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ABSTRACT

Photographs acquired under low-light conditions require long expo-

sure times and therefore exhibit significant blurring due to the shak-

ing of the camera. Using shorter exposure times results in sharper

images but with a very high level of noise. In this paper we address

this problem and present a novel blind deconvolution algorithm for

a pair of differently exposed images. We formulate the problem in a

hierarchical Bayesian framework by utilizing prior knowledge on the

unknown image and blur, and also on the dependency between two

observed images. By incorporating a fully Bayesian analysis, the

developed algorithm estimates all necessary algorithm parameters

along with the unknowns, such that no user-intervention is needed.

Moreover, we employ a variational Bayesian inference procedure,

which allows for the statistical compensation of errors occurring at

different stages of the restoration, and also provides uncertainties of

the estimates. Experimental results demonstrate the high restoration

performance of the proposed algorithm.

Index Terms— Blind deconvolution, Bayesian methods, vari-

ational distribution approximations, image stabilization, parameter

estimation.

1. INTRODUCTION

Taking high-quality photographs under low-light conditions is a ma-

jor challenge. A longer exposure time than usual is required to obtain

an image with low-noise, but any motion of the camera during ex-

posure causes blur in the recorded image. On the other hand, a short

exposure time will result in an image with a very high level of noise.

Possible solutions include increasing the light sensitivity (ISO) of the

camera sensor, which increases the noise level; increasing the aper-

ture, which results in a smaller depth of field in the acquired image;

and using a tripod to stabilize the camera which is not practical in

many cases. Digital image stabilization methods, applied at a post-

processing stage, provide a powerful means to obtain high-quality

images using the low-quality observations.

This paper addresses the problem of blind deconvolution from

a short- and long-exposed image pair. A number of methods are

proposed for blind deconvolution of a single observation (see, for

example, [1] for a recent review), but due to the challenging nature

of the problem, obtaining a high-quality restoration result is very

hard in most cases. Multi-frame blind deconvolution [1–3] methods

attempt to decrease the ill-posedness of the problem by combining

information from a set of images, and therefore the restoration per-

formance can be significantly improved. Another possible approach

is to discard the blurred image and apply denoising algorithms to the

This work was supported in part by the Comisión Nacional de Ciencia
y Tecnologı́a under contract TIC2007-65533 and the Spanish research pro-
gramme Consolider Ingenio 2010: MIPRCV (CSD2007-00018).

sharp short-exposed image. Although many very advanced denois-

ing methods are available, the noise level is too high so that features

of the underlying image are concealed, and the denoising algorithms

cannot easily separate image and noise.

The specific case of blind deconvolution from a pair of short-

and long-exposed images has been considered in [4–6]. In [4], the

blur point spread function (PSF) is identified separately from the im-

age by Tikhonov regularization and hysteresis thresholding, and then

classical image restoration methods are utilized in order to restore

the original image. On the other hand, a joint identification method

is proposed in [5], where the unknown image and the PSF are esti-

mated simultaneously. The image is modeled using a total-variation

(TV) based prior, and the blurs are estimated by imposing the con-

straint that the blur on the short exposure image is very small. No

explicit blur model is utilized in this work, and the blur is denoised

by thresholding in an ad hoc manner. Finally, sparsity priors along

with continuity constraints on the blurs are utilized in [6], and the

image is modeled using a mixture-of-Gaussians prior on the image

derivatives. However, the model is derived in a somewhat ad hoc

manner, and the resulting algorithm has many parameters to tune,

which makes it hard to apply to a wide range of images.

In this paper we systematically model the unknowns within a

novel hierarchical Bayesian formulation and develop a blind decon-

volution algorithm which jointly estimates the unknown image and

blur. We utilize a TV-prior on the image and a sparsity prior on

the blur which also imposes positivity. By incorporating a fully-

Bayesian approach, all required parameters are estimated along with

the unknowns, so that the proposed algorithm does not require user-

intervention. Finally, our inference procedure is based on variational

distribution approximation, which provides estimates of the distri-

butions of the unknowns. These distributions are implicitly used to

incorporate the uncertainties of estimates and to compensate for the

estimation errors.

The rest of this paper is organized as follows. In Sec. 2 we

formulate the image acquisition processes mathematically. The un-

known variables in our model are cast into a hierarchical Bayesian

framework as presented in Sec. 3. The variational inference to es-

timate the unknowns and the proposed algorithm are presented in

Sec. 4. Experimental results are presented in Sec. 5 and conclusions

are drawn in Sec. 6.

2. PROBLEM FORMULATION

We assume a linear and space invariant degradation model, so that

the observation processes can mathematically be expressed as fol-

lows:

y1 = Hx + n1 (1)

y2 = x + n2, (2)
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where y1 and y2 are the observed images, x the unknown original

image, n1 and n2 the noise components. We use matrix-vector no-

tation throughout the paper, so that the images y1, y2, x, n1 and n2

are N × 1 vectors, where N is the number of pixels in each image.

For the sake of simplicity, photometric and geometric calibration be-

tween the images y1 and y2 is not taken into account in (1) and (2).

Generally, the average luminance levels of these images are signifi-

cantly different due to different exposure times, and the images have

to be geometrically registered because of the camera movement be-

tween the two acquisitions. In this work, we register the images

both photometrically and geometrically as a pre-processing step us-

ing standard techniques (see, for example, [4]).

Using (1) and (2), the restoration problem is then to find an es-

timate of x from y1 and y2 using prior knowledge about H, n1, n2

and x.

3. HIERARCHICAL BAYESIAN MODEL

The proposed hierarchical model is composed of two stages. In the

first stage, prior distributions are utilized for the observation, the un-

known image and the blur. The parameters of these distributions are

called hyperparameters, which are modeled by hyperprior distribu-

tions in the second stage. In the following subsections we present

these prior models which form the proposed hierarchical Bayesian

model.
3.1. Observation models
We assume that the observation noise in both images follows inde-

pendent Gaussian distributions, that is, from (1) and (2),

p(y1|x,h, β1) ∝ β
N/2
1 exp

[

−β1

2
‖ y1 − Hx ‖2

]

, (3)

and

p(y2|x, β2) ∝ β
N/2
2 exp

[

−β2

2
‖ y2 − x ‖2

]

, (4)

where β1 and β2 are precisions (inverse variances) of the noises,

with β1 ≫ β2.

Note that the dependency between the observations y1 and y2

is very high, as they are images of the same scene. To exploit this

dependency, we incorporate the coprimeness condition employed in

some multichannel blind deconvolution methods (see, for example,

[7]) by combining (1) and (2) to obtain that given h

y1 − Y2h = N (0
¯
, β1I + β2HH

T ) (5)

We note that the model in (5) is obtained from (3) and (4) and

so from the statistical point of view it does not provide more in-

formation on the unknown blur. However we have experimentally

observed that defining the observation model

p(y1,y2|x,h, β1, β2, β12) ∝ p(y1|x,h, β1)p(y2|x, β2)

×β
N/2
12 exp

[

−β12

2
‖ y1 − Y2h ‖2

]

,(6)

with β12 > 0 produces both a better restored image and a better

estimated blur. Notice that in p(y1,y2|x,h, β1, β2, β12) we have

introduced a third independent observation model which is modelled

independently from the ones in (3) and (4). Note also that the noise

of this additional observation is modelled as independent white noise

with variance β−1
12 .

3.2. Prior model on the blur
Since the blur is mainly caused by the shaking of the camera during

the long exposure time, it exhibits the characteristics of the nonuni-

form motion blur. Hence, it is expected to be very sparse, i.e., most

of the PSF coefficients being zero or very small. In order to exploit

this information, we utilize a mixture prior of D exponential distri-

butions on each PSF coefficient, that is,

p(h|{τjd}, {σjd}) =
∏

j

D
∑

d=1

τjd Expon (hj | σjd) (7)

with τjd the mixture coefficients for each pixel j and

Expon (hj | σjd) =

{

σjd exp (−σjdhj) if hj ≥ 0,

0 if hj < 0.
(8)

Note that this prior enforces sparsity to a great extent, and the degree

of sparsity is increased by increasing the number of mixture coeffi-

cients. In addition to imposing sparsity, note that (8) also imposes

positivity on the blur coefficients hj [8, 9]. This property makes the

prior especially useful, since unlike most previous work the positiv-

ity constraint is considered during the optimization process, and not

imposed artificially after the optimization.

3.3. Prior model on the image
As the prior model for the image x we utilize the quadratic approxi-

mation of the TV prior [10]

p(x|αim) ∝ α
N/2
im exp

[

−1

2
αimTV(x)

]

, (9)

where

TV(x) =
∑

j

√

(Δh
j (x))2 + (Δv

j (x))2. (10)

The operators Δh
j (x) and Δv

j (x) correspond to, respectively, hori-

zontal and vertical first order differences, at pixel j, that is, Δh
j (x) =

xj −xl(j) and Δv
j (x) = xj −xa(j), where l(j) and a(j) denote the

nearest neighbors of j, to the left and above, respectively. The TV
function has the advantage of preserving the edge structure while

imposing smoothness on the solutions.

3.4. Hyperpriors on the hyperparameters

In the second stage of the hierarchical model, we employ Gamma

priors on αim, β1, β2, β12, σjd and Dirichlet priors on mixture coef-

ficients {τjd}D
d=1 in order to obtain a tractable Bayesian analysis, as

these are the conjugate distributions to their respective priors. The

hyperpriors can be expressed as

p(αim) = Gamma
(

αim|a(αim)
, b

(αim)
)

(11)

p(β1) = Gamma
(

β1|a(β)
, b

(β)
)

(12)

p(β2) = Gamma
(

β2|a(β)
, b

(β)
)

(13)

p(β12) = Gamma
(

β12|a(β)
, b

(β)
)

(14)

p(σjd) = Gamma
(

σjd|a(σjd)
, b

(σjd)
)

(15)

p({τjd}D
d=1) = Dirichlet

(

{τjd}D
d=1|c(τj)

)

(16)

The shape and scale parameters a and b of the Gamma distributions

are set to a small common value (e.g., 0.01) to make the estimation

process rely more on the observations than prior knowledge. How-

ever, we found out in our experiments that the proposed algorithm is

very robust to the selection of these parameters.
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Finally, combining the first and second stage of the model we

obtain the following global distribution

p(x,h,y1,y2, αim, β1, β2, β12, {τjd}, {σjd})
= p(x|αim) p(h|{τjd}, {σjd})p(y1,y2|x,h, β1, β2, β12)

× p(αim)p(β1) p(β2)p(β12)
N
∏

j=1

[

p({τjd}D
d=1)

D
∏

d=1

p(σjd)

]

.

4. VARIATIONAL INFERENCE

In Bayesian formulations, the inference is based on the posterior dis-

tribution, which in our case is intractable. Therefore, in this work we

utilize variational distribution approximations. Let us denote by Θ
the set of unknowns, i.e., Θ = {x,h, αim, β1, β2, β12, {σjd}, {τjd}}.

The goal is to approximate the posterior distribution p(Θ|y1,y2)
by another distribution q(Θ) which allows a tractable analysis. The

assumption made during this approximation is that the approximate

posterior distribution is separable, that is,

q(Θ) = q(x)q(h)q(αim)q(β1)q(β2)q(β12)
D
∏

d

q(σjd)q(τjd).

Unfortunately the general results of the variational Bayesian analysis

cannot be directly utilized due to the TV and mixture priors in our

model. The problems caused by the TV prior can be avoided by

utilizing a majorization-minimization approach, whose details are

given in [10] and are omitted here. In order to utilize the mixture

priors, the Jensen’s inequality is utilized as follows [9]

log
∏

j

∑

d

τjd Expon (hj | σjd)

≤
∑

j

∑

d

μjd log

(

τjd

μjd
Expon (hj | σjd)

)

(17)

with
∑D

d=1 μjd = 1, j = 1, . . . , N . Using the right hand side of

(17) and the quadratic upper bound of the TV prior [10], we obtain

an upper bound for the true posterior distribution F(Θ). The dis-

tribution approximation q(θ) of each unknown θ ∈ Θ can then be

found by minimizing the Kullback-Leibner divergence between this

upper bound F(Θ) and q(θ), which results in the following general

solution [11]

q(θ) = const × exp
(

Eq(Θθ) [ log F(Θ) ]
)

, (18)

where Θθ denotes the set Θ with θ removed from the set, and

Eq(Θθ) [·] denotes the expectation with respect to the distribution

q(Θθ). The posterior approximations q(θ) can be computed by

holding q(Θθ) constant and solving (18) with respect to q(θ).

In this work we additionally assume that q(x) and q(h) are de-

generate distributions and denote by x̂ and ĥ, respectively, the image

and blur where these distributions are degenerate. Using this approx-

imation, we obtain

q(αim) = Gamma
(

αim|ā(αim)
, b̄

(αim)
)

(19)

q(β1) = Gamma
(

β1|ā(β1)
, b̄

(β1)
)

(20)

q(β2) = Gamma
(

β2|ā(β2)
, b̄

(β2)
)

(21)

q(β12) = Gamma
(

β12|ā(β12)
, b̄

(β12)
)

(22)

q(σjd) = Gamma
(

σjd|ā(σjd)
, b̄

(σjd)
)

(23)

q({τjd}D
d=1) = Dirichlet

(

{τjd}D
d=1|{c̄(τjd)}D

d=1

)

(24)

whose means are given by

E(αim) =
b̄(αim)

ā(αim)
=

b(αim) + N
2

a(αim) +
∑

j

√
wj

(25)

E(β1) =
b̄(β1)

ā(β1)
=

b(β1) + N
2

a(β1) + 1
2
‖ y1 − Ĥx̂ ‖2

(26)

E(β2) =
b̄(β2)

ā(β2)
=

b(β2) + N
2

a(β2) + 1
2
‖ y2 − x̂ ‖2

(27)

E(β12) =
b̄(β12)

ā(β12)
=

b(β12) + N
2

a(β12) + 1
2
‖ y1 − Y2ĥ ‖2

(28)

E(σjd) =
b̄(σjd)

ā(σjd)
=

b(σjd) + μjd

a(σjd) + μjd hj

(29)

μjd ∝ τjd Expon
(

ĥj |σjd

)

,

D
∑

d=1

μjd = 1 (30)

c̄
(τjd) = c

(τjd) + μjd (31)

where E(·) denotes the mean of the distribution, and

wj = (Δh
j (x̂))2 + (Δv

j (x̂))2 j = 1, . . . , N, (32)

W = diag

(

1√
wj

)

, j = 1, . . . , N. (33)

The matrix W in (33) is the spatial adaptivity matrix which con-

trols the amount of smoothing at each pixel location depending on

the intensity variation at that pixel, as expressed by the vector w

representing the total variation of the estimated image.

The restored image x̂ satisfies

x̂ = Σx

(

E(β1)Ĥ
T
y1 + E(β2)y2

)

(34)

Σ−1
x = E(αim)(Δh)

T
W(Δh) + E(αim)(Δv)T

W(Δv)

+ E(β1)Ĥ
T
Ĥ + E(β2)I (35)

The blur estimate ĥ is found by maximizing the posterior distri-

bution, that is,

ĥ = argmax
h

p(x̂,h,y1,y2, αim, β1, β2, β12, {τjd}, {σjd}),

where parameters are fixed to the means of their corresponding q(·)
distributions. Therefore we obtain

h̃ = β1X
T
X + β12Y

T
2 Y2 (36)

ĥ = (h̃)−1

(

−diag

(

D
∑

d=1

σ
−1
jd μjd

)

+ β1X
T
y1 + β12Y

T
2 y1

)

.

(37)

However, ĥ can have negative values. To solve this problem we con-

sider h̃j and ĥj to be the parameters of a rectified Gaussian distribu-

tion NR
(

hj |ĥj , h̃j

)

of hj and use the means of these distributions

given by [9]

E(hj) = ĥj +

√

2

πh̃j

1

erfcx(−ĥj

√

h̃j

2
)

, (38)

where erfcx(·) is the scaled complementary error function as the

components of the blur estimate instead of ĥ.

Finally, the algorithm iterates among estimating the image using

(34), estimating the blur using (38) and then estimating the hyperpa-

rameters using (25)-(31).
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(a) (b)

(c) (d)

Fig. 1. (a) Observed blurred image simulating a long-exposure ac-

quisition, (b) observed noisy image simulating a short-exposure ac-

quisition, (c) restored image using the proposed algorithm, (d) (top)

original blur PSF, (bottom) blur PSF estimated by the proposed

method.

5. EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated extensively with both

synthetic and real images. A synthetically generated image pair is

shown in Fig. 1, where the image in Fig. 1(a) is the long-exposure

observation y1 blurred with the PSF shown in Fig. 1(d) (top), which

simulates the shake of the camera during a long-exposure. The short-

exposure noisy image y2 is shown in Fig. 1(b). White Gaussian

noise with variances 1.6 and 1000 are added to obtain degraded ob-

servations y1 and y2, corresponding to signal-to-noise ratios (SNR)

of 42dB and 5dB, respectively.

The observed image y1 is used as the initial estimate of x, and

the initial estimate of h is calculated by the division of the observa-

tions y1 and y2 in the frequency domain using their Fourier trans-

forms. Note that although the initial PSF calculated in this fashion

is a very crude estimate to the original PSF, it provides a very fast

initialization of the algorithm. The number of mixture distributions

is set to D = 3, but other values gave similar results. All other

parameters are calculated using (25)-(31). As the convergence cri-

terion we use the ratio of the norm of the difference of the image

estimates between two consecutive iterations and the norm of the

last image estimate, and the algorithm is stopped when this ratio is

smaller than 10−5. The convergence is generally achieved within 20

iterations, where each iteration takes approximately 10 seconds in

Matlab running on a Pentium Core2 CPU at 2.66 GHz.

The restored image is shown in Fig. 1(c), and the recovered

PSF is shown in Fig. 1(d) (bottom). Note that the support of the

PSF used in this experiment is 21 × 21, and the original image

is of size 300 × 300, so that the degradation caused by the blur

is severe. Moreover, the noise level in the second observed im-

age is very high, which makes the estimation of the blur PSF dif-

ficult. Even with these severely degraded observations, the pro-

posed algorithm provides high-quality restoration results shown in

Fig. 1(c)-(d). The mean-squared error between the restored and

the original image is 48.5, and the running time of the algorithm

for this image set was approximately four minutes. The proposed

method also produces high quality restorations with real images and

compares favorably with other algorithms, which are not presented

in this paper due to space limitations (some additional results can

be found in http://ivpl.eecs.northwestern.edu/research/topics/image-

and-video-recovery).

6. CONCLUSIONS

In this paper we presented a novel Bayesian formulation for blind de-

convolution from differently exposed image pairs. The unknown im-

age, blur and model parameters, including the noise variance, is esti-

mated solely from the observations without prior knowledge or user

intervention. The developed algorithm simultaneously estimates the

distributions of the unknowns which allows for the computation of

the estimation uncertainties and also incorporates these uncertainties

within the restoration procedure. We have shown that although the

algorithm is fully-automated and no ad hoc methods (such as blur

thresholding or denoising) is performed, it provides very high qual-

ity restored images even with high degradations.
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