356=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 322=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 357=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 323=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 358=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 324=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 359=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 325=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 360=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 326=\mathrm{T} 34+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 361=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 327=\mathrm{T} 34+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 362=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 328=\mathrm{T} 34+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 363=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 329=\mathrm{T} 34+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 364=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 330=\mathrm{T} 34+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 365=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 331=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 366=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 332=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 367=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 333=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 368=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 334=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 369=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 335=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 370=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 336=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 371=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 337=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 372=\mathrm{T} 35+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 338=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 373=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 339=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 374=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 340=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 375=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 341=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 376=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 342=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 377=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 343=\mathrm{T} 34+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 378=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640

Table A.14: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 379=\mathrm{T} 35+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 414=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	604,800
$\mathrm{V} 380=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 415=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	604,800
$\mathrm{V} 381=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 416=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,814,400
$\mathrm{V} 382=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880	$\mathrm{V} 417=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	1,209,600
$\mathrm{V} 383=\mathrm{T} 35+\mathrm{T} 21+$	44,320	4	604,800
$\mathrm{V} 384=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 419=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 385=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 420=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 386=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 421=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 387=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 422=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 388=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 423=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 389=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 424=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 390=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 425=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 391=\mathrm{T} 35+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 426=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 392=\mathrm{T} 35+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 427=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 393=\mathrm{T} 35+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,	$\mathrm{V} 428=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 394=\mathrm{T} 35+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 429=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 395=\mathrm{T} 35+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 430=\mathrm{T} 36+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 396=\mathrm{T} 35+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 431=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 397=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 432=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 398=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 433=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 399=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 434=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 400=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	362,880	$\mathrm{V} 435=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 401=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	362,880	$\mathrm{V} 436=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 402=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 437=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 403=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 438=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 404=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 439=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 405=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 440=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 406=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 441=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 407=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 442=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 408=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,451,520	$\mathrm{V} 443=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 409=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280	$\mathrm{V} 444=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 410=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840	$\mathrm{V} 445=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 411=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 446=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 412=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 447=\mathrm{T} 36+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 413=\mathrm{T} 36+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 448=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480

Table A.15: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 449=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 484=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 450=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 485=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 451=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 486=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 452=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 487=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 453=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7$	40,320	$\mathrm{V} 488=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 454=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$		V	362,880
$\mathrm{V} 455=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$		$\mathrm{V} 490=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 456=\mathrm{T} 36+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	60,480	$\mathrm{V} 491=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 457=\mathrm{T} 36+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 492=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 458=\mathrm{T} 36+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 493=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760
$\mathrm{V} 459=\mathrm{T} 36+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 494=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640
$\mathrm{V} 460=\mathrm{T} 36+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 495=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 461=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 496=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 462=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 497=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 463=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$		$\mathrm{V} 498=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 464=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 499=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 465=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 500=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 466=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 501=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 467=\mathrm{T} 36+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 502=\mathrm{T} 37+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 468=\mathrm{T} 36+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 503=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 469=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 504=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 470=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 505=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 471=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$		$\mathrm{V} 506=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 472=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 507=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 473=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 508=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T}$	161,280
$\mathrm{V} 474=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 509=\mathrm{T} 37+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 475=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 510=\mathrm{T} 37+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 476=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 511=\mathrm{T} 37+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 477=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 512=\mathrm{T} 37+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 478=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 513=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,088,640
$\mathrm{V} 479=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 514=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	725,760
$\mathrm{V} 480=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 515=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	362,880
$\mathrm{V} 481=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 516=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,088,640
$\mathrm{V} 482=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 517=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,088,640
$\mathrm{V} 483=\mathrm{T} 37+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 518=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	725,760

Table A.16: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
$519=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 554=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T}$	241,920
$\mathrm{V} 520=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 555=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 521=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	362,880	$\mathrm{V} 556=\mathrm{T} 38+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T}$	120,960
$\mathrm{V} 522=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	2,903,040	$\mathrm{V} 557=\mathrm{T} 38+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 523=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	2,903,040	$\mathrm{V} 558=\mathrm{T} 38+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 524=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	4,354,560	$\mathrm{V} 559=\mathrm{T} 38+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T}$	181,440
$\mathrm{V} 525=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	6,531,840	$\mathrm{V} 560=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+$	645,120
$\mathrm{V} 526=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	1,451,520	$\mathrm{V} 561=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 1$	967,680
$\mathrm{V} 527=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,451,520	$\mathrm{V} 562=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 528=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	2,177,280	$\mathrm{V} 563=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 529=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	362,880	$\mathrm{V} 564=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 10$	725,760
$\mathrm{V} 530=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	1,814,400	$\mathrm{V} 565=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 531=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	1,814,400	$\mathrm{V} 566=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 532=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	5,443,200	$\mathrm{V} 567=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T}$	1,451,520
$\mathrm{V} 533=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	3,628,800	$\mathrm{V} 568=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280
$\mathrm{V} 534=\mathrm{T} 38+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	1,814,400	$\mathrm{V} 569=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 535=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 570=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T}$	967,680
$\mathrm{V} 536=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 571=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+$	967,680
$\mathrm{V} 537=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 572=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680
$\mathrm{V} 538=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 573=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 12+$	645,120
$\mathrm{V} 539=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 574=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6$	322,560
$\mathrm{V} 540=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 575=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 541=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 576=\mathrm{T} 38+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	67,680
$\mathrm{V} 542=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 577=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 543=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 578=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 544=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 579=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 545=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 580=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T}$	362,880
$\mathrm{V} 546=\mathrm{T} 38+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 581=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 547=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 582=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 548=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 583=\mathrm{T} 38+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 549=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 584=\mathrm{T} 38+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 550=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 585=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280
$\mathrm{V} 551=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 586=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,451,520
$\mathrm{V} 552=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 587=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 553=\mathrm{T} 38+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 588=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	967,680

Table A.17: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$589=$ T38+T22+T13+T8+T4	967,680	$\mathrm{V} 624=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,451,520
$\mathrm{V} 590=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 625=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	2,177,280
$\mathrm{V} 591=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 626=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 592=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560	$\mathrm{V} 627=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640
$\mathrm{V} 593=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 628=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640
$\mathrm{V} 594=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 629=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 595=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 630=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 596=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 631=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 597=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 632=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 598=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	322,560	$\mathrm{V} 633=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 599=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 634=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 600=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 635=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 601=\mathrm{T} 38+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 636=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 602=\mathrm{T} 38+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 637=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 603=\mathrm{T} 38+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 638=\mathrm{T} 39+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 604=\mathrm{T} 38+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 639=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 605=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	604,800	$\mathrm{V} 640=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 606=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	604,800	$\mathrm{V} 641=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T}$	40,320
$\mathrm{V} 607=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,814,400	$\mathrm{V} 642=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 608=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	1,209,600	$\mathrm{V} 643=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 609=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 644=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40
$\mathrm{V} 610=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	4,354,560	$\mathrm{V} 645=\mathrm{T} 39+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 611=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	2,903,040	$\mathrm{V} 646=\mathrm{T} 39+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 612=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	967,680	$\mathrm{V} 647=\mathrm{T} 39+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	
$\mathrm{V} 613=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,935,360	$\mathrm{V} 648=\mathrm{T} 39+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 614=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,935,360	$\mathrm{V} 649=\mathrm{T} 39+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 615=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 650=\mathrm{T} 39+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 616=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 651=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640
$\mathrm{V} 617=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	483,840	$\mathrm{V} 652=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760
$\mathrm{V} 618=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,451,520	$\mathrm{V} 653=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 619=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,451,520	$\mathrm{V} 654=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 620=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	725,760	$\mathrm{V} 655=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 621=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 656=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 622=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 657=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 623=\mathrm{T} 38+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	362,880	$\mathrm{V} 658=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280

Table A.18: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$659=$ T40+T22+T12+T8+T5	483,840	$\mathrm{V} 694=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 660=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 695=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 661=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 696=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 662=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 697=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 663=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 698=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 664=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 699=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 665=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 700=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 666=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 701=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 667=\mathrm{T} 40+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 702=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 668=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 703=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 669=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 704=\mathrm{T} 40+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 670=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 705=\mathrm{T} 40+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 671=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 706=\mathrm{T} 40+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 672=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 707=\mathrm{T} 40+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 673=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 708=\mathrm{T} 40+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 674=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 709=\mathrm{T} 40+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 675=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 710=\mathrm{T} 40+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 676=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 711=\mathrm{T} 40+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 677=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 712=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560
$\mathrm{V} 678=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 713=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560
$\mathrm{V} 679=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 714=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 680=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 33+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 715=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 681=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 716=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 682=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 717=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 683=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 718=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 684=\mathrm{T} 40+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 719=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 685=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 720=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 686=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 721=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 687=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 722=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 688=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 723=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 689=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 724=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	201,600
$\mathrm{V} 690=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 725=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	201,600
$\mathrm{V} 691=\mathrm{T} 40+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 726=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	604,800
$\mathrm{V} 692=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 727=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 693=\mathrm{T} 40+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 728=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	201,600

Table A.19: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 729=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 764=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640
$\mathrm{V} 730=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 765=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640
$\mathrm{V} 731=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 766=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 732=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	120,960	$\mathrm{V} 767=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 733=\mathrm{T} 41+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	120,960	$\mathrm{V} 768=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 734=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 769=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 735=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 770=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 736=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 771=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 737=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 772=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 738=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 773=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 739=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 774=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 740=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 775=\mathrm{T} 41+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 741=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880	$\mathrm{V} 776=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 742=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320	$\mathrm{V} 777=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 743=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 778=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 744=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 779=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 745=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 780=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 746=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 781=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 747=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 782=\mathrm{T} 41+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 748=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 783=\mathrm{T} 41+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 749=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 784=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	645,120
$\mathrm{V} 750=\mathrm{T} 41+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 785=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	645,120
$\mathrm{V} 751=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 786=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	967,680
$\mathrm{V} 752=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 787=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,451,520
$\mathrm{V} 753=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 788=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 754=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 789=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 755=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 790=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 756=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 791=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 757=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 792=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 758=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	120,960	$\mathrm{V} 793=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 759=\mathrm{T} 41+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	120,960	$\mathrm{V} 794=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 760=\mathrm{T} 41+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 795=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 761=\mathrm{T} 41+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 796=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	403,200
$\mathrm{V} 762=\mathrm{T} 41+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 797=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	403,200
$\mathrm{V} 763=\mathrm{T} 41+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 798=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,209,600

Table A.20: Tree-equivalent regular vines with 8 nodes (Continuation).

 \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 799=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	806,400	$\mathrm{V} 834=\mathrm{T} 42+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 800=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	403,200	$\mathrm{V} 835=\mathrm{T} 42+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 801=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 836=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	403,200
4	161,280	T4	403,200
$\mathrm{V} 803=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	5	1,209,600
$\mathrm{V} 804=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 839=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 805=\mathrm{T} 42+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 840=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	403,200
$\mathrm{V} 806=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 841=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,903,040
$\mathrm{V} 807=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 842=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,935,360
$\mathrm{V} 808=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 843=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	645,120
$\mathrm{V} 809=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	544,320	$\mathrm{V} 844=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,290,240
$\mathrm{V} 810=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	32,880	$\mathrm{V} 845=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,290,240
$\mathrm{V} 811=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$		$\mathrm{V} 846=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	
$\mathrm{V} 812=\mathrm{T} 42+\mathrm{T} 20+$	120,960	$\mathrm{V} 847=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120
$\mathrm{V} 813=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,088,640	$\mathrm{V} 848=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 814=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,632,960	$\mathrm{V} 849=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 815=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	362,880	$\mathrm{V} 850=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680
$\mathrm{V} 816=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	725,760	$\mathrm{V} 851=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 817=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	725,760	$\mathrm{V} 852=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 818=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 853=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	25,760
$\mathrm{V} 819=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 854=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 820=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 855=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680
$\mathrm{V} 821=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	725,760	$\mathrm{V} 856=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520
$\mathrm{V} 822=\mathrm{T} 42+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	725,760	$\mathrm{V} 857=\mathrm{T} 42+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 823=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 858=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,451,520
$\mathrm{V} 824=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 859=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280
$\mathrm{V} 825=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 860=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 826=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 861=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 827=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 862=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	967,680
$\mathrm{V} 828=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 863=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 829=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+$		$\mathrm{V} 864=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 830=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 865=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 831=\mathrm{T} 42+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 866=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680
$\mathrm{V} 832=\mathrm{T} 42+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 867=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120
$\mathrm{V} 833=\mathrm{T} 42+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 868=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560

Table A.21: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 869=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 904=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	403,200
$\mathrm{V} 870=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 905=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	604,800
$\mathrm{V} 871=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 906=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	604,800
$872=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 907=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 873=\mathrm{T} 42+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 908=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	604,800
	80,640	V900 - 143	201,600
$\mathrm{V} 875=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 910=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 876=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 911=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	604,800
$\mathrm{V} 877=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 912=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	403,200
$\mathrm{V} 878=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 913=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,209,600
$\mathrm{V} 879=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 914=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 880=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 915=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 881=\mathrm{T} 42+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 916=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 882=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$		V91	1,935,360
$\mathrm{V} 883=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$		$\mathrm{V} 918=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,903,040
$\mathrm{V} 884=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 13$	120,960	$\mathrm{V} 919=\mathrm{T} 43+$	645,120
$\mathrm{V} 885=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 920=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,290,240
$\mathrm{V} 886=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 921=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,290,240
$\mathrm{V} 887=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 922=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 888=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 923=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 889=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 924=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 890=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 925=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680
$\mathrm{V} 891=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$		$\mathrm{V} 926=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120
$\mathrm{V} 892=\mathrm{T} 42+\mathrm{T} 21$		$\mathrm{V} 927=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 893=\mathrm{T} 42+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 928=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 894=\mathrm{T} 42+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 929=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680
$\mathrm{V} 895=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	201,600	$\mathrm{V} 930=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680
$\mathrm{V} 896=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	201,600	$\mathrm{V} 931=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520
$\mathrm{V} 897=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	604,800	$\mathrm{V} 932=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 898=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	403,200	$\mathrm{V} 933=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 899=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	201,600	$\mathrm{V} 934=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	403,200
$\mathrm{V} 900=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	806,400	$\mathrm{V} 935=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	403,200
$\mathrm{V} 901=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	806,400	$\mathrm{V} 936=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,209,600
$\mathrm{V} 902=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,814,400	$\mathrm{V} 937=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 903=\mathrm{T} 43+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,209,600	$\mathrm{V} 938=\mathrm{T} 43+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	403,200

Table A.22: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 939=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 974=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760
$\mathrm{V} 940=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 975=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 941=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 976=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 942=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	120,960	$\mathrm{V} 977=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 943=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	120,960	V978 =	161,280
$\mathrm{V} 944=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 979=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 945=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 980=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 946=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 981=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 947=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 982=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 948=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560	$\mathrm{V} 983=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 949=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560	$\mathrm{V} 984=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 12$	161,280
$\mathrm{V} 950=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 985=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8$	483,840
$\mathrm{V} 951=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 986=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 952=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 987=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 953=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 988=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 954=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 989=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 955=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 990=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 956=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	201,600	$\mathrm{V} 991=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 957=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	201,600	$\mathrm{V} 992=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 958=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	604,800	$\mathrm{V} 993=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 959=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	403,200	$\mathrm{V} 994=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 960=\mathrm{T} 43+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	201,600	$\mathrm{V} 995=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 961=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 996=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 962=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 997=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 963=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 998=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 964=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 999=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 965=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1000=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 966=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1001=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 967=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1002=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 968=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1003=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 969=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1004=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 970=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1005=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 971=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640	$\mathrm{V} 1006=\mathrm{T} 43+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 972=\mathrm{T} 43+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640	$\mathrm{V} 1007=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 973=\mathrm{T} 43+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 1008=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640

Table A.23: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1009=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 1044=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1010=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1045=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	403,200
$\mathrm{V} 1011=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1046=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	403,200
$\mathrm{V} 1012=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1047=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,209,600
$\mathrm{V} 1013=\mathrm{T} 43+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T}$	40,320	$\mathrm{V} 1048=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 1014=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 12+$		$\mathrm{V} 1049=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	03,200
$\mathrm{V} 1015=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$		$\mathrm{V} 1050=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	725,760
$\mathrm{V} 1016=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1051=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	725,760
$\mathrm{V} 1017=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1052=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1018=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1053=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1019=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1054=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1020=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1055=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1021=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1056=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1022=\mathrm{T} 43+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1057=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 1023=\mathrm{T} 43+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1058=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,935,360
$\mathrm{V} 1024=\mathrm{T} 43+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1059=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,935,360
$\mathrm{V} 1025=\mathrm{T} 43+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1060=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	2,903,040
$\mathrm{V} 1026=\mathrm{T} 43+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1061=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	4,354,560
$\mathrm{V} 1027=\mathrm{T} 43+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1062=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	967,680
$\mathrm{V} 1028=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,290,240	$\mathrm{V} 1063=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680
$\mathrm{V} 1029=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,290,240	$\mathrm{V} 1064=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520
$\mathrm{V} 1030=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,903,040	$\mathrm{V} 1065=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1031=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,935,360	$\mathrm{V} 1066=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1032=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	645,120	1067	1,209,600
$\mathrm{V} 1033=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 1068=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	1,209,600
$\mathrm{V} 1034=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 1069=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	3,628,800
$\mathrm{V} 1035=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 1070=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	2,419,200
$\mathrm{V} 1036=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 1071=\mathrm{T} 44+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	1,209,600
$\mathrm{V} 1037=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560	$\mathrm{V} 1072=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 1038=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1073=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 1039=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1074=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1040=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840	$\mathrm{V} 1075=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1041=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 1076=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1042=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 1077=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1043=\mathrm{T} 44+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1078=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960

Table A.24: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \& \# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1079=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880	$\mathrm{V} 1114=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 1080=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320	$\mathrm{V} 1115=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	403,200
$\mathrm{V} 1081=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1116=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,209,600
$\mathrm{V} 1082=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+$	241,920	$\mathrm{V} 1117=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,209,600
$\mathrm{V} 1083=\mathrm{T} 44+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+$	241,920	$\mathrm{V} 1118=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1084=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	806,400	$\mathrm{V} 1119=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1085=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1120=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1086=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	201,600	$\mathrm{V} 1121=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1087=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	907,200	$\mathrm{V} 1122=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1088=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	604,800	$\mathrm{V} 1123=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1089=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 1124=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1090=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	201,600	$\mathrm{V} 1125=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 1091=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,814,400	$\mathrm{V} 1126=\mathrm{T} 44+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 1092=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,721,600	$\mathrm{V} 1127=\mathrm{T} 44+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1093=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 1128=\mathrm{T} 44+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40
$\mathrm{V} 1094=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1129=\mathrm{T} 44+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1095=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1130=\mathrm{T} 44+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1096=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1131=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1097=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	806,400	$\mathrm{V} 1132=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1098=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	403,200	$\mathrm{V} 1133=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1099=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1134=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1100=\mathrm{T} 44+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1135=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1101=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$		$\mathrm{V} 1136=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1102=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1137=\mathrm{T} 44+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1103=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	302,400	$\mathrm{V} 1138=\mathrm{T} 44+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480
$\mathrm{V} 1104=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	100,800	$\mathrm{V} 1139=\mathrm{T} 44+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1105=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	604,800	$\mathrm{V} 1140=\mathrm{T} 44+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1106=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	403,200	$\mathrm{V} 1141=\mathrm{T} 44+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 1107=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	403,200	$\mathrm{V} 1142=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	100,800
$\mathrm{V} 1108=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,721,600	$\mathrm{V} 1143=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	100,800
$\mathrm{V} 1109=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,814,400	$\mathrm{V} 1144=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	302,400
$\mathrm{V} 1110=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 1145=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	201,600
$\mathrm{V} 1111=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1146=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	100,800
$\mathrm{V} 1112=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1147=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1113=\mathrm{T} 44+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1148=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840

Table A.25: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1149=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1184=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 1150=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560	$\mathrm{V} 1185=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 1151=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560	$\mathrm{V} 1186=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1152=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1187=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 1153=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1188=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 1154=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1189=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 1155=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 1190=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 1156=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 1191=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880
$\mathrm{V} 1157=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1192=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320
$\mathrm{V} 1158=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1193=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1159=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1194=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1160=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 1195=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1161=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1196=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1162=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1197=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1163=\mathrm{T} 45+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1198=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1164=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 1199=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1165=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 1200=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1166=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1201=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 1167=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 1202=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 1168=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 1203=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1169=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 1204=\mathrm{T} 45+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1170=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 1205=\mathrm{T} 45+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480
$\mathrm{V} 1171=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1206=\mathrm{T} 45+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1172=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 1207=\mathrm{T} 45+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1173=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 1208=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640
$\mathrm{V} 1174=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1209=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640
$\mathrm{V} 1175=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1210=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 1176=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1211=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 1177=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1212=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1178=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1213=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1179=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1214=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1180=\mathrm{T} 45+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1215=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1181=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1216=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 1182=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1217=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 1183=\mathrm{T} 45+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1218=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320

Table A.26: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$1219=\mathrm{T} 45+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	V1254 = T46+T24+T10+T6+T4	846,720
$\mathrm{V} 1220=\mathrm{T} 45+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1255=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,693,440
$\mathrm{V} 1221=\mathrm{T} 45+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1256=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	1,128,960
$\mathrm{V} 1222=\mathrm{T} 45+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1257=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	564,480
$\mathrm{V} 1223=\mathrm{T} 45+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1258=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,693,440
$\mathrm{V} 1224=\mathrm{T} 45+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1259=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,693,440
$\mathrm{V} 1225=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	302,400	$\mathrm{V} 1260=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	2,540,160
$\mathrm{V} 1226=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	302,400	$\mathrm{V} 1261=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,693,440
$\mathrm{V} 1227=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	907,200	$\mathrm{V} 1262=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	423,360
$\mathrm{V} 1228=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	604,800	$\mathrm{V} 1263=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	282,240
$\mathrm{V} 1229=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	302,400	$\mathrm{V} 1264=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	705,600
$\mathrm{V} 1230=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1265=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	705,600
$\mathrm{V} 1231=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1266=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	2,116,800
$\mathrm{V} 1232=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,721,600	$\mathrm{V} 1267=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	1,411,200
$\mathrm{V} 1233=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,814,400	$\mathrm{V} 1268=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	705,600
$\mathrm{V} 1234=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 1269=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 1235=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	907,200	$\mathrm{V} 1270=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 1236=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	907,200	$\mathrm{V} 1271=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1237=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	604,800	$\mathrm{V} 1272=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 1238=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	907,200	$\mathrm{V} 1273=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 1239=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	302,400	$\mathrm{V} 1274=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 1240=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	604,800	$\mathrm{V} 1275=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 1241=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	907,200	$\mathrm{V} 1276=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 1242=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	604,800	$\mathrm{V} 1277=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1243=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,814,400	$\mathrm{V} 1278=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,290,240
$\mathrm{V} 1244=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1279=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,290,240
$\mathrm{V} 1245=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	302,400	$\mathrm{V} 1280=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,935,360
$\mathrm{V} 1246=\mathrm{T} 46+\mathrm{T} 25+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	302,400	$\mathrm{V} 1281=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,903,040
$\mathrm{V} 1247=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	5,080,320	$\mathrm{V} 1282=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	645,120
$\mathrm{V} 1248=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	3,386,880	$\mathrm{V} 1283=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	645,120
$\mathrm{V} 1249=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	1,128,960	$\mathrm{V} 1284=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	967,680
$\mathrm{V} 1250=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	2,257,920	$\mathrm{V} 1285=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1251=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	2,257,920	$\mathrm{V} 1286=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	806,400
$\mathrm{V} 1252=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	846,720	$\mathrm{V} 1287=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	806,400
$\mathrm{V} 1253=\mathrm{T} 46+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	1,270,080	$\mathrm{V} 1288=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	2,419,200

Table A.27: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1289=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	1,612,800	$\mathrm{V} 1324=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1290=\mathrm{T} 46+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	806,400	$\mathrm{V} 1325=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1291=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1326=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1292=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	61,280	$\mathrm{V} 1327=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	725,760
$\mathrm{V} 1293=\mathrm{T} 46+\mathrm{T} 21+$	241,920	$\mathrm{V} 1328=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$,088,640
$\mathrm{V} 1294=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280	$1329-146+120+113+16+14$	241,920
$\mathrm{V} 1295=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 1330=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 1296=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 1331=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 1297=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1332=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 1298=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1333=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 1299=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1334=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1300=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1335=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	483,840
$\mathrm{V} 1301=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560	$\mathrm{V} 1336=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	483,840
$\mathrm{V} 1302=\mathrm{T} 46+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560	$\mathrm{V} 1337=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1303=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	181,440	$\mathrm{V} 1338=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1304=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	725,760	$\mathrm{V} 1339=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1305=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 1340=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1306=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 1341=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1307=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1342=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1308=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1343=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1309=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1344=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	120,960
$\mathrm{V} 1310=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,088,640	$\mathrm{V} 1345=\mathrm{T} 46+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	120,960
$\mathrm{V} 1311=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,632,960	$\mathrm{V} 1346=\mathrm{T} 46+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1312=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	362,880	$\mathrm{V} 1347=\mathrm{T} 46+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1313=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	725,760	$\mathrm{V} 1348=\mathrm{T} 46+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1314=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	725,760	$\mathrm{V} 1349=\mathrm{T} 46+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1315=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1350=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1316=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1351=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1317=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1352=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1318=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	725,760	$\mathrm{V} 1353=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1319=\mathrm{T} 46+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	725,760	$\mathrm{V} 1354=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560
$\mathrm{V} 1320=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	322,560	$\mathrm{V} 1355=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840
$\mathrm{V} 1321=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 1356=\mathrm{T} 46+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1322=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1357=\mathrm{T} 46+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1323=\mathrm{T} 46+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1358=\mathrm{T} 46+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920

Table A.28: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \&\# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$1359=\mathrm{T} 46+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 1394=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	907,200
$\mathrm{V} 1360=\mathrm{T} 46+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1395=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	604,800
$\mathrm{V} 1361=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	120,960	$\mathrm{V} 1396=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	1,209,600
$\mathrm{V} 1362=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	120,960	$\mathrm{V} 1397=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,814,400
$\mathrm{V} 1363=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1398=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	302,400
$\mathrm{V} 1364=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1399=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 1365=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1400=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	504,000
$\mathrm{V} 1366=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	483,840	$\mathrm{V} 1401=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	504,000
$\mathrm{V} 1367=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	483,840	$\mathrm{V} 1402=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	1,512,000
$\mathrm{V} 1368=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	1,088,640	$\mathrm{V} 1403=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	1,008,000
V 1369 = T47+T25+T13+T7+T4	725,760	$\mathrm{V} 1404=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	504,000
$\mathrm{V} 1370=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1405=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	604,800
$\mathrm{V} 1371=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	362,880	$\mathrm{V} 1406=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	604,800
$\mathrm{V} 1372=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	362,880	$\mathrm{V} 1407=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 1373=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1408=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	604,800
$\mathrm{V} 1374=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1409=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 1375=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1410=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 1376=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1411=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	604,800
V 1377 = T47+T25+T10+T7+T5	362,880	$\mathrm{V} 1412=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	403,200
$\mathrm{V} 1378=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1413=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,612,800
$\mathrm{V} 1379=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1414=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,612,800
$\mathrm{V} 1380=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1415=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	2,419,200
$\mathrm{V} 1381=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1416=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	3,628,800
$\mathrm{V} 1382=\mathrm{T} 47+\mathrm{T} 25+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1417=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	806,400
$\mathrm{V} 1383=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	1,612,800	$\mathrm{V} 1418=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	806,400
$\mathrm{V} 1384=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	1,612,800	$\mathrm{V} 1419=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,209,600
$\mathrm{V} 1385=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	3,628,800	$\mathrm{V} 1420=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 1386=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	2,419,200	$\mathrm{V} 1421=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 1387=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	806,400	$\mathrm{V} 1422=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	1,008,000
$\mathrm{V} 1388=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1423=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	1,008,000
$\mathrm{V} 1389=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	1,209,600	$\mathrm{V} 1424=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	3,024,000
$\mathrm{V} 1390=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	806,400	$\mathrm{V} 1425=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	2,016,000
$\mathrm{V} 1391=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	1,209,600	$\mathrm{V} 1426=\mathrm{T} 47+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	1,008,000
$\mathrm{V} 1392=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	403,200	$\mathrm{V} 1427=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1393=\mathrm{T} 47+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	604,800	$\mathrm{V} 1428=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920

Table A.29: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1429=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1464=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280
$\mathrm{V} 1430=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 1465=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840
$\mathrm{V} 1431=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 1466=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 1432=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1467=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	967,680
$\mathrm{V} 1433=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+$	161,280	$\mathrm{V} 1468=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680
$\mathrm{V} 1434=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 13$	483,840	$\mathrm{V} 1469=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120
$\mathrm{V} 1435=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1470=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560
$\mathrm{V} 1436=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1471=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680
$\mathrm{V} 1437=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560	$\mathrm{V} 1472=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680
$\mathrm{V} 1438=\mathrm{T} 47+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560	$\mathrm{V} 1473=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1439=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	1,451,520	$\mathrm{V} 1474=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1440=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	967,680	$\mathrm{V} 1475=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1441=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	241,920	$\mathrm{V} 1476=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1442=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1477=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 12$	241,920
$\mathrm{V} 1443=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	483,840	$\mathrm{V} 1478=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1444=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	322,56	$\mathrm{V} 1479=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1445=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	322,560	$\mathrm{V} 1480=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 1446=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	2,177,280	$\mathrm{V} 1481=\mathrm{T} 47+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 1447=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,451,520	$\mathrm{V} 1482=\mathrm{T} 47+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1448=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	483,840	$\mathrm{V} 1483=\mathrm{T} 47+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1449=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 1484=\mathrm{T} 47+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960
$\mathrm{V} 1450=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 1485=\mathrm{T} 47+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440
$\mathrm{V} 1451=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 1486=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1452=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 1487=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	241,920
$\mathrm{V} 1453=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	322,560	$\mathrm{V} 1488=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1454=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	967,680	$\mathrm{V} 1489=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1455=\mathrm{T} 47+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	967,680	$\mathrm{V} 1490=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	120,960
$\mathrm{V} 1456=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	645,120	$\mathrm{V} 1491=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1457=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	967,680	$\mathrm{V} 1492=\mathrm{T} 47+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1458=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1493=\mathrm{T} 47+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480
$\mathrm{V} 1459=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1494=\mathrm{T} 47+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920
$\mathrm{V} 1460=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1495=\mathrm{T} 47+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880
$\mathrm{V} 1461=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	483,840	$\mathrm{V} 1496=\mathrm{T} 47+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1462=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1497=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	20,160
$\mathrm{V} 1463=\mathrm{T} 47+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	1,451,520	$\mathrm{V} 1498=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	20,160

Table A.30: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1499=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1534=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480
$\mathrm{V} 1500=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1535=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1501=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1536=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	100,800
$\mathrm{V} 1502=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640	$\mathrm{V} 1537=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	100,800
$\mathrm{V} 1503=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640	$\mathrm{V} 1538=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	302,400
$\mathrm{V} 1504=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1539=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	201,600
$\mathrm{V} 1505=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1540=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	100,800
$\mathrm{V} 1506=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1541=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	120,960
$\mathrm{V} 1507=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	60,480	$\mathrm{V} 1542=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	120,960
$\mathrm{V} 1508=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	60,480	$\mathrm{V} 1543=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1509=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1544=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1510=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1545=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1511=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1546=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1512=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320	$\mathrm{V} 1547=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1513=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480	$\mathrm{V} 1548=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1514=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1549=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560
$\mathrm{V} 1515=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 1550=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560
$\mathrm{V} 1516=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 1551=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840
$\mathrm{V} 1517=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1552=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760
$\mathrm{V} 1518=\mathrm{T} 48+\mathrm{T} 25+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1553=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280
$\mathrm{V} 1519=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	322,560	$\mathrm{V} 1554=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1520=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	322,560	$\mathrm{V} 1555=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1521=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	725,760	$\mathrm{V} 1556=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1522=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	483,840	$\mathrm{V} 1557=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1523=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	161,280	$\mathrm{V} 1558=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 5$	201,600
$\mathrm{V} 1524=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 1559=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 8+\mathrm{T} 4$	201,600
$\mathrm{V} 1525=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 1560=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 5$	604,800
$\mathrm{V} 1526=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1561=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 7+\mathrm{T} 4$	403,200
$\mathrm{V} 1527=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1562=\mathrm{T} 48+\mathrm{T} 23+\mathrm{T} 14+\mathrm{T} 6+\mathrm{T} 4$	201,600
$\mathrm{V} 1528=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1563=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 1529=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1564=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 1530=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1565=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1531=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1566=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1532=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1567=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1533=\mathrm{T} 48+\mathrm{T} 24+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1568=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320

Table A.31: Tree-equivalent regular vines with 8 nodes (Continuation).

Tree sequence \& \# Tree-equivalent Labeled Regular Vines		Tree sequence \&\# Tree-equivalent Labeled Regular Vines	
$\mathrm{V} 1569=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1604=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1570=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1605=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1571=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1606=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1572=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1607=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920
$\mathrm{V} 1573=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	80,640	$\mathrm{V} 1608=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920
$\mathrm{V} 1574=\mathrm{T} 48+\mathrm{T} 21+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	80,640	$\mathrm{V} 1609=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 1575=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	362,880	$\mathrm{V} 1610=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 1576=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	241,920	$\mathrm{V} 1611=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1577=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	60,480	$\mathrm{V} 1612=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 1578=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160	$\mathrm{V} 1613=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 1579=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960	$\mathrm{V} 1614=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 1580=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640	$\mathrm{V} 1615=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 1581=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1616=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	60,480
$\mathrm{V} 1582=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320	$\mathrm{V} 1617=\mathrm{T} 48+\mathrm{T} 19+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	60,480
$\mathrm{V} 1583=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880	$\mathrm{V} 1618=\mathrm{T} 48+\mathrm{T} 16+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1584=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1619=\mathrm{T} 48+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1585=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 1620=\mathrm{T} 48+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	40,320
$\mathrm{V} 1586=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 1621=\mathrm{T} 48+\mathrm{T} 16+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	60,480
$\mathrm{V} 1587=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1622=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1588=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1623=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	80,640
$\mathrm{V} 1589=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 6+\mathrm{T} 4$	80,640	$\mathrm{V} 1624=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1590=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 5$	241,920	$\mathrm{V} 1625=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1591=\mathrm{T} 48+\mathrm{T} 22+\mathrm{T} 12+\mathrm{T} 8+\mathrm{T} 4$	241,920	$\mathrm{V} 1626=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320
$\mathrm{V} 1592=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280	$\mathrm{V} 1627=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	161,280
$\mathrm{V} 1593=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920	$\mathrm{V} 1628=\mathrm{T} 48+\mathrm{T} 17+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	241,920
$\mathrm{V} 1594=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	40,320	$\mathrm{V} 1629=\mathrm{T} 48+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 1595=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 5$	181,440	$\mathrm{V} 1630=\mathrm{T} 48+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 4$	80,640
$\mathrm{V} 1596=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 7+\mathrm{T} 4$	120,960	$\mathrm{V} 1631=\mathrm{T} 48+\mathrm{T} 18+\mathrm{T} 11+\mathrm{T} 7+\mathrm{T} 5$	120,960
$\mathrm{V} 1597=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 10+\mathrm{T} 6+\mathrm{T} 4$	120,960	$\mathrm{V} 1632=\mathrm{T} 48+\mathrm{T} 15+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	20,160
$\mathrm{V} 1598=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 9+\mathrm{T} 6+\mathrm{T} 4$	40,320		
$\mathrm{V} 1599=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 4$	362,880		
$\mathrm{V} 1600=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 7+\mathrm{T} 5$	544,320		
$\mathrm{V} 1601=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 6+\mathrm{T} 4$	120,960		
$\mathrm{V} 1602=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 5$	241,920		
$\mathrm{V} 1603=\mathrm{T} 48+\mathrm{T} 20+\mathrm{T} 13+\mathrm{T} 8+\mathrm{T} 4$	241,920		

Table A.32: Tree-equivalent regular vines with 8 nodes (Continuation).

Summary

Bayesian Belief Nets and Vines
in aviation safety and other applications

Oswaldo Morales Nápoles.

The relationship between probability theory and graph theory has enabled great improvements for both. In particular, probability theory has benefitted from graph theory for the representation of multivariate distributions. Two such possible representations are Bayesian Belief Nets (BBNs) and Vines. The main interest of this thesis is in the description of applications of BBNs and vines to problems in which quantifying uncertainty is of prime importance. Two such problems studied in this thesis are in the identification and measurement of risks in the aviation industry and earth dams.

Vines and BBNs are closely related. Despite of this fact, graphical properties of BBNs have been more studied than vines. Before presenting applications of BBNs and vines in aviation and earth dam safety, this thesis presents a study of vines as graphs. This study (chapter 2) represents a first step towards a more systematic approach to studying vines as graphs.

The largest part of the thesis is concerned with aviation safety. The aviation sector is generally recognized for its high levels of safety. In fact the fatal and non-fatal accident rate worldwide has not reached the levels of 1996 in any year in the period from 1997 to 2007 . However, the total number of flights for the same period has grown from about 31 million in 1996 to about 48 in 2007. If this growth trend continues, the accident rate must decrease further in order to maintain low the total number of accidents.

Different studies have shown that accidents in the aviation industry have humans as their main contributing factor. A model that aspires to improve safety in the aviation industry should include human error and all its other components. The Netherlands Ministry of Transport and Water Management commissioned the construction of a model for comparing alternatives, strengthening safety measures
and finding causes of incidents and accidents and for quantifying the probability of adverse events in the aviation system. This model is known as the Causal Model for Air Transport Safety or CATS.

The CATS model is in fact a BBN that consists of 1,504 nodes and 4,976 arcs. The construction of such a model was a great challenge that was undertaken with the effort of many people. The major focus of this thesis is in the description of the quantification of such a BBN. Emphasis is placed in the techniques used for the quantification of dependence for Non Parametric Continuous-Discrete BBNs. For the CATS model this was done mainly through the use of structured expert judgment in human error models for flight crew, air traffic control and maintenance crew.

BBNs are tools flexible enough to be used in different fields. This is shown in the $6^{t h}$ chapter of this thesis where a BBN for earth dams safety in the State of Mexico is presented. From the end of October and up to the end of November 2007 flooding was observed in about 70% of the Tabasco flatland affecting more than 1 million people. The model described in chapter 6 may be of assistance for earth dam engineers in the State of Mexco in preventing situations such as the one observed in Tabasco.

The main conclusions of these thesis summarized in chapter 7 concern vines, BBNs and the applications discussed. For vines the need to study them in a systematic way as graphical structures is discussed. Taking this step could help increase its range of applications. BBNs have proved in this thesis to be a powerful tool for risk and uncertainty analysis. Methods successfully used in practice to quantify them from experts have been advanced. Further research in combination of individual experts' dependence estimates is suggested.

With regards to applications, according to the CATS BBN, experienced crews and newer aircrafts lead to a greater reduction of the accident rate than measures concerning maintenance technicians or air traffic controllers. This does not entail that investments in air traffic control and maintenance crew are discouraged. It does suggest however that investments pointing towards experienced crew and aircraft fleet renewal might deserve priority. Finally with respect to earth dam safety in the State of Mexico this thesis shows the experts' belief that given a dam failure, the economic consequences are approximately constant regardless of the size of a flooding. Thus, the occurrence of a failure should be avoided if costs are to remain minimum.

Samenvatting

Bayesiaanse Netwerken en Vines
in veiligheid van de luchtvaart en andere toepassingen
Oswaldo Morales Nápoles.

De relatie tussen de kansrekening en grafentheorie heeft grote verbeteringen voor beide mogelijk gemaakt. In het bijzonder, heeft kansrekening profiteerd van de grafentheorie voor de vertegenwoordiging van hoog dimensionale verdelingen. Twee van zulke mogelijke voorstellingen zijn Bayesiaanse Netwerken (BBN) en Vines. Het voornaamste belang van dit proefschrift is de beschrijving van toepassingen van BBNs en Vines in problemen waarin het kwantificeren van onzekerheid van het grootste betekenis is. Twee van dergelijke problemen onderzocht in dit proefschrift zijn de identificatie en meting van risico's in de luchtvaartindustrie en bij dijken.

Vines en BBN's hebben een nauwe relatie. Ondanks van dit feit, zijn grafische eigenschappen van BBN's meer onderzocht dan Vines. Voor het behandelen van BBNs en Vines in de luchtvaart en dijk veiligheid, presenteert dit proefschrift een studie van Vines als grafieken. Deze studie (hoofdstuk 2) vormt een eerste stap naar een meer systematische aanpak van het bestuderen van vines als grafieken.

Het grootste deel van het proefschrift houdt zich bezig met veiligheid in de luchtvaart. De luchtvaartsector is bekend oom zijn hoge mate van veiligheid. In feite, heeft in de periode van 1997 tot 2007 het aantal fatale en niet-fatale ongevallen cijfer per jaar wereldwijd niet de hoogte bereikt van 1996. Echter, het totale aantal vluchten is in dezelfde periode gegroeid van ongeveer 31 miljoen in 1996 tot ongeveer 48 in 2007. Als deze groei trend doorzet, moet het ongevallen cijfer verder afnemen om het totale aantal ongevallen laag te houden.

Verschillende studies hebben aangetoond dat ongevallen in de luchtvaartindustrie menselijk factoren als belangrijkste oorzak hebben. Een model dat streeft naar verbetering van de veiligheid in de luchtvaartsector moet ook menselijke fouten en alle andere componenten bevatten opnemen. De Nederlandse Ministerie
van Verkeer en Waterstaat heeft opdracht gegeven voor de constructie van een model voor het vergelijken van alternatieven, aanscherping van de veiligheidsmaatregelen, en het vinden van oorzaken van incidenten en ongevallen en voor het kwantificeren van de kans op ongewenste voorvallen in de luchtvaart. Dit model staat bekend als het Causal Model for Air Transport Safety of CATS.

Het CATS-model is in feite een BBN dat bestaat uit 1.504 knooppunten en 4.976 bogen. De bouw van een dergelijk model is een grote uitdaging die werd gerealiseerd door de inspanning van velen. De belangrijkste focus van dit proefschrift ligt op de beschrijving van de kwantificering van een dergelijke BBN. De nadruk wordt gelegd op de technieken gebruikt voor de kwantificering van de afhankelijkheid voor niet-parametrische continue-discrete BBN's. Voor het CATSmodel was dit vooral gedaan door het gebruik van gestructureerde expert mening in menselijke fout modellen voor de cockpitpersoneel, de luchtverkeersleiding en onderhoud technici.

BBNs zijn tools die flexibel genoeg zijn om gebruikt te worden in verschillende gebieden. Dit wordt weergegeven in het 6 de hoofdstuk van dit proefschrift waar een BBN voor dijken veiligheid in de Staat van Mexico wordt gepresenteerd. Vanaf eind oktober tot eind november 2007 werden er overstromingen waargenomen in ongeveer 70% van de lage gebeid van Tabasco. Dit heb meer dan 1 miljoen mensen getroffen. Het model beschreven in hoofdstuk 6 kan worden van een hulpmiddel voor civile techniche ingenieurs in de Staat van Mexco bij het voorkomen van situaties zoals die zijn waargenomen in Tabasco.

De belangrijkste conclusies van dit proefschrift samengevat in hoofdstuk 7 betreffen Vines, BBN's en de besproken toepassingen. De noodzaak om Vines te bestuderen op een systematische manier als grafische structuren wordt besproken. Het nemen van deze stap zou de mogelijke toepassing kunnen helpen vergroten. BBNs hebben bewezen in dit proefschrift een krachtig instrument voor risico en onzekerheidsanalyze te zijn. Methoden die met succes in de praktijk zijn gebruikt om ze te kwantificeren van experts zijn geavanceerd. Verder onderzoek over de combinatie van de individueel afhankelijkheid beoordelen van experts is gesuggereerd.

Met betrekking tot de toepassingen, zouden volgens de CATS BBN, ervaren cockpitpersoneel en nieuwere vliegtuigen het ongevallen cijfer meer verminderen dan maatregelen met betrekking tot de onderhoud technici of luchtverkeersleiders. Dit houdt niet in dat investeringen in de luchtverkeersleiding en onderhoudbemanning worden afgeraden. Er wordt echter gesuggereerd dat de investeringen die gericht zij op ervaren bemanning en vliegtuig vernieuwing van de vloot prioriteit zou kunnen verdien. Tenslotte toont dit proefschrift, met betrekking tot de veiligheid van de dijken in de Staat van Mexico aan, dat expert geloven dat de economische gevolgen ongeveer constant zijn, ongeacht de grootte van een overstroming. Daarom moet er overstromingen worden voorkomen zodat de kosten minimaal blijven.

Acknowledgments

I have lived now in the Netherlands for more than seven years. These have been among the most edifying in my life. For giving me the opportunity to come to the Netherlands initially as a master student, when in Mexico many doors were being closed, I must thank prof. dr. Roger M. Cooke. Since very young, I set for myself the goal of pursuing a PhD degree. For giving me the opportunity to go ahead in this quest I must thank again Roger. His advise, not only with regards to this thesis has meant for me a lot more than supervision. His example has influenced greatly and will continue to do so in the future different aspects of my life. I send my most warm and sincere thanks to Roger for my seven years at the TU Delft.

I must also acknowledge dr. Dorota Kurowicka for the long and fruitful discussions that we held during approximately five years with the purpose of improving some of the work leading to this thesis. I am very grateful to all members of the PhD committee for their suggestions, comments and ideas that have greatly contributed to this thesis. In particular I want to thank Prof. Harry Joe for his many ideas patiently communicated to me regarding equivalence classes of regular vines. This is a subject of great interest to me and I hope to have the opportunity to follow his an others contributions in this topic in the future. Prof. Ben Ale showed great leadership in the development of the CATS model. Contributions from professors Mosleh and van Tooren as part of the expert evaluation group of the CATS model were not only beneficial for the CATS consortium but also for this and surly other theses. Dr. De Leon made important remarks for the chapter on earth dam safety in the State of Mexico. I can only hope for future collaboration with his group in Toluca.

I thank Cindy Bosman and Carl Schneider for making it easier for me during seven years to deal with different needs at the TU Delft. I also thank CICAT for handling my four year term as a PhD student at the TU Delft. In particular Theda Olsder and Veronique van der Varst provided great help in dealing with visum and insurance related issues.

During the development of the CATS model I had the pleasure to work with master students for their graduation project. Collaboration with Tina Singuran for the coupling of the fight crew and air traffic control models resulted in important changes in the model. Iwona Jagielska contributed to the development of the air traffic control model and of a software tool for the elicitation of rank and
conditional rank correlations from experts. This tool was also improved further by Kasia Jóźwiak. This tool was not used in this thesis, however their contributions are important for the future development of a stand alone tool for the elicitation of rank and conditional rank correlations from experts. Kasia Krugła is responsible for about half of the massive and tedious job of putting the the CATS BBN into UNINET. Her contributions in the air traffic control model are also very valuable.

Collaboration with colleagues for the applications presented in this thesis is invaluable. For the CATS model the ideas shared with Alfred Roelen (NLR), Gerben van Baren (NLR) and John Spouge (DNV) is greatly appreciated. My appreciation also for the rest of the members in the CATS consortium. Work done together with David Joaquín Delgado Hernández has been fruitful and I hope to keep sharing professional challenges with him. Daniel Lewandowski took over my duties with the CATS model by the end of the project. That made it easier for me to finish writing this thesis and for that I am grateful. My gratitude goes also to all my fellow PhD students, master students and colleagues at the Delf Institute of Applied Mathematics with whom I shared great moments during my studies.

I have been lucky enough as to make a good number of good friends in Delft. To all of them thanks for sharing the better and the worse moments during this process with me. Despite the distance I know that my friends in Mexico and the US had me in their thoughts and that was of great help for finalizing the thesis.

My family has continuously been attempt to my personal and professional development and for that I am deeply grateful. Particular thanks go to dr. Samuel Morales Sales for helping me develop an interest in research and science. Special thanks to my mother Lilia Nápoles Cruz, my father Osvaldo Morales Sales and brother Luis Antonio Morales Nápoles. Without them I could have never reached the stage of defending my thesis. I have learned to enjoy life in a different way thanks to Camila. She is also a very important source of motivation for me. This thesis is as much mine as Sandra's I cannot express with words enough appreciation for all her contributions and support in all ingredients required to complete this effort.

Curriculum Vitae

Oswaldo Morales Nápoles was born in Toluca Estado de México, México on February the $21^{\text {st }} 1977$. He graduated with a Bachelor's degree on Economics from the Autonomous University of the State of Mexico on 2000 with the thesis: Economic value of the environmental quality in the Alto Lerma.

In 2002 he moved to the Netherlands to continue his studies in the Master's program Risk and Environmental Modelling offered at the Delft University of Technology. He graduated in 2004 with an M.Sc. degree on Applied Mathematics with the thesis: Mathematical Models for Air Pollution Health Effects.

From 2004 to September 2009 he conducted research at the Delft Institute of Applied Mathematics that resulted in this Ph.D. thesis. Oswaldo's research has been supervised by Prof. Dr. Roger M. Cooke.

Since September 142009 Oswaldo is part of the Group of Risk and Reliability Analyzes in Civil Infrastructure at the Netherlands Organization for Applied Scientific Research (TNO) in Delft.

[^0]: Kjersti Aas, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2):182-198, 2009.
 O. Morales Nápoles. Bayesian belief nets in aviation safety and other applications. PhD thesis, Delft University of Technology, 2009.
 Harry Joe, Roger M. Cooke, and Dorota Kurowicka. Regular vines: Generation algorithm and number of equivalent classes. In Dorota Kurowicka and Harry Joe, editors, Dependence Modeling-Handbook on Vine Copulae, Dependence Modeling, Scheduled Fall 2010.
 Dorota Kurowicka and R.M. Cooke. Completion problem with partial correlation vines. Linear Algebra and Its Applications, 418(1):188-200, 2006.
 Peter Schneider. Extragalactic Astronomy and Cosmology An Introduction. Springer, 2006. ISBN 10 3-540-33174-3.
 J. Fauvel and P. Gerdes. African slave and calculating prodigy: Bicentenary of the death of thomas fuller. Historia Mathematica, (17):141-151, 1990.

[^1]: Kjersti Aas, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2):182-198, 2009.
 O. Morales Nápoles. Bayesian belief nets in aviation safety and other applications. PhD thesis, Delft University of Technology, 2009.
 Harry Joe, Roger M. Cooke, and Dorota Kurowicka. Regular vines: Generation algorithm and number of equivalent classes. In Dorota Kurowicka and Harry Joe, editors, Dependence Modeling-Handbook on Vine Copulae, Dependence Modeling, Scheduled Fall 2010.
 Dorota Kurowicka and R.M. Cooke. Completion problem with partial correlation vines. Linear Algebra and Its Applications, 418(1):188-200, 2006.
 Peter Schneider. Extragalactic Astronomy and Cosmology An Introduction. Springer, 2006. ISBN 10 3-540-33174-3.
 J. Fauvel and P. Gerdes. African slave and calculating prodigy: Bicentenary of the death of thomas fuller. Historia Mathematica, (17):141-151, 1990.

[^2]: ${ }^{1}$ One guinea in Victorian Britain was equivalent with 26.25 pounds.

[^3]: ${ }^{2}$ According to [Neils, 1922, p.262] there ware three fallacies that vitiate the theory: "(1) the assumption that a correct system of the action of the variables upon each other can be set up from a priori knowledge; (2) the idea that causation implies an inherently necessary connection between things, or that in some other way it differs from correlation; (3) the necessity of breaking off the chain of causes at some comparatively near finite point."
 ${ }^{3}$ Pearl restricts the analysis to "trees" though he recognizes that the model may be generalized to include multiple parents keeping in mind that the states of each variable in the tree may represent the power set of multi-parent groups in the corresponding graph. In the same paper, in a footnote Pearl acknowledges Bayes's essay [Barnard and Bayes, 1958] as the beginning of the science of inductive reasoning. Next year Stigler [1983] makes a suggestion that Bayes may not have have been the originator of the theorem named after him.

[^4]: ${ }^{4}$ In this thesis the name Bayesian belief nets will be used in accordance to previous literature by the group at TU Delft. Pearl [1988] is the first to use this name as far as the author knows.
 ${ }^{5}$ For a biographical sketch of Bayes see Bellhouse [2004]
 ${ }^{6}$ Both Hartley and Price recognized the implications that Bayes's theorem would have for methods of reasoning Stigler [1983]and Barnard and Bayes [1958].
 ${ }^{7}$ For an overview on inverse probability the reader is referred to Dale [1999]. In page 10 Dale uses an example that is recurrent in the early literature on Bayesian networks [Pearl, 1982] and [Kim and Pearl, 1983]
 ${ }^{8}$ The readers interested in log-linear interaction models and gaussian dependence graphs are referred to Whittaker [1990] and Lauritzen [1996]
 ${ }^{9}$ Actually the method presented by Chow and Liu [1968] characterized trees as directed graphs and keeps a close relationship with BBNs.

[^5]: ${ }^{10}$ The human factor plays a role in the categories cockpit crew, maintenance and air traffic control.

[^6]: ${ }^{11}$ Low Level Windshear Alert System
 ${ }^{12}$ Which is a lower bound for the number of Bayesian networks possible on n nodes. An upper bound is the number of labeled acyclic directed graphs.

[^7]: ${ }^{1}$ This chapter is based on Morales-Nápoles et al. [2009a]
 ${ }^{2}$ Calculating prodigies have counted many things along history, Jedediah Buxton (1702) an illiterate man from Elmton, England kept a mental record of all the free beer and ale he was given since the age of 12 and that averaged out to 5 or 6 ounces a day. When taken to see Richard III at the Drury Lane Playhouse in London "he declared after a fine piece of music, that the innumerable sounds produced by the instruments had perplexed him beyond measure, and he attended even to Mr. Garrick only to count the words that he uttered, in which, he says, he perfectly succeeded"[Smith, 1983]. Thomas Fuller, an African man shipped to America as a slave in 1724 "began his application to figures by counting to ten, and then when he was able to count a hundred, he thought himself (to use his own words) "a very clever fellow". His first attempt after this was to count the number of hairs in a cow's tail, which he found to be 2872" [Fauvel and Gerdes, 1990]

[^8]: ${ }^{3}$ The endpoints are nodes with degree one in the tree, they are sometimes referred to as leafs.
 ${ }^{4}$ Without loss of generality we will choose node n as the root of all labeled trees on n nodes. Choosing any other node as the root makes no difference except that the algorithm and the procedure to find the Prüfer code for a given tree must be modified.

[^9]: ${ }^{5}$ This labeling is not unique and any other labeling would work equally well as long as all n^{n-2} trees are labeled in the same way.

[^10]: ${ }^{6}$ Line graphs are also known as derived graphs, interchange graphs, adjoint and edge to vertex dual[Beineke, 2006].

[^11]: ${ }^{a}$ Number of unlabeled trees
 ${ }^{b}$ Number of labeled trees
 ${ }^{c}$ Number of labeled vines
 ${ }^{d}$ Number of labeled regular vines
 ${ }^{e}$ Number of tree-equivalent regular vine classes.

[^12]: ${ }^{7}$ As before, this labeling is not unique and any other labeling would work equally well as long as all n^{n-i+1} are uniquely labeled.
 ${ }^{8}$ For a complete graph all possible spanning trees are the n^{n-2} Prüfer codes
 ${ }^{9}$ For 1 and 2 variables there is exactly one of each object.

[^13]: ${ }^{10}$ Actually algorithm 2.3 .2 does not need to be implemented completely to count the number of regular vines on 8 and 9 nodes. Observe that it is sufficient to know how many spanning tress of each unlabeled class in $n-1$ nodes does a line graph of a tree in n nodes contain.
 ${ }^{11}$ As for counting regular vines algorithms 2.3.1 and 2.3.2 do not need to be implemented completely to count the number of tree-equivalent regular vines on 8 and 9 nodes. Observe that it is sufficient to know how many spanning tress of each unlabeled class in $n-1$ nodes does a line graph of a tree in n nodes contain.
 ${ }^{12}$ This catalogue repeats a tree in eight nodes neglecting another one. In the same reference tables counting the number of rooted trees on up to 26 nodes and the number of non-isomorphic trees on less than 26 nodes may be found.

[^14]: ${ }^{13} \mathrm{Or}$ proximity in the language of subsection 2.3.1

[^15]: ${ }^{1}$ This chapter is based on Morales-Nápoles et al. [2008]
 ${ }^{2}$ And a good part of the research currently carried out in the Decision Theory group in Delft
 ${ }^{3}$ When an influence is deterministic, nodes will be called functional. The discussion presented next refers to probabilistic influences unless otherwise specified.

[^16]: ${ }^{4}$ One probability is of course determined once the others have been.

[^17]: ${ }^{5} \mathrm{~A}$ copula with an analytic form for the conditional and inverse conditional cumulative distribution function accelerates the sampling procedure. One example of such a copula is Frank's copula presented in section 1.2.

[^18]: ${ }^{6}$ Other rules for Boolean algebra may be found in [Vesely et al., 1981, p.VII-2]

[^19]: ${ }^{7}$ See section 4.2 for an overview of structured expert judgment.

[^20]: ${ }^{a}$ Structured Expert Judgment
 ${ }^{b}$ Aircraft operations manual
 ${ }^{c}$ From the associated Fault Tree quantified by DNV

[^21]: ${ }^{a}$ From the associated Fault Tree quantified by DNV

[^22]: ${ }^{a}$ Structured Expert Judgment
 ${ }^{b}$ From the associated Fault Tree quantified by DNV

[^23]: ${ }^{a}$ Given aircraft generation $=1$ (oldest kind of aircraft)
 ${ }^{b}$ Given aircraft generation $=1$ (oldest kind of aircraft), captain experience $=9,467 \mathrm{hr}$ ($5^{t h}$ percentile) and first officer experience $=7,844 \mathrm{hr}$ ($5^{t h}$ percentile).

[^24]: ${ }^{1}$ This chapter is based on Morales et al. [2008] and Morales-Nápoles et al. [2009b]

[^25]: ${ }^{2}$ This property is often referred as the zero independence property

[^26]: ${ }^{3}$ A similar example for the minimum information copula vs. Frank's copula is presented in Morales et al. [2008]

[^27]: ${ }^{4}$ For some BBNS additionaly to obtaining estimates from experts through simulation, if the vine copula method [Kurowicka and Cooke, 2006] is used to update the joint distribution after computations have been done, numerical integrals might need to be calculated [Hanea et al.,

[^28]: ${ }^{5}$ If a method as in relation 4.10 is used, the assignment of rank and conditional rank correlations to the arcs of the BBN might not be equal across experts. However once the joint distribution is available for each expert, the same probabilistic statement may be computed for all.

[^29]: ${ }^{1}$ This chapter is based on Morales et al. [2008] and Morales-Nápoles et al. [2009b]

[^30]: ${ }^{2}$ The bug speed is the target reference speed for the approach (calculated by the aircraft crew) plus allowance for conditions such as crosswind.
 ${ }^{3}$ The specification of the rank correlations required in the model presented in Figure 5.2 is not unique (see equation (3.3)). For example instead of eliciting the (un)conditional rank correlations presented Figure 5.2 , one could also specify $\left\{r_{7,5}, r_{7,6 \mid 5}, \ldots\right\}$. In this case the order in which the variables entered the model was provided by the expert.

[^31]: ${ }^{4}$ UniNet has been developed for the CATS project commissioned by the Dutch Ministry of Transport. Currently UniNet supports both the Hybrid Method with the support of Netica and the analytical updating. The software is still under development.

[^32]: ${ }^{5}$ In total 14 rank correlations are required in Figure 3.5 however $r_{10,6}$ and $r_{10,7 \mid 6}$ where chosen such that $r_{10,6}$ and $r_{10,7}$ would be equal, positive and as large as possible. Variable 13 was elicited with a single expert after the elicitation described in this section was performed. See Singuran [2008] for a more detailed description of node 13.
 ${ }^{6}$ The IWDM is not shown because in this case it is equal to the GWDM

[^33]: ${ }^{7}$ The marginal distribution of error probability was elicited from each expert. Later on in the project, data about the marginal distribution became available and it was used instead of the one elicited from each expert.
 ${ }^{8}$ All experts are different from those participating in the FCPM. Only 10 calibration variables could be used for the combination because of lack of response from some experts.

[^34]: ${ }^{9}$ The ranking from each expert could be different however once the full correlation matrix of each expert is determined any probabilistic statement may be computed.

[^35]: ${ }^{1}$ This chapter is based on Delgado-Hernández et al. [2009] and Morales-Nápoles and DelgadoHernández [2009]

[^36]: ${ }^{2}$ If the GWDM without optimization would be used instead, the results in table 6.1 would be virtually unchanged. Results for the IWDM in this case are equal to the GWDM.

[^37]: ${ }^{a} X_{1}=$ seismic frequency, $X_{2}=$ rainfall rate, $X_{3}=$ maintenance, $X_{4}=$ landslide, $X_{5}=$ overtopping, $X_{6}=$ piping, $X_{7}=$ breaching, $X_{8}=$ flooding, $X_{9}=$ economic costs, $X_{10}=$ human costs, $X_{11}=$ total costs

[^38]: ${ }^{1}$ This catalogue repeats a tree in eight nodes neglecting another one. In the same reference tables with the number of non-isomorphic trees on less than 26 nodes may be found.
 ${ }^{2}$ Harary refers to Prins [1957] for diagrams of trees with at most 12 nodes. However this reference is not available to the author at the moment of the publication of this catalogue.

