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On a sunny morning in Florida, while the birds were 
singing and the crickets chirping, Bob decided to throw 
his wife from the bedroom balcony, killing her instantly. 
The case is clear-cut, and the prosecution seeks the maxi-
mum penalty—execution by lethal injection. In a last-
ditch attempt to save Bob’s life, the defense argues that 
Bob is intellectually disabled, with an IQ lower than 70, 
meaning that he is not eligible to receive the death pen-
alty (Duvall & Morris, 2006). Indeed, 20 years earlier, 
when Bob was incarcerated for a different crime, a group-
administered IQ test upon his entry into prison indicated 
he was intellectually disabled. In response, the prosecu-
tion points out that such IQ tests are known to underes-
timate prisoners’ IQs (Spruill & May, 1988) and that Bob’s 
true IQ may therefore be much higher than 70. The judge 
rules that more certainty about the status of Bob’s IQ is 
required, and three additional IQ test are administered 
individually, yielding scores of 73, 67, and 79. Given this 
information, what is the probability that Bob’s IQ is lower 
than 70? To answer this question—or, indeed, any worth-
while question about Bob’s IQ at all—we cannot use 
standard p values and classical confidence intervals (e.g., 
Pratt, Raiffa, & Schlaifer, 1995). This is a practical 

problem, not just for Bob, but also for clinicians and 
researchers who face statistically similar challenges on a 
regular basis. Below we will demonstrate how questions 
about Bob’s IQ, unanswerable using classical or ortho-
dox statistics, can be addressed effectively through what 
is known as inverse probability, or Bayesian inference.

Consider another concrete problem with a little less 
gravitas. In South Park episode 116, one of the series’ 
main protagonists, Eric Cartman, pretends to be a robot 
from Japan, the “A.W.E.S.O.M.-O 4000” (Parker, 2004).1 
When kidnapped by Hollywood movie producers and 
put under pressure to generate profitable movie con-
cepts, Cartman manages to generate thousands of silly 
ideas, 800 of which feature Adam Sandler. We conjec-
ture  that the makers of South Park believe that Adam 
Sandler movies are profitable regardless of their quality. 
For concreteness, we put forward the following South 

Park  hypothesis: “For Adam Sandler movies, there is 
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no  correlation between box-office success and movie  
quality (i.e., ‘freshness’ ratings on Rotten Tomatoes;  
www.rottentomatoes.com).” Our goal is to assess the 
degree to which the data support the South Park hypoth-
esis. As we will outline below, the orthodox statistical 
framework is unable to address the question: It does not 
produce a measure of evidence, and it does not apply to 
data that become available over time, indefinitely, inevi-
tably, and beyond the control of any experimenter (e.g., 
Berger & Berry, 1988, Example 1). In contrast, the Bayes-
ian framework coherently updates one’s knowledge as 
new information comes in, seamlessly and in a straight-
forward manner, without requiring the existence of a 
sampling plan or a stopping rule.

In our first example, the focus is on estimation: We 
want to learn about an unobserved parameter—namely, 
Bob’s IQ. Questions related to estimation take the gen-
eral form, “Given that phenomenon X is present, what do 
we know about the size of its influence?” In our second 
example, the focus is on hypothesis testing: We want to 
quantify support in favor of an invariance or general law. 
Questions related to hypothesis testing take the general 
form, “What evidence do the data provide for the pres-
ence or absence of phenomenon X?” Specifically, in the 
South Park example, the question is, “What is the evi-
dence for the presence or absence of a correlation 
between box-office success and quality of Adam Sandler 
movies?” As the examples demonstrate, the appropriate-
ness of the question depends entirely on context—that is, 
on what we are willing to assume and what we wish to 
learn. Nevertheless, the testing question logically pre-
cedes the estimation question ( Jeffreys, 1961; Simonsohn, 
2015). For example, one would be ill-advised to estimate 
the depth of people’s precognitive ability before having 
ascertained the existence of the phenomenon in the first 
place. From Jeffreys’s work, we may derive the maxim 
“Do not try to estimate something until you have estab-
lished that there is something to be estimated.” However, 
estimation is easier to understand than testing, and there-
fore we discuss estimation first.

First Example: Estimating Bob’s IQ

Bob’s observed IQ scores are determined both by his 
latent intellectual ability and by the reliability of the IQ 
test. The literature shows that IQ tests are relatively reli-
able, with standard deviations on the order of 7 IQ points. 
The literature also reports that inmates who were initially 
classified as intellectually disabled upon their entry into 
prison (because they scored lower than 70 on a group-
administered IQ test) perform better when they are later 
re-assessed using an individually administered test. For 
the individually administered test, these inmates’ IQ scores 
are approximately normally distributed with a mean of 75 

and a standard deviation of 12 (Spruill & May, 1988). In 
Bayesian statistics, this knowledge can be captured by 
means of probability distributions. For Bob’s true IQ—the 
key quantity of interest—we quantify our knowledge as 
Bob’s IQ ~ Normal(M = 75, variance = 122).2

This prior distribution is indicated in Figure 1 by the 
dotted line. Note that this is a distribution of uncertainty, 
not a distribution of something that can be directly 
observed. The larger the variance of the prior distribution, 
the more uncertain we are about Bob’s true IQ. For the 
reliability of the IQ test, we assign a uniform distribution 
to the test’s standard deviation spanning the range of plau-
sible values. Specifically, we use TestSD ~ Uniform(lower 
bound = 5, upper bound = 15), a distribution that indicates 
every value between 5 and 15 is equally likely a priori.

Having expressed our prior knowledge through prob-
ability distributions, we can learn from the data and 
update our prior distribution about Bob’s true IQ. The 
updated distribution is known as a posterior distribution, 
and it is indicated in Figure 1 by the solid line. The pos-
terior distribution combines our prior knowledge with 
the information coming from the data. From the prior 
and posterior distributions, we can draw the following 
conclusions:

1. The posterior distribution is narrower than the 
prior distribution, indicating that the data have 
reduced the uncertainty about Bob’s IQ.

2. Area A covers the prior mass smaller than 70, indi-
cating a prior probability of about 1/3 that Bob’s 
IQ is lower than 70. In other words, the prior odds 
of Bob’s IQ being higher than 70 are about 
2-to-1.

3. Area B covers the posterior mass smaller than 70, 
indicating a posterior probability of about 1/5 that 
Bob’s IQ is lower than 70. In other words, the 
posterior odds of Bob’s IQ being higher than 70 
are about 4-to-1.

4. The data have changed the odds that Bob’s IQ is 
higher than 70 by a factor of about 2 (i.e., 4/2).

5. Square C highlights the most likely value for Bob’s 
IQ, which is 73.24.

6. Ratio D indicates that the value of 73.24 is 1.47 
times more probable than the value of 70.

7. Interval E is a central 95% credible interval, which 
indicates that one can be 95% confident (i.e., the 
posterior probability equals 95%) that Bob’s true 
IQ falls in the interval ranging from 64.99 to 81.66.

Crucially, none of the statements above—not a single 
one—can be arrived at within the framework of orthodox 
methods (e.g., Pratt et al., 1995), no matter how many 
tests Bob completes, and no matter what prior knowl-
edge may or may not be available.3 Yet statements like 

www.rottentomatoes.com
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these may be vitally important for quantifying uncer-
tainty, for predicting future events, and for making life-or-
death decisions. As is apparent from the above analysis, 
Bob’s data are anything but conclusive, and the judge 
may well decide that more data are needed in order to 
make a decision with confidence. In this case, the poste-
rior distribution from Figure 1 will take on the role of 
prior for the subsequent data set. Such sequential updat-
ing will play an important role in the analysis of the South 

Park hypothesis, to which we turn next.

Second Example: Testing the  
South Park Hypothesis

The top panel of Figure 2 shows the relation between box-
office success (earnings in millions of U.S. dollars) and 
quality (proportion of “fresh” ratings) for all Adam Sandler 
movies from 2000 to 2015 listed on Rotten Tomatoes. A 
visual impression supports the South Park hypothesis. A 
standard Bayesian analysis proceeds as follows: The South 

Park hypothesis (H0) posits that there is no correlation (ρ) 
between box-office success and “fresh” ratings—H0: ρ = 0. 
The alternative hypothesis (H1) relaxes the restriction on ρ. 
However, to quantify evidence, H1 must make predictions, 
and hence our assumptions about ρ should be made pre-
cise, by means of a prior distribution. Here we adopt the 
default assumption that every value of ρ is equally likely a 
priori ( Jeffreys, 1961; for alternative specifications, see 
Wagenmakers, Verhagen, & Ly, in press).

The middle panel of Figure 2 shows the prior and 
posterior distribution for ρ. At ρ = 0, the posterior distri-
bution is 4.429 times higher than the prior distribution, 

indicating that the data support H0 (e.g., Dickey & Lientz, 
1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 
2010). Specifically, the observed data are 4.429 times 
more likely under H0 than under H1—that is, the data 
shift our prior beliefs about the relative plausibility of the 
competing hypotheses by a factor of 4.429. This measure 
of evidential support is known as the Bayes factor 
(Dienes, in press; Jeffreys, 1961; Kass & Raftery, 1995; 
Mulder & Wagenmakers, in press), and it quantifies the 
ability of each hypothesis to predict the observed data 
(Wagenmakers, Grünwald, & Steyvers, 2006).

The bottom panel shows how the Bayes factor devel-
ops as Adam Sandler movies accumulate. This evidential 
flow can be monitored indefinitely and does not depend 
on the knowledge or existence of a sampling plan. An 
orthodox statistician might refuse to analyze these data 
at all, arguing—quite correctly—that without knowing 
how the data came about, the sample space is undefined 
and no orthodox inference is possible (Berger & Berry, 
1988). This limitation is especially relevant whenever 
researchers study data in a nonexperimental context, 
and it is acute for fields such as astronomy, geophysics, 
economics, and politics—fields in which experiments 
are rare or impossible. However, the limitation is also 
relevant for fields in which experiments are the norm: 
Monitoring the evidential flow allows researchers to stop 
the experiment early whenever the evidence is compel-
ling or continue data collection whenever the evidence 
is weak. Such sequential designs result in experiments 
that are more efficient and arguably more ethical than 
those conducted within the dominant tradition of fixed-
N designs.
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Fig. 1. Prior and posterior distributions quantify uncertainty about Bob’s IQ. The normal distribution 
is a close approximation to the posterior. See text for explanatory details. The R code is available at 
https://osf.io/dpshk/. A version of this figure is available online at http://tinyurl.com/jl5v7p9 and may 
be reproduced under Creative Commons license 2.0 (https://creativecommons.org/licenses/by/2.0/).
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Explanation: Bayesian Inference as 
Learning From Predictions

There are multiple perspectives on, and interpretations 
of, Bayesian inference. A cognitive psychologist might 
consider it a theory of optimal learning from experience; 
a philosopher might consider it a logic of partial beliefs; 
and an economist might consider it a normative account 
of decision making. All of these interpretations are valu-
able. Here we focus on an interpretation, popular in 
machine learning, that gave the methodology its original 
name: inverse probability.

Consider a statistical model for a set of observed 
data. For a Bayesian, the crucial task is to specify this 
model generatively, before it has made contact with the 
observed data. In other words, the model needs to be 
specified in such a way that it generates data and 
thereby makes predictions. Without making predictions, 
a model cannot be tested in a meaningful way. When 
the generative model is then confronted with observed 
data, the prediction errors drive an optimal inference 
and updating process that reduces the uncertainty about 
the components of the generative model. This process 
is called “inverting a generative model” and it is illus-
trated in Figure 3. The process of inversion is automatic 
and described by Bayes’s rule. Thus, the central aspect 
of Bayesian inference is learning from prediction errors 
by inverting a generative model, such that, upon observ-
ing particular consequences, we may learn about their 
latent causes.

In order to make predictions, we need to specify what 
parameter values are plausible (i.e., the prior distribu-
tion) and how a specific set of parameters generates an 
observed outcome (i.e., the likelihood). Based on these 
predictions, incoming data can update our knowledge, 
both about parameters and about models.

A predictive perspective on estimation

Bayes’s rule determines how prior distributions are 
updated by means of the data to produce posterior dis-
tributions. This updating process may be given a predic-
tive interpretation, such that parameter values that 
predict the data well receive a boost in plausibility, and 
parameter values that predict the data poorly suffer a 
decline (Morey, Romeijn, & Rouder, in press). The pre-
dictive interpretation is clear from rewriting Bayes’s rule 
as follows:

p p( data) = ( )|
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about parameters
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θ θ
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Fig. 2. Movies starring Adam Sandler are profitable regardless of their 
quality. The top panel shows the box-office success (earnings in millions 
of U.S. dollars) and ratings (“fresh” ratings from Rotten Tomatoes) for 31 
Adam Sandler movies from 2000 through 2015. The middle panel shows 
prior and posterior distributions for the Pearson correlation coefficient 
and the evidential support for the hypothesis that there is no correlation  
(ρ) between box-office success and “fresh” ratings—H0: ρ = 0. The bottom 
panel shows the development of evidential flow as Adam Sandler movies 
accumulate over time. BF = Bayes factor. This figure was created in JASP 
(JASP Team, 2016; jasp-stats.org), and a version of it is available online 
at http://tinyurl.com/pfexqhg and may be reproduced under Creative 
Commons license 2.0 (https://creativecommons.org/licenses/by/2.0/). An 
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This equation shows that the change from the prior to 
the posterior distribution is brought about by a predictive 
updating factor. This factor considers, for every parame-
ter value θ, its success in probabilistically predicting the 
observed data—that is, p(data | θ)—as compared to the 
average probabilistic predictive success across all values 
of θ—that is, p(data).4

A predictive perspective on testing

Bayes’s rule also determines how data update the relative 
plausibility of competing models. As with estimation, this 
updating process may be given a predictive interpreta-
tion, as follows:

p

p

(H |data)

(H |data)
1

0

Posterior beliefs
about hypotheses

1 244 3444 123

=
(H )

(H )

(data|H )1

0

1

Prior beliefs
about hypotheses

p

p

p

p
×

((data|H )0

Predictive
updating factor

1 244 344

This equation shows that the change from prior to pos-
terior odds is brought about by a predictive updating fac-
tor that is commonly known as the Bayes factor. The Bayes 
factor considers the average predictive adequacy of H1 and 
compares it against that of H0. It should be stressed that 
these are true predictions, in an out-of- sample sense, since 
they are made without advance knowledge of the data. 
Predictions can be made sequentially, as the data accumu-
late one datum at a time. Thus, two models make predic-
tions about the first observation, then receive that datum, 
update their parameters, make predictions about the sec-
ond observation, receive that datum, update their param-
eters, make predictions about the third observation, and so 
on. The Bayes factor equals the relative cumulative total of 
the resulting predictive errors. Importantly, this predictive 
interpretation of the Bayes factor shows that its interpreta-
tion does not depend on whether either of the models is 
true in some absolute sense (see also Feldman, 2015).

In sum, Bayesian parameter estimation and hypothesis 
testing are based on the same principle of predictive updat-
ing. Indeed, there exist statistical scenarios in which param-
eter estimation and hypothesis testing seem to coalesce. 
For instance, in the case of Bob’s IQ, one could reformulate 
the estimation question (“What do we know about Bob’s 
IQ?”) in terms of a directional hypothesis test that contrasts 
the hypothesis that Bob’s IQ is under 70, H−, with the 
hypothesis that Bob’s IQ is over 70, H+. A strict separation 
can be achieved when one reserves the term hypothesis test 
for point hypotheses only (Jeffreys, 1961, p. 387).

Concluding Comments

The Bayesian statistical framework offers substantial 
practical advantages. A Bayesian researcher is able to 

enrich statistical models with prior knowledge, and this 
allows the models to make meaningful predictions about 
data (Myung & Pitt, 1997). The quality of these predic-
tions then drives an optimal process of knowledge updat-
ing: Parameters and models that predict the data well 
receive a boost in plausibility, whereas parameters and 
models that predict poorly suffer a decline. The Bayesian 
researcher updates the plausibility of parameters and 
models in a single coherent framework, motivated by 
relative predictive success. This theoretical foundation 
allows a clear answer to important practical questions: 
What is the probability that a parameter is less than some 
value of interest? What is the relative support for one 
hypothesis over another? How does this support change 
as data accumulate over time? These questions fall out-
side the purview of the orthodox framework.

For a long time, Bayesian analyses did not find wide-
spread practical application because only a subset of 
specific models allowed Bayesian results to be obtained 
in analytic form. However, the development of Markov 
chain Monte Carlo (MCMC; Gilks, Richardson, & 
 Spiegelhalter, 1996; Lunn, Jackson, Best, Thomas, & 
Spiegelhalter, 2012) has revolutionized the field. Instead 
of having to derive the posterior distribution mathemati-
cally, the MCMC routines can obtain samples from it, and 
the resulting histogram approximates the posterior distri-
bution to arbitrary precision. Because of MCMC, Bayes-
ian models are now said to be limited only by the user’s 
imagination.

Psychologists who wish to apply Bayesian analyses to 
their own data have access to several books and software 
packages. For books, we recommend the works listed in 
the Recommended Reading section below, as well as the 
references therein. For software packages, we recom-
mend JASP (JASP Team, 2016; jasp-stats.org), the 
 BayesFactor package in R (Morey & Rouder, 2015), and 
the popular programs BUGS, JAGS, and Stan (e.g., Lunn 
et al., 2012). As more Bayesian course books and user-
friendly software packages become available, we expect 
that researchers will increasingly take advantage of the 
additional possibilities that Bayesian modeling has to 
offer.

Recommended Reading

Dienes, Z. (2008). (See References). Provides an accessible 
overview of the strengths and weaknesses of the major  
statistical paradigms (an online version is available at  
www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/).

Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & 
Baribault, B. (2016). (See References). Provides an anno-
tated reading list for the aspiring Bayesian.

Lee, M. D., & Wagenmakers, E.-J. (2013). (See References). Uses 
concrete examples to showcase the versatility of Bayesian infer-
ence for cognitive modeling (the first two parts of the book and 
associated content are available at www.bayesmodels.com).
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Lindley, D. V. (2006). (See References). Explains the founda-
tions of Bayesian reasoning without requiring mathematical 
know-how.

McElreath, R. (2016). (See References). Presents a well-bal-
anced and engaging introductory course book on Bayesian 
statistics.
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Notes

1. For more episode details, see https://en.wikipedia.org/wiki/
AWESOM-O.
2. The tilde (~) symbol means “is distributed as” and indicates 
that uncertainty about the true value is being treated using the 
laws of probability.
3. For instance, an orthodox one-sided t test does not take 
into account prior information and does not quantify evidence 
for or against H0. In addition, the orthodox framework delivers 
bounds for x% confidence intervals, but it cannot deliver confi-
dence for a desired interval with specific bounds. For a detailed 
discussion of the differences between confidence and credible 
intervals, see Morey, Hoekstra, Rouder, Lee, and Wagenmakers 
(2016).
4. The fact that p(data) is the average predictive success can be  

appreciated by rewriting it as ∫ θ θ θ.p p d(data| ) ( )
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