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Abstract. In this paper, we demonstrate a procedure for cali-

brating a complex computer simulation model having uncer-

tain inputs and internal parameters, with application to the

NCAR Thermosphere-Ionosphere-Electrodynamics General

Circulation Model (TIE-GCM). We compare simulated mag-

netic perturbations with observations at two ground locations

for various combinations of calibration parameters. These

calibration parameters are: the amplitude of the semidiurnal

tidal perturbation in the height of a constant-pressure surface

at the TIE-GCM lower boundary, the local time at which this

maximises and the minimum night-time electron density. A

fully Bayesian approach, that describes correlations in time

and in the calibration input space is implemented. A Markov

Chain Monte Carlo (MCMC) approach leads to potential op-

timal values for the amplitude and phase (within the limita-

tions of the selected data and calibration parameters) but not

for the minimum night-time electron density. The procedure

can be extended to include additional data types and calibra-

tion parameters.

1 Introduction

The calibration of complex computer models, or simulators,

of physical systems is a difficult endeavor, see Kennedy and

O’Hagan (2001) and discussion therein. It consists of search-

ing for the best combination of parameters in the simulator

inputs which will produce outputs that match best the obser-

vations. There are modelling issues and heavy computational

challenges. In many scientific areas, the common approach is

to use parameter values that have been set through empirical
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evidence or measurements of proxies. Instead, we explore

here the sensitivity of the model to parameter changes in or-

der to learn about our physical assumptions and numerical

procedures. As a result of calibration through the compari-

son with observations, histograms of empirical posterior dis-

tributions of the parameters enable us to make a probabilisti-

cally informed choice of parameter values. To our knowl-

edge, there are no calibration studies of simulators of the

Earth’s ionosphere. Previous studies have used data to im-

prove ionospheric model outputs, through data assimilation

at regular time steps (Scherliess et al., 2006), but not to deter-

mine ionospheric model parameters. The reasons for which

we want to calibrate such a simulator are: to replace tun-

ing and fudge factors, to obtain more reliable simulations

as we use more observations (ground- or space-based) un-

der various conditions at different locations, seasons, local

times, and to account for uncertainty when the model is used

for system predictions. This uncertainty is a consequence of

the model-parameters being underdetermined by the avail-

able observations, taking account of model limitations. Cali-

bration also helps with code verification, in the sense that the

posterior distributions ought to be physically intuitive, and

if they are not then perhaps something has gone wrong en

route. Given the potential gain in precision obtained through

calibration of some key parameters, it is a very important

step towards improving simulators. Furthermore, identifying

the sensitivity to the parameters may help the modelers focus

their research efforts on some selected physical phenomena.

In Sect. 2 we present the simulator TIE-GCM, then in Sect. 3

we describe the observations and TIE-GCM outputs in our

study. Section 4 is devoted to the Bayesian methodology and

Sect. 5 to the analysis of our results. Finally in Sect. 6, we

discuss potential improvements to our approach.
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2 The computer model TIE-GCM

The TIE-GCM simulator (Richmond et al., 1992) is designed

to calculate the coupled dynamics, chemistry, energetics,

and electrodynamics of the global thermosphere-ionosphere

system between about 97 km and 500 km altitude. It has

many input parameters to be specified at the lower and up-

per boundaries, as well as a number of uncertain internal pa-

rameters. There are also many output quantities from the

TIE-GCM simulator (densities, winds, airglow emissions,

geomagnetic perturbations, etc.) that can be compared with

observations. For this study we explore the response of the

magnetic-eastward (D) magnetic perturbation at the ground,

MAGGRD-D in [nT] (nano Tesla), at two locations to varia-

tions in just three inputs: two that help describe atmospheric

tides at the TIE-GCM lower boundary, and one that con-

strains the minimum night-time electron density. MAGGRD-

D varies from hour to hour during the day, but also with sea-

son, solar cycle and location of the observation. It is caused

by electric currents flowing in the ionosphere, primarily on

the day side of the Earth where solar extreme-ultraviolet ra-

diation partially ionizes the upper atmosphere, rendering it

electrically conducting. Winds move the conducting medium

through the Earth’s magnetic field, generating electric fields

and currents by an electrodynamo effect in the so-called dy-

namo region, at heights of approximately 90–200 km. Obser-

vations of MAGGRD-D also indicate a considerable amount

of day-to-day variability not captured by the TIE-GCM when

driven by inputs that remain the same from one day to the

next. The observations were therefore averaged over several

days of quiet geomagnetic conditions.

Atmospheric tides are global waves with periods that are

harmonics of 24 h. They comprise a major portion of the

winds in the dynamo region. They are generated at lower at-

mospheric levels, and they are modulated by variable back-

ground winds as they propagate to the upper atmosphere.

They are difficult to define since observations are limited and

the tides vary not only with geographic location, local time

and season, but also in a somewhat irregular manner from

one day to the next. Modelling the tidal propagation through

the atmosphere, and accurately determining their distribu-

tion at the TIE-GCM lower boundary, remains a challenge.

For this study, we include fixed diurnal (24 h period) and

semidiurnal (12 h period) migrating (Sun-synchronous) tidal

components at the TIE-GCM lower boundary, taken from

the physical model of Hagan and Forbes (2002, 2003), plus

an additional variable tidal forcing (migrating (2,2) mode)

which is known to be important for the electrodynamics (Fe-

sen et al., 2000). The amplitude of the perturbation in the

height of a constant-pressure surface at the TIE-GCM lower

boundary, AMP ∈ [0, 36 000] cm, and the local time at which

this maximises, PHZ ∈ [0, 12] h, are two of the three inputs

we explore.

At night, the ionospheric electron density below 200 km

is small and difficult to measure, but nonetheless has an im-

portant influence on the night-time electric field. Our third

simulator input is the minimum night-time electron number

density in cm−3, EDN ∈ [1000, 10 000]. All other input pa-

rameters in the TIE-GCM simulator are held constant for our

experiments. The simulations are done for equinox, at low

solar and geomagnetic activity. For each evaluation, the TIE-

GCM simulator is initially spun-up to get a diurnally repro-

ducible state.

3 Observations and computer runs

Over one hundred magnetometers around the globe provide

geomagnetic variation data. The TIE-GCM can simulate the

magnetic perturbations for any site. Here we analyse the

sites marginally, disregarding shared information that might

be available from sites that are proximate, by using data

from only one site at a time. Therefore the simulator out-

put for each evaluation comprises points on a periodic func-

tion of time for some pre-specified site. We concentrate here

on the MAGGRD-D at two locations: Apia (API, 13.81◦ S,

171.77◦ E) and Odessa (ODE, 46.78◦ N, 30.88◦ E.)

Note that PHZ is a periodic input, so that f (AMP, 0,

EDN) = f (AMP, 12, EDN) for all AMP and EDN. We con-

sider here an alternative parameterisation of AMP and PHZ,

θ1=AMPcos(π PHZ/6) and θ2=AMPsin(π PHZ/6), which

accommodates the periodicity. The EDN input is not repa-

rameterized and is denoted θ3. We would expect that there

is a strong correlation between the tidal input at the lower

boundary (amplitude and phase) and the magnetic perturba-

tion during the day at low and mid latitudes.

In our initial comparisons of model predictions with ob-

servations it was found that the TIE-GCM underpredicted

the amplitudes of MAGGRD-D, owing to E-region electron

densities that were too low. This resulted in low conductiv-

ities, therefore low current, and low magnetic perturbations,

since these are the results of the current flowing overhead.

Fang et al. (2008) considered the need to increase the iono-

spheric electron density in order to get the TIE-GCM to agree

with electron-density observations, and in order to get mag-

netic perturbations compatible with observations. In their

case, they noted that the TIE-GCM electron density at the

peak of the ionospheric E-layer, around 110 km altitude, was

about 37% too small, meaning it needed to be increased by

a factor of 1.58. To quickly fix this before calibration, we

multiply the TIE-GCM outputs by an empirical factor of 1.4.

(This adjustment was made before the final results of Fang

et al. (2008) were available.) This adjustment is sufficient

for demonstrating the capabilities of our method. Versions

of the TIE-GCM currently under development are expected

to eliminate the need for such adjustments in the future.
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In order to increase the influence of small-amplitude

MAGGRD-D values relative to large-amplitude values in the

calibration, we transformed the observations and simulator

outputs as follows: y→sgn(y) log(1 + |y|). The transforma-

tion also enables us to satisfy the assumption that the vari-

ability is constant in time so that the methodology in the next

section can be applied. The transformed measurements at

the two locations API and ODE have different features, see

Fig. 2.

4 Bayesian methodology for calibration

For the calibration of TIE-GCM, we follow here a Bayesian

approach (Kennedy and O’Hagan, 2001). It consists of

putting distributional assumptions (prior distributions or sim-

ply priors) on the calibration (also called tuning) parameters

θ1, θ2 and θ3 before comparing with observations and let-

ting the information contained in the data update this a priori

assumption to get as a result a posterior distribution of the

calibration parameters. The advantage of such a Bayesian

analysis over standard estimation of parameters (e.g. by min-

imizing the differences between observations and simulator

outputs) lies mainly in the ability to retrieve a full description

of the uncertainties about the parameters and consequently

about the simulator outputs. Moreover, the possibility for the

modelers to express their – uncertain – scientific beliefs in

terms of priors on the parameters enables a natural integra-

tion of scientific knowledge and evidence given by measure-

ments. Since magnetic variations in the two locations API

and ODE are different, independent calibrations that would

give consistent results for each of these locations may be

deemed reliable.

The complete set of inputs x=(t, θ) consists of parameters

divided into two categories: the known parameters (control-

lable parameter time t in [0, 24]) and the unknown calibra-

tion parameters θ = (θ1, θ2, θ3). We denote by η(x) the out-

put of the computer model which depends on the complete

set of parameters x=(t, θ). The computer code output η(x)

is an approximation of the reality yR(t). The notation used

emphasizes that physical observations are only made at val-

ues of the observable parameter, t . To learn about the values

of the calibration parameters, TIE-GCM is run at inputs x in

a design (i.e. choice of values) DM . Field data (i.e. observa-

tions) yF (t) are collected at a number of inputs t in a design

DF .

The design DF (i.e. only the time points of observa-

tions) is given by the 24 hourly observation times: around

00:14,. . ., 23:14 magnetic local time (MLT) for API and

around 00:43,. . ., 23:43 MLT for ODE. (MLT is defined as

the magnetic longitude difference between the point in ques-

tion and the anti-solar point on the Earth, multiplied by

24 h/360◦. Magnetic longitude is referenced to the geome-

try of the geomagnetic field instead of to geographic coordi-

nates.) Local time is different for the two locations. How-

ever, since the study is done for each location separately, it

does not matter as we focus on covariances. The part of our

design of experiments DM corresponding to the calibration

parameters is a maximin Latin Hypercube Design (Williams

et al., 2000). With this design we try to cover as much space

as possible in the three-dimensional space of the calibration

parameters with only n=30 runs. Two-dimensional projec-

tions of this design are shown in Fig. 1. This is not a perfect

design, but seems satisfactory for our study. For the time

component of the computer design DM we choose 12 points

(every other hour) to maximize the amount of information

obtained through these time points under the constraint of

the computing time necessary to perform the Bayesian cali-

bration, see Fig. 2. The time points in DF and DM are differ-

ent, but the methodology accomodates such variation. Note

that time is an input parameter, but a so-called controllable

one, which is included in the design but on which we do not

do inference.

The following equations describe the bias between the

computer simulator and the physical observations at the

time design points, denoted δ(t), and observation error ε(t)

(Kennedy and O’Hagan, 2001):

yR(t) = η(t, θ∗) + δ(t) (1)

yF (t) = yR(t) + ǫ(t) (2)

Here, θ∗ is used to represent the true (unknown) values of the

calibration parameters. These equations suggest that even if

the computer simulator was run at the true values of the cal-

ibration parameters, it would still be a biased representation

of reality. Note that we do not include a regression parameter

that generalizes further the analysis by multiplying the com-

puter outputs by a constant (Kennedy and O’Hagan, 2001).

We took into account this scale issue as explained in Sect. 3.

Hence we effectively removed an additional statistical pa-

rameter from the Bayesian analysis and saved computer time

since this might have led to more identification problems and

longer convergence.

Because the simulator output η(·) is unknown except at

the design points DM , we assume that the unknown func-

tion follows a Gaussian stochastic process (GASP) distribu-

tion. That is, we model the 12n observed simulator responses

η(x), x∈R
p (here p=4 since DM is over a range of t , θ1, θ2,

and θ3 values), as coming from a multivariate normal dis-

tribution with a constant mean function µ and an 12n×12n

variance-covariance function 6, with density:

f (η(x)) ∝ |6|−1/2exp

{

−
1

2
(x − µ)T 6−1(x − µ)

}

. (3)

Thus, we approximate the computer simulator by specifying

a distribution of functions that interpolate the response η(x)

in between the design points x in DM . The random function

is certain at the design points, and uncertain at untried points.

After inspection of the transformed outputs, it appears that

the normal assumption is reasonable. To specify 6 accord-

ing to the calibration parameters we use a product Gaussian
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Fig. 1. Two-dimensional projections of the design of experiments for the initial calibration parameters of TIE-GCM. The 30 combinations

are based on a maximin Latin Hypercube Design approach. Units: cm for AMP, hours for PHZ, and cm−3 for EDN.
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Fig. 2. Measurements (circles) and computer outputs (crosses) for

API (left panel) and ODE (right panel). Transformation of original

data in [nT] (nano Tesla), see text for details.

variance-covariance. For the time dimension, we allowed for

a periodic correlation structure by representing it in terms of

an angle, so that the values at the end of the day are corre-

lated with the values at the beginning of the day. After we

rescale the time onto the interval [0, 1], we choose a valid

(i.e. positive-definite) isotropic correlation function on the

circle [0, 1] (Gneiting, 1999). Thus, the (i, j)-th element of

6 is

6i,j = cov(η(xi), η(xj ))

= 1
λη

exp(−
∑3

k=1 βk|θik−θjk|
2)

×exp(−β4(sin(6 (ti, tj )/2))2)

(4)

The notation θik denotes the i-th design point in DM for θk ,

and 6 (ti, tj ) is the angle between ti and tj (i.e. minimum

distance between ti and tj on the circle [0, 1] rescaled to

[0, 2π]). The hyperparameters µ, λη (the precision of the

GASP model), βk (which we call “correlation hyperparam-

eters”) are to be estimated from the model output and the

observations as described below.

The unknown bias function δ(t) is also modeled as a

GASP random function with mean 0 and periodic correla-

tion matrix with precision λδ and correlation parameter β5.

Finally, the random error component is modeled as indepen-

dent ǫ(t) ∼ N(0, 1/λǫ). For estimation of the calibration

and hyperparameters, we make use of the Markov Chain

Monte Carlo (MCMC) approach (Gilks et al., 1996). The

chains are dependent random samples that ought to be dis-

tributed in the long run as the so-called posterior distribu-

tions of the parameters of interest, which is a combination of

prior uncertainty about the values of these parameters and the

information about the parameters provided by the data. Of

particular interest, we retrieve the posterior distributions of

the various calibration parameters, which allows us to make

inferences and quantify our uncertainty about the true values

of these unknown quantities.

For ease of implementation of the MCMC algorithm, we

initially standardize the entire set of responses (simulator and

observed) by the mean and standard deviation of the simula-

tor responses, so µ can be assumed to be 0 without loss of

generality and the variability in the simulator (1/λη) is ap-

proximately 1. The design space on the calibration parame-

ters is also scaled to be [0, 1]3, and the time dimension of the

design space is scaled to a circle [0, 1] as we assume period-

icity.

All the unknowns in the model (i.e. the calibration param-

eters and the hyperparameters) require specified prior dis-

tributions which represent uncertainty about the values of

these parameters before any data is collected. The follow-

ing choices are made for the priors:

– To represent vague prior information about the true cal-

ibration parameter values, we specify a uniform prior
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distribution over an interval twice as wide as the inter-

val on which they were sampled for simulator runs.

– To model the correlation hyperparameters in 6, we

reparameterize using ρk = exp(−βk/4). Because βk>0,

this yields 0<ρk<1. Thus, for ρk , a Beta(1, .5) dis-

tribution is used, which conservatively places most of

its prior mass on values of ρk near 1 (indicating an in-

significant effect). Similarly, even more conservative

Beta(1, .4) priors were used for reparameterized corre-

lation hyperparameters in the GASP model for the bias

function.

– Gamma prior distributions were used for each of the

precision (i.e. inverse of the variance) hyperparame-

ters λη, λδ and λǫ . Specifically, we use priors λη ∼

GAM(10, 10) (with expectation 1 due to standardization

of the responses), λδ ∼GAM(10, .3) (with expectation

around 20% of standard deviation of the standardized

responses), and λǫ ∼ GAM(10, .03) (with expectation

around 5% of standard deviation of the standardized re-

sponses).

Because our choice of priors make the full conditional dis-

tributions of the unknowns difficult to sample from in the

MCMC chain, we implement a Metropolis-Hastings algo-

rithm to explore the multidimensional space of parameters.

This eventually yields draws from the posterior distribution

by repeatedly accepting and rejecting a choice of move in

the parameter space. We used multiple chains to confirm the

convergence towards a stationary posterior distribution (after

an initial burn-in period), saving wall-clock time by running

the chains in parallel.

5 Results

Figure 3 shows the sample paths for 10 chains, with

2000 iterations, corresponding respectively to the calibra-

tion parameters θ1, θ2, θ3. From the visual inspection of

these chains, it seems that for the parameters θ1 and θ2,

convergence occurs after roughly 400 iterations. These first

400 values will be dropped for the rest of the analysis as they

are considered to be in the so-called burn-in period. Un-

fortunately, the convergence of the chains can not be estab-

lished for the calibration parameter θ3, even by running the

chains longer. Some parameters paths are cut off at certain

values because Metropolis-Hastings algorithm rejects jumps

beyond these values. It seems that these values correspond

to the limits of the intervals we used in the design and there

is little information there. Not surprisingly, our method is

not able to tune this parameter. The minimum night-time

electron density represented by EDN does affect ionospheric

electrodynamics at night, including the ionospheric drift ve-

locities, but is too small to increase the electrical conductiv-

ity to anywhere near the daytime values. The geomagnetic
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Fig. 3. Calibration for parameter θ . MCMC sample paths for 10

chains. Left panels: API. Right panels: ODE.

perturbations of MAGGRD-D are dominated by the much

larger currents in the day-side ionosphere, and are very in-

sensitive to EDN. Future studies that add ionospheric drift

data to the observation set should be able to constrain EDN

much better than the present study (Fesen et al., 2000). The

inclusion of EDN here serves the purpose of testing how well

the method works when insensitive parameters are included.

The histograms of the empirical posterior densities are dis-

played in Fig. 4 for the calibration parameters θ1, θ2, θ3. The

resulting histograms for the parameters AMP and PHZ are

displayed in Fig. 5. Note that θ3 is the parameter EDN and

does not need to be transformed. The peaks of the histograms

for AMP and PHZ for the two sites are reasonably consis-

tent since they overlap, but show distinctive features. This

discrepancy may be explained by the fact that these calibra-

tion parameters may compensate for other factors or param-

eters. We derive best values of approximately 2×104 cm and

00:00 MLT respectively for AMP and PHZ at API. For ODE,

the best values are respectively 3×104 cm and 02:00 MLT.

For these respective values, TIE-GCM outputs are closer to

the observations at the two locations of interest than for other

combinations of AMP and PHZ in the range of values we

considered (though a bias is still present). Note that Fig. 2

shows that the observations are outside the evaluations. This

might be because there is a large systematic discrepancy, but

it might also be because the best choice for the parameters is

in a region of the parameter space that our ensemble did not

www.geosci-model-dev.net/2/137/2009/ Geosci. Model Dev., 2, 137–144, 2009



142 S. Guillas et al.: Calibration of TIE-GCM

−4 −3 −2 −1 0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

6000

θ
1
 (cm)

−4 −3 −2 −1 0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

θ
2
 (cm)

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

1600

1800

θ
3
 (cm

−3
)

−4 −3 −2 −1 0 1 2 3 4

x 10
4

0

500

1000

1500

2000

2500

3000

θ
1
 (cm)

−4 −3 −2 −1 0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

θ
2
 (cm)

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

θ
3
 (cm

−3
)

Fig. 4. Calibration for parameter θ . Histograms of posterior dis-

tributions based on MCMC sample paths for 10 chains, with first

400 values dropped as they are considered to be in the burn-in pe-

riod. Left panels: API. Right panels: ODE.
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Fig. 7. Observed (circles) and predicted MAGDDR-D (lines) with

associated 95% confidence bands (±1.96 times the standard errors

assuming a Normal distribution). Left panel: API. Right panel:

ODE. Posterior distributions are based on MCMC sample paths for

10 chains, with first 400 values dropped as they are considered to be

in the burn-in period.

explore. Indeed, the number of point in the design for which

AMP is in between 2×104 and 3×104 cm and PHZ is near

0 is indeed empty, see center upper panel in Fig. 1. Finally,

there is no indication that EDN has a significant impact on

the outputs through our analysis.

Mean posterior biases are shown in Fig. 6. These biases

estimates are indeed compensating for some of the differ-

ences between calibrated model outputs and observations.

The values are not small since they represent a variation of

the order of one unit compared to variations of the order of

3 units in the transformed observations. The high-frequency

variability displayed is due to the various time locations at

which sources of information (observations and model out-

puts) are collected, and could be smoothed. We believe that

the inclusion of more calibration parameters may help reduce

these biases. The Bayesian calibration, through the propaga-

tion of uncertainties, also provides distributions of the pos-

teriors for the predictions of the real values yR at any time,

conditional on the observed data. This statistical surrogate

for the computer model is called an emulator. Figure 7 com-

pares our emulator with observations at API and ODE. Our
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emulator performs well, though it is only doing a prediction

within sample. In our companion paper (Rougier et al., 2009)

we considered a direct emulator of TIE-GCM that gives even

better results, but in a different setting: the focus was on the

upward E×B drift at one location. This emulator is an Outer

Product Emulator (Rougier, 2008) that utilizes expert knowl-

edge by being tailored to the problem. In that framework,

out-of-sample emulations are more reliable and much less

computationally intensive.

6 Conclusions

Linkletter et al. (2006) and Welch et al. (1992) addressed the

choice of calibration parameters. They identify the inputs

that most impact the system so that these factors can be in-

vestigated further, dropping the others. We could use such a

methodology in the calibration of TIE-GCM, when consid-

ering more than three calibration parameters. Furthermore,

in the situation where the input space is large (for instance

with many calibration parameters), a so-called sequential de-

sign (Williams et al., 2000; Kleijnen and van Beers, 2004)

may help reduce the computational effort and focus on areas

of interest in the input space. Our method readily accomo-

dates larger calibration inputs, but the computing time will

increase.

Since the outputs of TIE-GCM are effectively continuous

(though discretized) quantities distributed in space and time,

to carry out the calibration, we could have followed recent

functional approaches (Bayarri et al., 2007; Higdon et al.,

2008) by decomposing in wavelets bases or according to the

first few principal components. We could have used periodic

Fourier bases as we did for the direct emulation (Rougier,

2008), since they worked well there. However, since we

chose a fully Bayesian method for which we did not want

to impose too many constraints, and the dimension of the

problem was reasonable for computational purposes, we did

not resort to functional approaches here.

To improve further the calibration of TIE-GCM, we could

consider more locations and more output types. We aim to

obtain single estimates of parameters like AMP, PHZ, EDN,

based on the combined data sets. However, including mul-

tiple sites requires us to parameterise the discrepancy func-

tion by location, to account for spatially systematic model

biases; in this way we borrow strength across multiple loca-

tions, but we do not over-count proximate locations, because

we appreciate that they share error. Furthermore, we chose

only a single (geomagnetic) type of data, only two magne-

tometer locations out of over a hundred available, and only

one (D) component. For instance, Fesen et al. (2000) carried

out a sensitivity analysis of TIE-GCM to EDN using verti-

cal ion drifts; they concluded that EDN should not be below

4000 cm−3 to represent the important pre-reversal enhance-

ment.
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