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Abstract. We present a general method for blind image deconvolution
using Bayesian inference with super-Gaussian sparse image priors. We
consider a large family of priors suitable for modeling natural images,
and develop the general procedure for estimating the unknown image and
the blur. Our formulation includes a number of existing modeling and
inference methods as special cases while providing additional flexibility
in image modeling and algorithm design. We also present an analysis
of the proposed inference compared to other methods and discuss its
advantages. Theoretical and experimental results demonstrate that the
proposed formulation is very effective, efficient, and flexible.

1 Introduction

Blind image deconvolution is the problem of restoring an image x from its blurred
and noisy version y when the blur kernel k is unknown. Generally, the image y is
modeled as the convolution of the unknown sharp image x with the blur kernel
as

y = k ⊗ x+ n (1)

where n is the noise. Since k, x and n are unknown, the problem is highly ill-
posed and there are infinitely many solutions for x and k. Moreover, in most
cases the blur kernel k is spatially-varying. To obtain meaningful solutions, the
problem must be regularized with additional information about the image x,
noise n, and kernel k. This regularization is generally embedded by assigning
priors p(x) and p(k) which reflect our prior knowledge on the characteristics of
x and k.

Blind image deconvolution is a widely investigated problem in signal/image
processing and computer vision [1], and recently attracted much attention mostly
geared towards removing camera shake [2–10]. Fergus et. al. [2] employed the
variational Bayesian approach of Miskin and Mackay [11] with a mixture-of-
Gaussians image prior for modeling natural image statistics. After the success
of this approach, subsequent methods proposed new image and blur modeling
schemes and highly efficient inference methods [5–8]. While early approaches

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VI, LNCS 7577, pp. 341–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



342 S.D. Babacan et al.

assume a spatially-invariant blur, more recent approaches addressed the more
general and challenging problem of removing spatially varying blurs [10, 12, 13].

The blind deconvolution problem contains two interacting components: mod-
eling and inference. In modeling, a commonly used principle is that natural
images have super-Gaussian statistics, and blur causes the statistics to become
more similar to Gaussian by smoothing out sharp gradients. Hence, deconvolu-
tion should make the statistics less Gaussian, which in turn leads to the common
use of super-Gaussian (or sparse) image priors. Unfortunately, direct use of these
priors makes the second part of blind deconvolution, inference, challenging, in
most cases limiting the options to maximum a posteriori (MAP) estimation.
However, it has been shown in [8] that MAP is not suitable for blind deconvo-
lution. The problem stems from the fact that while sharp images are well mod-
eled with super-Gaussian priors, blurred images are also relatively well modeled
with these priors. Hence, the prior alone is not sufficient to force the algorithm
to choose a sharp image, and MAP generally leads to the trivial no-blur so-
lution. Based on this observation, [8, 9] advocated Bayesian inference methods
where the image is marginalized from the optimization while estimating the un-
known blur. While [9] showed the advantages of such schemes using Gaussian
and some sparse image priors, Bayesian inference for blind deconvolution with
super-Gaussian priors remains a challenging obstacle.

In this paper, we present a general formulation for blind deconvolution using
sparse image priors from both modeling and inference perspectives. For image
modeling, we introduce a large class of sparse image priors suitable for represent-
ing sharp image characteristics. Most models used in the literature are included
in our formulation as special cases while we propose a new and powerful alterna-
tive. Using this general prior formulation, we develop the estimation procedure
for the unknown image and blur kernel using variational Bayesian inference.
We analyze the proposed inference method in comparison with MAP, and show
that MAP estimation is generally not suitable for inference for both blind and
non-blind deconvolution. The proposed inference naturally addresses its short-
comings due to an implicit regularization mechanism with minimal additional
algorithmic complexity. Finally, we demonstrate that this formulation of super-
Gaussian priors and inference leads to methods for constructing image priors
instead of using limited parametric forms, which provides additional flexibility
in image modeling and algorithm design for blind deconvolution.

In the following, for notational simplicity, we treat images with N pixels as
N × 1 vectors and denote Tk as the matrix operator implementing Tk x = k⊗x.
diag (·) creates a diagonal matrix from its argument.

2 A General Sparse Prior Model for Deconvolution

The deconvolution problem can be formulated in either filter or image space [8].
In the filter space approach, we create L pseudo-observations yγ by applying
high-pass filters {fγ}Lγ=1 (such as derivatives, wavelets, curvelets, etc.) to the
blurred noisy image y as
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yγ = fγ ⊗ y = k ⊗ fγ ⊗ x+ fγ ⊗ n = k ⊗ xγ + nγ (2)

with xγ = fγ ⊗ x. The image priors are placed on the filtered image coefficients
{fγ ⊗ x}Lγ=1, hence L image priors {p(xγ)}Lγ=1 are defined. In the image space
approach, we define a single prior directly on the unknown image, albeit by using
its filtered coefficients. In this article, we follow the filter space approach as it is
considerably simpler, but the main principles apply to the image space approach
as well. Finally, since we estimate the filtered images xγ , a crucial question is
how to infer x from xγ ’s, for which we will provide an effective method later.

It is well known that when high-pass filters are applied to natural images,
the resulting coefficients are sparse; i.e., most of the coefficients are zero or very
small while only a small number of coefficients are large (e.g., at the edges).
This behavior is exploited in all advanced blind deconvolution methods using
sparse image priors. An image prior is considered to be sparse when it is super-
Gaussian [14], i.e., compared to the Gaussian distribution, it has heavier tails,
it is more peaked, and has a positive excess kurtosis. These distributions are
referred to as sparse since most of the distribution mass is located around zero
(hence strongly favoring zero values), but the probability of occurrence of large
signal values is higher compared to the Gaussian distribution.

In this article, we consider the following general form of super-Gaussian image
priors on xγ .

p(xγ) =
N
∏

i=1

p (xγ(i)) = Z exp

(

−
∑

i

ρ (xγ(i))

)

(3)

where Z is the normalization constant, ρ(·) is a penalty function (symmetric
around 0), and xγ(i) denotes the filter output at pixel i. Sparsity is achieved
when the function ρ leads to the suppression of most coefficients xγ(i) while
preserving a small number of important features. Some examples are shown
in Fig. 1. While some of these priors are commonly used in the deconvolution
literature (like Gaussian and ‖ · ‖pp), we also introduce new ones (log and exp)
not considered before. log |s| enforces sparsity very strongly due to its infinite
peak at the origin and heavy tails, which proves very useful in kernel estimation.

In general, the prior (3) cannot be directly used in Bayesian inference. Next we
describe variational representations to convert it to forms suitable for inference.

2.1 Variational Representations of Sparse Image Priors

Formally, for p(xγ) to be super-Gaussian, the function ρ(
√
s) has to be increasing

and concave for s ∈ (0,∞) [14]. This condition is equivalent to ρ′(s)/s being
decreasing on (0,∞), that is, for s1 ≥ s2 ≥ 0, ρ′(s1)/s1 ≤ ρ′(s2)/s2. If this
condition is satisfied, then ρ can be represented as (using [15, Ch. 12])

ρ (xγ(i)) = inf
ξγ(i)>0

1

2
ξγ(i)x

2
γ(i) − ρ∗

(

1

2
ξγ(i)

)

(4)

⇒ ρ (xγ(i)) ≤
1

2
ξγ(i)x

2
γ(i)− ρ∗

(

1

2
ξγ(i)

)

(5)
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Fig. 1. Some choices of the penalty function ρ (left), and the corresponding penalties -ρ
(right). The exp curve is vertically shifted and log |s| is bounded for better visualization.

where inf denotes the infimum, ρ∗ (ξγ(i)/2) is the concave conjugate of ρ(
√

xγ(i))
and ξγ = {ξγ(i)}Ni=1 are variational parameters. These parameters have an in-
tuitive meaning and extreme importance in the deconvolution performance, as
will be shown later. The relationship dual to (4) is given by [15]

ρ∗
(

1

2
ξγ(i)

)

= inf
xγ(i)

1

2
ξγ(i)x

2
γ(i)− ρ (xγ(i)) . (6)

The quadratic bound for ρ in (5) allows us to bound the prior with a Gaussian
form. Specifically, we can rewrite (3) as

p(xγ) ≥ Z exp

(

−1

2

∑

i

ξγ(i) x
2
γ(i)

)

exp

(

∑

i

ρ∗
(

1

2
ξγ(i)

)

)

. (7)

Equality in (7) is obtained at the optimal values of ξγ(i), which are computed
from the dual representation (6) by taking the derivative with respect to xγ(i)
and setting it to zero, which gives ξγ(i) = ρ′(xγ(i))/|xγ(i)|.

This representation based on bounding has been widely used in computer
vision (see, e.g., [16]). Another representation is given by

p(xγ) =

∫

p(xγ |ξγ) p(ξγ) dξγ (8)

where p(xγ |ξγ) is a Gaussian distribution with variance ξ−1
γ . This is the well

known scale mixture of Gaussians (SMG) [17], which defines xγ using xγ(i) =

ξγ(i)
− 1

2 z with z a standard Gaussian variable with zero mean and unit variance.
This representation is more strict than (7) in the sense that a (slightly) more
limited class of priors can be represented using (8)1. Finding p(ξγ) is also in
general much harder than ρ∗, but neither of them are needed for our purposes
(see Sec. 3.1). All priors in Fig. 1 can be represented both ways. We will use

1 The scale mixture of Gaussian representation requires complete monotonicity of
p(
√
s) [17]. A function f(s) is completely monotonic if its derivatives satisfy

(−1)nf (n)(s) ≥ 0 for all n = 0, 1, 2, ....
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the SMG representation for deriving the VB inference, and (7) for deriving the
related cost function formulation in Sec. 3.2. The explicit link between these in
inference will be shown in a subsequent article.

Using these representations, we are able to transform the super-Gaussian pri-
ors to Gaussian forms, rendering the optimization much easier compared to the
original forms. This is achieved by expanding the optimization with respect to
(w.r.t.) xγ to joint optimization w.r.t. xγ and ξγ . However, it should be empha-
sized that a super-Gaussian prior is enforced only when these parameters are
jointly estimated, which shows the tight coupling between the modeling and the
inference procedures.

Most priors used in blind deconvolution are obtained as special cases of the
formulation in (4), including priors based on lp-norms (hyper-Laplacian) in [3,7,
18], and the piecewise linear/quadratic in [5]. The Gaussian prior used in [6,13]
is also a special (limiting) case where ξγ is set to a constant. We will show later
that other priors such as mixture-of-Gaussians can also be obtained from (4).

Having defined a general class of sparse image priors, we define the distribution
of the observed images yγ by assuming white Gaussian noise for nγ as

p(yγ |xγ , k) = (2πσ2)−N/2 exp

(

− 1

2σ2
‖yγ − k ⊗ xγ‖22

)

(9)

where σ2 is the noise variance. We do not use a specific prior for the blur kernel k,
i.e., p(k) = const, but we will constrain it as discussed later. Finally, notice that
we have defined L distributions for the latent images xγ and the observations
yγ . For clarity, in the following we denote the joint distributions using pT , e.g.,

pT (yγ |xγ , k) =
∏L

γ=1 p(yγ |xγ , k).

3 Inference

Virtually all inference schemes are based on the posterior distribution, which in
our modeling takes the form (using the SMG representation (8))

pT (xγ , ξγ , k|yγ) =
pT (yγ , xγ , ξγ , k)

pT (yγ)
=

pT (yγ |xγ , k) pT (xγ |ξγ) pT (ξγ) p(k)
pT (yγ)

. (10)

However, the exact posterior cannot be calculated since the required integration
p(yγ) =

∫

p(yγ , xγ , ξγ , k) dxγ dξγ dk is analytically intractable, as is the case with
almost all deconvolution methods.

Since the posterior distribution cannot be obtained, a crucial question is to
decide how inference should be carried out. Perhaps the most commonly used
inference scheme is the MAP approach, where the unknowns are estimated by
the maximum (the mode) of the posterior. However, as we will show later, this
approach is generally not suitable both for blind and non-blind deconvolution.
In this article, we base our estimation on a general inference procedure, varia-
tional Bayes (VB) [19,20], where the intractable posterior is approximated with
a tractable distribution. We chose VB since it overcomes the problems associated
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with the MAP method while achieving almost the same computational and im-
plementation complexity. Moreover, it includes several other inference strategies
(such as MAP and expectation-maximization) as special cases.

3.1 Estimation Using Variational Bayes (VB)

In the variational Bayes approach, one approximates the posterior pT (xγ , ξγ , k|yγ)
with another distribution qT (xγ , ξγ , k) by minimizing the Kullback-Leibler (KL)
divergence between them. This minimization becomes tractable if a suitable fac-
torization for q(xγ , k, ξγ) is chosen. A convenient selection is the fully factorized
distribution q(xγ , k, ξγ) = q(xγ) q(k) q(ξγ), corresponding to the mean field ap-
proximation [19, 20]. In this case, the optimal q distribution for each variable is
found by minimizing the KL divergence while holding the other q distributions
fixed. It can be shown [19] that the optimal q distributions are obtained by tak-
ing the expectation of the joint distribution with respect to all unknowns except
the one of interest, which in our modeling leads to

log q(xγ) = E [log p(xγ , k, ξγ , yγ)]ξγ ,k + const

= E [log p(yγ |xγ , k)]k + E [log p(xγ |ξγ)]ξγ + const (11)

log q(k) = E [log pT (xγ , k, ξγ , yγ)]xγ ,ξγ
= E [log pT (yγ |xγ , k)]xγ

+ const (12)

log q(ξγ) = E [log p(xγ , k, ξγ , yγ)]xγ ,k

= log p(ξγ) + E [log p(xγ |ξγ)]xγ

+ const . (13)

The expectations are taken with respect to the corresponding q distributions.
The estimates of the image, blur and the variational parameters are then taken
as the mean values of these distributions, which we derive next.

Estimation of Image and Blur. For the blur, we can directly use (12) and
estimate it using the mean of q(k). However, this way we are not imposing any
constraints on the blur kernel, since no informative prior is assigned on k. To
include typical constraints k ≥ 0 and

∑

i k(i) = 1, we can assign a Dirichlet
prior on k, but this leads to a complicated inference procedure. We take another
approach and treat k as a deterministic parameter, and simply minimize the KL
divergence w.r.t. k subject to these constraints. In this approach, q(k) becomes

a delta distribution at the estimate k̂, which is obtained by solving

k̂ = argmin
k

∑

γ

E
[

‖yγ − k ⊗ xγ‖22
]

xγ

= argmin
k

kTC−1
k k − 2 kT bk (14)

subject to k ≥ 0 and
∑

i k(i) = 1. For a kernel size of M ×M , bk is M2 × 1 and
matrix C−1

k is M2 ×M2 with
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C−1
k (m,n) =

1

σ2

∑

γ

N
∑

j=1

E [xγ(m+ j)] E [xγ(n+ j)] + Cxγ
(m+ j, n+ j) (15)

bk(m) =
1

σ2

∑

γ

N
∑

j=1

E [xγ(m+ j)] yγ(j) . (16)

The estimation of blur in (14) is thus a simple quadratic program and can be
solved very efficiently.

For the image, we use the distribution q(xγ) in (11) which has a multivariate
Gaussian form given by

−2 log q(xγ) = xT
γ C

−1
xγ

xγ − 2 bTxγ
xγ + const (17)

with

C−1
xγ

=
1

σ2
T T
k Tk + diag (E [ξγ ]) , bxγ

=
1

σ2
T T
k y (18)

where Cxγ
is the covariance matrix of xγ . The mean E [xγ ] of this distribution

is used as the estimate for xγ , which is obtained by solving the linear system
C−1

xγ
E [xγ ] = bxγ

using the conjugate gradient method. Hence Cxγ
need not be

formed explicitly, but it is required in (15). Since this computation is extremely
expensive (it requires an N × N matrix inversion for an N -pixel image), we
approximate it in (15) by a diagonal matrix by inverting only the diagonals of
C−1

xγ
, similarly to [9, 21] (see [21] for other approximations).

Estimation of Variational Parameters ξγ . Finally, we need to calculate the
distribution q(ξγ) using (13), but this requires the calculation of p(ξγ), which is
generally hard. However, the full distribution q(ξγ) is not needed to estimate xγ

and k; only the mean E [ξγ ] is required to calculate Cxγ
. The mean is given by

E [ξγ ] =

∫

ξγ q(ξγ) dξγ =

∫

ξγ p (ξγ |xγ = νγ) dξγ (19)

where νγ(i) =
√

(E [xγ ](i))
2
+ Cxγ

(i, i). To calculate the integral, we examine

p′(xγ) =
∂

∂xγ

[
∫

p(xγ |ξγ) p(ξγ) dξγ
]

(20)

ρ′(xγ) p(xγ) =

∫

ξγ xγ p(xγ) p(ξγ |xγ)dξγ (21)

⇒ ρ′(xγ)

xγ
=

∫

ξγ p(ξγ |xγ) dξγ , (22)

where the derivative and division are to be understood element-wise. We now
see that (19) is equivalent to (22) when xγ = νγ , such that we have

E [ξγ ] =
ρ′(νγ)

νγ
. (23)
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Algorithm 1. Blind Deconvolution using General Sparse Image Priors

Inputs: Noisy and blurred image y, choice for ρ or κ function, filters fγ .
Initialization: Set xγ = yγ , Cxγ

= 0, νγ = xγ .
while not converged do

1. Compute variational parameters ξγ using E [ξγ(i)] = ρ′(νγ(i))/νγ(i).
2. Estimate filtered images xγ by solving C−1

xγ
E [xγ ] = bxγ

with Cxγ
and bxγ

in
(18).
3. Approximate Cxγ

(i, i) with 1/C−1
xγ

(i, i).

4. Set νγ(i) =
√

(E [xγ ](i))
2 + Cxγ

(i, i).

5. Estimate the blur kernel k using (14) .
end while

6. Compute the final image estimate x̂ by solving

(

T T
k Tk + σ2

∑

γ

T T
fγdiag (E [ξγ ])Tfγ

)

x̂ = T T
k y . (24)

Summary. The proposed method is outlined in Algorithm 1. In summary, the
method alternates between the estimates of xγ , Cxγ

(i, i), ξγ and k. Since the
method estimates the filtered images xγ , we need to construct the image x from
xγ . However, this is not trivial and requires careful integration of all xγ . Instead,
we propose to use the estimate shown in (24), which estimates x from the already
estimated k and ξγ values, and still enforces sparsity in the filter domain through
the use of ξγ . In addition, it requires only one more application of the conjugate
gradient algorithm so it is computationally efficient.

3.2 A Cost-Function View of VB

Most blind deconvolution methods in the literature define a cost function which
is minimized w.r.t. the unknown image and kernel. On the other hand, the VB
approach employed here relies on a completely different strategy; it approximates
the whole posterior distribution instead of point estimation. Here, we provide a
cost function minimization formulation for the VB approach, which is helpful in
explaining some of its properties and shows its advantages over MAP.

In the VB approach, the unknowns are estimated as the means of the approx-
imating q distributions. Since the distribution of the filtered image q(xγ) in (17)
is Gaussian, its mean coincides with its mode, and thus the VB estimate of xγ

in (18) can be expressed as the solution of

E [xγ ] = argmin
xγ

1

σ2
‖yγ − k ⊗ xγ‖22 + xT

γ diag (E [ξγ ])xγ . (25)

Combining this with the optimization problem for k from (14) and for ξγ from
(23) (see the supplement), we obtain2

2 Here, with an abuse of notation, Cxγ
is to be treated as constant during each alter-

nating minimization, but then is updated with the new estimates.
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E [xγ ],k̂,E [ξγ ] = argmin
xγ ,k,ξγ

∑

γ

[

1

σ2
‖yγ − k ⊗ xγ‖22 + xT

γ diag (ξγ)xγ

− 2
∑

i

ρ∗(ξγ(i)/2) +
1

σ2
trace(T T

k TkCxγ
) + trace

(

diag (ξγ)Cxγ

)

]

. (26)

In comparison, the MAP estimation is formulated as

xMAP
γ , kMAP, ξMAP

γ = argmax
xγ ,k,ξγ

log pT (xγ , k, ξγ |yγ)

= argmax
xγ ,k,ξγ

log pT (yγ |xγ , k) + log pT (xγ |ξγ) + log pT (ξγ)

= argmin
xγ ,k,ξγ

∑

γ

[

1

σ2
‖yγ − k ⊗ xγ‖22 +

∑

i

ξγ(i)x
2
γ(i)− 2

∑

i

ρ∗(ξγ(i)/2)

]

. (27)

Minimizing this objective in an alternating fashion yields

xMAP
γ =

(

1

σ2
T T
k Tk + diag (ξγ)

)−1
1

σ2
T T
k y (28)

kMAP = argmin
k

kT

(

1

σ2

∑

γ

T T
xγ

Txγ

)

k − 1

σ2
T T
xγ

y (29)

ξγ(i)
MAP

= ρ′(xγ(i)) / |xγ(i)| . (30)

Notice that both objective functions and all estimates in the VB and MAP
approaches have exactly the same form, except for the inclusion of the term
Cxγ

(i, i) in VB, which is very easy to compute using the diagonal approximation.
This difference is of high importance in estimation performance both in theory
and practice, as shown next.

Examining the objective (27) shows that MAP is not suitable for joint esti-
mation of xγ , k and ξγ as the global minimum is obtained at the trivial solution
xγ = 0. This occurs because of two problems: First, the minimization w.r.t. xγ

and k with fixed ξγ results in the solution xγ = 0, which can be shown similarly
to [8] as follows: Consider a pair xγ , k and define xc

γ = c xγ , k
c = k /c with c a

scalar. As c → 0, the term ‖yγ − k ⊗ xγ‖22 remains constant but the prior term
∑

i ξγ(i)x
2
γ(i)c

2 always decreases. On the contrary, the VB objective does not

monotonically decrease as c → 0, as Cxγ
is positive definite and trace(T T

k TkCxγ
)

increases as kc increases. Thus, the VB approach implicitly enforces a constraint
on the kernel k even when no prior is defined on k.

Levin et. al. [8] showed that when k is constrained to
∑

i k(i) = 1, a no blur
solution (a delta kernel) is preferred in the MAP approach. In the VB approach
this effect is also stabilized: the term trace(T T

k TkCxγ
) forces

∑

i k
2(i) to be

small, which is equivalent to favoring kernel estimates with larger support (since
∑

i k(i) = 1). Hence, while the first two terms in (26) are pulling the estimates
to a no blur solution, the second last term is balancing their effect.
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Second, the MAP approach is problematic even with fixed k (non-blind de-
convolution), i.e., for optimizing w.r.t. xγ and ξγ . Specifically, ρ

∗ is an increasing
function3 and can be unbounded, in which case the MAP objective (27) always
decreases with increasing ξγ , leading to the global minimum ξγ → ∞ and xγ = 0.
Hence, the optimization will provide the trivial global minimum (a flat image)
unless it is stuck at some local minimum. Even for bounded ρ∗, ξγ(i) can be
unbounded for xγ(i) = 0 which will make the algorithm trapped at a local min-
imum. Thus, sparse MAP deconvolution based on iterative reweighting (jointly
estimating xγ and ξγ) can be unstable even in the non-blind case. On the other
hand, in the VB approach, the term trace

(

diag (ξγ)Cxγ

)

implicitly enforces a
regularization on ξγ : since Cxγ

is positive, increasing ξγ increases this term while
−ρ∗(ξγ(i)/2) decreases, such that the solution ξγ → ∞ and xγ = 0 is avoided.

However, these problems do not necessarily mean that all local optima in
the MAP approach are useless; reasonable solutions can be obtained if some
heuristic measures are taken. To address the second problem, the variables ξγ can
be bounded from above by a positive number, which makes the MAP problem
well-defined. Existing methods relying on sparse image priors, such as ‖xγ‖pp,
0 < p < 1 in [18], or the semi-quadratic prior in [5], employ this bounding
strategy although this problem is generally not recognized. In addition, these
issues are the likely causes of the failure of the MAP estimate using the mixture-
of-Gaussians prior reported in Fergus et al. [2], which noted that the MAP
solution is often either the blurry image itself or a two-tone image. The image
is estimated as the blurry input image when the blur is estimated as a delta
function, which occurs because of the first problem. The two-tone image is most
likely because most ξγ variables were driven to very large values (except possibly
at the strong edges), resulting in extreme over-smoothing.

3.3 Bottom-Up Construction of Sparse Image Priors

So far, we started from an image prior definition using an analytical function ρ,
and derived the estimation rules according to this function. This is the standard
approach in most existing deconvolution methods, and is implicitly related to
a “generative” view, i.e., the image prior reflects our prior belief in the natural
image statistics. However, as mentioned above, for the prior to be super-Gaussian
the only necessary condition is that ρ′(s)/s is decreasing in (0,∞). Hence, instead
of specifically assigning a function ρ and calculating ρ′(νγ)/νγ to estimate ξγ ,
we can choose instead an arbitrary decreasing function κ for this estimation. In
this way, we are not explicitly specifying an image prior, but achieving increased
flexibility with a bottom-up construction while maintaining super-Gaussianity
(hence sparsity) in the image prior. Such an approach leads to selective edge-
preservation since small ξγ values correspond to small penalties on xγ and will
preserve them (and vice versa). For example, we consider a general form

3 For a ≥ b ≥ 0, ρ∗(a) = infxγ(i)
1
2
ax2

γ(i)− ρ (xγ(i)) ≥ infxγ(i)
1
2
b x2

γ(i)− ρ (xγ(i)) =
ρ∗(b). For some ρ (like log), ρ∗ is strictly increasing with no finite asymptote.
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E [ξγ ] = κ(νγ) =

(

1

g ⊗ νγ

)p

(31)

where p > 0 and g is a filter. A variety of heuristics can easily be embedded
through g to remove small gradients to combat noise and increase robustness
(such as r-maps [7], bilateral filtering [13]), or to make strong gradients more
pronounced (e.g., using shock filters [7], edge reweighting [5]). This construc-
tion can also be used to incorporate image properties not captured by a super-
Gaussian prior, such as saturations. For such model discrepancies, cases where
the decreasing property of κ is locally violated can also be considered. Finally,
bottom-up construction opens the door for using spatially-varying priors (such
as sparse priors around strong edges and less-sparse priors in texture areas).

Our formulation also provides a new interpretation of the mixture-of-Gaussians
(MoG) prior used in Fergus et al. [2], where this prior is motivated as a sparse
prior. In [2], four Gaussians are assigned to each pixel with corresponding ξlγ ,

l = 1, 2, 3, 4, with prior values ξl,0γ estimated from training images. The VB in-

ference scheme of [11] is employed to estimate ξlγ as πl
γν

−2
γ + (1− πl

γ) ξ
l,0
γ , along

with the corresponding mixture coefficients πl
γ . In our modeling, this update rule

can be obtained using ρ(xγ(i)) =
∑

l π
l
γ log |xγ(i)|+ (1 − πl

γ) ξ
l,0
γ x2

γ(i)/2. Thus,

by jointly estimating ξlγ and xγ , Fergus et al. is in fact enforcing a mixture of
super-Gaussians, which leads to sparse regularization on the image. The MoG
prior was used in [2] only for blur estimation, but it can also be used for image
estimation in our method via (24). Empirical results suggest, however, that a
MoG prior is not necessary and using a single ξγ(i) per pixel actually provides
comparable or better results with simpler estimation rules (see Sec. 4).

4 Experiments

We implemented the proposed method using a pyramid coarse-to-fine approach
where k and xγ are estimated starting from downsampled images, and propa-
gating the results up to the original resolution. We also adapt the noise variance
σ2 during the coarse-to-fine procedure by starting with a large value and grad-
ually reducing it, as suggested in [9]. A Matlab implementation of the proposed
algorithm is available online.

The proposed approach provides the flexibility of choosing the sparse image
prior via the function ρ. To examine the effect of this choice, we used the synthetic
dataset of [8] for a quantitative evaluation in terms of the sum-square-distances
(SSD) between the deconvolved and original images. Figure 2 shows the cumu-
lative SSD histograms for different selections for ρ (with p = 0.8 for ‖s‖pp and
σr = 0.9 for the exp-prior), along with Levin et al.’s MAPk approach [9], which
uses an MoG prior for kernel estimation and [18] for final image estimation. This
method was shown in [9] to outperform the MAP based approaches of Shan et.

al. [5] and Cho et. al. [6] in this dataset. We also show the ratios between the
deconvolution error with the estimated kernel and the deconvolution error with
the true kernel, which is used to normalize the influence of large kernels. It is ev-
ident that the log prior outperforms others both in blind and non-blind settings.
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Fig. 2. Cumulative histograms of SSDs on the dataset of [8] for blind and non-blind
deconvolution, and their ratios (right)

Ground Truth Blurry Image log

exp lp Levin [9]

Fig. 3. Synthetic deconvolution results. Estimated kernels are shown in insets.

Also, its performance is in most cases better than that of [9]. Its success can be
attributed to the enforced high sparsity, which improves the kernel estimation
by distinguishing important edges while suppressing spurious features. Fig. 3
shows example visual results (full set of results can be found in the supplement),
which shows that the low performance of the lp and exp priors is mainly due to
the poor kernel estimates.

Fig. 4 compares the proposed method with the log prior with previous meth-
ods on real images. While all methods perform well with subtle differences, the
results of our method generally exhibit fewer artifacts and are more faithful to the
original images. Our method is also considerably simple to implement and only
requires tuning of one parameter (σ2), whereas state-of-the-art deconvolution
methods generally involve additional algorithmic steps (such as image filtering,
kernel thresholding, etc.), which are not employed in our implementation but
can easily be added for potential improvements in quality.
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Blurry Image Krishnan [10] Cho [6] Ours (log)

Fig. 4. Deconvolution results on real images. Estimated kernels are shown in insets.
See the supplement for high resolution versions.

5 Discussion

This paper provides a systematic formulation of blind deconvolution using gen-
eral sparse image priors. Any super-Gaussian prior can be used in this method
with simple and efficient estimation rules. We also introduced a powerful new
super-Gaussian prior. Our analysis of the proposed method showed that our
method accurately addresses the major shortcomings of MAP (the delta kernel
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and the flat image solutions) both for blind and non-blind deconvolution. We
also showed that more flexible and powerful methods can easily be designed us-
ing our framework by modeling images locally with bottom-up construction of
priors, which may prove useful in challenging deconvolution scenarios.

While a large family of image priors can be used within our method, some
penalty functions such as scale invariant ‖ · ‖1/‖ · ‖2 in [10] are not included. In
addition, we only considered transforming the priors into Gaussian forms, but
other options are also possible which may lead to faster methods. Finally, our
method currently only addresses spatially-invariant blind deconvolution, which is
limiting in practice. The formulations in [12,13] for representing spatially-varying
kernels in terms of homographies can be employed to increase the applicability
of the method. These are left as interesting directions for future work.
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