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Abstract

The idea that one can possibly develop computational models that predict the
emergence, growth, or decline of tumors in living tissue is enormously intriguing as such
predictions could revolutionize medicine and bring a new paradigm into the treatment
and prevention of a class of the deadliest maladies affecting humankind. But at the
heart of this subject is the notion of predictability itself, the ambiguity involved in
selecting and implementing effective models, and the acquisition of relevant data, all
factors that contribute to the difficulty of predicting such complex events as tumor
growth with quantifiable uncertainty. In this work, we attempt to lay out a framework,
based on Bayesian probability, for systematically addressing the questions of Validation,
the process of investigating the accuracy with which a mathematical model is able
to reproduce particular physical events; and Uncertainty Quantification, developing
measures of the degree of confidence with which a computer model predicts particular
quantities of interest. For illustrative purposes, we exercise the process using virtual
data for models of tumor growth based on diffuse-interface theories of mixtures utilizing
virtual data.

Keywords: Bayesian probability, Calibration, Validation, Uncertainty Quantification,
Tumor growth models

1 Predictive Modeling of Physical Events

The idea that one can possibly develop computational models that predict the emergence,
growth, or decline of tumors in living tissue is enormously intriguing as such predictions
could revolutionize medicine and bring a new paradigm into the treatment and prevention of
a class of the deadliest maladies affecting humankind. In principle, there is nothing about the
classical scientific method that suggests this is an impossible goal, and the growing literature
on tumor modeling over the past decade attests that significant progress has been made in
this direction.

But at the heart of this subject is the notion of predictability itself, the ambiguity involved
in selecting and implementing effective models, and the acquisition of relevant data, all
factors that contribute to the difficulty of predicting such complex events as tumor growth
with quantifiable uncertainty. What do we mean by a predictive model? Can models be
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validated as predictive tools? And, if not, can legitimate validation processes be defined that
can increase our confidence in the predictive power of the given model classes? In addition,
can specific model outputs, the quantities of interest (the “Qol’s”, such as tumor volume at
the end of a given time interval) be predicted with quantifiable uncertainty? Which model
is “best”? That is, can the predictive power of members of a class of models be quantified
in a meaningful way for specific quantities of interest? Finally, if it is possible to determine
that a model is inadequate (invalid), how can it be improved or replaced by a better model?
These issues are prevalent in many fields and have been the concern of many research efforts
in computational science and engineering (see [1, 2, 3] and references therein). To the best of
the authors knowledge, such questions have not been considered carefully on issues related
to tumor growth models, but as these models improve these questions must be addressed for
their integration into the medical community for aiding with decision making.

In this work, we attempt to lay out a framework, based on work in [4] and [5], for
systematically addressing these questions. We believe that most of the issues are in the
province of the emerging fields of V and V and UQ), defined as: Validation, the process of
investigating the accuracy with which a mathematical model is able to reproduce particular
physical events (quantities of interest); Verification, the process of considering the accuracy
with which the code is capable of reproducing results delivered by the mathematical model,
and Uncertainty Quantification, the process of developing measures of the degree of confi-
dence with which a computer model predicts particular quantities of interest. Further, we
assert that the unifying framework provided by Bayesian inference methods can bring into
play powerful approaches of statistical inverse analysis that have direct bearing on the key
questions underlying predictive modeling. We remark that while we believe the question
of verification is extremely important, this work will only discuss at length the issues of
validation and uncertainty quantification.

In the discussions following this introduction, we present the basic ideas underlying
Bayesian calibration, validation, and quantifying uncertainty in predictions. We then de-
scribe a family of models of interacting media based on diffuse-interface models derived from
continuum mixture theory [5], and we select from this general framework three representa-
tive models that form a model class M for possibly modeling tumor growth. Here, model
class refers to a group of models derived via similar methods each meant to simulate the
same phenomena, in this case, tumor growth. Models within a class can differ in their
physics, the nature of the parameters (e.g. time dependent, spatially dependent, etc.), or
the stochastic character of the parameters (e.g. normal, uniform, deterministic). Bayesian
calibration methods are then applied, using virtual observational data, to demonstrate how
these methodologies can address the questions posed earlier and to provide a step toward
predictive modeling of tumor growth.

2 Bayesian Calibration of Mathematical Models

In this exposition, we understand a mathematical model to be a collection of mathematical
constructions designed to represent our complete knowledge of a physical system. Tradi-
tionally, knowledge is acquired via the two avenues of the scientific method: theory, which
involves hypotheses about realities and which provides mathematical abstractions of the



physical universe, and observations, which attempt to gain knowledge through perception of
reality gained through the senses or with instruments. The application of a mathematical
representation of a theory usually involves two fundamental attributes: the set m of pa-
rameters defining the specific environment in which the system is expected to operate (the
moduli, coefficients, rates, ..., etc.), and the scenario S in which the particular instantiation
of the model is considered (the domains of the solution, be it one- two- or three-dimensional,
boundary and initial conditions, and data source terms, etc.). In the deterministic case, we
can express the model in the abstract form,

A(m, S, u(m,S)) =0 (1)

where A () is the collection of operators, constraints, and conditions defining the model, S
is a particular scenario, and w (m,.S) is a solution for the particular parameter set m and
the scenario S. Once u (m, 5) is known (assuming solutions to (1) exist), we compute the
quantities of interest (the Qol’s) defined by functionals () on the space of possible solutions:

Q (u(m,5)) € R. (2)

Before making the calculation (2), the model should be calibrated by considering calibra-
tion scenarios S¢ and performing experiments that lead to observational data d%*. There
is generally a tradeoff that must be considered in deciding which calibration data to use. If
possible, it is best to use data from scenarios representing the predictive scenario as closely
as possible. However, it is probable that gathering such data is very expensive or the data is
not accessible. Traditionally, one wishes to use the simplest data that will provide adequate
information. So, we tend to think of calibration experiments as coming from simple scenar-
ios such as in vitro experiments, one-dimensional domains, etc. Classical inverse analysis
backs out corrected parameters, m for which the model best agrees with the given measure-
ments. While it may provide some useful information, this classical process is often very
inadequate, and frequently meaningless for it neither takes into account the uncertainty in
the parameters m nor in the observational data d%°. In Bayesian inverse analysis, this issue
is addressed by representing m and the data each with a probability density function (pdf)
characterizing the uncertainty in these values. The fundamental idea is then that, instead
of a single set of model parameters, the solution to the statistical inverse problem is now a
probability density function characterizing how certain one is in the value of the parameters
depending on how certain one is about the observational data and prior information about
the model parameters.

We introduce the notation M to denote the random variable characterizing the model
parameters and D to denote the random variable characterizing the measurement with m
and d representing specific realizations of these random variables respectively. It is assumed
that these random variables are related through the general relation D = G (M, E) where
E is the random variable characterizing the noise in the measurement. The function G
can be thought of as the process of solving the model (1) and deriving from the solution u
predicted values of the measurement values d. Prior to any actual observation being made,
there is some prior information available on the model parameters which we assume can be
represented through a probability density function, i.e. we assume m +— pys (m) which is



the prior probability density distribution. In practice, this change in representation results
in (1) becoming a stochastic forward problem, denoted

A(pM(m),S,u(pM(m),S)):O, (3)

and thus, the solution is also a random field u (pys (m, S)) for any particular scenario S, and
the Qol’s are random functions of m, @ (u (py (M), S)) = ¢ (m), where ¢g (m) is written
to indicate that the Qol can be thought of directly as a random function of m for scenario
S.

We further assume that given a specific value of m, we could update our information on
the measurement random variable D to reflect what we would expect as the measurement
given m. That is we assume we know the form of the conditional probability 6 (d|m)
representing the pdf of error in the measurement given the parameter m. Traditionally, this
is reflective of the random variable E and ultimately characterizes the error coming from the
measurement device or human error (meaning the difference between measured observables
and the values delivered by the model). Additionally, we denote the pdf containing the
information regarding the measurements d as pp (d) = [ 60 (d|m) pys (m) dm.

With this notation in place, we use Bayes’ theorem to define the solution to the statistical
inverse problem (calibration) of the stochastic model (3). The pdf of the model parameters
given the specific observed data d°**, or the solution, is given as the Bayesian update

oar (m]d) =0 (d”*[m) pas (m) /pp (d*)

o 0 (d°**|m) pys (m). @)

We comment that pp (d"bs) is effectively a constant for the given value d°** and can be
thought of as the reciprocal of the normalization constant. The conditional pdf o, (m]d"bs)
is the posterior. For simplicity, we write o), (m) := oy (m|d0bs). With the updated informa-
tion regarding the model parameters from the posterior, we write the statistically calibrated
model and corresponding random field of the Qol’s as

A(UM (m>757u(0M (m),S)) =0,
Q (u(oa (m), S)) = g5 (m).

where ¢§ (m) is the random field for the Qol for scenario S based on the calibrated pdf o;.

While the examples presented in this paper will not address such issues, in general, it is
by no means a trivial task to evaluate the posterior pdf in (4) or equivalently to solve the
stochastic system (5) when the dimension of m is high. The visualization of (4) often involves
the use of sophisticated statistical sampling algorithms, such as Latin hypercube sampling
6], a Markov Chain Monte Carlo method, i.e. Metropolis-Hastings or Gibbs sampling, or
other approaches, some of which are implemented in the codes QUESO [7] and DAKOTA
[8]. A number of effective methods for solving stochastic systems characterizing the forward
problem represented in (5), have appeared including occasionally traditional Monte Carlo
methods, but often more powerful techniques such as polynomial chaos [9], stochastic collo-
cation [10], or stochastic Galerkin [11, 12] methods are employed. For more information on
statistical calibration under a Bayesian framework, works such as those by Tarantola [13] or
Kaipio and Somersalo [14] can be consulted.

(5)



3 Model Validation Process

Recalling that validation is the process of investigating whether a mathematical model is
capable of reproducing with sufficient accuracy specific physical events, we recognize that
there is a need for multiple validation checks. If the data for calibration and validation
are not of the exact same form as the ultimate quantity of interest, it is also important to
verify that the model is capable of reproducing these sets of data. If the model fails in this
respect, then the information produced via the calibration and/or validation processes may
be inaccurate and either the data is inadequate or the model does not capture enough of the
physics to make a reliable prediction. We will first propose a method of validation against
the observed data and second describe a method for validation with respect to the quantity
of interest.

3.1 Data Misfit Check

In the specification of the likelihood function, and thus of the error E, the assumption is often
implicitly (and necessarily) made that the model is capable of reproducing such data and
that the error is attributable to imprecise measurements only. The first step in validation is
to check the adequacy of assumptions underlying the construction of the model by analyzing
E, the data misfit. Assuming for simplicity that the misfit is an additive error, we have

D=GM)+E = E=D -G (M). (6)

Since the models we will consider are deterministic, if m is specified G (m) will take on
exactly one value and E may be regarded as the error between G (m) and the data that
should be observed. From a practical point of view, we must check that there exists at least
one set of model parameters m such that the observed noise € (m) = d°** — G (m) is likely
in some meaningful sense. That is, we must check that there exists m such that the specific
realization of e corresponding to the realization d°* is in some sense probable. For this
reason, we write the likelihood in terms of the error e rather than d. To do this, we write

0 (dm) / 0 (d[m, €) psee (c|m) de, (1)

where 0,5 (€lm) denotes the probability of noise level e given parameter m. Noting that
when both m and e are specified, d is completely specified from (6), we can write 6 (d|m, e) =
d(d — G (m) —e). Substituting this into the previous formula (7) we see that 6 (djm) =
Onoise (d — G (m) |m) = 0,,4isc (€ (d, m) |m). Thus, we may rewrite Bayes formula as

oM (m]e“bs) X Orpise (e0b5|m) py (m). (8)

Here e = e (dObS, m) = d°% — G (m). With these considerations in mind, we define
Troise (€lm) as the likelihood cumulative distribution function (cdf), allowing the investi-
gation of the level of error by finding the value of T}, (e"bs (m) |m) In this framework,
the concept of highly probable would mean that the value of T (e"bS (m) |m) is not out in

the tails of the distribution. Thus, setting some tolerances fygé} and ygc;}wn indicative of the



upper and lower tail cutoffs, we check that there is at least some m such that the following
is satisfied
down obs U
Veaf = < T (e \m) <7 CZ‘ (9)

C

A pictorial example is shown in Figure 1. We refer to this process as the data misfit check.

3.2 Validation of Prediction

If a model passes both the data misfit checks for the calibration data and the validation
data, one must check the validity with respect to the quantity of interest. The validation
experiments involve generating a new set of validation observables d¢* for a validation
scenario Sy that is believed to depict as closely as possible the environment in which the
final predicted Qol exists. Ideally, the validation experiments/observations are designed to
check the acceptability of various assumptions made in developing the model for scenarios as
close as feasible to that for which the prediction is to be made. As we also want to see if the
information gained from the new experiments is different from the calibration experiments,
the prior can be chosen to be the same as in the calibration process. It follows that the
validation pdf oy (m) is the posterior computed using the Bayesian relation,
oy (m) := oy (m\d((/bs) X par (M) Oppise (e?}’s\m) (10)

We may thus envision a prediction pyramid of escalating complexity, beginning with
possibly several different component-level calibration experiments at the lowest level for one
or more calibration scenarios, S¢, generating the posterior pdf o), (m), and leading to one or
more full system level validation experiments at the validation scenario level, Sy (see Figure
2). The target output, the goal of the simulation, is on the prediction scenario Sp on which
the ultimate prediction of the principal Qol is made. Along the way, the various observations
(d”cbs, d‘{}’s) may be regarded as intermediate Qol’s at various levels of the pyramid.

We can now consider the calibration predicted Qol and the validation predicted Qol for
the full prediction scenario Sp,

Q (u(on (m), Sp)) = gp (m) and  Q (u(ov (m),Sp)) = gp (m). (11)

These equations have employed everything we know about the model and the Qol. This
includes prior information on the parameters, the theory and measurement error as embodied
in likelihood pdfs, and the predictions of the so-called forward problems, and their predictions
of the random fields ¢ and ¢} representing the target output. Thus, we arrive at the
fundamental question: is the original calibrated model (11a) valid for this particular Qol?

Alas, it is not possible to validate a model; the best that can be said is that the model is
not invalid if ¢§ and ¢} are close enough together with respect to some appropriate metric.
Of many possible metrics, one is

M (q5,qp) = sup |Fo'(y)— F ' ()] (12)

y€lan,az]

where Fe and Fy are the cumulative probability distributions associated with the pdf’s
of the random fields ¢% and g}, respectively, and a; and as are chosen so as to exclude



comparison of the tails of the distributions. We can then specify a tolerance 7, and declare
the model not invalid if M (¢%,q}) < Yeol-

If this criterion is passed, it still remains to quantify the uncertainty in the Qol, namely
the random field ¢$. But this is now an exercise in elementary probability: if ¢& (m) is
known, we may compute the mean, variance, and other moments of its corresponding pdf
and, thereby, quantify the uncertainty in the prediction. A schematic diagram describing
the entire validation process is given in Figure 2.

4 Some Model Classes Derived from Continuum Mix-
ture Theory

The discussion to this point has been primarily aimed at introducing concepts of model
calibration and validation. We now change focus to illustrating how such methods may be
applied to phenomenological models of tumor growth. Many traditional models of tumor
growth treat the tumor mass as a single phase with a sharp interface between the tumor
and other constituents (e.g. [15, 16, 17, 18, 19, 20]). However, these paradigms ignore the
general nature of tumors as a complex biomass comprised of different cell types varying in
their degree of aggressiveness, extracellular proteins and fluid, and blood vessels. Further,
the interface between the tumor and the healthy tissue may not be well defined. Thus, we
restrict our attention to those models coming from what we consider to be a more natu-
ral approach to characterizing tumors and their surrounding environment: models derived
through the continuum theory of mixtures (e.g. [21, 22, 5]). This multiphase theory repre-
sents the presence of each constituent as a volume fraction, allowing multiple constituents to
be present at the same point at the same time and handles the interface between phases as
a feature of the solution. This is done by representing surface energies of interfaces between
constituents through the appearance of gradients of volume fractions, leading to so-called
diffuse-interface models of the Cahn-Hilliard type. A brief summary of this theory is pro-
vided here. We assume the constituents are non-polar and that only isothermal behavior
occurs in all constituents. For the general case, see [5].

4.1 A Continuum Theory of Mixtures

The fundamental idea underlying mixture theory is that a material body B can be composed
of N constituent species By, ..., By that occupy a common portion of space at the same time.
Each spatial position is then allowed to be occupied by N constituents and each constituent
is assigned a mass density p,, regarded as a function of position and time, (x,t), which
represents the mass of the a'® constituent per unit volume of the mixture. Then the mass
density of the mixture is

p(x,t) = Z/aa (x,t) = Zpa(xv t)pa (x,1) (13)

where p,, is the mass per unit volume and ¢, the volume fraction of the ath constituent.



Each of the N constituents must satisfy its own balance laws which differ from those
of classical continuum mechanics due to the presence of interaction terms representing the
exchange of mass, momentum, and energy between constituents. For a general mixture
occupying an open region  in R? over a time interval (0,7'), the volume fractions, or mass
concentrations, and other independent field variables must satisfy the following local forms
of the balance laws for all a, 1 <a < N allx € Q, and t € (0,7).

a aYro 3
Balance of mass: '0820 + V- (pavava) = Yo — V * ja (14a)
) d*v, .
Balance of linear momentum: pa%‘? =V - Ty + pavaba + Pa (14b)
Balance of angular momentum: M, =T, — T} (14c)
d%e, T
Balance of energy: Patpa—g— = tr T L, —V -qa

+ PaPaTa + Ea + 1o (14d)

In (14a), v, is the mass supplied to constituent o by other constituents and j,, is the mass
flux due to changes in the chemical potential defined in terms of gradients in concentrations
and changes in nutrient concentrations. In the momentum equations, (14b) and (14c), v,
is the species velocity field and T, and M, are the partial Cauchy stress tensor and the
intrinsic moment of momentum vectors, respectively, with b, the body force density and p,
the momentum supplied by other constituents. In (14d), e, is the internal energy per unit
mass, L, = Vv, is the velocity gradient, q, is the heat flux, r, is the heat supplied per unit
mass and unit time, and £, is the energy supplied to constituent o by other constituents.
The remaining term is defined by

T :iv- S +ic d*mg (15)
« P af dt ~ af dt )

and is critical in making the connection between mixture theory and diffuse-interface models.
In (15), the quantity o,s is a generalized surface traction that is conjugate to time-changes
in species volume fractions on constituent interfaces, and the second term characterizes the
diffusion of chemical or biological constituents due to chemo- or bio-taxis in terms of time
rates of mg, the multiple of s giving the effect of nutrient 3, and (.5 the corresponding
conjugate fluxes. These effects were introduced in the models of Cristini et al. [22], Frieboes
et. al. [23] and Wise et al. [24]. See also [5].

The equations in (14) are closed by the appropriate choice of constitutive equations. Such
choices must be consistent with both the second law of thermodynamics for the mixture and
the classical balance laws for the entire mixture. By introducing the Helmholtz free energy
per unit mass ¢, for each constituent, or the free energy ¥, per unit volume, the classical



Coleman-Noll method makes use of the constraints from classical balance laws and the
second law to supply sufficient conditions on forms of key constitutive equations in terms of
appropriate derivatives of the free energy (see [25, 22, 5]). In this work, we will confine our
attention to materials for which the Helmholtz free energy is of the form

U, =", (01,---50n, V1,...,VON, M1, ... ,mpy). (16)

As the results shown later are primarily concerned with (14a), we note that it can be
argued that a resulting consistent constitutive equation for j, is of the form

N
Jo = = 3 Mus(6p.ma) V(150 p0). (17)
B=1

Here M, is a positive semi-definite, second-order mobility tensor, ¢ = [p1,...,¢ N]T, m, =

[Pami, - .. ,gpamL]T and p,p is interpreted as the chemical potential, defined as

L
ov,, ov,

af = 5— + 5(1 « a V. ) 18
Hap = G ﬂ;mvC 8/ Vs (18)

dop being the Kronecker delta. Other details on this theory are given in [5].

4.2 A Class of Models of Tumor Growth

To investigate how such models are applied to tumor growth, we consider an organ or gland
that occupies a region €y in R? at time ¢ = 0, such as the prostate. The gland is in contact
with other tissue and vascular structure that supply traction along the boundary 0. The
system is not closed: oxygenated blood and other nutrients may flow into and out of €2
over a time interval of interest [0, 7], during which € traces out a family of configurations.
Within this domain, we assume there is a subdomain w, possibly not connected, which is
comprised of tumorous tissue with material properties different than its surrounding tissue.
Both the tumorous domain and the surrounding tissue are comprised of various types of
cells, such as epithelial, endothelial, muscle, stroma, and blood cells. Each cell type may
have unique material properties and thus could be modeled as separate constituents. We
begin, for simplicity, with the case of a two-phase isothermal mixture consisting of tumor «
and non-tumor n (i.e. healthy tissue, extracellular proteins, and fluid) and focus on methods
of assessing model predictability. Additionally, we include in our model a representative
nutrient, ¢, say oxygen. It is assumed that the mixture is saturated, i.e. u +n = 1.
Thus, only the variables uv and ¢ need to be taken as unknown. Note that as oxygen will
occupy a volume fraction significantly smaller than that of the tumor or non-tumor, it is not
considered in the mixture balance laws. Rather, it will be simulated by a separate, coupled
reaction-diffusion equation and represented in the free energy via the factors m, in (18).

We first postulate a form of the free energy functional for the tumor phase. As we are
particularly interested in a diffuse-interface methodology, we choose a form similar to that
used in the general Cahn-Hilliard theory but augment it with a term corresponding to a
lower energy when the tumor is able to interact with the chemical species, oxygen:

W, (u, Vu, ¢) = yu? (u — 1)° + €2/2|Vul* — xcu, (19)

9



where 7, x, and € are positive constants. The first term is a double-well potential with
minima at v = 0 and u = 1, the second term can be thought of as energy due to surface
tension, and the final term is energy due to reactions with the nutrient and accounts for cell
chemotaxis. With this free energy, the form of the chemical potential follows from (18):

Py = Jb =Y (4u3 — 6u® + 2u) — e Au — . (20)

Note that g, = 0. As we expect the mobility to be positive semi-definite and zero where
there is no tumor, a reasonable form of the mobility tensor M,,, is as follows,

My, = Mu27 (21)

where M is a positive constant. An example tumor mass exchange term might have the
phenomenological form
Yu = Pcu — Au. (22)

Here P and A are both positive constants. A positive value of v, signals growth in u, whereas
negative v, corresponds to a decline in the concentration of w. This form is consistent with
the assumption that tumor cells proliferate where there is enough oxygen and that they may
die at some constant rate. We further assume that the oxygen diffuses throughout the domain
and is uptaken by the cells proliferating most quickly, i.e. the tumor cells. Mathematically,
this can be written as follows:

0=V.(DVec)—cu (23)

where D is a positive constant. We note the oxygen is not explicitly considered as part of
the mixture, that is, it is not included in saturation assumption, ) ¢, = 1. This is done
due to the extremely small volume of the oxygen concentrations compared to cells.

Within the framework of the assumptions made thus far, particularly the assumptions of
isothermal behavior of a non-polar two phase mixture governed by (14) and (19), infinitely
many models of tumor growth and decline exist. Of course, these classes constitute a subclass
of a much larger set of mathematical models falling under the general theory governed
by (14), some of which are discussed in [5]. We wish to describe methods for assessing
the predictability of representative models in this subclass, i.e. the validity. The level of
complexity is not necessarily a factor in the acceptability of a model; all depends on the
quantities of interest (the target outputs of the simulation), and the data in hand.

We consider a class M of three models, M = { M, My, M3} differing in the choice for
(21), (22), dependence on ¢, and time dependency of parameters. These are defined by the
following initial-boundary value problems for concentrations u and c :

M;: Simple Proliferation Model

u =V -(MVp)+Pu in (0,7) x €,
po=f"(u) —eAu in (0,7) x €,
Vu-n =Vu-n=0 on (0,7) x 09, (24)
u(0,x) = ug in {0} xQ
f(u) =~ (4u® — 6u® + 2u)

10



M,: Proliferation/Apoptosis Model with Degenerate Mobility and Oxygen

Dependence
u =V (Mu?Vp)+ Peu— Au in (0,T) x Q,
p = f"(u) — Au — exc in (0,7) x 9,
0 =V-(DVe)—cu in (0,7) x €, (25)
Vu-n =Vpu-n=0 c=1 on (0,7) x 01,
u(0,x) = ug in {0} x
[ (w) = (4u® — 6u® + 2u)

M3: Proliferation/Apoptosis Model with Degenerate Mobility and Oxygen
Dependence and Time Dependent Parameters

w =V - (Mu*Vu)+ Peu— Au in (0,7) x €,
p = f"(u) —eAu—ex(t)c in (0,7) x €,

0 =V-(D(t)Ve) —cu in (0,7) x €, (26)
Vu-n =Vpu-n=0 c=1 on (0,7) x 01,
u(0,x) = ug in {0} x Q2

f(u) =~ (4u® — 6u® + 2u)

Both processes of model calibration and model validation are inherently tied to the
chosen quantity of interest. For certain quantities of interest, simpler models may perform
acceptably, while for more complicated quantities of interest they may not be sufficient. For
the purposes of this work, we investigate the situation for the global quantity of interest of
the final tumor volume calculated as

Q (u) ::/QU(X,T) dx (27)

5 Illustrative Cases of Bayesian Calibration and Model
Selection

We now describe two examples of the processes of model calibration and validation for
representative scenarios portrayed in the sequences of (virtual) images given in Figures 3
and 8 generated through models My and Mj respectively. In both figures, we observe a
two-phase characterization of the growth of a well-defined solid tumor mass captured by
(for instance) MRI imaging, that evolves from an initial shape at ¢ = 0, which we take, for
simplicity, to be elliptical (see Figure 3).

Snapshot images are taken at ¢ = ¢; = 3 and later at t = t5 = 6, that represent the
calibration and validation scenarios. The physical “reality” of the tumor at t = t3 = 9 for
both scenarios is shown in the bottom right image in Figures 3 and 8. We wish to test the
prediction of the tumor volume at this time, based on the calibration data taken at t = ¢;.
For illustration purposes, we will carry out the processes of calibration and validation twice,

11



Parameter \ Value \ Parameter \ Value ‘

M 200 A 0

P 0.1 € 0.005
Y 10 5 0.045
D 1

Table 1 Values of parameters used for the simulation generating the virtual data.

once for model M using virtual data generated from model My and once for model M,
based on data from model M3. Thus, we address the following types of questions: based on
the data observed in Figure 3 at times ¢ = 3 and t = 6, is model M invalid for predicting
a particular quantity of interest such as @ (u) =(tumor volume at t = 9)?

Remark 1. The scenarios described here represent a set of virtual experiments and images
designed only to demonstrate the validation process. The observed structures shown are
generated using models My and Ms for a deterministic calculation using the parameter
values given in Table 1a and in Equation (35), and geometric symmetry is assumed to further
simplify the presentation. But the process itself is general and is applicable to much more
complex situations. For instance, the actual sequence of MRI images of the evolution of a
tumor seeded in a laboratory mouse model, as shown in Figure 4, could conceivably be used
as a basis for similar calibration and validation processes.

5.1 Assessment of M; against data from M,

To begin the process of model calibration and validation, one must begin by defining the
model parameters of interest for calibration, the form of the prior, the data which will be used
for the calibration, and the form of the likelihood function (which will depend on the data).
For model M, we choose as the key model parameter to calibrate m = P (recall (24)).
We assume prior knowledge of this quantity suggests it belongs to the bounded interval
0 < P < 0.3. The values of M, ¢ and v will be taken from Table 1. Due to our “prior
knowledge”, we choose the prior probability density function to be the uniform distribution

par (P) = U (0,0.3). (28)

The nonlinear system of partial differential equations characterizing each model are solved
numerically using mixed finite element methods. Details on the discretized models and their
solutions are given in Appendix A. The finite element mesh provides an analogue of a pixel
array typical of an MRI image, but generally somewhat coarser. Thus, for data, we assume
we have available an entire MRI “image” at ¢t = 3 and ¢ = 6 (for calibration and validation
respectively). So for both the calibration and validation steps we consider as observational
data the array of pixels recovered from the image with each pixel output defined by the
L? norm of the observed solution per pixel/element. We are interested in the shape of the
interface, so we also select as data the position of the elements on which the interface lies.
We choose to work with 6,05 (e|m) rather than the equivalent 6 (d|m) (recall (7)), and
thus need to define the relation e = My (G (P),d), i.e. the method of comparing model
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output against observed data. Due to the nature of our data, the comparison between
the data and simulation will not be a linear operation, and thus simple subtraction will
not be an appropriate operation for My. Rather, we think of M, as a metric returning a
two-dimensional vector. We make the simplifying assumption that the distribution of e is
independent of P, giving us ppise (€) = Onoise (My (G (P),d)). Since My (G (P),d) > 0 for
all d, in this example, we anticipate that the pdf 0,,.;s. (€) will have the shape of a bivariate,
uncorrelated, half-normal distribution, i.e.

6105

enoise (e) = ? CXp <_M§,19%/7T) CeXp <_M§,29§/7T) ’ (29)

where #; and 0y are the parameters of the half normal distributions related to the standard
deviation of the distribution and M, = Mg, (G (P), dObS) denotes the i*" component of M.
Before defining #, and 65, let us first consider how My is to be evaluated.

Without loss of generality, we let the L? norm of the solution per element be the first
component of the data and the location of the interface the second. We evaluate the first
component of My (G (P),d) as follows:

My, = (Z ( /k u(z,3)® dx — /k udata (1) dx)2> 1/2. (30)

k

Here the symbol k indicates the subdomains corresponding to the pixels in the data images.
For the evaluation of the second component, we define the set of interface elements

I(u) ={k:3x €k where u(x) =0.5}. (31)

Further, let C (k) denote the centroid of a pixel k. Then, the difference in the second
component is evaluated like a Hausdorff measure,

Mg :%{ Eeﬁljia) (keﬂ%i(g,s)) d <C (k),C (]%>>>

sy (i 2ome ()

where d (-, ) is the traditional Euclidean distance.
To determine #; and 65, we note that these parameters are related to the standard
deviation, oy, of the corresponding full normal distribution N (0, 0;), i.e.

/2

g;

91':

(33)

The parameters 6; and 0, are chosen to correspond to a o equivalent to 10% relative error.
For the first data misfit value corresponding to the L? pixel data, we choose to define the
error relative to the maximum possible error, i.e. if the simulation solution is equal to the
unit constant function and the data is zero everywhere. For the case considered here, this
value is 2.304. From this, we determine 6; = \/7/2/.2304 = 5.439. For the interface data,
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we use as an error cutoff the distance equivalent to a four element distance, i.e. for a 71x71
mesh, 4 x h = 0.7211. Thus, 0 = \/7/2/0.7211 = 1.738.

Given the data from the image in Figure 3b and having defined the form of the likelihood,
our next step is to perform the data misfit check. We take a uniform sample from the prior
distribution for P and calculate wu (z,3) using discretization techniques as described in the
appendix. The marginal of the likelihood function for each data variable is calculated and the
cumulative distribution, 7' (e) is determined so as to define 7" (e (P) = d”* — G (P)) for
each P sampled. The tolerances ygg]}”” is taken to be 0 (due to the half-normal distribution)
and 7?5} as 0.7. The plots of the marginal cdfs with the cutoff level indicated in red are seen
in Figure 5. Since the likelihood function is assumed to be independent of P, we need only
to check that the minimum value of T2 (e) and Tmer (e°) over all P is below the

noise

cutoff 7% = 0.7. We find min T)%, _ (€”*) = 0.402 and min T (e®*) = 0.683. As these
both meet the requirements, we continue with the calibration.
Introducing (28) and (29) into (4) we arrive at the calibrated posterior pdf, to within a

constant,

5.439 x 1.738
2

ou (Pld) =k exp (—D3 (5.439)% /7) exp (—D3 (1.738)* /x)  (34)

™
where Dy and D are defined in equations (30) and (32) and evaluated with d2¢. Note that
the constant from the prior uniform distribution is included in the normalization constant k.
Figure 6 shows a visualization of the posterior pdf. We note that, at least from the points
tested, the most likely estimator (MLE) is at the point P = 0.03375. The ¢ = 3 snapshot
of this simulation is also shown in Figure 6. Examining this image, it is observed that the
model M is unable to capture the initiating bump in the calibration data.

The depiction is performed by calculating o,; at many different values of P and linearly
interpolating between the points, where the function G (P) is evaluated for specific values
of P through calculations based on the finite element models and time integration methods
discussed in Sections A.2 and A.3. This method is chosen over traditional Monte Carlo
methods due to the length of time required to calculate G (P) for any given P.

The chosen validation scenario encompasses the image of the tumor at time ¢t = 6. The
set up for the validation Bayesian update is the same as for the calibration update, i.e. we
determine the prior, the data to be used, and the likelihood. The prior used is the same as
that used in the calibration stage. Further, since we intend to use the same types of data
from the tumor image at t = 6 as at t = 3, 0,55 takes the same form as (29) but with D; and
D, calculated using d%¢ and u («, 6) instead of u (z,3). To perform the data misfit check, we
again take a uniform sample of P, calculate G (P), and look at the CDFs of the marginals
with " = 0 and 7.7, = 0.7. For this set of data, we find min TE.. (e) = 0.726 and
min 777" (e°°) = 0.998. Thus, with respect to the given tolerances, we see that the model
fails with respect to both distances and we must reject the model. This data misfit check is
visualized in Figure 7.

5.2 Assessment of M, against data from M3

As a second example, we calibrate model My with respect to the parameters x and D. The
data used for this case will be analogous to that of the previous example, i.e. the L? norm
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per element and the location of the interface, but the data are now generated with Ms,
shown in Figure 8, using the following time dependent values of x and D:

(727 te]0,1.705) (118 te[0,1.705)

10.91 ¢ € [1.705, 3.038) 1.98 t € [1.705,3.038)

8.30 t € [3.038,4.965) 1.87 ¢ € [3.038,4.965)
] 933 e [4.965,6.96) b ) 143 te[4.965,6.96) (35)
X7 1111 te[6.96,7.1) ) 1.36 t€[6.96,7.1)

12.08 ¢ € [7.1,7.648) 145 ¢ € [7.1,7.648)

776t € [7.6848,8.246) 1.05 € [7.6848,8.246)

| 1252 ¢ € [8.246,9] | 1.58 ¢ [8.246,9]

The idea that data comes from a scenario in which parameters change over time is analogous
to thinking of data coming from a tumor which is continually evolving and is thus pheno-
typically changing over time. The parameters which are not time dependent in model M3
are taken from Table 1.

Once again, it is necessary to define what the form of the prior probability density function
is for the parameters of interest, y and D, and what form the likelihood, 6,,.:sc (€|x, D), takes.
For these steps, we will proceed in a similar manner to the previous example. Due to our
prior knowledge, we begin by considering a uniform prior probability density function:

p(x,D) = U (3,19.5) x U (0.3,1.95) (36)

with U once again indicating a uniform distribution. Since our data is of the same type as
that used earlier we also use the same likelihood function (29) with D; and D, evaluated as
in equations (30) and (32), but with data from the image in Figure 8b.

We first check that the model passes the data misfit check. Again taking a uniform sample
of the prior distribution for xy and D, and computing G (x, D), we see the model passes this
check with min7}2;,, (€*) = 0.001 and min 77" (e?**) = 0.0 against the tolerances given
in the previous section. The marginal CDFs and evaluated points are shown in Figure 9.
Thus, there certainly exists (x, D) such that our data misfit check criterion is satisfied, and
we can continue with the calibration process.

Since we have assumed a uniform prior and the likelihood function as in (29), the posterior
pdf is given by

5.439 x 1.738
2

oum (x, D|d?) =k exp (—D7 (5.439) /) exp (—D;3 (1.738) /), (37)

T
the shape of which is shown in Figure 10. Of the points tested, the most likely estimator is
at the point (x, D) = (9.0,1.95), the snapshot at ¢ = 3 of this simulation is also shown in
Figure 10.

This surface is generated by evaluating equation (37) at specific values of x and D, using
the discretization methods as described in the appendix, and then linearly interpolating
between the points.

We now proceed to the validation stage, which we define to be the stage of the tumor at
t = 6 (shown in Figure 8c). Proceeding as before, we again perform the data misfit check
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and find that the model passes with min TnLoi-se
These plots are shown in Figure 11.

To create the validation posterior pdf, we employ the same likelihood function and note
that the posterior has the same analytic form, but is evaluated with the validation data. This
pdf is shown in Figure 12. From the points tested, we again find the point (x, D) = (9, 1.95)
as the most likely estimator. The snapshot at ¢ = 6 of this simulation is also shown in Figure
12. We see that while there are slight differences, there is in fact high agreement with the
data.

Finally, to check the validity of model M5, we must calculate the prediction: the quantity
of interest @ (u) at t =9, chosen to be the tumor volume as calculated through (27). Since
our model is deterministic, we can view the problem of finding the pdf for the Qol as a
change of variables in both o), and oy from (x, D) to ¢ = (tumor volume at t = 9), i.e.

qg=Q(x,D), (see [26] pg. 25) i.e.
p(q) =k oy (Q " (q)|d2). (38)

To determine ¢, we take each pair of values of (x, D) for which o), and o were originally
calculated, extend the calculation to compute the Qol, @ (x, D), and associate the value
oum (x, D) (or ov) with p(q) = Q (x, D), and renormalize. We show both of these QoI
cdfs (P (g.) and P (g,)) in Figure 13. Both o), and oy had the same MLE; the prediction of
the simulation using these values is also shown in Figure 13. The targeted outputs delivered
by this model appear to be in good agreement with the data.

We now come to the central question: “Is M a valid (a non-invalid) model for this QolI?”
We use the tolerance v, = 10% x @ (9.0,2.1) = 10% x 4.06 = 0.406. Using (12), we find

(e”*) = 0.003 and min 777 (e°**) = 0.083.

noise

M (¢5,q)) = 0.1478 < 44 (39)

meaning that the model has not been found to be invalid.

While the model has now been declared not invalid, we still must determine how to
answer the question “What will the volume of the tumor be at ¢ = 97”7 There are, in fact,
various ways to answer this. One answer may be given in terms of the volume associated
with the most likely estimator + the standard deviation, in this case, 4.06 £+ 0.2203. Another
answer may be stated with regard to the mean of the Qol pdf 4+ the standard deviation,
namely, 3.7443 + 0.2203. (Note that we must use the calibrated pdf, since the one used
for the validation of the calibration pdf has not yet been validated itself.) We may also
choose to offer an interval, say the 90% confidence interval associated with our Qol pdf.
For the present case this corresponds approximately to the interval [3.43,4.1]. However
answered, the proposed framework offers an avenue to answer the question with a level of
uncertainty (confidence) associated with it. The issue of making decisions based on these
types of answers is addressed by the field of decision theory, a subject of research outside
the current objectives of this paper.

6 Conclusion

As new methodologies emerge for acquiring data on the evolution of tumors in specific
subjects, ranging from various minimally invasive imaging modalities to biopsies, blood
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tests, and other more invasive observational procedures, the issue arises as to how these data
ultimately inform the processes critical to predicting the growth or decline of cancer and
the effects of various treatments. A fundamental premise of computational science is that
properly derived computational models can be used to map relevant data into predictions of
critical features of physical events that, in time, can be used as a basis for making important
decisions. The fidelity of such computer predictions depends upon the models used, the
knowledge of the key model parameters, and the quality of the data.

In the present exposition, we describe a unified approach for statistical calibration and
validation of models and prediction of quantities of interest based on Bayesian inference.
The models we study here are based on continuum mixture theory and diffused-interface
characterizations of the free energy of a volume of interacting constituents, the behavior
of which is constrained by conservation laws of mechanics. Importantly, the approach can
take into account uncertainties in parameters, observations, and the model itself and lead to
predictions with quantifiable uncertainty.

While we demonstrated the validation process using phenomenological models from mix-
ture theory, the process itself is quite general, and is applicable to virtually any modeling
scenario, including those that attempt to model events at the cellular level. We believe that
complementing these validation processes in conjunction with a rich source of relevant data
can lead to a truly predictive approach to tumor growth modeling.
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A Discretization of the models

In this section, we consider the discretization and numerical solution of the three models
described in section 4.2. We consider a mixed finite element approximation in space combined
with a semi-implicit time-stepping algorithm. We focus on model M3 given in (26). The
discretization of M can be derived from M3 as a special case. Of course, Ms is equivalent
to M3 up to time-independent parameters.

A.1 Weak formulation

Anticipating possible low regularity in solutions and in preparation for general mixed finite
element approximations, we first consider a weak-mixed formulation of (26). Let V, V, and
W,,, denote the spaces

V::LZ(O,T;HI(Q)), Vg::{UEV:U:gonaQ,a.e. t},
W,, = {v eVNL®0,T; L), v, € V' = L2(0,T; (H\())'), v(0) = uo} .

In particular, note that Vo = L?(0,T; H}(R2)) and V; = {1} + Vy. We shall now define a
weak solution of (25) to be a triple u := (u, u, ¢) € Wy, x V x V; such that

/OT<<ut,so>+B(u;w)) dt=0 Vw:= (0108 eVxVxV,, (40)

where B (+;-) is the semi-linear form,

B(uyw) = (Mu*Vpu, V) — (Peu — Au, )
+(n=f"(u),n) +elxen € (Vu, Vi) (41)
+ (D Ve, VE) + (cu, )

(-,-) denotes the duality pairing between (H'(Q2))" and H' (Q), (-,-) denotes the L? inner
product over , and (-, ), is the L? inner product over 9.

The well-posedness of the above weak formulation (40) is an open question not considered
here. The major difficulties are the nonlinear mobility Mwu? and the nonlinear coupling
between ¢ and u, i.e. the reaction terms cu. On the other hand, the simpler model M;
is a compact perturbation of the Cahn—Hilliard equation, the well-posedness of which can
be found in, for instance [27] and [28]. The semilinear form (41) is bounded above for u
bounded (in W,, C L>*(0,7; L>*(2))), but this may not be true for certain cases (see [29]
for a related result for the Cahn-Hilliard equation). Thus, existence and well-posedness of
solutions to (40) is an open question.

A.2 Semi-discrete finite element approximations

We now address the construction of semi-discrete conforming finite element approximations
of the system (40). Such a formulation involves a discretization of the spatial variations of
(u, i, ) keeping, for the moment, the time variations continuous in time.

Let 7" denote a member of a family of partitions of domain € into meshes of non-
overlapping convex finite elements €2, such that Q = Ufj:(}f) Qp and QN Q =0,k #j.

20



Each € is the image of a master element Q under an invertible (generally affine) map Fj.
We construct finite-dimensional subspaces of H' (Q) and HJ () defined by

Sh .= {vheHl(Q):vhlgkZﬁoFk_l,lék’SN(h),@GPK(ﬁ)} ’ (42)

and S := S"N H}(Q), respectively. We further set S := {1} + 8. Here P¥(Q) is cither the
space of polynomials of degree < K defined on the closure of Q) or the space of tensor products
of polynomials of degree K on the closure of . With these notations and conventions in
place, the semi-discrete approximation u” := (u”, u", ") : [0, 7] — S" x S" x 8P is defined
as follows:

(uy(t),¢") + Ba"(t);w") =0  vYw':=(o"n" ") eS" x8" xS}, (43)

for a.e. t € (0, 7). The initial condition for u” is set by u"(0) = Z" ug, where Z" : H'(Q2) — S"
is a suitable interpolation or projection.

Let us denote by {¢; (x)}~, a set of basis functions of S" generated on a partition
T" by the finite element approximations: S" = span{p;}. Then each of the component
approximations is of the form

u" (t,x) = Zuz () @i (x), p"(t,x) = Zﬂi () @i (x), "(t,x) = Z ci (t) i (x) .

(44)
Here w; (t), u; (t) and ¢; (t) are continuous functions in time. Upon introducing these
into (43), we obtain a system of nonlinear ordinary differential equations (ODE’s) in the
unknown discrete variables, w; (t), u; (t) and ¢; (£). We proceed by developing a time dis-
cretization of these ODE’s.

A.3 Time discretization

An attractive class of robust schemes for time-integration of Cahn-Hilliard-type problems
are semi-implicit schemes [30, 31, 32]. Semi-implicit schemes are preferred for their superior
stability properties allowing large time-steps to be taken. These schemes split the free
energy f in a contractive and expansive part, f(u) = f.(u) — f.(u), and accordingly treat f.
implicitly and f. explicitly. The splitting is such that f. and f. are both convex functions,

at least in the domain of interest (for u € [0, 1]). We shall employ the splitting f.(u) = 2 u?

2
and fe(u) := fo(u) — f(w).
Let At denote the time step and ¢, = nAt, for n = 0,..., N := T /At corresponding
discrete times. We denote the approximation to u”(¢,) by u,. Then, the fully discrete
approximation u,, := (U, fin, ¢,) € 8" x 8" x S} is defined recursively by

(un _A::n_l ] Qoh) + (Mu72171Vun’ VQOh) — (Pepqun — Aup, ) =0 VSOh es" , | (45a)

(ki = F2 () + fo(una)s ") + € (x(tn) Cns ") = € (Vun, V") =0 Wy € S" | (45b)
(D(tn) Ve, VE") + (cotn-1,6") =0 V" € S§, | (45¢)
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forn =1,...,N. The scheme is initialized using the initial condition uy = u"(0) = Z" uy.
Note that analogous to f, we have treated the other nonlinear terms (Mu?Vy, cu) in a

semi-implicit fashion. Since our splitting of f(u) resulted in a linear contractive part f(u),

the above scheme requires the solution of a linear system of equations at each time step.
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Figure 1 Example data misfit check for a likelihood pdf distributed as a half-normal distribu-
tion HN (/7 /2). Left: Likelihood pdf (~); ezample T (e = d°** — G (m) = 2.5) indicated
with a circle (o). Right: Likelihood cdf with example €®® = 2.5 indicated with a circle. In

this example, T (e°b5|m) = 0.9875, thus if ’yg(gc < 0.9875, the model would fail this check for
this m.
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Figure 2 The prediction pyramid, and a flow chart describing a possible statistical validation
process (inspired by [4]).
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Figure 3 Sequential two-dimensional images of the progressive growth of a tumor at time
t =0,3,6,9, originating from an elliptical shape, (96/2.1)2 -+ (y/1.9)2 =1att=0, with a
quarter of the domain Q = (—12.8, 12.8)2 shown and two-plane symmetry assumed. Images
generated using Mo with parameters given in Table 1. These (virtual) images are to be used
for calibration (t = 3) and validation (t =6) for M.

®) _— © @

Figure 4 (a) Spatial series of MRI images of a tumor implanted on a mouse’s back. (b)
Two-dimensional cross-slice containing the largest area of tumor. (c) Segmentation of (b)
into tumor and non-tumor regions. (d) Mesh generated by images in (a).
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Figure 5 Plots of the calibration likelihood function marginal corresponding to the L? pizel
data (left) and interface data (right) CDF. Circles marks e for all m tested. Line corre-
sponding to g = 0.7 is shown.

Calibration Posterior PDF

Figure 6 Left:Calibrated posterior pdf oy, (P[d(’bs). Right: Result of simulation using M,
with the most likely estimator for P = 0.03375 at t = 3 with the data values as mapped
through G, (P).
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Figure 7 Plots of the marginals of the likelihood function under the validation scenario.
Circle marks e for all m tested. Line corresponding to fyz‘j} = 0.7 15 shown.
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Figure 8 A sequence of two-dimensional images of the progressive growth of a tumor at time
t =0,3,6,9, originating from an elliptical shape, (x/2.1)* + (y/1.9)* = 1 at t = 0, with a
quarter of the domain Q = (—12.8, 12.8)2 shown and two-plane symmetry assumed. Images
generated with model My with parameters in (35). These (virtual) images are to be used for
calibration (image att = 3) and validation (image at t =6) for M.
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Figure 9 Plots of the marginals of the likelihood function with calibration data from Ms
for My (29). Circle marks values of e for all tested values of (x, D). The cutoff level is
marked with a red line.
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Figure 10 Left: Calibrated posterior pdf oy (X, D[dgbs). Right: Result of simulation using
My with the most likely estimator of (x, D) = (9.0,1.95) at t = 3.
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Figure 11 Plots of the marginals of the likelihood function with validation data from Ms
for My (29). Circle marks values of e for all tested values of (x, D). The cutoff level is
marked with a red line.
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Figure 12 Left: Validation posterior pdf oy (X, D\dgbs). Right: Result of simulation using
M with the most likely estimator of (x, D) = (9.0,1.8) at t = 6.
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Figure 13 Left: Cumulative distribution functions for the tumor volume at t =9 as deter-
mined with both the calibration (solid line) and the validation (dashed line) posterior pdfs.
Right: Prediction using the MLE.
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