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p-Values are commonly transformed to lower bounds on Bayes factors,

so-called minimum Bayes factors. For the linear model, a sample-size ad-

justed minimum Bayes factor over the class of g-priors on the regression

coefficients has recently been proposed (Held & Ott, The American Statis-

tician 70(4), 335-341, 2016). Here we extend that methodology to a logistic

regression to obtain a sample-size adjusted minimum Bayes factor for 2 × 2

contingency tables. We then study the relationship between this minimum

Bayes factor and two-sided p-values from Fisher’s exact test, as well as less

conservative alternatives, with a novel parametric regression approach. It

turns out that for all p-values considered, the maximal evidence against

the point null hypothesis is inversely related to the sample size. The same

qualitative relationship is observed for minimum Bayes factors over the

more general class of symmetric prior distributions. For the p-values from

Fisher’s exact test, the minimum Bayes factors do on average not tend to

the large-sample bound as the sample size becomes large, but for the less
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conservative alternatives the large-sample behavior is as expected.

Key Words: Evidence, Fisher’s exact test, g-prior, Minimum Bayes factor, Objective

Bayes, p-value, Sample size, 2 × 2 contingency tables

1 Introduction

p-Values are indirect measures of evidence, they quantify the degree of conflict be-

tween the null hypothesis H0 and the data (Goodman, 1992). However, if an alterna-

tive hypothesis H1 has also been specified, the evidence for the alternative H1 against

the null hypothesis H0 (or vice versa) is usually of primary interest. p-Values can be

transformed to Bayes factors, which directly measure the evidence of the data for H1

against H0 (or vice versa). If the alternative H1 is composite, it is common to derive

a lower bound on the Bayes factor over a specific class of prior distributions on the

parameter of interest under H1 - a so-called minimum Bayes factor (minBF) - to pro-

vide a more objective measure of evidence and to avoid elicitation of all parameters of

the prior distribution for that parameter. It is a well-known finding that for point null

hypotheses, minimum Bayes factors provide less evidence against H0 than the corre-

sponding p-value might suggest (Berger & Sellke, 1987; Sellke et al., 2001). Ghosh et al.

(2005) and Held & Ott (2018) review the literature on minBFs and transformations of

p-values to minBFs.

Most Bayesian calibrations of p-values in the literature transform a given p-value to

the same minBF no matter what the underlying sample size is. However, the evidence

of a p-value is known to depend on the sample size (Royall, 1986; Spiegelhalter et al.,

2004; Wagenmakers, 2007). Held & Ott (2016) derived a sample-size adjusted minBF

over the class of g-priors for F-test p-values in the linear model. They found that the

maximal evidence of these p-values is inversely related to sample size. An interesting

question is whether the same is true in generalized linear models (GLMs) and, if
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so, how strong the dependence on sample size is. In this paper, we extend their

methodology to a logistic regression to obtain a sample-size adjusted minBF for 2 × 2

contingency tables. We will then relate that minBF to two-sided p-values from Fisher’s

exact test to quantify how their maximal evidence depends on sample size.

Let β denote the log odds ratio for an outcome of interest between two groups

compared, usually estimated from the corresponding 2 × 2 table. In the sequel, we

consider testing the point null hypothesis H0: β = 0 against either the two-sided

alternative H1: β 6= 0 or the one-sided alternative H1: β < 0. One-sided alternatives

are of interest since practitioners often have a strong prediction about the direction

of the effect if the alternative is true. A traditional rule is to apply Fisher’s exact

test instead of the chi-squared test if some of the expected frequencies of the 2 × 2

table are less than 5 (Fisher, 1941), see Andrés & Tejedor (1997) for more differentiated

recommendations. However, since Fisher’s exact test is conservative (D’Agostino et al.,

1988; Hirji et al., 1991), the associated p-values tend to be biased in an upward direction

(Barnard, 1989). We will thus also consider less conservative alternatives to these p-

values such as the mid p-value.

The Bayes factor for the null hypothesis H0 against the alternative H1 is given by

BF01 =
f (data | H0)

f (data | H1)
,

where f (data | H0) is the likelihood of the data under H0 and f (data | H1) the marginal

likelihood under H1. The denominator f (data | H1) depends on the prior distribution

for β and we will maximize that marginal likelihood within a certain class of prior

distributions (including the point distribution at H0) to get an objective lower bound

on the Bayes factor BF01. This lower bound is never larger than one, so lies in the same

range as the p-value, which facilitates comparisons.

This paper is structured as follows: In the next section, several large-sample minBFs
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from the literature are reviewed. Some of them will play an important role when we

study the asymptotic behavior of the proposed sample-size adjusted minBFs. In Sec-

tion 3, one- and two-sided p-values from Fisher’s exact test and alternative, less conser-

vative significance measures (a mid p-value and a Bayesian significance measure from

Liebermeister’s test, see Section 3.3 for the latter) are introduced and applied to an

illustrative example in Section 3.4. Sample-size adjusted minBFs for GLMs under local

normal alternatives are described in Section 4, where we establish a new convergence

result for the minBF (Section 4.2). The proposed sample-size adjusted minBFs for 2 × 2

tables are presented in Section 5. We consider minBFs over two classes of prior distri-

butions on the log odds ratio under the two-sided alternative hypothesis: First, a class

of normal priors (Section 5.1), where we apply the methodology introduced in Section

4, and then a more general class of symmetric priors (Section 5.2). The relationship

between p-values from Fisher’s exact test and the proposed minBFs is investigated in

detail in Section 6 based on a novel parametric regression approach. The same rela-

tionship is also studied for the less conservative alternatives to these p-values. It turns

out that the maximal evidence of all these p-values/significance measures against the

point null hypothesis is inversely related to the sample size. The summary points in

Section 6 highlight our main findings. We close with some discussion in Section 7.

2 Large-sample minimum Bayes factors

To begin, we focus on Bayes factors based on the sampling distribution of test statistics

instead of the original data (Johnson, 2005, 2008). For GLMs, the likelihood ratio test

statistic (or deviance) is a common choice. As is well-known, under some regularity

conditions, the asymptotic distribution of the deviance is a central chi-squared dis-

tribution under the null hypothesis and a non-central chi-squared distribution under

the alternative (Davidson & Lever, 1970). From these results, the so-called test-based
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Bayes factor can be derived under the assumption of a generalized g-prior (Held et al.,

2015), i. e. a (multivariate) normal prior centered around 0, on the vector of regres-

sion coefficients (see Section 4.1 for more information on generalized g-priors). Let

z = z(p) = Qχ2(d)(1 − p) be the deviance, where Qχ2(d)(.) denotes the quantile func-

tion of the χ2-distribution with d degrees of freedom. The minimum test-based Bayes

factor based on the deviance z is then (Johnson, 2008)

minTBFd(p) =











(

z
d

)d/2 exp
(

− z−d
2

)

for z = z(p) > d

1 otherwise,
(1)

and has been shown to be equivalent to well-known large-sample minBFs from the

literature for d = 1, d = 2 and d → ∞ (Held et al., 2015). For a 2 × 2 contingency table

with fixed margins, we have d = 1, so that we are primarily interested in this case.

The corresponding large-sample minBF can be written as

minTBF1(p) =











√
z exp(−z/2)

√
e for z = z(p) > 1

1 otherwise.
(2)

However, the case d = 2 is also of interest because it corresponds to a popular

and easily applicable minBF which directly calibrates a two-sided p-value p as follows

(Vovk, 1993, section 9):

minTBF2(p) =











−e p log(p) for p < 1/e

1 otherwise.
(3)

A simple derivation of (3) can be found in Sellke et al. (2001) and is outlined in Held &

Ott (2016, appendix B). This minBF will be termed the “−ep log(p)” calibration in the

following. For normally distributed data, the bound (3) has been shown to lie close

to the minBF over the class of all unimodal prior distributions on the mean µ which
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are symmetric around the null value (i. e. the value under the point null hypothesis

H0) µ = 0 (Sellke et al., 2001). That class “is often argued to contain all objective and

sensible priors” (Sellke et al., 2001).

For a one-sided p-value p, the case d → ∞ is also relevant. The ‘’Edwards” (Edwards

et al., 1963) bound is given by

minTBF∞(p) =











exp(−t2/2) for p < 0.5

1 otherwise,
(4)

where t = Φ−1(1 − p) is the one-sided z-value. This bound is obtained if we consider

a normally distributed observation y ∼ N(µ, σ2) with known variance σ2 and test H0:

µ = µ0, assuming the class of all possible prior densities on µ under the alternative

H1. The lower bound is then attained for the simple alternative H1: µ = µ1 = y.

Another calibration, which is directly based on the two-sided p-value p and can

be derived along similar lines as the “−ep log(p)” calibration (3) (Held & Ott, 2018,

section 2.3), is

minBF∞(p) =











−e (1 − p) log(1 − p) for p < 1 − 1/e

1 otherwise.
(5)

This bound is obtained by replacing p in (3) by q = 1 − p and will thus be called the

“−eq log(q)” calibration in the sequel. Note that calibration (5) is a much lower bound

than the minimum test-based Bayes factors (2) and (3). In the linear model, calibration

(5) has been shown (Held & Ott, 2018) to be a lower bound on the sample-size adjusted

minBF based on the g-prior for any sample size n ≥ d + 3, where d is the number of

covariates in the model (standard regularity conditions require n ≥ d + 2). In fact, for

d = n + 3, these minBFs converge from above to the bound (5) as d → ∞, hence the

subscript ∞ in the notation above.
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Consider now a normally distributed test statistic t ∼ N(µ, 1) and the class of all

prior distributions symmetric around the null value µ = 0 under the alternative. To

obtain the corresponding minBF for a two-sided p-value p, it suffices to consider the

class of all two-point distributions symmetric around the null value. The minBF then

turns out to be (Berger & Sellke, 1987; Held & Ott, 2018)

minBF1(p) = min
µ

2ϕ(t⋆)

ϕ(t⋆ + µ) + ϕ(t⋆ − µ)
, (6)

where ϕ(.) denotes the standard normal density function and t⋆ = Φ−1(1 − p/2) = |t|.

Since the denominator in (6) is a folded normal density function, we will refer to the

minBF (6) as the “folded normal alternative” bound.

3 p-Values for 2 × 2 contingency tables

Next, we introduce the p-values that we are going to consider. Table 1 shows our

notation for 2 × 2 contingency tables. To make a fair comparison between p-values

and sample-size adjusted minBFs, we mainly focus on p-values which are based on the

exact hypergeometric distribution of the data, avoiding large-sample approximations.

We will refer to such p-values as “non-asymptotic” p-values.

Successes (yi = 1) Failures (yi = 0) Total
Sample 1 n11 n12 n1+

Sample 2 n21 n22 n2+

Total n+1 n+2 n

Table 1: Notation for 2 × 2 contingency tables.

However, for comparison and illustration of the convergence result (Proposition 1),

we will also briefly consider the asymptotic p-value obtained from the deviance z, i. e.

pdev = 1 − Fχ2(1)(z), where Fχ2(1)(.) denotes the cumulative distribution function of

the χ2-distribution with one degree of freedom. Note that the likelihood ratio test
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underlying the deviance p-value is asymptotically equivalent to the widely used chi-

squared test (Kateri, 2014). A corresponding one-sided p-value could be obtained from

the signed likelihood ratio statistic (Davison, 2003, p. 128), but we will not study that

p-value here.

3.1 p-Values from Fisher’s exact test

While the p-value from Fisher’s exact test for a one-sided significance test is uniquely

defined, several different definitions of p-values have been proposed for two-sided

alternatives (Fay, 2010a). We focus on three well-established definitions here, but note

that even more alternative definitions have been introduced (Lloyd, 1988; Dunne et al.,

1996; Meulepas, 1998).

Let N11 be the random variable conditional on the margins n1+ and n+1 correspond-

ing to entry n11 of Table 1. The one-sided p-value for testing H0: β = 0 against the

alternative H1: β < 0 is P− = Pr(N11 ≤ n11), where Pr(N11) denotes the hypergeo-

metric distribution of N11 under H0. The one-sided p-value P+ for testing H1: β > 0

is defined analogously.

If the alternative is two-sided, H1: β 6= 0, then the following three definitions for a

two-sided p-value have been proposed (Kateri, 2014): The “probability-based” p-value

ppb := ∑
t:Pr(t)≤Pr(tobs)

Pr(N11 = t),

the central p-value

pce := min{2 min[P−, P+], 1} (7)

and Blaker’s p-value

pbl := min{P−, P+}+ p⋆,

where p⋆ is the one-sided p-value from the other tail of the distribution than min{P−, P+},
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nearest to but not larger than min{P−, P+}. All these three versions of two-sided p-

values can be computed using the exact2x2() function (Fay, 2010a,b) in the R-package

exact2x2 (version 1.4.1).

3.2 The mid p-value

A simple way to reduce conservativeness of the p-values from Fisher’s exact test is

to apply the mid-p modification, originally proposed by Lancaster (1961). The idea

is to take only half of the probability mass of the observed table (and other tables

that are as extreme) to compute the p-value. The mid-p modification of the one-

sided p-value P− from Fisher’s exact test is P−
mid = P− − 1/2 · Pr(N11 = n11) and

P+
mid = 1 − P−

mid is defined analogously. For the two-sided alternative, the mid-p

modification had been applied to two versions of p-values from Fisher’s exact test:

Hwang & Yang (2001) suggest to use the modified probability-based p-value, where

∑t:Pr(t)=Pr(tobs)
Pr(N11 = t) is multiplied by 1/2. Rothman & Greenland (1998, pp. 222-

223) define the mid p-value in analogy to the central p-value (7):

pmid := 2 min
{

P−
mid, 1 − P−

mid

}

.

We will study this “central” mid p-value pmid, which can be obtained from the function

tab2by2.test() in the R-package epitools (version 0.5-7).

3.3 Liebermeister’s significance measure

Liebermeister (1877) studied the posterior probability

P−
lie := Pr(β < 0 | n11, n12, n21, n22) (8)

that the log odds ratio β = log{p1(1 − p2)/[p2(1 − p1)]} is negative (where pi is

the success probability in sample i) assuming independent uniform priors on p1 and
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p2. He derived an exact formula for P−
lie in terms of hypergeometric probabilities

(Seneta, 1994). Interestingly, this posterior probability equals the one-sided p-value

P+ = Pr(N11≥n11 + 1) from Fisher’s exact test - which has been proposed more than

50 years later - for the table obtained from Table 1 by adding one to the diagonal

entries n11 and n22 (Seneta & Phipps, 2001). Overall (1980) proposed the same modi-

fication of Fisher’s exact test in the frequentist context to obtain a more powerful test.

Seneta & Phipps (2001) showed that Liebermeister’s significance measure is less con-

servative than the one-sided p-value P− from Fisher’s exact test and recommended to

use that significance measure instead of the p-value P−. Thus, Liebermeister’s signif-

icance measure, which is based on a default prior that does not incorporate external

information, is a nice example for excellent frequentist properties of objective Bayesian

procedures (Bayarri & Berger, 2004). Altham (1969) obtained a formula for the pos-

terior probability in (8) under the more general assumption of two independent beta

distributions on the two success probabilities and established a relation to Fisher’s ex-

act test in this setting. Nurminen & Mutanen (1987) further generalized these results

and derived a formula for the whole posterior distribution of the odds ratio, see Ly

(2017, chapter 11) for an extension to localized beta priors. Jeffreys’ prior and depen-

dent prior distributions for the two success probabilities are considered in Howard

(1998).

To obtain a two-sided significance measure from (8), we apply the same strategy as

for the central p-value in Fisher’s exact test (this strategy is also mentioned in Overall,

1980):

plie := 2 min
{

P−
lie, 1 − P−

lie

}

.

The probabilities P−
lie and plie will be called (one- and two-sided) Liebermeister’s p-

value in the sequel.
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3.4 Application

We now illustrate the different types of (two-sided) p-values using the dataset on

appendicitis patients presented in Table 2 (data taken from Seneta & Phipps (2001),

originally reported in Di Sebastiano et al. (1999)). The aim was to investigate the

relationship between severe right abdominal pain and acute inflammation of the ap-

pendix.

Pain No pain Total
Acute 1 15 16
Non-acute 5 10 15
Total 6 25 31

Table 2: Observed number of acute and non-acute appendicitis patients with and with-
out severe right abdominal pain in the study by Di Sebastiano et al. (1999).

The conditional maximum likelihood estimate (Breslow, 1981) of the odds ratio for

Table 2 is 0.142 (95 % CI from 0.003 to 1.542). There is substantial variation in the

p-values for that table, ranging from the deviance p-value pdev = 0.049 to the central

p-value pce = 0.14, see Table 3 for the other types of p-values. So there is some

evidence against H0 for pdev, only weak evidence against H0 for plie, pmid and ppb, but

little or no evidence for pce - which is about twice as large as plie - according to Bland

(2015, p. 117). Given this variation in p-values, one may wonder which one should

be used (assuming one wants to use a p-value at all). We will provide suggestions

from a Bayesian viewpoint later. A first step to a Bayesian measure of evidence would

be to compute one of the large-sample minBFs (2), (3) or (6) for two-sided p-values.

These minBFs for Table 2 obtained from the five different types of p-values are shown

in Table 3. However, we will see later that these bounds are suboptimal for small and

moderate sample sizes.
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p-value minTBF1 minTBF2 minBF1

Central 0.144 1/1.2 1/1.3 1/1.5
Prob.-based 0.083 1/1.6 1/1.8 1/2.3
Mid P 0.079 1/1.6 1/1.8 1/2.3
Liebermeister 0.069 1/1.7 1/2 1/2.6
Deviance 0.049 1/2.1 1/2.5 1/3.5

Table 3: Non-asymptotic p-values, the asymptotic deviance p-value and the corre-
sponding large-sample minBFs (2), (3) and (6) for Table 2.

4 Sample-size adjusted minimum Bayes factors

In this section, we introduce a sample-size adjusted minBF for GLMs over a class of

(multivariate) normal priors. First, consider the linear model

y = α1 + Xβ + ǫ, ǫ ∼ N(0, σ2I), (9)

where α is the intercept, X the design matrix, β the vector of regression coefficients

and σ2 the residual variance. To obtain the Bayes factor for the null model (with

intercept α only) against the linear model (9), the g-prior β | g, σ2 ∼ N(0, g σ2 (XTX)−1)

(Zellner, 1986) is assigned to the vector of regression coefficients and a reference prior

f (α, σ2) ∝ σ−2 to the intercept α and the residual variance σ2. Under these priors, there

is a closed-form expression for the Bayes factor (Liang et al., 2008), which is minimized

if the prior variance factor g is estimated by empirical Bayes. This yields a closed-form

expression for the minBF, which depends only on the sample size n, the dimension

d of β and the coefficient of determination R2 (Held & Ott, 2016, equation (9)). A p-

value from the F-test, a one-to-one transformation of R2, can hence be mapped to this

minBF, see figure 1 in Held & Ott (2016) for illustration. In the case d = 2, there is even

a closed-form expression for the minBF as a function of the p-value and the sample

size (Held & Ott, 2016, equation (12)). For the other dimensions d, the conversion from

the F-test p-value to R2 has to be done numerically.
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4.1 Generalized linear model

At least two difficulties arise if we want to extend the procedure described above

to a GLM: First, several different definitions of generalized g-priors for GLMs have

been proposed (see e. g. Hansen & Yu, 2003; Sabanés Bové & Held, 2011; Li & Clyde,

2016) and second, there is no closed-form expression for the marginal likelihood un-

der most of these priors, making computation of the Bayes factor more involved. An

exception is the proposal by Li & Clyde (2016), where a closed-form expression for

the approximate marginal likelihood is available. We opted for this approach, mainly

due to computational efficiency, but there is also a theoretical motivation that will be

presented in Section 4.2. Furthermore, it is not possible to obtain a direct mapping be-

tween p-values and minBFs for discrete data such as 2 × 2 contingency tables. We will

therefore study the relationship between p-values and minBFs by fitting a regression

model to all observed pairs of p-value and minBF (one for each 2 × 2 table) for fixed

sample size n.

Let X denote the design matrix of a GLM having the covariate vectors xk, k =

1, . . . , d, as columns, β the vector of regression coefficients of dimension d and αi,

i = 1, 2, intercept terms. We compare the null model M0 with linear predictor vector

η0 = α01 to model M1 with linear predictor η1 = α11 + Xβ. Before defining the prior,

Li & Clyde (2016) apply a centering step to make the intercept and the regression

coefficients locally orthogonal. This leads to the reparametrization η1 = αc
11 + Xcβ

of model M1, where Xc denotes the orthogonalized design matrix and αc
1 the shifted

intercept (see Li & Clyde, 2016, section 2.2 for details). After this reparametrization,

the observed Fisher information matrix is block-diagonal with the observed Fisher

information (matrices) Jn(α̂c
1) and Jn(β̂) as blocks. Now, independent priors will be

assigned to the regression coefficients and the intercept: The generalized g-prior (for
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g ≥ 0)

β | g,M1 ∼ N
(

0, gJn

(

β̂
)−1

)

, (10)

usually accompanied with an improper prior p(αc
1) ∝ 1. The prior for β depends on

the sample size and the data, in particular also on the outcome y, through Jn(β̂).

A useful property of prior (10) is its invariance with respect to location-scale trans-

formations of the covariates (Li & Clyde, 2016, section 4.2), which is one of the desider-

ata for model selection priors (Bayarri et al., 2012). An additional important advantage

of prior (10) is computational efficiency, since an approximate marginal likelihood

(see Li & Clyde (2016), equation (17)) as a function of the maximum likelihood es-

timates (MLEs) can be obtained in closed form by applying an integrated Laplace

approximation (Wang & George, 2007).

For fixed g, the Bayes factor for the null model M0 (with an improper prior p(α0) ∝

1) against model M1 then turns out to be

BF(g) ≈ exp
(

− z

2

)

[Jn (α̂c
1)

Jn (α̂0)

]1/2

(1 + g)d/2 exp
[

Q

2(1 + g)

]

(11)

(Li & Clyde (2016), equation (19)), where z denotes the deviance statistic z(y) =

2 log
[

f (y | α̂1, β̂,M1)/ f (y | α̂0,M0)
]

and

Q := β̂
⊤Jn(β̂)β̂

is the squared Wald statistic. (Note that the centering step does not change the de-

viance statistic z nor the squared Wald statistic Q.) The Bayes factor (11) is minimized

if we estimate the parameter g such that the marginal likelihood under M1 is maxi-
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mized, i. e. if we estimate g by empirical Bayes, which yields

ĝ = max{Q/d − 1, 0} and (12)

minBF = BF(ĝ). (13)

4.2 Asymptotic behavior

We are also interested in the large-sample and asymptotic properties of the sample-size

adjusted calibrations we will develop. To have a reference line for these calibrations,

we will now study convergence of the approximate minBF (13). To do so, we consider a

so-called sequence of local alternative hypotheses (Hn
1 )n∈N, where Hn

1 : β = O(n−1/2)

(Davidson & Lever, 1970), so the true regression coefficients get smaller with increasing

sample size n. Johnson (2005, p. 691) argues that for moderately large sample sizes,

this is the case of practical interest, since for larger β, it would be trivial to differentiate

between H0 and Hn
1 , whereas for smaller β, it would be too difficult. Under such a

sequence of local alternatives (and some regularity conditions), the distribution of the

deviance converges to a non-central χ2-distribution, which is used in the derivation of

the minimum test-based Bayes factor (1) (Johnson, 2008). Motivated by the asymptotic

equivalence of the squared Wald statistic Q and the deviance z under a sequence of

local alternatives and under the null hypothesis, we now establish a convergence result

for fixed deviance z:

Proposition 1. If limn→∞ Q = z and limn→∞ Jn (α̂c
1) /Jn (α̂0) = 1, then

lim
n→∞

minBF = minTBFd,

where minBF is the minimum Bayes factor (13) (bounded by 1 from above) for sample size n

and minTBFd the minimum test-based Bayes factor (1).

Note that Li & Clyde (2016, section 2.4) obtained a closely related result for the Bayes
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factor (11) with fixed g. The proof of Proposition 1 can be found in the Supporting

Information, Section 1.1. In fact, it can be shown that under the null hypothesis H0:

β = 0 and under a sequence of local alternative hypotheses Hn
1 : β = O(n−1/2) (and

some common regularity conditions), the two conditions of Proposition 1 are satisfied

for a GLM with canonical link function in a weaker sense, i. e. Q − z
P→ 0 (Engle,

1984, also holds for non-canonical link function) and Jn(α̂c
1)/Jn(α̂0)

P→ 1 (proof in the

Supporting Information, Section 1.2). Here,
P→ denotes convergence in probability for

n → ∞. Since there is a continuous one-to-one mapping between the deviance z and

the deviance p-value pdev, we also have minBF(pdev) → minTBFd(pdev) as n → ∞ for

fixed deviance p-value pdev and any GLM with canonical link function. See Figure 2

for an illustration of this result in the logistic regression setting with d = 1.

5 Sample-size adjusted minimum Bayes factors for 2 × 2

tables

We will focus on two classes of prior distributions for the log odds ratio β under the

two-sided alternative H1: β 6= 0. A common choice are local priors, i. e. unimodal

distributions which are symmetric around 0. The main motivation for choosing a class

of normal priors among the local priors is that these priors are invariant with respect

to location-scale transformations of the covariate. Moreover, minBFs based on normal

priors allow for comparison with the sample-size adjusted minBFs based on the g-

prior in the linear model, where that prior is a natural choice. The second class, the

class of all prior distributions symmetric around β = 0, can be claimed to contain

all “reasonable” priors. We will see that the minimum of the Bayes factor over these

symmetric priors is actually attained at a symmetric two-point distribution (including

the degenerate case β = 0). This corresponds to the two-sided version of a simple

alternative. In the one-sided case, we will restrict attention to simple alternatives.
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5.1 Local normal alternatives

Consider the logistic regression model M1 with Bernoulli outcomes yi ∈ {0, 1}, lo-

gistic link function logit{Pr(yi = 1)} = η1,i and linear predictor vector η1 = α11 + βx.

Here, x is a vector of binary covariate values, taking the value 1 for an observation

from sample 1 and 0 otherwise. The null model M0 corresponding to the null hy-

pothesis H0: β = 0 has the linear predictor vector η0 = α01. We assume improper

uniform priors on the intercepts α0 and αc
1.

Our goal is to obtain a lower bound on the (approximate) Bayes factor (11) for any

generalized g-prior (10) on β. Note that prior (10) here boils down to a univariate nor-

mal prior centered at zero (as used in Edwards et al. (1963) for the normal likelihood).

As explained in the previous section, we will fix the parameter g at the empirical Bayes

estimate (12).

We exclude 2 × 2 tables with entries equal to zero from our analysis, as the MLE

β̂ (and possibly also α̂0 and/or α̂1) does not exist for such tables. For the remaining

tables, there are closed-form expressions for the MLEs of α0, α1 and β, the correspond-

ing observed Fisher information Jn(α̂0), Jn(α̂1) and Jn(β̂), as well as the deviance z.

Consequently, the approximate minBF (13) can in principle be written as a closed-form

expression that depends on the four entries n11, n12, n21 and n22 of Table 1 only, but we

will present a more concise representation that is easier to interpret.

To this end, note that β̂ = log(n11)− log(n12)− log(n21) + log(n22) is the MLE of

the log odds ratio and

Jn(α̂0) =
(

n−1
+1 + n−1

+2

)−1
, (14)

Jn(α̂
c
1) =

(

n−1
11 + n−1

12

)−1
+

(

n−1
21 + n−1

22

)−1
, (15)

Jn(β̂) =
(

n−1
11 + n−1

12 + n−1
21 + n−1

22

)−1
, (16)

as derived in the Supporting Information (Section 2). In that supplementary section,
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we also present a closed-form expression for the deviance z, which is equivalent to

exp(−z/2) = n−n11
11 n−n12

12 n−n21
21 n−n22

22 n
n1+
1+ n

n2+
2+ n

n+1
+1 n

n+2
+2 n−n. (17)

Now, to determine the minBF, the first step is to compute the squared Wald statistic

Q = β̂2Jn(β̂) and then to infer ĝ = max{Q − 1, 0}. The approximate minBF is then

given by

minBF ≈min

{

[Jn(α̂c
1)

Jn(α̂0)
(1 + ĝ)

]1/2

exp
[

Q

2(1 + ĝ)
− z

2

]

, 1

}

. (18)

Expression (18) will be called the “local alternative” minBF. If Q > 1, so that ĝ > 0,

then

minBF ≈min

{

[Jn(α̂c
1)

Jn(α̂0)

]1/2

(e · Q)1/2 exp
(

− z

2

)

, 1

}

. (19)

Kass & Vaidyanathan (1992, theorem 3) have obtained a closely related, but more

complex approximate formula than (19) for the minBF over local normal priors. Since

these authors assume the parameters α1 and β to be null orthogonal (i. e. the expected

Fisher information matrix is block-diagonal for β = 0 and all α1) instead of locally

orthogonal at the MLE, the observed Fisher information matrix is not block-diagonal.

Thus, the factor Jn(α̂c
1)Jn(β̂) of the term Jn(α̂c

1)Q in Equation (19) is replaced by

the determinant of the observed Fisher information Jn(α̂1, β̂) (in the null orthogonal

parametrization), which is a more complex expression than the product of (15) and

(16). Furthermore, the approximation by Kass & Vaidyanathan (1992) is valid only if

the true value of β lies within an O(n−1/2) neighborhood of the null value β = 0. This

condition does not hold for unbalanced 2 × 2 tables with large log odds ratios β, which

have small associated p-values. Since we are mainly interested in 2 × 2 tables with

small p-values, we prefer the Li & Clyde (2016) approach, where no such restriction is
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imposed.

Note that the minBF (18) is invariant with respect to row-column switch in the 2 × 2

table (i. e. exchanging the two entries n12 and n21), which implies that exchanging the

covariate x and the outcome y will not affect the minBF. This is useful for retrospective

epidemiological studies, for example, where either the case/control status (prospec-

tive model) or the exposure variable (retrospective model) may be taken as outcome

(Breslow & Powers, 1978). That invariance property is not hard to establish since the

squared Wald statistic Q, the deviance z and the ratio Jn(α̂c
1)/Jn(α̂0) all turn out to

be invariant under row-column switch.

The minBF (18) for Table 2 is 1/2.6. So a lower bound on Pr(H0 |data) is 0.38/1.38 =

0.28 under the assumption of equipoise, i. e. Pr(H0) = Pr(H1) = 0.5 (Johnson, 2013).

Note that both large-sample minBFs (2) and (3) given in Table 3 are larger than the

sample-size adjusted minBF (18) for all types of p-values, the differences between

these bounds and (18) being rather large for all types of non-asymptotic p-values.

This illustrates that applying the large-sample minBFs (2) and (3) to non-asymptotic

p-values from 2 × 2 tables of small or moderate sample size may lead to substantial

overestimation of the minBF.

5.2 Two-sided simple alternatives

Here, we aim at finding a discrete analogon of the “folded normal alternative” minBF

(6). To obtain the minBF over the class of all prior distributions on the log odds ratio

β symmetric around 0, it suffices to consider the subclass of all symmetric two-point

distributions (Berger & Sellke, 1987). For such two-point distributions, the marginal

likelihood under the alternative H1 is of the form

1
2
{ f (n11; exp[−β]) + f (n11; exp[β])} ,
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where f (n11; θ) denotes the probability mass function of the non-central hypergeo-

metric distribution with non-centrality parameter θ. The likelihood under H0 is then

f (n11; 1). Thus, ignoring the fact that the log odds ratio β can only take values in a

discrete set, a minBF over the class of symmetric priors for a 2 × 2 table with non-zero

entries can be defined as

minBF = min
β

2 f (n11; 1)
f (n11; exp[−β]) + f (n11; exp[β])

. (20)

Note that the denominator of (20) is an analogon of the folded normal density in the

“folded normal alternative” bound (6) and could thus be called “folded hypergeomet-

ric density”. The bound (20) will be termed “two-sided simple alternative” minBF in

the sequel. This minBF is not larger than the local alternative minBF (18) since the

class of local normal priors is contained in the class of prior distributions symmetric

around the null value.

The two-sided simple alternative minBF (20) for Table 2 is 1/3.3, corresponding to a

lower bound of 0.23 on Pr(H0 |data) under the assumption of equipoise. For all types

of non-asymptotic p-values, the minBF (20) is smaller than the large-sample “folded

normal alternative” bound (6), see Table 3.

5.3 One-sided simple alternatives

For the one-sided alternative H1: β < 0, the minBF over the class of simple alternatives

in the direction of H1 is given by

minBF = min
β≤0

f (n11; 1)
f (n11; exp[β])

. (21)

Expression (21) will be called ‘’one-sided simple alternative” minBF. Note that this

minBF never exceeds the two-sided simple alternative minBF (20) and is usually about

half as large as minBF (20) given the latter is not close to 1.
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6 Empirical relationship between p-values and minimum

Bayes factors

To investigate how the maximal evidence of p-values for 2 × 2 tables against the point

null hypothesis depends on the sample size, we will study the relationship between

the p-values introduced in Section 3 and the sample-size adjusted minBFs (18), (20)

and (21) using a novel parametric regression approach. Table 4 gives an overview of

the types of p-values considered.

p-value One-sided, H1: β < 0 Two-sided, H1: β 6= 0

Fisher

- Prob.-based ppb

P− Central pce = min{2 min[P−, P+], 1}
- Blaker pbl

Mid p P−
mid pmid = 2 min

{

P−
mid, 1 − P−

mid

}

Liebermeister P−
lie plie = 2 min

{

P−
lie, 1 − P−

lie

}

Asymptotic - Deviance pdev

Table 4: The different types of p-values considered for testing H0: β = 0 against ei-
ther a one-sided (left column) or two-sided (right column) alternative H1. See
Section 3 for the definitions of the p-values. The p-values in the left column
will be related to the one-sided simple alternative minBF (21), whereas the
p-values in the right column will be related to the both the local normal alter-
native minBF (18) and two-sided simple alternative minBF (20).

6.1 Study description

Suppose we are interested in the relationship between the probability-based p-value

and the local alternative minBF (18), for example. Then, there is a p-value p and a

sample-size adjusted minimum Bayes factor minBF associated to each 2 × 2 table. For

fixed n, we consider all such pairs (p, minBF) for 2 × 2 tables with non-zero entries

of sample size n and fit a specific regression model to these points, as illustrated in
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Figure 1 for n = 20. The number of different tables for sample size n is (n−1
3 ), which

corresponds to 969 tables for n = 20, 3’654 for n = 30, 18’424 for n = 50, 156’849 for

n = 100, 4’410’549 for n = 300 and 165’668’499 tables for n = 1000. Due to restrictions

in memory and computation time, for sample size n = 1000, we computed the p-

values and minBFs for a random sample of size 106 from all possible 2 × 2 tables only.

All the following analyses for n = 1000 are based on such a random sample. As the

sample size n increases, the first to third quartiles of the distribution of the observed p-

values and minBFs decrease, as well as the minimum of these quantities. For example,

for n = 50, the minimum observed probability-based p-value is ppb = 5.8 × 10−12, for

n = 100, it is ppb = 2.7 × 10−26, and for n = 1000, it is around ppb = 10−292.
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Figure 1: The points represent the pairs of probability-based p-values and local alter-
native minBFs (18) that are observed for 2 × 2 tables (with non-zero entries)
of sample size n = 20. Fitting model (22) to these points then leads to the
fitted minBFs for n = 20 shown as a line.
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We consider two parametric candidate models. These regression models are moti-

vated by the large-sample “−ep log(p)” calibration (3) or the “−eq log(q)” calibration

(5), respectively, which directly relate two-sided p-values to minBFs. For example,

Equation (3) implies

log(minTBF2) =











1 + log(p) + log[− log(p)] for p < 1/e,

0 otherwise.

We will instead fit a model of the form

log(minBF) =











a + b1 log(p) + b2 log[− log(p)] for p < exp(−b2/b1)

0 otherwise,
(22)

with least squares to all pairs (p, minBF) (for fixed n) under the constraint a = b2[1 −

log(b2/b1)]. This formulation ensures that the resulting fitted curve is monotonically

increasing and continuous, i. e. the non-constant part of (22) has its maximum at 0

(provided b2 > 0). For the “−eq log(q)” calibration (5), the corresponding model is

log(minBF) =











a + b1 log(1 − p) + b2 log[− log(1 − p)] for p < 1 − exp(−b2/b1)

0 otherwise,

(23)

and the constraint on the intercept a is the same as above. For fixed n, we fit both

model (22) and (23) and quantify the goodness of fit by R2. For example, the fit shown

in Figure 1 is based on model (22) with a = 1.19, b1 = 1.25 and b2 = 0.88 and R2 = 0.97.

For each class of alternatives studied, we compare the values of R2 for model (22) and

(23) and then choose the model with the larger values for the majority of cases (pairs

of type of p-value and sample size) considered. Note that in model (22), the parameter

b1 corresponds to the asymptotic slope of the curve for log(p) → −∞, whereas in

model (23), the asymptotic slope is b2. This slope describes the (linear) relationship
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between log(minBF) and log(p) for small p.

Observe that most pairs (p, minBF) occur multiple times as they correspond to dif-

ferent 2 × 2 tables. The models (22) and (23) are fitted to all these pairs including

multiple pairs. However, pairs (p, minBF) with p-value p < 10−6 are ignored to en-

sure a good fit in the practically interesting range for large sample sizes. The marginal

distributions of the p-values restricted to the range [10−6, 1] and the corresponding

local alternative minBFs are illustrated in Figure 2. For the one-sided p-values, we

restrict our analyses to 2 × 2 tables with log odds ratio β ≤ 0 in the direction of the

alternative H1: β < 0.

6.2 Results for local normal alternatives

For the local alternative minBF (18), R2 is consistently higher for model (22) than for

model (23) for all types of p-values and sample sizes considered. Despite relatively

small differences in R2 (lying in the interval [0.002, 0.009]), discrepancies between the

fitted curves for the two models are visible, especially for larger p-values in the range

[0.03, 0.3]. It is plausible that model (22) fits better, since the “−ep log(p)” calibra-

tion (3) underlying this model is also based on a generalized g-prior on the vector of

regression coefficients. So we choose model (22) for all analyses of local alternative

minBFs.

We have also approximated the logarithm of the large-sample bound minTBF1 (2)

by model (22). To do so, we performed least squares function approximation (i. e.

minimizing the integral over the squared differences between the two functions). The

estimated coefficients turned out to be â = 0.99671, b̂1 = 1.00770 and b̂2 = 1.16017.

Goodness of fit is excellent with a maximum absolute difference between the fitted

curve (22) and log(minTBF1) of 0.0023 for p-values p ∈ [10−6, 1], see Figure S1 in

the Supporting Information for a plot of this difference as a function of the p-value.

Hence, for p-values in this range, the bound minTBF1(p) - which needs to be computed
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numerically - can be very well approximated by the simple parametric model (22)

with the coefficients given above. These coefficients can then be compared with the

corresponding coefficients obtained by fitting model (22) to the pairs of p-values and

local alternative minBFs for different sample sizes n.
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Figure 2: The colored curves show the estimated mean relationship (22) between the
deviance p-values and the local alternative minBFs (18) for sample size
n = 20, 30, 50, 100, 300. The broken lines represent the large-sample minBFs
(2) and (3). The marginal boxplots illustrate the distribution of the observed
deviance p-values restricted to the range [10−6, 1] and the corresponding
minBFs for the same set of sample sizes. For the other types of p-values,
the boxplots below the x-axis look similar, although the range and position
of the boxes varies slightly.

The fitted local alternative minBFs based on the deviance p-value from model (22)
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are displayed in Figure 2 and the corresponding estimated coefficients are given in

Table 5. Goodness of fit is excellent (R2
> 0.996 for all sample sizes considered). As

expected from Proposition 1, for fixed deviance p-value pdev, these fitted minBFs tend

towards the large-sample bound minTBF1(pdev) as the sample size goes to infinity.

Next, we will study the same relationship between p-values and fitted minBFs for the

non-asymptotic p-values in more detail.

p-value Prob.-based Central Blaker

n â b̂1 b̂2 â b̂1 b̂2 â b̂1 b̂2

20 1.193 1.254 0.885 0.971 1.204 0.537 1.168 1.238 0.845
30 1.163 1.189 0.948 1.033 1.167 0.654 1.161 1.188 0.944
50 1.094 1.107 0.942 1.023 1.102 0.712 1.091 1.105 0.934

100 1.055 1.058 0.974 1.022 1.057 0.795 1.053 1.057 0.968
300 1.028 1.028 1.037 1.026 1.032 0.926 1.028 1.028 1.034

1000 1.015 1.017 1.091 1.021 1.021 1.027 1.015 1.017 1.090

p-value Mid p Liebermeister Deviance

n â b̂1 b̂2 â b̂1 b̂2 â b̂1 b̂2

20 1.292 1.307 1.114 1.280 1.280 1.305 1.093 1.093 1.131
30 1.220 1.223 1.133 1.196 1.198 1.280 1.071 1.074 1.153
50 1.134 1.134 1.101 1.108 1.111 1.191 1.041 1.046 1.142

100 1.077 1.078 1.113 1.053 1.057 1.149 1.021 1.027 1.144
300 1.033 1.038 1.141 1.020 1.027 1.147 1.007 1.016 1.152

1000 1.011 1.020 1.156 1.006 1.015 1.154 1.001 1.011 1.158

Table 5: The estimated coefficients in model (22) for different sample sizes n, using
the probability-based, central, Blaker’s, mid p, Liebermeister’s or deviance
p-value, respectively.

Figure 3 shows the fitted local alternative minBFs for different sample sizes and

types of non-asymptotic p-values. For all of these p-values, the fitted minBFs increase

as the sample size increases, which indicates that the maximal evidence of these p-

values against H0 is on average inversely related to sample size. The coefficient esti-

mates â, b̂1 and b̂2 in model (22) for the different types of p-values are presented in

Table 5. For Blaker’s p-value, these estimates and hence also the fitted minBFs are very

similar to the ones for the probability-based p-value (see Table 5 and Figure S2 in the
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Supporting Information). In fact, the probability-based p-value and Blaker’s p-value

are equal or very similar for the majority of the 2 × 2 tables considered.
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Figure 3: The colored curves show the estimated mean relationship (22) between
two-sided p-values and local alternative minBFs (18) for sample size n =
20, 30, 50, 100, 300, 1000, using the probability-based p-value (top left), the
central p-value (top right), the mid p-value (bottom left) and Liebermeis-
ter’s p-value (bottom right). For comparison, the large-sample bounds (2)
and (3) are also displayed.

It turns out that model (22) fits very well, achieving values of R2
> 0.96 for all
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types of p-values and all sample sizes considered (Table S1 in the Supporting In-

formation). For small or moderate sample size n ∈ {20, 30}, the goodness of fit is

best for the mid p-value, followed by the central p-value and then Liebermeister’s

p-value and it is worst for the probability-based p-value. For larger sample size

n ∈ {50, 100, 300, 1000}, the ranking in terms of goodness of fit is the same except that

the ranks of the probability-based p-value and Liebermeister’s p-value are swapped.

Due to convergence of the sample-size adjusted local alternative minBFs (18) to

the bound minTBF1 (2) for fixed deviance p-value (Proposition 1), it is interesting

to study the large-sample behavior of the fitted minBFs for the non-asymptotic p-

values with respect to that bound. Figure 3 indicates that convergence to minTBF1

occurs for the fitted minBFs based on Liebermeister’s p-value and the mid p-value,

but not necessarily (or only very slowly) for the standard p-values (probability-based

and central p-value) from Fisher’s exact test. Accordingly, for n = 1000, the estimated

coefficients in the fitted model (22) are very similar to the estimates for the bound

minTBF1 (given at the beginning of Section 6.2) for Liebermeister’s and the mid p-

value, but not for the other p-values. Note also that the estimated asymptotic slopes

b̂1 in Table 5 decrease monotonically towards 1.008 - the corresponding estimate for

the large-sample bound minTBF1 - for all p-values as the sample size n increases.

These coefficient estimates b̂1 are especially relevant, since they mainly account for

the differences in curves observed for different sample sizes n and the same type of

p-value. The coefficient estimate b̂2 determines the p-value threshold at which the

corresponding fitted minBFs reach 1 (their maximum). These estimates b̂2 vary most

for the most conservative central p-value.

6.3 Results for two-sided simple alternatives

For the two-sided simple alternative minBF (20), R2 is consistently higher for model

(23) than for model (22) for all types of p-values and sample sizes considered (differ-
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ences in R2 are in [0.001, 0.007]). Thus, we use model (23) in all analyses of two-sided

simple alternative minBFs. As expected, for fixed deviance p-value, the fitted two-

sided simple alternative minBFs tend towards the corresponding large-sample “folded

normal alternative” bound (6) as the sample size goes to infinity (see the left panel of

Figure S3 in the Supporting Information).

We now turn to the non-asymptotic p-values. For the more general class of prior

distributions symmetric around the null value β = 0, we observe the same qualitative

relationship between the maximal evidence of the these p-values against H0 and sam-

ple size as for the class of local normal priors, see Figure 4. However, the minBFs over

this larger class depend on average less strongly on sample size than the local alter-

native minBFs. Goodness of fit is also excellent for the two-sided simple alternative

minBFs with R2
> 0.97 for all sample sizes and types of p-values considered (Table S3

in the Supporting Information). The ranking in terms of goodness of fit is the same as

for the local alternative minBFs, except that the swap in ranks between Liebermeister’s

p-value and probability-based p-value occurs at larger sample size (between n = 50

and n = 100) for the two-sided simple alternative minBFs.

Due to asymptotic normality of the log odds ratio, we expect convergence of the

fitted two-sided simple alternative minBFs to the “folded normal alternative” bound

(6). This appears to be true for Liebermeister’s p-value and the mid p-value (see Figure

4), but the bound (6) does not seem to be reached for the more conservative standard

p-values from Fisher’s exact test. Accordingly, for n ≥ 300, the estimated coefficients

in model (23) are similar to the coefficients for bound (6) for the less conservative

alternatives only (see Table S2 in the Supporting Information).

6.4 Results for one-sided simple alternatives

For most pairs of type of one-sided p-value and sample size considered, the values of

R2 were higher for model (22) than for model (23), especially for large sample sizes
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Figure 4: The colored curves show the estimated mean relationship (23) between two-
sided p-values and two-sided simple alternative minBFs (20) for sample size
n = 20, 30, 50, 100, 300, 1000, using the probability-based p-value (top left),
the central p-value (top right), the mid p-value (bottom left) and Lieber-
meister’s p-value (bottom right). For comparison, the large-sample “folded
normal alternative” bound (6) is also displayed as a dashed line.

(see Tables S4 and S5 in the Supporting Information). Hence, we select model (22) for

all analyses of one-sided simple alternative minBFs (21).

The estimated coefficients in model (22) and the corresponding fitted curves are
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shown in the Supporting Information (Table S6 and Figure S4). It turns out that for all

three types of one-sided p-values, the fitted minBFs are quite similar to the ones for

the corresponding two-sided case shown in Figure 4. This is not surprising since in

the one-sided case, both the p-value and the minBF are (approximately) half as large

as in the two-sided case for all 2 × 2 tables with an odds ratio that is not close to 1. A

similar correspondence between one- and two-sided simple alternatives has also been

found for the two-sample t-test (Held & Ott, 2018, section 3.1).

6.5 Comparison with the minimum Bayes factor in the linear model

Interestingly, the fitted minBFs increase with increasing sample size for all types of

non-asymptotic p-values considered (see Figures 3 and 4), so we observe the same

qualitative relationship between sample size and minBFs as in the linear model (Held

& Ott, 2016). For the class of local normal priors, we compare the fitted minBFs for

2 × 2 tables to the sample-size adjusted minBFs for the linear model with one degree

of freedom (d = 1). In this special case, the F-test is equivalent to the standard two-

sided two-sample t-test. The minBFs for the linear model turn out to be larger than the

fitted minBFs for 2 × 2 tables based on any of the non-asymptotic p-values. While this

is not surprising for the classical p-values from Fisher’s exact test due to the conserva-

tiveness of the test, it is an interesting result for the mid p-value and Liebermeister’s

p-value, which are less conservative. A useful rule of thumb seems to be the following:

If the sample size n of the 2 × 2 table is about four times as large as in the linear model,

then the fitted minBFs based on Liebermeister’s p-value are approximately equal to

the sample-size adjusted minBFs for the linear model. The value n/4 for the effective

sample size of 2 × 2 tables has also been suggested in Spiegelhalter et al. (2004, section

2.4.1), see Sabanés Bové & Held (2011, table 1) for a related derivation of the variance

inflation factor 4 in logistic regression models.
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Summary points

1. The maximal evidence of the p-values from Fisher’s exact test is inversely

related to sample size. This holds both under local normal alternatives as

well as one- and two-sided simple alternatives.

2. The calibrations of p-values from Fisher’s exact test exhibit a conservative bias

even for large sample size. In contrast, the calibrations of the less conservative

alternatives to these p-values - a mid p-value and the significance measure

from Liebermeister’s test - tend to the large-sample bound as the sample size

becomes large.

7 Discussion

We have proposed sample-size adjusted minBFs for 2 × 2 contingency tables and re-

lated them to p-values from Fisher’s exact test, as well as to less conservative alterna-

tive p-values. It turned out that on average (over all considered 2 × 2 tables of fixed

sample size n), the maximal evidence of such non-asymptotic p-values against the

point null hypothesis is inversely related to the sample size.

We would like to emphasize that the parametric models (22) and (23) relating p-

values to minBFs are not intended to calibrate p-values for single 2 × 2 tables - in this

setting, formula (18), (20) or (21) should be applied directly as they are more accurate.

The purpose of these parametric models is to capture how the strength of evidence

of p-values depends on the sample size. However, one limitation of our approach

is that we cannot directly obtain sample-size adjusted minBFs for 2 × 2 tables with

at least one entry equal to zero. In such cases, we recommend to first compute one

of the available p-values and transform it using the calibration (22) or (23), respec-

tively, with the corresponding coefficients (see Table 5 for the local alternative minBFs
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and Table S2/S6 in the Supporting Information for the two-sided/one-sided simple

alternative minBFs).

For 2 × 2 tables, the “−ep log(p)” bound (3) is not “a best-case scenario for the

strength of the evidence in favor of H1 that can arise from a given p-value” (Bayarri

et al., 2016). In fact, the sample-size adjusted local alternative minBFs (18) - which are

tight lower bounds on the Bayes factor under normal priors - are on average smaller

than the bound (3) for sample sizes n ≤ 50 and all considered non-asymptotic p-

values. For the 2 × 2 table with sample size 31 analyzed in Section 3.4, the sample-size

adjusted minBFs (18) and (20) are also smaller than bound (3) for all types of p-values.

Thus, we do not recommend to transform two-sided p-values from Fisher’s exact test

to the “−ep log(p)” minBF (3), as this bound tends to be too large.

For the standard p-values from Fisher’s exact test, we observed unfavorable large-

sample behavior of the proposed calibrations for all three classes of prior distributions

(see Figures 3, 4 and S4). Even for large sample size such as n = 1000, the calibrations

based on these p-values still seem to suffer from a conservative bias, which is surpris-

ing. The large-sample behavior of the calibrations is best for Liebermeister’s p-value,

followed by the mid p-value. We thus propose to use one of these two p-values rather

than the standard p-values from Fisher’s exact test.

As we have seen, the minBFs obtained depend on the class of prior distributions over

which the maximization is performed. Unfortunately, there is no “objective” choice

for that class (Berger & Delampady, 1987). Although the local alternative and simple

alternative minBFs differ, they do not do so by orders of magnitude. Some robustness

of the minBFs with respect to different classes of prior distributions has also been

observed in the multinomial (Delampady & Berger, 1990; Berger & Delampady, 1987)

and the normal case (Berger & Sellke, 1987).

Our method to derive sample-size adjusted minBFs based on a class of generalized

g-priors, which is an application of the Li & Clyde (2016) approach, can also be ap-

33



plied to other GLMs. For example, m × l contingency tables could also be handled.

For Poisson regression with one binary covariate, a closed-form expression for the ap-

proximate minBF can also be obtained since the MLEs are available in closed form.

Moreover, “non-asymptotic” (i. e. based on the exact distribution of the data) p-values

also exist in this setting (Fay, 2010b). For other GLMs, however, the MLEs may need to

be computed by numerical techniques such as the Newton-Raphson method or Fisher

scoring.

In this paper, we have focused on tests of a point null hypothesis, also called tests

for existence (Marsman & Wagenmakers, 2017). In tests for direction, the null and the

alternative hypothesis are composite, e. g. H0: β < 0 and H1: β > 0. In such tests, the

one-sided p-value is often equal or approximately equal to the posterior probability

of H0 if a non-informative prior is used (Casella & Berger, 1987), so that Bayesian

calibrations of p-values are not necessary. For example, we have seen that the one-

sided posterior probability (8) analyzed by Liebermeister corresponds to a one-sided

p-value from Fisher’s exact test for a slightly modified 2 × 2 table.
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