Bayesian Belief Networks: Odds and Ends

Linda C. van der Gaag
Utrecht University, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In artificial intelligence research, the belief network framework for automated reasoning
with uncertainty is rapidly gaining in popularity. The framework provides a powerful
formalism for representing a joint probability distribution on a set of statistical variables.
In addition, it offers algorithms for efficient probabilistic inference. At present, more
and more knowledge-based systems employing the framework are being developed for
various domains of application ranging from probabilistic information retrieval to medical
diagnosis. This paper provides a tutorial introduction to the belief network framework
and highlights some issues of ongoing research in applying the framework for real-life
problem solving.

1 Introduction

Over the past few decades interest in the results of artificial intelligence research has been
growing to an increasing extent. Especially the area of knowledge-based systems has attracted
much attention. The phrase knowledge-based system, or ezpert system, is generally employed
to denote computer systems in which some symbolic representation of human knowledge
is incorporated and applied [Jackson, 1990, Lucas & van der Gaag, 1991]. Knowledge-based
systems are typically designed to deal with real-life problems that require considerable human
knowledge and expertise for their solution; examples range from medical diagnosis and tech-
nical trouble shooting to financial advice and product design. It is their ability to capture and
reason with detailed human knowledge that allows knowledge-based systems to arrive at a
performance comparable to that of human experts. Nowadays, knowledge-based systems have
found their way from academic laboratories to the industrial world and are being integrated
into conventional software environments.

As more and more knowledge-based systems are being developed for a large variety of
problems, it becomes apparent that the knowledge required to solve these problems often is
not precisely defined but instead is of an imprecise nature. In fact, many real-life problem
domains are fraught with uncertainty. Human experts in these domains typically are able
to form judgements and take decisions based on uncertain, incomplete, and sometimes even
contradictory information. To be of practical use, a knowledge-based system has to deal
with such information at least equally well. The development of formalisms for representing
uncertainty and of algorithms for manipulating uncertain information by now has grown into
a major research topic in artificial intelligence called reasoning with uncertainty or plausible
reasoning [Shafer & Pearl, 1990].

Halfway through the 1980s, research on reasoning with uncertainty in knowledge-based
systems resulted in the introduction of the framework of Bayesian belief networks [Pearl, 1988].

The framework has its origin in probability theory and is characterised by a powerful for-
malism for representing domain knowledge and the uncertainties that go with it — more
in specific, the formalism provides for a concise representation of a joint probability distri-
bution on a set of statistical variables. Associated with this formalism are algorithms for
efficiently computing probabilities of interest and for processing evidence; these algorithms
constitute the basic building blocks for reasoning with knowledge represented in the formal-
ism. Since its introduction, the belief network framework has rapidly gained in popularity
and by now is beginning to illustrate its worth in complex domains: practical applications
are being developed for example for medical diagnosis and prognosis [Andreassen et al., 1987,
Heckerman et al., 1992], for probabilistic information retrieval [Bruza & van der Gaag, 1994],
and in computer vision [Jensen et al., 1990b].

This paper gives a tutorial introduction to the belief network framework and highlights
some issues of ongoing research in applying the framework for real-life problem solving. In Sec-
tion 2 we briefly sketch the historical background of applying probability theory in knowledge-
based systems. The Sections 3 and 4 introduce the framework of Bayesian belief networks:
Section 3 details the belief network formalism and Section 4 outlines its associated algorithms.
In Section 5 we briefly address building belief networks for real-life problem domains. Prob-
lem solving with belief networks is the topic of Section 6. The paper is rounded off with some
conclusive discussion in Section 7.

2 Historical Background

As probability theory is a mathematically well-founded theory about uncertainty having a
long and outstanding tradition of research and experience, it is not surprising that this the-
ory takes a prominent place in research on reasoning with uncertainty in knowledge-based
systems. Unfortunately, applying probability theory in a knowledge-based context is not
as easy as it may seem at first sight. Straightforward application of the basic concepts of
probability theory leads to insuperable problems of computational complexity: an explicit
representation of a joint probability distribution requires exponential space (exponential in
the number of variables discerned), and even if the distribution could be represented more
economically, computing probabilities of interest by the basic rules of marginalisation and
conditioning would still have an exponential time complexity. The historical background to
the belief network framework shows various attempts to settle these problems. In this sec-
tion, we sketch this historical background. We would like to note that our intention is not
be complete, but merely to give an impression of the problems encountered by researchers
pioneering in automated probabilistic inference; for a more elaborate overview, we refer the
reader to [Horvitz et al., 1988].

In our historical sketch, we focus on the task of (medical) diagnosis. For a given problem
domain, we discern a set of possible hypotheses H = {h1,...,hp}, n > 1, and a set of pieces
of evidence E = {ey,...,en}, m > 1, that may be observed in relation with these hypotheses.
A diagnostic problem in this domain is a set of pieces of evidence that is actually observed
and needs to be explained in terms of the hypotheses. For ease of exposition, we assume that
each of the hypotheses is either true or false; equally, we assume that each of the pieces of
evidence is either true or false. A diagnosis for a problem e C FE under consideration now is
a set of hypotheses h C H that best explains e.

As early as in the 1960s several research efforts on automated reasoning with uncer-

tainty were undertaken for the task of diagnosis [Warner et al., 1961, Gorry & Barnett, 1968,
de Dombal et al., 1972]. The systems constructed in this period were based to a large extent
on application of Bayes’ Theorem; in the sequel, we will refer to the approach taken in these
early systems as the naive Bayesian approach. The basic idea of computing a diagnosis for a
set of actually observed pieces of evidence e C E was to compute for all sets of hypotheses
h C H the conditional probability Pr(h |) from the distribution Pr on the domain at hand,
and then select a set h' C H with highest probability. Since for real-life applications the con-
ditional probabilities Pr(e | h) often were easier to come by than the conditional probabilities
Pr(h | e), generally Bayes’ Theorem was used for computing the required probabilities:

Pr(h | €) = Pr(e |Pl;)(e-)Pr(h)

It will be evident that this approach was computationally expensive: because a diagnosis
could be composed of several different hypotheses, the number of probabilities to be computed
equaled 2" —1. To overcome this problem, a simplifying assumption was made: it was assumed
that all hypotheses were mutually exclusive and collectively exhaustive. With this assumption
only the n singleton hypothesis sets {h;} had to be considered as possible diagnoses. So, only
the probabilities Pr(h; | e) (writing h; instead of {h;}) for all h; € H had to be computed.
To this end, once more Bayes’ Theorem was used:

_ _ Pr(e[h) - Pr(hy)
> k=1 Pr(e | hy) - Pr(hy)

For automated application of Bayes’ Theorem in this form, several probabilities were required
from the joint probability distribution Pr on the domain at hand. In fact, conditional prob-
abilities Pr(e | hy), k = 1,...,n, for every combination of pieces of evidence e C E had to
be available. Apart from the fact that it was hardly likely that these probabilities would be
readily available in a real-life problem domain, this meant storing exponentially many prob-
abilities. Hence, a second simplifying assumption was made: it was assumed that the pieces
of evidence were conditionally independent given any of the hypotheses discerned. The two
simplifying assumptions taken together allowed for computing the probabilities Pr(h; | e) for
all h; € H given observed evidence e = {ej,,...,¢e;,}, 1 <p < m, from

Pr(h; | e)

Pr(ejl | hz) T Pr(ej | hz) . Pl‘(hz)
Pr(h; | ej, A+ Aej,) = Z
(hi l i io) = S Br(e;, |)~ Pr(e;, | he) - Pr(ie)

It will be evident that for any problem now only n — 1 probabilities had to be computed,
and that for this purpose only m - n conditional probabilities and 1 — 1 prior ones had to be
stored.

The systems for automated reasoning with uncertainty constructed in the 1960s were
rather small-scaled: they were devised for clear-cut problem domains with only a small number
of hypotheses and restricted evidence. For these small systems, all probabilities necessary for
applying Bayes’ Theorem could be acquired from statistical analysis of empirical data. Despite
the underlying (over-)simplifying assumptions, these systems performed considerably well
[de Dombal et al., 1974]. Nevertheless, interest in this naive Bayesian approach to reasoning
with uncertainty faded in the late 1960s and early 1970s. One of the reasons for this decline
in interest is that the approach was feasible only for highly restricted problem domains. For
larger or more complex domains, the above-mentioned simplifying assumptions often were

seriously violated, causing degeneration of system behaviour. In addition, for larger domains
the approach inevitably became demanding, either computationally or from an assessment
point of view.

At this stage, the first diagnostic knowledge-based systems began to emerge from artificial
intelligence research. These systems mostly used production rules for representing human (ex-
periential) knowledge in a modular form closely resembling logical implications — production
rules are expressions of the form if (condition) then (conclusion). These so-called rule-based
expert systems exhibited ‘intelligent’ reasoning behaviour by employing a heuristic reasoning
algorithm that used the production rules for selective gathering of evidence and for pruning
the search space of possible diagnoses. It is this pruning behaviour that rendered the rule-
based expert systems capable of dealing with larger and complexer problem domains than
the early naive-Bayesian systems were. The best-known rule-based expert system developed
in the 1970s is the MYCIN system for assisting physicians in the diagnosis and treatment of
bacterial infections [Buchanan & Shortliffe, 1984].

In the context of rule-based expert systems, the naive Bayesian approach to reasoning
with uncertainty was no longer feasible due to the large number of probabilities to be com-
puted: since during problem solving the search space of possible diagnoses was pruned by
heuristic as well as probabilistic criteria, it became necessary to compute probabilities for all
intermediate results derived by the production rules in addition to the probabilities of the
separate hypotheses. To allow for efficient computation of all these probabilities, a set of com-
putation rules was designed. These computation rules provided for computing the probability
of an (intermediate) result from probabilities associated with the production rules that were
used in its derivation; to this end, each production rule was assigned the conditional prob-
ability of its conclusion given its condition. Unfortunately, these computation rules did not
always accord with the axioms of probability theory and could not even be considered rules
for approximating probabilities. In the sequel, we will use the phrase quasi-probabilistic to
refer to this approach. The most well-known illustration of the quasi-probabilistic approach
is the certainty factor model, designed originally for dealing with uncertainty in the MY CIN
system [Shortliffe & Buchanan, 1984]. The certainty factor model enjoys widespread use in
rule-based expert systems built after MYCIN, even though it is widely known that the model
is mathematically flawed. The relative success of the model can however be accounted for
by its satisfactory behaviour in most applications and by its conceptual and computational
simplicity [van der Gaag, 1994].

Although the quasi-probabilistic approach to reasoning with uncertainty on the one hand
met with considerable success in the artificial intelligence community, it was criticised severely
on the other hand because of its ad hoc character. The incorrectness of the approach from a
mathematical point of view even led to a world-wide debate concerning the appropriateness
of probability theory for handling uncertainty in a knowledge-based context. Here, we will
not enter into this debate; for a wide range of diverging opinions, the reader is referred to
[Cheeseman, 1988] with its ensuing discussions.

Although the above-mentioned debate had not yet subdued, in the mid-1980s the belief
network framework was introduced as a novel approach to applying probability theory for
reasoning with uncertainty in knowledge-based systems [Pearl, 1988]. When compared to the
naive Bayesian approach on the one hand and the quasi-probabilistic approach on the other
hand, the belief network approach offers advantages over both. In contrast with the quasi-
probabilistic approach, the belief network approach has a firm mathematical foundation in
probability theory. Contrasting the naive Bayesian approach, the belief network approach

circumvents the need for simplifying assumptions by capturing and reasoning about actual
independences among variables.

3 The Belief Network Formalism

The belief network framework offers a powerful and intuitively appealing formalism for rep-
resenting a joint probability distribution for use in a knowledge-based system. In addition,
the framework provides algorithms for reasoning with knowledge represented in this formal-
ism. In this section, we focus on the belief network formalism; discussion of the associated
algorithms is deferred to Section 4.

The belief network formalism provides for a concise representation of a joint probability
distribution on a set of statistical variables; such a representation is called a Bayesian belief
network, or belief network for short. Concision of representation is arrived at by explicit
separation of information about the independences holding in the distribution at hand and
the numerical quantities involved. To this end, a belief network comprises two parts: a
qualitative part and a quantitative part.

The qualitative part of a belief network is a graphical representation of the independences
holding among the variables in the distribution that is being represented. This part takes
the form of an acyclic directed graph. In this digraph, each vertex represents a statistical
variable that can take one of a finite set of values. The set of arcs of the digraph models the
independences among these variables. Informally speaking, we take an arc V; — Vj; in the
digraph to represent a direct influential or causal relationship between the linked variables
Vi and Vj; the direction of the arc V; — V; designates V; as the effect or consequence of the
cause V;. Absence of an arc between two vertices means that the corresponding variables do
not influence each other directly, and hence, are (conditionally) independent.

Associated with the qualitative part of a belief network is a set of functions representing
numerical quantities from the distribution at hand. With each vertex of the digraph is asso-
ciated a probability assessment function which basically is a set of (conditional) probabilities
describing the influence of the values of the vertex’ predecessors on the probabilities of the
values of this vertex itself. These probability assessment functions together constitute the
quantitative part of the belief network. In the sequel, we will show that the probability as-
sessment functions of a belief network provide all information necessary for uniquely defining
a joint probability distribution that respects the independences portrayed by the qualitative
part of the network.

Example 3.1 Consider the belief network shown in Figure 1 representing some fictitious
medical ‘knowledge’ concerning the diagnosis of acute cardiac disorders. The information
represented in the network pertains to patients presenting at a first aid clinic. We would like
to stress that the belief network serves illustrative purposes only and should not be taken too
seriously. The belief network comprises four binary variables: the variable S represents the
smoking history of a patient, the variable M represents the presence or absence of a myocardial
infarction (more commonly known as a heart attack), the variable P represents whether or
not a patient is suffering from pain on the chest, and the variable F' represents whether or
not a patient complains of tingling fingers. In the digraph, the smoking history of a patient is
modelled as having a direct influence on the presence or absence of a myocardial infarction in
this patient. On having a myocardial infarction, a patient is likely to complain of pain on the
chest: this is expressed through the high probability of chest pain given a myocardial infarction

e Pr(S = true) = 0.4

Pr(M = true | S = true) = 0.8
Pr(M = true | S = false) = 0.3

Pr(P = true | M = true) = 0.9
Pr(P = true | M = false) = 0.3

Pr(F = true | M = true) = 0.1
Pr(F = true | M = false) = 0.2

Figure 1: A Fictitious Belief Network.

compared to the low probability of chest pain in the absence of a myocardial infarction. On
the other hand, given a myocardial infarction a patient is not likely to have tingling fingers,
which is expressed through the low probability Pr(F = true | M = true) = 0.1; the presence
of tingling fingers in fact suggests that the patient is suffering from another disorder such as
hyperventilation, not modelled in our (incomplete) network. O

Before defining the concept of a belief network more formally, we provide some additional
terminology and introduce our notational convention. In the sequel, the discussion will be re-
stricted to binary variables taking one of the truth values true and false; the generalisation to
variables with more than two discrete values, however, is straightforward. For abbreviation,
we will use v; to denote the proposition that the variable V; takes the value true; V; = false
will be denoted as —w;. For a given set of variables V, the conjunction Cy = /\V,-eV V; of all
variables from V is called the configuration template of V; a conjunction cy of value assign-
ments to the variables from V is called a configuration of V. Note that from the configuration
template Cy of V, any configuration of V' can be obtained by filling in appropriate values for
all variables. In the sequel, we will use {Cy } to denote the set of all configurations of V. To
avoid abundance of braces, we will write Cy; and cy; instead of C{y;} and c(y;3, respectively,
for singleton sets {V;}. The independence relation of a joint probability distribution Pr will
be denoted as Ip;. An independence statement Ip.(X,Y, Z) signifies that in the distribution
Pr the sets of variables X and Z are conditionally independent given the set of variables Y,
that is, Pr(Cx | Cy A Cz) = Pr(Cx | Cy); note that an independence statement applies to
all configurations of the sets of variables involved.

Definition 3.2 A belief network is a tuple B = (G,T") where

o G =(V(Q),A(Q)) is an acyclic digraph with vertices V(G) = {V1,...,V,}, n > 1, and
arcs A(G);

o I'={yy | Vi € V(G)} is a set of real-valued non-negative functions
Wi {Ovi} X {Cpg vy} — [0,1]

called (conditional) probability assessment functions, such that for each configuration
Cou(vi) Of the set pg(Vi) of (immediate) predecessors of vertex Vi in G, we have that

'YVi(_"Ui | CPG(Vi)) =1 _'YVi('Uz' | cPG(Vi))’ 3 = 1,... , 1.

Note that in the previous definition V; is viewed as a vertex from the digraph and as a
statistical variable, alternatively.

In order to link the qualitative and quantitative parts of a belief network, a probabilistic
meaning is assigned to the topology of a digraph [Pearl, 1988].

Definition 3.3 Let G = (V(G), A(G)) be an acyclic digraph and let s be a chain in G. We
say that s is blocked by a set of vertices W C V(QG) if s contains three consecutive vertices
X1, Xo, X3, for which one of the following conditions holds:

1. arcs X1 < X9 and X9 — X3 are on the chain s, and Xo € W;
2. arcs X1 — X9 and X9 — X3 are on the chain s, and Xo € W;

3. arcs X1 — X9 and X9 <+ X3 are on the chain s, and o*(Xo) N W = &, where c*(X3)
denotes the set of vertices composed of Xo and all its descendants.

In defining the concept of a blocked chain, we have distinguished three conditions. Figure 2
serves as a reference for these conditions; in the two chains representing the conditions 1 and
2, vertex X5 is drawn with shading to indicate that it is comprised in the blocking set W for
the chain at hand.

Condition 1. (X }a——{ Xo ——»{ Xa}------
Condition 2. (X4 —»{Xo}—»{ Xa}-------
Condition 3. (X7 —»f{ Xo }a— Xg}-------

Figure 2: Chain Blocking.

The concept of blocking is defined to apply to single chains. Building on this concept we
now define the d-separation criterion to apply to sets of chains.

Definition 3.4 Let G = (V(G),A(G)) be an acyclic digraph and let X,Y,Z C V(QG) be
mutually disjoint sets of vertices of G. The set Y is said to d-separate the sets X and Z in
G, denoted as (X|Y|Z)&, if for each vertez V; € X and each vertez V; € Z every chain from
Vi to Vj in G is blocked by Y.

The following definition now relates the d-separation criterion to the concept of independence.

Definition 3.5 Let G = (V(G), A(G)) be an acyclic digraph. Let Pr be a joint probability
distribution on V(G) and let Ip, be its independence relation. Then, G is called an I-map for
Pr if for all mutually disjoint sets of variables X,Y,Z C V(G) we have: if (X|Y|Z)% then
Ip.(X,Y, Z).

Note that if a digraph is known to be an I-map for some joint probability distribution, the
d-separation criterion provides for reading from the digraph independence statements holding
in this distribution; this property allows for reasoning about independences without having
to resort to probabilistic computations.

Example 3.6 Consider once more the belief network shown in Figure 1. From the digraph
of the network we for example read that a patient’s having pain on the chest is dependent
upon this patient’s smoking history. The smoking history, however, becomes irrelevant with
respect to having chest pain once it has been established that the patient is suffering from a
myocardial infarction. O

The following proposition now states that the probability assessment functions of a belief
network provide all information necessary for uniquely defining a joint probability distribution
on the variables discerned that respects the independence relation portrayed by the qualitative
part of the network; henceforth, we will call this distribution the joint probability distribution
defined by the network.

Proposition 3.7 Let B = (G,T') be a belief network. Then,

Pr(Cv)) = [I mVilCoaawiy)
VieV(G)

defines a joint probability distribution Pr on V(G) such that G is an I-map for Pr.

Proof (Sketch). A digraph G without any directed cycles allows at least one total ordering of
its vertices such that any successor to a vertex in the digraph follows it in the ordering. Any
such ordering of the vertices can be taken as an ordering of the corresponding variables. Now
consider applying the basic chain rule from probability theory to Pr(Cy(q)) such that every
variable from V(G) is conditioned only on the variables preceding it in an ordering having
the property mentioned above. The independences portrayed by G can then be exploited. By
taking Pr(V; | Cpivi)) = Wi(Vi | Cpiqvy)) for each Vi and its set of immediate predecessors
pc(V;), the property stated in the proposition follows immediately. O

Since the digraph of a belief network and its associated probability assessment functions with
each other define a joint probability distribution on the variables discerned, any (prior or
posterior) probability of interest can be computed from these functions. We will return to
this observation in the following section.

Example 3.8 Consider once more the belief network shown in Figure 1. From Proposi-
tion 3.7, we have for the probability Pr(S = true A M = true A P = false N F = false)
that

Pr(S = true A M = true A P = false N F = false) =
= Pr(S = true) - Pr(M = true | S = true) - Pr(P = false | M = true)-
-Pr(F = false | M = true) =
= 04-0.8-0.1-0.9=0.03

Note that for uniquely describing the joint probability distribution Pr on the four variables
S, M, P, and F only seven probabilities are required in addition to the digraph; in contrast,
a straightforward representation of the distribution would require fifteen probabilities. O

To conclude, we would like to note that the belief network formalism can be extended to
the formalism of influence diagrams to allow for the representation of decision problems.
A decision problem involves probabilistic information as well as information about viable
decisions and preferences. While the former information can be expressed in the belief network
formalism, the latter cannot: for representing this information, the belief network formalism
is enhanced. Just like a belief network, an influence diagram comprises an acyclic directed
graph. The influence diagram, however, models various different types of vertex and arc,
bearing different meanings. Various algorithms have been designed for evaluating influence
diagrams. These algorithms provide for computing the best decision(s) given the uncertainties
and preferences involved [Howard & Matheson, 1981, Shachter, 1986]. In this paper, we focus
on probabilistic reasoning only and therefore will not discuss the influence diagram formalism
and its associated algorithms any further.

4 Probabilistic Inference

In the previous section, we have introduced the belief network formalism for representing
a joint probability distribution on a set of statistical variables. Omnce a belief network is
constructed, it can be used for probabilistic inference, that is, for making probabilistic state-
ments concerning the represented variables. Since a belief network uniquely defines a joint
probability distribution, any probability of interest can be computed from the network by
explicitly generating the full distribution by means of Proposition 3.7, and then using the
basic rules of marginalisation and conditioning. Such a straightforward approach, however,
is computationally infeasible. More efficient algorithms for probabilistic inference have been
designed that exploit the independences that are represented by the qualitative part of a
belief network. The most well-known of these are the algorithms by J. Pearl [Pearl, 1988] and
by S.L. Lauritzen and D.J. Spiegelhalter [Lauritzen & Spiegelhalter, 1988]. In the sequel, we
will discuss Pearl’s algorithm in some detail and briefly address other algorithms for efficient
probabilistic inference with a belief network.

4.1 Pearl’s Algorithm

The basic idea of Pearl’s algorithm for probabilistic inference is best explained from an object-
centered point of view. The digraph of a belief network is taken as a computational archi-
tecture: the vertices of the digraph are autonomous objects, and its arcs are bi-directional
communication channels. Each vertex has a local processor that is capable of performing
simple probabilistic computations and a local memory in which its associated probability
assessment function is stored. Through the communication channels the vertices send each
other parameters providing information about the joint probability distribution that is defined
by the network and about the evidence obtained so far. Each vertex is able to compute the
probabilities of its values from its own probability assessment function and the information
it receives from its neighbours.

Initially, the belief network is in an equilibrium state: recomputation of the various pa-
rameters does not result in a change in any of them. Now, when a piece of evidence is entered
for some vertex, this equilibrium is perturbed: the parameters this vertex sends to its neigh-
bours are updated to reflect the entered evidence. After receiving updated parameters, these
neighbours in turn compute new parameters to send to their neighbours, and so on: the im-
pact of the evidence spreads through the network by message-passing between neighbouring

vertices. In this process of parameter updating, each vertex is visited only once. The belief
network will therefore reach a new equilibrium after a finite number of steps.

In this section, we detail the computations involved in Pearl’s algorithm. A reader who
is less interested in mathematical details may skip the remainder of this section and continue
reading at Section 4.2.

4.1.1 Directed trees

In discussing Pearl’s algorithm, we first focus on probabilistic inference with a belief network
where the qualitative part is a directed tree, that is, in the network’s digraph a vertex may
have several successors but at most one predecessor. In Section 4.1.2 we address probabilistic
inference with belief networks comprising a digraph of more general topology.

Before detailing the computations involved in Pearl’s algorithm, we introduce some more
terminology and notational convention that we will use in the sequel. Let G be the digraph of
some belief network and let V' C V(G) be a subset of its set of vertices. A vertex V; € V for
which either V; = true or V; = false has been observed with certainty is called instantiated;
if no evidence has been obtained as yet for a vertex, it is called uninstantiated. Now, let
X C V be the set of instantiated vertices from V. The configuration cx of X is called a
partial configuration of V and will be denoted as ¢y. Note that the notation ¢y allows for
referring to the subset of instantiated vertices from V without having to specify this subset
explicitly.

At any time during probabilistic inference with a belief network, the probabilities of the
values of a vertex are dependent upon all evidence entered so far.

Lemma 4.1 Let B = (G,T') be a belief network where G = (V(G), A(G)) is a directed tree
and let Pr be the joint probability distribution defined by B. Let V; € V(G) be a vertex in G
and let V,” = o*(V;) and V" = V(G) \'V;". Then,

where éy(g) = EVf A 5V1_+ and o; 18 a normalisation constant.

Proof. For the probabilities Pr(V; | ¢y (g)) of the values of vertex V;, we have

Pr(¢,- Aéy+ | Vi) - Pr(Vp)

Pr(&v_f A EV_+)

Pr(V; | &y(q) =

by Bayes’ Theorem. Now consider Figure 3 showing a fragment of the directed tree G. We
observe that (X|{V;}|Y)% for all subsets X C V,"\{V;} and Y C V;*. Since G is an I-map for
the joint probability distribution Pr, we conclude that Ip. (X, {V;},Y) for all X C V;” \ {V;},
Y C VZ-"'. Exploiting this observation, we find

Pr(é,- | Vi) - Pr(Vi | &)

Pr(¢, - | ¢,+)

Pr(V; | EV(G)) =

1
Note that the factor PrE, - 6, 1)

is a constant with respeét to V;. In the sequel, this constant will be denoted as «;; the
constant «; is generally referred to as a normalisation constant because it can be computed

depends on the vertex V; but not on its values. It therefore

10

Figure 3: A Fragment of the Directed Tree G.

from Pr(v; | éy(@)) + Pr(=w; | éy(g)) = 1. The property stated in the lemma now follows by
substitution. O

The previous lemma shows that the probabilities of the values of a vertex can be expressed
in terms of two factors describing the influence of evidence entered for its descendants and
for all other vertices, separately. The following definition introduces some new terminology
for these separate factors.

Definition 4.2 Let B = (G,TI") be a belief network as before and let Pr be the joint probability
distribution defined by B. Let V; € V(G) be a vertez in G and let V, and V, be as in Lemma
4.1. The compound causal parameter my; for V; is the function mwy,: {Cy,} — [0, 1] defined by

w1 (V) = Pr(Vi | éy)
The compound diagnostic parameter Ay, for V; is the function Ay,: {Cy;} — [0,1] defined by
Mi(Vi) = Pr(@, | Vi)

We take a closer look at the previous definition for uninstantiated vertices having either
no incoming or no outgoing arcs. A directed tree has one vertex W without any incoming
arcs; this vertex is the root of the tree. We observe that for W the set W is empty. So,
¢+ = true. The compound causal parameter 7y for W therefore equals 7y (W) = Pr(W).
The directed tree may further comprise several vertices having no outgoing arcs; these vertices
are the leaves of the tree. For a leaf V;, we observe that the set V;~ consists of V; only. From
Vi being uninstantiated, we then have that ¢;,- = true. The compound diagnostic parameter
Ay, for V; therefore equals Ay (V;) = 1. To coilclude, we consider instantiated vertices. For a
vertex Vj for which the evidence V; = true has been entered, we find 7y, (V;) = Pr(V} | Evj+),

and Ay, (vj) = Pr(¢y,- | vj) and Ay;(—v;) = 0; an analogous observation holds for the case
J
where the evidence V; = false has been entered.

Using the definition of the compound causal and diagnostic parameters for a vertex,
Lemma, 4.1 can now be reformulated as

Pr(Vi | ey(a)) = ai - mv; (Vi) - Ay, (Vi)

11

In this form, the lemma is known as the data fusion lemma [Pearl, 1988]. Note that the
data fusion lemma implies that the compound and diagnostic parameters for a vertex provide
it with enough information for computing the probabilities of its values, that is, no further
knowledge of the joint probability distribution is needed.

The compound diagnostic parameter for a vertex specifies probabilistic information from
all its descendants combined; an analogous observation applies to the compound causal pa-
rameter for the vertex. To be able to exploit the digraph of a belief network as a computational
architecture as outlined before, the compound parameters for a vertex have to be computed
from separate parameters originating from its various neighbours. The following definition
introduces such separate parameters; the Lemmas 4.4 and 4.5 will show the computation of
the compound parameters from these separate ones.

Definition 4.3 Let B = (G,T) be a belief network as before and let Pr be the joint probability
distribution defined by B. For each vertex V € V(G), let V™~ and V* be as in Lemma 4.1.
Now, let V; be a vertex in G with a successor Vi. The causal parameter W“Z from V; to Vi is

the function W“gi: {Cv;} — [0,1] defined by
7 (Vi) = Pr(Vi | ,.0)

Now, let V; be a vertez in G having the predecessor V;. The diagnostic parameter)\“2 from
Vi to Vj is the function)\%’ :{Cv;} — [0,1] defined by

Vi ~
N (Vi) = Pr(E,- | V;)

Note that for the root of the directed tree no diagnostic parameter has been defined and
that for the leaves of the tree no causal parameters have been defined. In addition, note
that for a variable V; for which the evidence V; = true is observed, we find ﬂ“;’i (v;) =1 and
w“fjc (—v;) = 0; an analogous observation holds for the case where V; = false is observed. The
separate causal and diagnostic parameters defined above are the messages the vertices send
each other through the communication channels of the computational architecture and, hence,
may be looked upon as associated with the arcs of the directed tree of the network.

The following lemma now shows that a vertex can compute its compound causal parameter
from the causal parameter it receives from its predecessor and its own probability assessment
function.

Lemma 4.4 Let B = (G,T') be a belief network as before. Let V; € V(G) be a vertez in G

with the predecessor V. Let my, be the compound causal parameter for V; and let 71"‘//{ be the
causal parameter from V; to V;. Then,

(Vi) = > wi(Vilev) - my/ (ev;)

cv,
Vi

Proof. Let Pr be the joint probability distribution defined by the belief network B. For
vertex V;, let I/;-+ be as before. Then, by definition we have

(V) = Pr(Vi | &+)

12

By conditioning on the values of V;’s predecessor V;, we find
7TVZ(‘/Z) = PI‘(V; | v A 5‘/i+) . PI‘(’Uj | éVi+) + PI‘(VZ | -0 A 6Vi+) . PI‘(—VUJ' ‘ 5Vi+)

Now consider once more Figure 3 showing a fragment of the directed tree G. We observe
that ({Vi}[{V;}|X)4 for all subsets X C V" \ {V;}. Since G is an I-map for Pr, we have that
Ip:({Vi},{V;}, X) for all X C V;*\ {V;}. Exploiting this observation, we find

mv; (Vi) = Pr(Vi | vj) - Pr(vj | éy+) + Pr(Vi | ~v;) - Pr(=w; | éy4)

The probabilities Pr(V; | V;) have been specified as function values ~y;(V; | V;) of the proba-
bility assessment function 7y;, and therefore are directly available to vertex V;. In addition,

V; receives the probabilities Pr(Vj | ¢,,+) from its predecessor V; as function values w“g (V;) of

the causal parameter 71"‘2 . The property stated in the lemma now follows by substitution. O

A vertex can further compute its compound diagnostic parameter from the separate diagnos-
tic parameters it receives from its successors. This property is stated more formally in the
following lemma.

Lemma 4.5 Let B = (G,T") be a belief network as before. Let V; € V(G) be an uninstantiated

vertex in G with o(V;) = {V4,,...,Vi,,}, m > 1. Furthermore, let Ay, be the compound

diagnostic parameter for V; and for each V;; € o(V;), let)\“ﬁ? be the diagnostic parameter
ij

from V;; to V;. Then,

wivi) = J1 A)

7j=1,....m

Proof. Let Pr be the joint probability distribution defined by B. For each vertex V € V(G),
let V™ be as before. Since V; is an uninstantiated vertex, we have that ¢;,- =¢,,- A---A¢,,— ;

i i1 im
S0,

(Vi) = Pr(@,- A A&y | Vi)

Now consider Figure 4 showing a fragment of the directed tree G. We observe that (X |[{V;}|Y)

i1 im

Figure 4: Exploiting d-Separation for Computing Ay; (V;).

13

for all subsets X C VZJ_ and Y C Ukzl’___’m’k# VZk_, j=1,...,m. Since G is an [-map for

P}f, we have that Ip.(X,{V;},Y) for X C Vl]_, Y C Ukzl,___,m,k# Vi,i=1,...,m. It follows
that

)‘Vi(Vi):Pr(éviI |Vi)'---'Pr(5VZf | Vi)

The probabilities Pr(f:V; | Vi) are sent to vertex V; by its successor Vij as function values
i

)\“ﬁ (Vi) of the diagnostic parameter)\“ﬁ , 7 =1,...,m. The property stated in the lemma
ij ij

now follows by substitution. O

Note that the previous lemma applies to uninstantiated vertices only. However, the property
mentioned in the lemma can be taken to hold for an instantiated vertex V; as well, if entering
evidence for V; into the network is modelled by adding a ‘dummy’ successor D to V; that
sends an appropriate diagnostic parameter to V;. For the evidence V; = true, this ‘dummy’
successor sends the diagnostic parameter)\gi with)\g’ (v;) = 1 and A}i(—w;) = 0; an analogous
observation holds for the evidence V; = false.

So far, we have shown that a vertex can compute the probabilities of its values from its
own probability assessment function and the causal and diagnostic parameters it receives
from its neighbours. Now observe that the vertex in turn has to compute parameters to
send to its neighbours. The following lemma shows that a vertex can compute the diagnostic
parameter to send to its predecessor from its own assessment function and the diagnostic
parameters it receives from its successors. In other words, for this purpose it combines its
own information about the joint probability distribution with the information it receives
concerning the evidence obtained so far for its descendants. We state this lemma without
proof.

Lemma 4.6 Let B = (G,T') be a belief network as before. Let V; € V(G) be a vertez in G

with the predecessor V. Let Ay, be the compound diagnostic parameter for V; and let /\“2 be
the diagnostic parameter from V; to V;. Then,

SUARSIACARICAND

cy;

Similarly, a vertex can compute the causal parameter to send to a successor from its compound
causal parameter and the diagnostic parameters it receives from its other successors. The
following lemma, states this property more formally.

Lemma 4.7 Let B = (G,T") be a belief network as before. Let V; € V(G) be an uninstantiated

vertez in G with o(V;) = {V4,,..., Vi, }, m > 1. Furthermore, let Ty, be the compound causal

parameter for V;. For each Vi, € o(V;), let ﬁ“f be the causal parameter from V; to V;, and
ij

let /\“ﬁ be the diagnostic parameter from Vi, to V;. Then,
i

(Vi) = mi(Vi)- I AL ()
k=1,...,m,k#£j

where a; 1s a normalisation constant.

14

The previous lemma applies to uninstantiated vertices only; the lemma, however, can be taken
to hold for instantiated vertices as described before.

The data fusion lemma and the four computation rules provided by the Lemmas 4.4, 4.5,
4.6, and 4.7 with each other constitute Pearl’s algorithm for probabilistic inference with a
belief network comprising a directed tree for its qualitative part. Note that Pearl’s algorithm
provides for computing probabilities as well as for processing evidence. The computation
rules for the separate causal and diagnostic parameters enable a vertex to pass on the impact
of a piece of evidence correctly, and allow for the evidence to spread throughout the network.
Close examination of the computation rules from the Lemmas 4.6 and 4.7 further reveals that
a neighbour that sends an updated parameter will not receive a new parameter originating
from the same evidence. A causal parameter or a diagnostic parameter to a vertex is not
affected by the diagnostic parameter or the causal parameter, respectively, from that vertex;
in addition, the topological property that in a directed tree there is at most one chain between
any two vertices prohibits the process of parameter updating to reach this vertex along another
chain. These properties with each other guarantee that feedback and circular reasoning are
prevented and that evidence is propagated throughout the network in a single pass.

Example 4.8 Consider once more the belief network shown in Figure 1 representing fictitious
medical ‘knowledge’ concerning the diagnosis of acute cardiac disorders. Suppose that we are
interested in the prior probabilities of the presence and absence, respectively, of a myocardial
infarction in a patient. These probabilities are computed by vertex M by application of the
data fusion lemma:

Pr(m) = O\ 7TM(m) -)\M(m)
Pr(—-m) = ap - mar(—m) - Apr(—=m)

Vertex M computes the compound causal parameter s from its own probability assessment
function ~y,s and the causal parameter 7r]5\14 it receives from its predecessor S by applying the
computation rule from Lemma 4.4. From vertex S, it receives the information

73 (s) = ms(s) = 0.4
mar(—s) = wg(—s) = 0.6
So,
m(m) = yue(m | 8) - w3y (s) +ya(m | =s) - w3y (=s) = 0.5
v (=m) = yn(=m | s) - wiyg(s) +yar(=m | =s) - wy (=) = 0.5

Vertex M further computes the compound diagnostic parameter Aj; from the diagnostic
parameters AY and AY it receives from its successors P and F, respectively, by applying the
computation rule from Lemma 4.5. From P and F, it receives the information

M (m) =1

MY (=m) = 1

15

and
MM (m) =1
Ap (-m) =1
respectively. So,
Ane(m) = Xp/(m) - A (m) = 1
A (~m) = A¥ (~m) - \¥ (-m) = 1

Substitution of the compound parameters into the data fusion lemma and elimination of the
normalisation constant ajs yields

Pr(m) =0.5
Pr(-m) =0.5

If the prior probability of the presence of a myocardial infarction seems to be rather high,
then recall that the information from the network is conditional on a patient’s presenting
to a first aid clinic. For each vertex, the prior probabilities of its values are summarised in
Figure 5.

S

TRUE [0.400
FALSE [0.600

Y
M

TRUE (BB 10500
FALSE [0.500

N

TRUE (MMM 10.600 |TRUE @ 0.150
FALSE [10.400 |FALSE (IS]0.850

Figure 5: The Prior Probabilities.

Now suppose that a patient under consideration complains of pain on the chest, that is,
the evidence P = true is obtained. After entering this evidence, the posterior probabilities
of the presence and absence of a myocardial infarction in this patient can be computed from
the network. Vertex M once more applies the data fusion lemma;:

Pr(m | p) = an - mp(m) - Aps(m)
Pr(-m | p) = anr - mp(=m) - Ay (-m)

Since no evidence has been entered as yet for vertex S, this vertex sends the same causal
parameter 7r]5\14 to vertex M as before. The compound causal parameter m,s for vertex M
therefore remains unaltered:

wam(m) = 0.5

16

mp(—m) = 0.5

From its successor F, vertex M also receives the same information as before. From vertex P,
however, it receives an updated diagnostic parameter reflecting the entered evidence:

AP (m) =vp(p | m) =0.9
AP (=m) = vp(p | -m) = 0.3

From the parameters)\% and /\93/[, vertex M computes its compound diagnostic parameter
v to be

Apr(m) = AP (m) - Ap (m) = 0.9
A (=m) = AP (-m) - A\ (-m) = 0.3

Substitution of the compound parameters into the data fusion lemma and elimination of the
normalisation constant ;s yields

Pr(m) = 0.75
Pr(-m) =0.25

Note that as a result of the evidence obtained, the likelihood of this patient having a myocar-
dial infarction has increased considerably. For each vertex, the posterior probabilities of its
values are summarised in Figure 6. O

S

TRUE [N 0.52(
FALSE [0.480

Y
M

TRUE [0.75(
FALSE L 0.250

R

TRUE N 1.000 |TRUE B 10.125
FALSE [________]0.000 |FALSE [N] 0-875

Figure 6: The Posterior Probabilities Given P = true.

4.1.2 General digraphs

So far, we have only considered probabilistic inference with a belief network comprising a
directed tree. We will now sketch how Pearl’s algorithm is extended to apply to belief networks
comprising a digraph of more general topology.

We first consider extending Pearl’s algorithm to apply to singly connected digraphs, that
is, to digraphs where the underlying (undirected) graph is acyclic. The proofs of the lemmas
presented in the previous section show that Pearl’s computation rules for directed trees derive
from exploiting independences. These independences are read from the qualitative part of a

17

belief network by local inspection of a vertex’ incoming and outgoing arcs only. The com-
putation rules therefore make use explicitly of the property that there is at most one chain
between any two vertices. Since singly connected digraphs share this property with directed
trees, Pearl’s algorithm is easily extended to apply to singly connected digraphs. In fact,
only the computation rules for the compound causal parameter and the diagnostic parameter
are adapted to allow for a vertex having multiple predecessors; all other computation rules
remain unaltered. For further details, the reader is referred to [Pearl, 1988].

Pearl’s algorithm, however, is not as easily extended to apply to acyclic multiply con-
nected digraphs in general. Straightforward application of Pearl’s algorithm to an acyclic
digraph comprising one or more loops invariably leads to insuperable problems [Pearl, 1988,
Suermondt & Cooper, 1990]. Vertices may indefinitely send updated messages to their neigh-
bours, causing the network never to reach a new equilibrium. Yet, even if the network does
reach a new equilibrium, it is not guaranteed to correctly reflect the updated joint probability
distribution. Both problems originate from the same source: since there now is more than
one chain between two vertices, local inspection of a vertex’ incoming and outgoing arcs no
longer serves for reading independences from the digraph of the network at hand.

Pearl has proposed several methods for probabilistic inference with a belief network com-
prising a multiply connected digraph, all of which retain to some extent the property of
locality of computation [Pearl, 1988]. Of these, the method of loop cutset conditioning may
be looked upon as a supplement to the basic algorithm. The idea underlying this method is
that of reasoning by assumption. For a multiply connected digraph, vertices are selected that,
upon instantiation, with each other effectively ‘cut’ or block all loops and cause the digraph to
behave as if it were singly connected; the selected vertices are said to constitute a loop cutset
of the digraph. Each configuration of the loop cutset now is looked upon as a (compound)
assumption on which reasoning is performed. For each vertex, the probabilities of its values
are computed by conditioning successively on all possible configurations of the loop cutset and
subsequently weighting the results obtained. The probabilities of a vertex’ values given some
configuration of the loop cutset can be computed by Pearl’s algorithm for singly connected
digraphs. The interested reader is referred to [Pearl, 1988, Suermondt & Cooper, 1990] for
further details on the method of loop cutset conditioning.

4.2 Other Algorithms

In the previous section, we have discussed Pearl’s algorithm for probabilistic inference with
a belief network. Pearl’s algorithm, however, is not the only algorithm designed for this
purpose: several different algorithms have been proposed in the course of the last decade.

In general, an algorithm for probabilistic inference with a belief network is built from
two basic procedures: a procedure for (efficiently) computing probabilities of interest from
a belief network, and a procedure for processing evidence, that is, for entering evidence into
the network and subsequently (efficiently) computing the revised joint probability distribution
given the evidence. Note that in Pearl’s algorithm these basic procedures have been combined
into a set of computation rules where they cannot easily be distinguished. In most other
algorithms, however, these basic procedures are more readily discernable. The algorithms
proposed further have two important properties in common: the qualitative part of a belief
network is exploited more or less directly as a computational architecture and, after a piece
of evidence has been processed in the network, again a belief network results. Note that the
latter property allows for recursive processing of evidence.

18

Although all algorithms proposed for probabilistic inference build on the same notion of a
belief network, they differ considerably with respect to their underlying concepts. To support
this observation, we briefly review another, elegant algorithm for probabilistic inference with
a belief network, designed by S.L. Lauritzen and D.J. Spiegelhalter [Lauritzen & Spiegel-
halter, 1988]. Lauritzen and Spiegelhalter have observed that after a piece of evidence has
become available, updating the joint probability distribution generally entails going against
the ‘direction’ of the initially assessed conditional probabilities. From this observation they
have concluded that the directed qualitative part of a belief network is not suitable as an
architecture for probabilistic inference directly. Their algorithm therefore departs from an
undirected representation of a joint probability distribution. Prior to probabilistic inference,
the original belief network is transformed into a so-called decomposable belief network. A
decomposable belief network again consists of a qualitative part and a quantitative part. The
qualitative part is a decomposable, or chordal, graph; the quantitative part is a set of marginal
distributions on the vertex sets of the cliques of this graph. The computational architecture
for the algorithm derives from the qualitative part of this decomposable belief network and is
termed a junction tree [Jensen at al., 1990a]. In the junction-tree architecture, the cliques of
the decomposable graph are the autonomous objects and the clique intersections give rise to
the communication channels. From a decomposable belief network, a probability of interest
is computed by further marginalisation of an appropriate marginal distribution. Processing
evidence is performed per clique and by message-passing between neighbouring cliques in the
junction tree.

The various algorithms proposed for probabilistic inference with a belief network also differ
with respect to their computational complexity. We note that probabilistic inference with
belief networks without any topological restrictions is known to be NP-hard [Cooper, 1990].
All algorithms proposed therefore have an exponential worst-case computational complexity.
However, the algorithms can be shown to behave polynomially under certain restrictions.
These restrictions concern the topology of a belief network’s digraph and differ among the
various algorithms. For example, digraphs for which Pearl’s algorithm behaves polynomially
may show exponential behaviour of Lauritzen and Spiegelhalter’s algorithm, and vice versa
[Suermondt & Cooper, 1991]. In general, however, the sparser the digraph of a belief network,
the better most algorithms perform. Experience with constructing belief networks for real-life
applications so far has indicated that a belief network’s digraph in fact tends to be rather
sparse.

5 Building a Bayesian Belief Network

The belief network framework generally is used for applying probability theory for reasoning
with uncertainty in knowledge-based systems. For employing the framework for a real-life
domain of application, relevant knowledge of the domain at hand is represented in the belief
network formalism; the basic algorithms of the framework are taken as building blocks for
shaping the system’s intelligent problem-solving behaviour. In this section we address the
task of building a Bayesian belief network for a domain of application. Before doing so, we
would like to emphasise that as the belief network framework has not been around for a long
time, methodologies for building belief networks do not yet abound.

Building a Bayesian belief network for a domain of application involves various tasks. The
first of these is to identify the variables that are of importance in the domain at hand, along

19

with their possible values. Identifying the important domain variables is typically performed
with the help of one or more domain experts. This task is not specific for building a belief
network, but instead is quite common in engineering knowledge-based systems. A knowledge
engineer can therefore make use of the various elicitation techniques designed for engineering
knowledge-based systems in general. We will not further elaborate on this task here and
confine ourselves to emphasising that it needs to be performed with care since the domain
variables that are modeled in the belief network demarcate the scope of the resulting system.

Once the important domain variables have been identified, each of them needs to be
expressed as a statistical variable to allow for inclusion in the belief network in the making.
A statistical variable is characterised by its values being mutually ezclusive and collectively
erhaustive; furthermore, to allow for inclusion in a belief network, a statistical variable has
to take its value from a finite set of discrete values. Only if the set of values of a domain
variable exhibits these properties, can the variable be included in the network as it is. A single-
valued domain variable taking its value from an infinite set of values, for example, cannot
be expressed directly as a statistical variable for inclusion in a belief network. The variable’s
set of values has to be discretised, that is, split up into a finite number of mutually exclusive
subsets of values which subsequently are taken as the variable’s new values. Also, a domain
variable taking multiple values from a finite set of values cannot be expressed directly as a
statistical variable, since its values are not mutually exclusive. The variable’s values then have
to be redefined to render them mutually exclusive and collectively exhaustive; alternatively,
the domain variable can be decomposed into several variables which subsequently are modeled
separately in the belief network in the making.

Once the domain variables of importance have been identified and expressed as statistical
variables, the construction of the qualitative part of the belief network in the making can
commence. Formally, for constructing the qualitative part of the network, the independence
relation of the joint probability distribution on the variables discerned has to be identified and
represented in an acyclic digraph. In general practice, however, the digraph is constructed
directly without explicitly identifying all relevant independences.

For most domains of application, the qualitative part of a belief network has to be hand-
crafted with the help of one or more domain experts. For eliciting the topology of the digraph
of the network, often the concept of causality is used as a heuristic guiding rule during the
interview with a domain expert; typical questions asked are ”What could cause this effect 77,
”What manifestations could this cause have ?” [Henrion, 1989]. The thus elicited causal re-
lations among the variables discerned are easily expressed in graphical terms by taking the
direction of causality for directing the arcs between related variables; this graphical represen-
tation can then be taken as a basis for feedback to the domain expert for further refinement.
Building on the concept of causality has the advantage that domain experts are allowed to
express their knowledge in either the causal or diagnostic direction. Since they are allowed
to express their knowledge in a form they feel comfortable with, the experts’ statements tend
to be quite robust. Yet, not every influential relationship among variables can be interpreted
as causal. If a non-causal influential relationship comes to the fore during an interview, a
more elaborate analysis of the independences involved is required before it can be expressed
in graphical terms. Also, causality is not a well-understood concept and therefore may leave
room for multiple interpretations. We would like to note, however, that the task of eliciting
relationships among variables from domain experts is not reserved for building Bayesian be-
lief networks: the elicitation task has parallels with engineering knowledge-based systems in
general for which several methodologies have been developed.

20

For some domains of application, the construction of the qualitative part of the belief
network in the making can be performed automatically by exploiting carefully collected data.
In various domains, data has been collected and maintained over numerous years of every-
day problem solving. Such a data collection generally contains highly valuable information
about the relationships among the variables discerned, albeit implicitly. The basic idea of
an algorithm for learning the qualitative part of a belief network from data is to distill this
information from the data collection and exploit it for constructing a digraph. Modern al-
gorithms for learning the qualitative part of a belief network from data typically generate
various different acyclic digraphs and compare these as to their ability to describe or ex-
plain the data at hand [Cooper & Herskovits, 1992, Lam & Bacchus, 1994]. For comparing
digraphs, a learning algorithm makes use of a quality measure. A quality measure is a function
that assigns to a digraph a numerical value expressing how well this digraph fits the data.
The basic purpose of the algorithm now is to select from among all acyclic digraphs a digraph
with highest quality. As it is not feasible from a computational point of view to generate
all possible digraphs and compute their qualities, a learning algorithm incorporates a search
heuristic for searching the set of all acyclic digraphs implicitly for digraphs that are likely to
have a high quality; only for these digraphs is the quality given the data actually computed.

After the qualitative part of the belief network in the making has been constructed, is its
quantitative part specified. Specifying the quantitative part amounts to defining the proba-
bility assessment functions for the variables modeled in the network. The task of assessing all
required probabilities tends to be by far the hardest task in belief network building. In most
domains, at least some information is readily available for this task, be it from literature or
from domain experts. Although literature on the domain of application often provides abun-
dant probabilistic information, it unfortunately is very seldom directly amenable to encoding
in the belief network in the making: the information typically is not complete, it concerns
variables that are not causally related, and so on. An additional, commonly found problem
that prohibits direct use of probabilistic information from literature is that the character-
istics of the population from which the information is derived, is not properly described or
deviates seriously from the characteristics of the population for which the belief network is
being developed [Korver & Lucas, 1993]. Literature, however, is not the only source of prob-
abilistic information. In principle, probability assessments may also be obtained from data
or from (other) models of domain knowledge. Unfortunately, experience learns that even
if comprehensive data collections and models of domain knowledge are available, they very
seldom contribute to the quantification task [Jensen, 1995, Korver & Lucas, 1993]. As a con-
sequence, a large number of probabilities will have to be assessed by domain experts. The
field of decision analysis offers various methods for elicitation of judgemental probabilities
from experts [von Winterfeldt & Edwards, 1986]. These methods are designed to avert to at
least some extent problems of bias and poor calibration typically found in human probability
assessment. Straightforward application of these methods to belief network quantification,
however, often is hampered by the large size and complex dependence structure of the be-
lief network at hand. Decision-analytic methods therefore will have to be supplemented
with methods tailored to belief network quantification; such methods are just beginning to
arise [Druzdzel & van der Gaag, 1995]. Elicitation of probabilities from domain experts will
nevertheless remain a very hard and time-consuming task.

In the foregoing, we have addressed the various tasks involved in building a Bayesian
belief network separately. In practice, however, building a belief network is a cyclic process
that iterates over the various tasks until a network results that is deemed satisfactory for the

21

domain of application at hand. To conclude, we would like to stress that building a belief
network requires careful tradeoff between the desire for a large and rich model to obtain
accurate results on the one hand, and the cost of construction and maintenance and the
complexity of probabilistic inference on the other hand.

6 Problem Solving with Belief Networks

Since its introduction, the belief network framework has been applied in knowledge-based
systems for a wide range of complex real-life problems, most notably in the medical domain
[Andreassen et al., 1987, Heckerman et al., 1992, Andreassen et al., 1991, Bellazzi et al., 1991,
Shwe et al., 1991]. As experience with applying the framework is building, it becomes appar-
ent that, although the framework offers many advantages over earlier approaches to auto-
mated reasoning with uncertainty, it lacks with regard to intelligent control over reasoning.
The provision of control over reasoning is generally considered one of the main contributions of
artificial intelligence research to automated reasoning: knowledge-based systems thank their
success to a large extent to their ability to apply specialised knowledge for pruning search
spaces and for selectively gathering evidence. Since control over reasoning is a prerequisite
for arriving at problem-solving behaviour that is satisfactory both from a computational and
a user’s point of view, it is not surprising that providing for control is an important issue in
present-day belief-network research. In this section, we briefly address this issue.

6.1 A Problem-Solving Architecture

The main purpose of exerting control over reasoning is to shape efficient and intelligent
problem-solving behaviour. Exerting control involves monitoring and reflecting upon the
reasoning process as it develops and taking decisions as to how it should proceed. To this end,
strategic knowledge about the domain at hand is employed. As this knowledge may be non-
probabilistic in nature, control over belief-network reasoning generally cannot be implemented
in the framework in itself. We therefore propose embedding the belief network framework in
a general problem-solving architecture [van der Gaag & Wessels, 1993].

Our belief-network problem-solving architecture is composed of two layers. The first layer
offers the belief network formalism and a variety of associated algorithms. The algorithms in
this layer are characterised by their operating on a belief network directly: various algorithms
for probabilistic inference are comprised in the layer as are algorithms for example for reading
independences from the qualitative part of a network. In the sequel, we will call this layer the
probabilistic layer of the architecture. The second layer of our problem-solving architecture
is designed to provide for control over reasoning — it is termed the control layer. This layer
offers a variety of methods for control for different types of problem solving and provides
formalisms for representing the additional knowledge used by these methods. The layer for
example offers methods for selectively gathering evidence for diagnostic applications as well as
methods for intelligently pruning and focusing belief-network inference. These control meth-
ods are the basic building blocks for shaping complex, domain-dependent problem-solving
behaviour. The two layers of our architecture are strictly separated and communicate in a
highly restricted fashion. The control layer queries the probabilistic layer for information
about the represented joint probability distribution and the evidence entered so far, and,
based upon this information, takes strategic decisions as to how to proceed. The probabilistic
layer computes and returns the information it is asked for by the control layer.

22

Our problem-solving architecture explicitly separates probabilistic reasoning from control
over reasoning. Several advantages arise from such an explicit separation. A belief network can
be developed and refined, without being hampered by any algorithmic issues. Moreover, the
representation of the joint probability distribution on the domain at hand is not obscured by
non-probabilistic knowledge. In addition, a belief network can be re-used in different contexts
for different purposes; a similar observation holds for the methods of control comprised in the
control layer of the architecture. We would like to note that our architecture also provides
for modeling decision problems. Knowledge about viable decisions and the preferences over
their consequences involved in a decision problem are represented in the control layer, along
with methods for solving the problem; the probabilistic layer comprises a belief network that
is used as a background knowledge base for providing the probabilities required. As such
our problem-solving architecture is more flexible than the influence diagram framework. To
conclude, we would like to mention that the idea of a meta-level problem-solving architecture
is not a new one — in fact, the idea pervades many areas of artificial intelligence research.

6.2 Controlling Diagnostic Reasoning

As an example method for control over reasoning offered by the control layer of our problem-
solving architecture, we will discuss a simple method for selective gathering of evidence for
diagnostic problem solving with a belief network.

In diagnostic problem solving, the objective is to identify a most likely explanation for a
problem under consideration — this explanation then is the diagnosis of the problem. Es-
tablishing a diagnosis is achieved by gathering information about the manifestations of the
problem at hand by applying tests to the problem. In most domains, it is not necessary to
collect evidence on all possible manifestations before an accurate diagnosis is reached: infor-
mation from only a few tests generally suffices. Moreover, it often is not desirable to apply
all tests available as testing may be costly or damaging. In diagnostic problem solving, there-
fore, tests are not applied as a matter of course but instead are selected carefully. Selective
evidence gathering, or test planning, now amounts to selecting the most useful tests to apply
to a problem under consideration.

In essence, selective evidence gathering is concerned with three tasks. The first of these
is to select the test that is expected to yield the most useful information in the context of
the evidence that is already available. When a test has been selected, the user is requested
to apply the test and to enter the evidence yielded. The second task of selective evidence
gathering is to process this evidence. The third task is to decide whether enough evidence has
been obtained as yet to confirm a diagnosis to sufficient extent. If still further information is
required, the three tasks are executed recursively. We now take a closer look at these tasks in
view of diagnostic problem solving with a belief network. While the belief network framework
offers algorithms for computing probabilities and for processing evidence, thus providing for
the second task of selective evidence gathering, it does not provide for valuing and selecting
tests nor for deciding when to stop gathering information: these tasks involve knowledge
that cannot be expressed in the belief network formalism and require computations beyond
probabilistic inference. These tasks therefore are provided for by the control layer of our
problem-solving architecture.

In diagnostic problem solving, the variables discerned in the domain at hand play different
roles; for example, some variables represent test outcomes, others represent unobservable,
intermediate process states. For distinguishing between these different roles, we discern the

23

following types of vertex in the digraph of a belief network [Henrion, 1989]: a hypothesis
vertex represents one or more (mutually exclusive) hypotheses or disorders; an evidence vertex
represents a variable whose value can be obtained by testing; all other vertices are intermediate
vertices. In the sequel, we take the set of vertices of the digraph G of a belief network to be
partitioned into three mutually disjoint sets of vertices: H(G) = {H1,...,Hyp}, n > 1, is the
set of hypothesis vertices; the set of evidence vertices is denoted as E(G) = {E1,...,En},
m > 1; I(G) is the set of intermediate vertices. The roles of the various vertices are modelled
in the control layer of our problem-solving architecture and are not known to the probabilistic
layer. In addition to knowledge concerning the roles of the vertices discerned, the control layer
also specifies the additional knowledge required for assessing for each test the (expected)
usefulness of information yielded by testing, and the extra knowledge involved in deciding
when to stop gathering information.

For selective evidence gathering in diagnostic problem solving with a belief network, gen-
erally two simplifying assumptions are made. First, a myopic approach to evidence gathering
is taken, that is, evidence vertices to acquire information on are selected one by one. It is
conceivable that in practical applications a non-myopic approach in which vertices are se-
lected groupwise outperforms any method based on a myopic approach. Naively adopting
a non-myopic approach, however, poses unsurmountable problems concerning computational
complexity. The second simplifying assumption generally made is that the belief network at
hand comprises one hypothesis vertex only, that is, it is assumed that all hypotheses discerned
in the domain are mutually exclusive. Note that this assumption prohibits reasoning about
multiple interacting disorders. Relaxing this assumption and straightforwardly applying selec-
tive evidence gathering in view of a set of hypothesis vertices also causes serious computational
problems, since then all possible combinations of values for all hypothesis vertices have to be
considered. We will here equally take up the two assumptions mentioned above. We would
like to note, however, that recent research results indicate that the simplifying assumptions
may be eased to some extent [Heckerman et al., 1993, van der Gaag & Wessels, 1994].

Selective evidence gathering for diagnostic problem solving with a belief network may now
be envisioned as outlined below in pseudo-code. The evidence-gathering procedure takes the
digraph G of a belief network and the set E of all yet uninstantiated evidence vertices for its
input and yields a diagnosis D for its output.

procedure evidence-gathering(G,E,D)
enough := false;
while E # & and not enough do
dependent-vertices(H,E,E');
if £/ # o then
select-vertex(E', E;);
enter-evidence(E;);
E = B\{E,}
enough := verify-enough()
else enough := true
od;
diagnosis(D)
end

In principle, for selecting from a belief network an appropriate vertex to acquire information
on, each yet uninstantiated evidence vertex has to be examined as to the (expected) usefulness

24

of information yielded. To this end, several probabilities are computed from the belief network.
These probabilities may reveal that for some of the uninstantiated evidence vertices, entering
information has no influence whatsoever on the probabilities of the values of the hypothesis
vertex and therefore is utterly useless in view of establishing a diagnosis. This property holds
for all vertices that are independent of the hypothesis vertex given the evidence obtained
so far. Now recall that the belief network formalism allows for identifying independences
from the digraph of a network without having to resort to probabilistic computations. In
the main evidence-gathering procedure, this property is exploited to save on the number of
probabilities that has to be computed from the network. The dependent-vertices procedure
is called upon to determine from a set E of uninstantiated evidence vertices the subset E'
of those vertices that are not d-separated from the hypothesis vertex H given the evidence
entered so far. For selecting an appropriate evidence vertex to acquire information on now
only the vertices comprised in this set E' are examined. Here, we will not further elaborate on
the dependent-vertices procedure; for the computational issues involved, the reader is referred
to [Geiger et al., 1990]. We would like to note that although the dependent-vertices procedure
is called from the control layer of our problem-solving architecture, it itself is comprised in
the probabilistic layer.

Once the set E' of relevant uninstantiated evidence vertices has been determined, the
select-vertex procedure selects from this set the evidence vertex to best acquire information
on. For discriminating between the various evidence vertices, this procedure employs a wutil-
ity fumction. Such a function assigns to each value of every evidence vertex a numerical
quantity expressing the desirability, or utility, of obtaining this value. The utility functions
in use for selective evidence gathering differ considerably in the way they value information
[Ben-Bassat, 1978, Glasziou & Hilden, 1989]. A utility function may be based on probabilis-
tic information only and not involve any other information about the domain at hand. Yet, it
may also incorporate non-probabilistic issues such as the cost of obtaining. For selecting an
appropriate evidence vertex, the select-vertex procedure may employ any such utility function.
As an example, we consider here a very simple utility function tailored to binary variables
[van der Gaag & Wessels, 1993]: the linear-value utility function u is defined by

u(E;) = |Pr(h | ¢) —Pr(h | c A Ey)|

for each evidence vertex E; € E', where H is the hypothesis vertex and ¢ denotes the con-
junction of all evidence obtained so far. Note that for an uninstantiated evidence vertex Ej;,
the difference between Pr(h | ¢) and Pr(h | ¢ A ¢;) indicates the confidence gained in the
hypothesis h if the evidence E; = true is observed; an analogous observation holds for the
evidence E; = false. The usefulness of acquiring information on an evidence vertex, however,
does not depend on a single value as it is uncertain which test result will be yielded for the
problem at hand. For examining an evidence vertex, therefore, the utilities of its separate
values are weighted with the probabilities that these values will be found. The result models
the expected wutility of acquiring information on the vertex. When employing the linear-value
utility function u, the expected utility 4 for an evidence vertex E; € E' is computed from

a(E;) =Y Pr(cs | o) - ulcs,)

To select the evidence vertex to best acquire information on, the select-vertex procedure com-
putes the expected utilities for all relevant uninstantiated evidence vertices and then selects
the vertex with highest expected utility.

25

Example 6.1 Consider once more the belief network shown in Figure 1 representing some
knowledge concerning the diagnosis of acute cardiac disorders. Suppose that the vertices
from the network are assigned the following roles: vertex M is the hypothesis vertex, and
vertices S, P, and F are evidence vertices — there are no intermediate vertices in the network.
Initially, no evidence is available. The select-vertex procedure selects the evidence vertex to
best acquire information on from among the vertices S, P, and F'. To this end, it computes
their respective expected utilities as outline before. For example, for vertex P the utilities

u(p) = | Pr(m) — Pr(m | p)| = 0.25
u(=p) = |Pr(m) — Pr(m | -p)| = 0.375

are computed, and from these the expected utility
a(P) = Pr(p) - u(p) + Pr(-p) - u(-p) = 0.3

From the three evidence vertices, vertex P appears to have the highest expected utility. The
select-vertex procedure therefore selects this vertex to acquire information on. O

Once an appropriate evidence vertex has been selected, the enter-evidence procedure prompts
the user for a value for this vertex. The value obtained from the user is entered and sub-
sequently processed in the belief network at hand by the basic algorithms for probabilistic
inference offered by the probabilistic layer of the problem-solving architecture. Note that
the while-loop of the evidence-gathering procedure yields a sequence of prompts to the user
concerning various evidence vertices.

The last task of selective evidence gathering is to investigate whether enough evidence
has been collected to justify a decision to stop further gathering of information. For this
task, a stopping criterion is employed. Such a stopping criterion may be based on several
different principles. The principle of sufficiency of confirmation is to stop evidence gathering
as soon as a diagnosis has been confirmed to sufficient extent by the available information:
the probability of a (tentative) diagnosis is compared with a pre-set threshold value, and if
this probability has surpassed the threshold value and is expected not to drop considerably,
evidence gathering is stopped. Note that such a stopping criterion is based on probabilistic
information only. Another principle a stopping criterion may be based upon is the principle of
sufficiency of information. This principle is to stop evidence gathering if the expected utilities
of all remaining evidence vertices have dropped below a pre-set threshold value; pursuing
evidence gathering then is expected not to further contribute to establishing a diagnosis. A
stopping criterion based on this principle may involve both probabilistic and non-probabilistic
information from the domain at hand. In the evidence-gathering procedure the two principles
are combined. The principle of sufficiency of information is seen in the condition of the main
while-loop of the procedure: evidence gathering is stopped if all remaining uninstantiated
evidence vertices are independent of the hypothesis vertex given the evidence obtained so
far. The verify-enough function completes the stopping criterion by implementing a test on
sufficiency of confirmation. We will not further elaborate here on the verify-enough function.

7 Conclusions

Probabilistic reasoning with the belief network framework is an exciting research area. First
and foremost, the belief network framework may be looked upon as a mathematically sound

26

computational framework for probabilistic inference. From this point of view, we have ad-
dressed the algorithms offered by the framework. We have argued that although these al-
gorithms have an exponential worst-case time complexity, they tend to behave polynomially
for most real-life belief networks. However, as applications of the framework grow larger, the
belief networks involved increase in size accordingly. Networks comprising hundreds or even
thousands of vertices are no exception. For belief networks of this size, the basic algorithms
for probabilistic inference inevitably slow down problem solving despite their polynomial
behaviour. Modern belief network research therefore aims at developing more efficient al-
gorithms. Efficiency is sought after in many different ways: existing algorithms are further
optimised, new algorithms are designed for example based on simulation techniques, yet other
optimisations derive from knowledge-based pruning and focusing.

The belief network framework may also be looked upon as a framework for building
knowledge-based systems. In fact, experience with developing applications of the framework
is progressing rapidly. From this point of view, we have addressed the issue of building a belief
network for a domain of application. In many respects, building a belief network resembles en-
gineering a knowledge-based system more in general. Available general knowledge-engineering
methodologies, however, will have to be supplemented with methodologies tailored to belief-
network building. Such methodologies are now emerging. As experience with applying the
belief network framework is building, the need for methods for knowledge-based control over
reasoning is beginning to manifest itself. We have briefly addressed this issue and outlined
shaping diagnostic problem solving with a belief network. Research on the provision of control
over belief-network reasoning has scarcely begun and different control methods as demanded
by various types of problem solving have yet to be designed.

Acknowledgement

A major part of this paper has been presented at the Sofsem’94 Winterschool. We further
acknowledge that Section 5.2 is based to a large extent on joint work with Maria Wessels. To
conclude, we would like to thank Peter Lucas for his valuable comments on an earlier draft
of this paper.

References

[Andreassen et al., 1987] S. Andreassen, M. Woldbye, B. Falck, and S.K. Andersen. MUNIN
- A causal probabilistic network for interpretation of electromyographic findings. Pro-
ceedings of the Tenth International Joint Conference on Artificial Intelligence, 1987,
pp. 366 — 372.

[Andreassen et al., 1991] S. Andreassen, R. Hovorka, J. Benn, K.G. Olesen, and E.R. Car-
son. A model-based approach to insulin adjustment. In: M. Stefanelli, A. Hasman, M.
Fieschi, and J. Talmon. Proceedings of the Third Conference on Artificial Intelligence
in Medicine. Lecture Notes in Medical Informatics 44, Springer Verlag, Berlin, 1991,
pp- 239 — 248.

[Bellazzi et al., 1991] R. Bellazi, C. Berzuini, S. Quaglini, D.J. Spiegelhalter, and M. Leaning.
Cytotoxic chemotherapy monitoring using stochastic simulation on graphical models.
In: M. Stefanelli, A. Hasman, M. Fieschi, and J. Talmon. Proceedings of the Third

27

Conference on Artificial Intelligence in Medicine. Lecture Notes in Medical Informatics
44, Springer Verlag, Berlin, 1991, pp. 227 — 238.

[Ben-Bassat, 1978] M. Ben-Bassat. Myopic policies in sequential classification. IEEE Trans-
actions on Computers, vol. C-27, 1978, pp. 170 — 174.

[Bruza & van der Gaag, 1994] P.D. Bruza and L.C. van der Gaag. Index expression belief
networks for information disclosure. International Journal of Fxpert Systems: Research
and Applications, vol. 7, 1994, pp. 107 — 138.

[Buchanan & Shortliffe, 1984] B.G. Buchanan and E.H. Shortliffe. Rule-based Ezpert Sys-
tems. The MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading, Massachusetts, 1984.

[Cheeseman, 1988] P. Cheeseman. An inquiry into computer understanding. Computational
Intelligence, vol. 4, 1988, pp. 58 — 66.

[Cooper, 1990] G.F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, vol. 42, 1990, pp- 393 — 405.

[Cooper & Herskovits, 1992] G.F. Cooper and E. Herskovits. A Bayesian method for the in-
duction of probabilistic networks from data. Machine Learning, vol. 9, 1992, pp. 309 —
347.

[de Dombal et al., 1972] F.T. de Dombal, D.J. Leaper, J.R. Staniland, A.P. McCann, and
J.C. Horrocks. Computer-aided diagnosis of acute abdominal pain. British Medical Jour-
nal, vol. 2, 1972, pp. 9 — 13.

[de Dombal et al., 1974] F.T. de Dombal, D.J. Leaper, J.C. Horrocks, J.R. Staniland, and
A.P. McCann. Human and computer-aided diagnosis of abdominal pain: further report

with emphasis on the performance of clinicians. British Medical Journal, vol. 4, 1974,
pp. 376 — 380.

[Druzdzel & van der Gaag, 1995] M.J. Druzdzel, L.C. van der Gaag. Elicitation of probabil-
ities for belief networks: combining qualitative and quantitative information. Eleventh
Conference on Uncertainty in Artificial Intelligence, 1995, pp. 141 — 148.

[Geiger et al., 1990] D.E. Geiger, T. Verma, and J. Pearl. d-separation: from theorems to
algorithms. In: M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer. Uncertainty
in Artificial Intelligence 5, Elsevier Science Publishers, Amsterdam, 1990, pp. 139 —
148.

[Glasziou & Hilden, 1989] P. Glasziou and J. Hilden. Test selection measures. Medical Deci-
sion Making, vol. 9, 1989, pp. 133 — 141.

[Gorry & Barnett, 1968] G.A. Gorry and G.O. Barnett. Experience with a model of sequential
diagnosis. Computers and Biomedical Research, vol. 1, 1968, pp. 490 — 507.

[Heckerman et al., 1992] D.E. Heckerman, E.J. Horvitz, and B.N. Nathwani. Toward nor-
mative expert systems. Part 1: The Pathfinder project. Methods of Information in
Medicine, vol. 31, 1992, pp. 90 — 105.

28

[Heckerman et al., 1993] D.E. Heckerman, E.J. Horvitz, and B. Middleton. An approximate
nonmyopic computation for value of information. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 15, 1993, pp. 292 — 298.

[Henrion, 1989] M. Henrion. Some practical issues in constructing belief networks. In: L.N.
Kanal, T.S. Levitt, and J.F. Lemmer. Uncertainty in Artificial Intelligence 8, North-
Holland Publishers, Amsterdam, 1989, pp. 161 — 173.

[Horvitz et al., 1988] E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert
systems and artificial intelligence. International Journal of Approximate Reasoning, vol.
2, 1988, pp. 247 — 302.

[Howard & Matheson, 1981] R.A. Howard and J.E. Matheson. Influence diagrams. In: R.A.
Howard and J.E. Matheson. Readings on the Principles and Applications of Decision
Analysis 11, 1981, pp. 721 — 762.

[Jackson, 1990] P. Jackson. Introduction to Ezpert Systems. Addison-Wesley, Wokingham,
1990.

[Jensen at al., 1990a] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in
causal probabilistic networks by local computations. Computational Statistics Quar-
terly, vol. 4, 1990, pp. 269 — 282.

[Jensen et al., 1990b] F.V. Jensen, J. Nielsen, and H.I. Christensen. Use of Causal Proba-
bilistic Networks as High Level Models in Computer Vision. Technical Report R-90-39,
University of Aalborg, Denmark, 1990.

[Jensen, 1995] A.L. Jensen. Quantification experience of a DSS for mildew management in
winter wheat. In: M.J. Druzdzel, L.C. van der Gaag, M. Henrion, and F.V. Jensen.
Working Notes of the Workshop on Building Probabilistic Networks: Where Do the
Numbers Come From 2, 1995, pp. 23 -31.

[Korver & Lucas, 1993] M. Korver, P.J.F. Lucas. Converting a rule-based expert system into
a belief network. Medical Informatics, vol. 18, 1993, pp. 219 — 241.

[Lam & Bacchus, 1994] W. Lam and F. Bacchus. Learning Bayesian belief networks, an ap-
proach based on the MDL principle. Computational Intelligence, vol. 10, 1994, pp. 269
- 293.

[Lauritzen & Spiegelhalter, 1988] S.L. Lauritzen and D.J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to expert systems. Jour-
nal of the Royal Statistical Society, Series B, vol. 50, 1988, pp- 157 — 224.

[Lucas & van der Gaag, 1991] P.J.F. Lucas and L.C. van der Gaag. Principles of Ezpert Sys-
tems. Addison-Wesley, Wokingham, 1991.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible
Inference. Morgan Kaufmann, Palo Alto, 1988.

[Shachter, 1986] R.D. Shachter. Evaluating influence diagrams. Operations Research, vol. 34,
1986, pp. 871 — 882.

29

[Shafer & Pearl, 1990] G. Shafer and J. Pearl. Readings in Uncertain Reasoning. Morgan
Kaufmann, Palo Alto, 1990.

[Shortliffe & Buchanan, 1984] E.H. Shortliffe and B.G. Buchanan. A model of inexact reason-
ing in medicine. In: B.G. Buchanan and E.H. Shortliffe. Rule-based Ezpert Systems. The
MYCIN Ezxperiments of the Stanford Heuristic Programming Project. Addison-Wesley,
Reading, Massachusetts, 1984, pp. 233 — 262.

[Shwe et al., 1991] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz,
H.P. Lehmann, and G.F. Cooper. Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base I: the probabilistic model and inference algo-
rithms. Methods of Information in Medicine, vol. 30, 1991, pp. 241 — 255.

[Suermondt & Cooper, 1990] H.J. Suermondt and G.F. Cooper. Probabilistic inference in
multiply connected belief networks using loop cutsets. International Journal of Approz-
imate Reasoning, vol. 4, 1990, pp. 283 — 306.

[Suermondt & Cooper, 1991] H.J. Suermondt and G.F. Cooper. A combination of exact algo-
rithms for inference on Bayesian belief networks. International Journal of Approzimate
Reasoning, vol. 5, 1991, pp- 521 — 542.

[van der Gaag, 1994] L.C. van der Gaag. A pragmatic view of the certainty factor model. The
International Journal of Expert Systems: Research and Applications, vol. 7, 1994, pp.
289 — 300.

[van der Gaag & Wessels, 1993] L.C. van der Gaag and M.L. Wessels. Selective evidence gath-
ering for diagnostic belief networks. AISB Quarterly, no. 86, 1993, pp- 23 — 34.

[van der Gaag & Wessels, 1994] L.C. van der Gaag and M.L. Wessels. Multiple-disorder di-
agnosis with belief networks. Proceedings of the Fifth International Workshop on Prin-
ciples of Diagnosis — DX’94, 1994, pp. 343 — 351.

[Warner et al., 1961] H.R. Warner, A.F. Toronto, L.G. Veasy, and R. Stephenson. A mathe-
matical approach to medical diagnosis: application to congenital heart disease. Journal
of the American Medical Association, vol. 177, 1961, pp. 177 — 183.

[von Winterfeldt & Edwards, 1986] D. von Winterfeldt and W. Edwards. Decision Analysis
and Behavioral Research. Cambridge University Press, New York, 1986.

30

